aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2007-03-31 04:06:36 +0000
committerChris Lattner <sabre@nondot.org>2007-03-31 04:06:36 +0000
commitdbe0deca339585dfbaed5951ef0ca2c6a0df173c (patch)
treeffc084b3987295cbaa43c84a62a00b17a3451d91
parentd2f340b746e54fca27b654fd6740973fdf6b85f1 (diff)
downloadexternal_llvm-dbe0deca339585dfbaed5951ef0ca2c6a0df173c.zip
external_llvm-dbe0deca339585dfbaed5951ef0ca2c6a0df173c.tar.gz
external_llvm-dbe0deca339585dfbaed5951ef0ca2c6a0df173c.tar.bz2
Split the sdisel code munging stuff out into its own opt-pass, CodeGenPrepare.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35528 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--include/llvm/LinkAllPasses.h1
-rw-r--r--include/llvm/Transforms/Scalar.h8
-rw-r--r--lib/Transforms/Scalar/CodeGenPrepare.cpp548
3 files changed, 556 insertions, 1 deletions
diff --git a/include/llvm/LinkAllPasses.h b/include/llvm/LinkAllPasses.h
index 834fe48..7bf1c16 100644
--- a/include/llvm/LinkAllPasses.h
+++ b/include/llvm/LinkAllPasses.h
@@ -109,6 +109,7 @@ namespace {
(void) llvm::createIndMemRemPass();
(void) llvm::createInstCountPass();
(void) llvm::createPredicateSimplifierPass();
+ (void) llvm::createCodeGenPreparePass();
(void)new llvm::IntervalPartition();
(void)new llvm::ImmediateDominators();
diff --git a/include/llvm/Transforms/Scalar.h b/include/llvm/Transforms/Scalar.h
index a675730..379ee57 100644
--- a/include/llvm/Transforms/Scalar.h
+++ b/include/llvm/Transforms/Scalar.h
@@ -121,7 +121,7 @@ LoopPass *createLICMPass();
// optional parameter used to consult the target machine whether certain
// transformations are profitable.
//
-LoopPass *createLoopStrengthReducePass(const TargetLowering *TLI = NULL);
+LoopPass *createLoopStrengthReducePass(const TargetLowering *TLI = 0);
//===----------------------------------------------------------------------===//
//
@@ -309,6 +309,12 @@ extern const PassInfo *LCSSAID;
//
FunctionPass *createPredicateSimplifierPass();
+//===----------------------------------------------------------------------===//
+//
+// CodeGenPrepare - This pass prepares a function for instruction selection.
+//
+FunctionPass *createCodeGenPreparePass(const TargetLowering *TLI = 0);
+
} // End llvm namespace
#endif
diff --git a/lib/Transforms/Scalar/CodeGenPrepare.cpp b/lib/Transforms/Scalar/CodeGenPrepare.cpp
new file mode 100644
index 0000000..f80513e
--- /dev/null
+++ b/lib/Transforms/Scalar/CodeGenPrepare.cpp
@@ -0,0 +1,548 @@
+//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass munges the code in the input function to better prepare it for
+// SelectionDAG-based code generation. This works around limitations in it's
+// basic-block-at-a-time approach. It should eventually be removed.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "codegenprepare"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/ADT/SmallSet.h"
+using namespace llvm;
+
+namespace {
+ class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
+ /// TLI - Keep a pointer of a TargetLowering to consult for determining
+ /// transformation profitability.
+ const TargetLowering *TLI;
+ public:
+ CodeGenPrepare(const TargetLowering *tli = 0) : TLI(tli) {}
+ bool runOnFunction(Function &F);
+
+ private:
+ bool OptimizeBlock(BasicBlock &BB);
+ bool OptimizeGEPExpression(GetElementPtrInst *GEPI);
+ };
+}
+static RegisterPass<CodeGenPrepare> X("codegenprepare",
+ "Optimize for code generation");
+
+FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
+ return new CodeGenPrepare(TLI);
+}
+
+
+bool CodeGenPrepare::runOnFunction(Function &F) {
+ bool MadeChange = true;
+ bool EverMadeChange = false;
+ while (MadeChange) {
+ MadeChange = false;
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ MadeChange |= OptimizeBlock(*BB);
+ EverMadeChange |= MadeChange;
+ }
+ return EverMadeChange;
+}
+
+/// SplitEdgeNicely - Split the critical edge from TI to it's specified
+/// successor if it will improve codegen. We only do this if the successor has
+/// phi nodes (otherwise critical edges are ok). If there is already another
+/// predecessor of the succ that is empty (and thus has no phi nodes), use it
+/// instead of introducing a new block.
+static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
+ BasicBlock *TIBB = TI->getParent();
+ BasicBlock *Dest = TI->getSuccessor(SuccNum);
+ assert(isa<PHINode>(Dest->begin()) &&
+ "This should only be called if Dest has a PHI!");
+
+ /// TIPHIValues - This array is lazily computed to determine the values of
+ /// PHIs in Dest that TI would provide.
+ std::vector<Value*> TIPHIValues;
+
+ // Check to see if Dest has any blocks that can be used as a split edge for
+ // this terminator.
+ for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
+ BasicBlock *Pred = *PI;
+ // To be usable, the pred has to end with an uncond branch to the dest.
+ BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
+ if (!PredBr || !PredBr->isUnconditional() ||
+ // Must be empty other than the branch.
+ &Pred->front() != PredBr)
+ continue;
+
+ // Finally, since we know that Dest has phi nodes in it, we have to make
+ // sure that jumping to Pred will have the same affect as going to Dest in
+ // terms of PHI values.
+ PHINode *PN;
+ unsigned PHINo = 0;
+ bool FoundMatch = true;
+ for (BasicBlock::iterator I = Dest->begin();
+ (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
+ if (PHINo == TIPHIValues.size())
+ TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
+
+ // If the PHI entry doesn't work, we can't use this pred.
+ if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
+ FoundMatch = false;
+ break;
+ }
+ }
+
+ // If we found a workable predecessor, change TI to branch to Succ.
+ if (FoundMatch) {
+ Dest->removePredecessor(TIBB);
+ TI->setSuccessor(SuccNum, Pred);
+ return;
+ }
+ }
+
+ SplitCriticalEdge(TI, SuccNum, P, true);
+}
+
+
+/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
+/// casting to the type of GEPI.
+static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
+ Instruction *GEPI, Value *Ptr,
+ Value *PtrOffset) {
+ if (V) return V; // Already computed.
+
+ // Figure out the insertion point
+ BasicBlock::iterator InsertPt;
+ if (BB == GEPI->getParent()) {
+ // If GEP is already inserted into BB, insert right after the GEP.
+ InsertPt = GEPI;
+ ++InsertPt;
+ } else {
+ // Otherwise, insert at the top of BB, after any PHI nodes
+ InsertPt = BB->begin();
+ while (isa<PHINode>(InsertPt)) ++InsertPt;
+ }
+
+ // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
+ // BB so that there is only one value live across basic blocks (the cast
+ // operand).
+ if (CastInst *CI = dyn_cast<CastInst>(Ptr))
+ if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
+ Ptr = CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(),
+ "", InsertPt);
+
+ // Add the offset, cast it to the right type.
+ Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
+ // Ptr is an integer type, GEPI is pointer type ==> IntToPtr
+ return V = CastInst::create(Instruction::IntToPtr, Ptr, GEPI->getType(),
+ "", InsertPt);
+}
+
+/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
+/// compute its value. The RepPtr value can be computed with Ptr+PtrOffset. One
+/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
+/// block, then ReplaceAllUsesWith'ing everything. However, we would prefer to
+/// sink PtrOffset into user blocks where doing so will likely allow us to fold
+/// the constant add into a load or store instruction. Additionally, if a user
+/// is a pointer-pointer cast, we look through it to find its users.
+static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
+ Constant *PtrOffset, BasicBlock *DefBB,
+ GetElementPtrInst *GEPI,
+ std::map<BasicBlock*,Instruction*> &InsertedExprs) {
+ while (!RepPtr->use_empty()) {
+ Instruction *User = cast<Instruction>(RepPtr->use_back());
+
+ // If the user is a Pointer-Pointer cast, recurse. Only BitCast can be
+ // used for a Pointer-Pointer cast.
+ if (isa<BitCastInst>(User)) {
+ ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
+
+ // Drop the use of RepPtr. The cast is dead. Don't delete it now, else we
+ // could invalidate an iterator.
+ User->setOperand(0, UndefValue::get(RepPtr->getType()));
+ continue;
+ }
+
+ // If this is a load of the pointer, or a store through the pointer, emit
+ // the increment into the load/store block.
+ Instruction *NewVal;
+ if (isa<LoadInst>(User) ||
+ (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
+ NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
+ User->getParent(), GEPI,
+ Ptr, PtrOffset);
+ } else {
+ // If this use is not foldable into the addressing mode, use a version
+ // emitted in the GEP block.
+ NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
+ Ptr, PtrOffset);
+ }
+
+ if (GEPI->getType() != RepPtr->getType()) {
+ BasicBlock::iterator IP = NewVal;
+ ++IP;
+ // NewVal must be a GEP which must be pointer type, so BitCast
+ NewVal = new BitCastInst(NewVal, RepPtr->getType(), "", IP);
+ }
+ User->replaceUsesOfWith(RepPtr, NewVal);
+ }
+}
+
+/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
+/// selection, we want to be a bit careful about some things. In particular, if
+/// we have a GEP instruction that is used in a different block than it is
+/// defined, the addressing expression of the GEP cannot be folded into loads or
+/// stores that use it. In this case, decompose the GEP and move constant
+/// indices into blocks that use it.
+bool CodeGenPrepare::OptimizeGEPExpression(GetElementPtrInst *GEPI) {
+ // If this GEP is only used inside the block it is defined in, there is no
+ // need to rewrite it.
+ bool isUsedOutsideDefBB = false;
+ BasicBlock *DefBB = GEPI->getParent();
+ for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
+ UI != E; ++UI) {
+ if (cast<Instruction>(*UI)->getParent() != DefBB) {
+ isUsedOutsideDefBB = true;
+ break;
+ }
+ }
+ if (!isUsedOutsideDefBB) return false;
+
+ // If this GEP has no non-zero constant indices, there is nothing we can do,
+ // ignore it.
+ bool hasConstantIndex = false;
+ bool hasVariableIndex = false;
+ for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
+ E = GEPI->op_end(); OI != E; ++OI) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
+ if (!CI->isZero()) {
+ hasConstantIndex = true;
+ break;
+ }
+ } else {
+ hasVariableIndex = true;
+ }
+ }
+
+ // If this is a "GEP X, 0, 0, 0", turn this into a cast.
+ if (!hasConstantIndex && !hasVariableIndex) {
+ /// The GEP operand must be a pointer, so must its result -> BitCast
+ Value *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
+ GEPI->getName(), GEPI);
+ GEPI->replaceAllUsesWith(NC);
+ GEPI->eraseFromParent();
+ return true;
+ }
+
+ // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
+ if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
+ return false;
+
+ // If we don't have target lowering info, we can't lower the GEP.
+ if (!TLI) return false;
+ const TargetData *TD = TLI->getTargetData();
+
+ // Otherwise, decompose the GEP instruction into multiplies and adds. Sum the
+ // constant offset (which we now know is non-zero) and deal with it later.
+ uint64_t ConstantOffset = 0;
+ const Type *UIntPtrTy = TD->getIntPtrType();
+ Value *Ptr = new PtrToIntInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
+ const Type *Ty = GEPI->getOperand(0)->getType();
+
+ for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
+ E = GEPI->op_end(); OI != E; ++OI) {
+ Value *Idx = *OI;
+ if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
+ unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
+ if (Field)
+ ConstantOffset += TD->getStructLayout(StTy)->getElementOffset(Field);
+ Ty = StTy->getElementType(Field);
+ } else {
+ Ty = cast<SequentialType>(Ty)->getElementType();
+
+ // Handle constant subscripts.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
+ if (CI->getZExtValue() == 0) continue;
+ ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
+ continue;
+ }
+
+ // Ptr = Ptr + Idx * ElementSize;
+
+ // Cast Idx to UIntPtrTy if needed.
+ Idx = CastInst::createIntegerCast(Idx, UIntPtrTy, true/*SExt*/, "", GEPI);
+
+ uint64_t ElementSize = TD->getTypeSize(Ty);
+ // Mask off bits that should not be set.
+ ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
+ Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
+
+ // Multiply by the element size and add to the base.
+ Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
+ Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
+ }
+ }
+
+ // Make sure that the offset fits in uintptr_t.
+ ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
+ Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
+
+ // Okay, we have now emitted all of the variable index parts to the BB that
+ // the GEP is defined in. Loop over all of the using instructions, inserting
+ // an "add Ptr, ConstantOffset" into each block that uses it and update the
+ // instruction to use the newly computed value, making GEPI dead. When the
+ // user is a load or store instruction address, we emit the add into the user
+ // block, otherwise we use a canonical version right next to the gep (these
+ // won't be foldable as addresses, so we might as well share the computation).
+
+ std::map<BasicBlock*,Instruction*> InsertedExprs;
+ ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
+
+ // Finally, the GEP is dead, remove it.
+ GEPI->eraseFromParent();
+
+ return true;
+}
+
+/// SinkInvariantGEPIndex - If a GEP instruction has a variable index that has
+/// been hoisted out of the loop by LICM pass, sink it back into the use BB
+/// if it can be determined that the index computation can be folded into the
+/// addressing mode of the load / store uses.
+static bool SinkInvariantGEPIndex(BinaryOperator *BinOp,
+ const TargetLowering &TLI) {
+ // Only look at Add.
+ if (BinOp->getOpcode() != Instruction::Add)
+ return false;
+
+ // DestBBs - These are the blocks where a copy of BinOp will be inserted.
+ SmallSet<BasicBlock*, 8> DestBBs;
+ BasicBlock *DefBB = BinOp->getParent();
+ bool MadeChange = false;
+ for (Value::use_iterator UI = BinOp->use_begin(), E = BinOp->use_end();
+ UI != E; ++UI) {
+ Instruction *GEPI = cast<Instruction>(*UI);
+ // Only look for GEP use in another block.
+ if (GEPI->getParent() == DefBB) continue;
+
+ if (isa<GetElementPtrInst>(GEPI)) {
+ // If the GEP has another variable index, abondon.
+ bool hasVariableIndex = false;
+ for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
+ OE = GEPI->op_end(); OI != OE; ++OI)
+ if (*OI != BinOp && !isa<ConstantInt>(*OI)) {
+ hasVariableIndex = true;
+ break;
+ }
+ if (hasVariableIndex)
+ break;
+
+ BasicBlock *GEPIBB = GEPI->getParent();
+ for (Value::use_iterator UUI = GEPI->use_begin(), UE = GEPI->use_end();
+ UUI != UE; ++UUI) {
+ Instruction *GEPIUser = cast<Instruction>(*UUI);
+ const Type *UseTy = NULL;
+ if (LoadInst *Load = dyn_cast<LoadInst>(GEPIUser))
+ UseTy = Load->getType();
+ else if (StoreInst *Store = dyn_cast<StoreInst>(GEPIUser))
+ UseTy = Store->getOperand(0)->getType();
+
+ // Check if it is possible to fold the expression to address mode.
+ if (UseTy && isa<ConstantInt>(BinOp->getOperand(1))) {
+ uint64_t Scale = TLI.getTargetData()->getTypeSize(UseTy);
+ int64_t Cst = cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue();
+ // e.g. load (gep i32 * %P, (X+42)) => load (%P + X*4 + 168).
+ if (TLI.isLegalAddressImmediate(Cst*Scale, UseTy) &&
+ (Scale == 1 || TLI.isLegalAddressScale(Scale, UseTy))) {
+ DestBBs.insert(GEPIBB);
+ MadeChange = true;
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // Nothing to do.
+ if (!MadeChange)
+ return false;
+
+ /// InsertedOps - Only insert a duplicate in each block once.
+ std::map<BasicBlock*, BinaryOperator*> InsertedOps;
+ for (Value::use_iterator UI = BinOp->use_begin(), E = BinOp->use_end();
+ UI != E; ) {
+ Instruction *User = cast<Instruction>(*UI);
+ BasicBlock *UserBB = User->getParent();
+
+ // Preincrement use iterator so we don't invalidate it.
+ ++UI;
+
+ // If any user in this BB wants it, replace all the uses in the BB.
+ if (DestBBs.count(UserBB)) {
+ // Sink it into user block.
+ BinaryOperator *&InsertedOp = InsertedOps[UserBB];
+ if (!InsertedOp) {
+ BasicBlock::iterator InsertPt = UserBB->begin();
+ while (isa<PHINode>(InsertPt)) ++InsertPt;
+
+ InsertedOp =
+ BinaryOperator::create(BinOp->getOpcode(), BinOp->getOperand(0),
+ BinOp->getOperand(1), "", InsertPt);
+ }
+
+ User->replaceUsesOfWith(BinOp, InsertedOp);
+ }
+ }
+
+ if (BinOp->use_empty())
+ BinOp->eraseFromParent();
+
+ return true;
+}
+
+/// OptimizeNoopCopyExpression - We have determined that the specified cast
+/// instruction is a noop copy (e.g. it's casting from one pointer type to
+/// another, int->uint, or int->sbyte on PPC.
+///
+/// Return true if any changes are made.
+static bool OptimizeNoopCopyExpression(CastInst *CI) {
+ BasicBlock *DefBB = CI->getParent();
+
+ /// InsertedCasts - Only insert a cast in each block once.
+ std::map<BasicBlock*, CastInst*> InsertedCasts;
+
+ bool MadeChange = false;
+ for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
+ UI != E; ) {
+ Use &TheUse = UI.getUse();
+ Instruction *User = cast<Instruction>(*UI);
+
+ // Figure out which BB this cast is used in. For PHI's this is the
+ // appropriate predecessor block.
+ BasicBlock *UserBB = User->getParent();
+ if (PHINode *PN = dyn_cast<PHINode>(User)) {
+ unsigned OpVal = UI.getOperandNo()/2;
+ UserBB = PN->getIncomingBlock(OpVal);
+ }
+
+ // Preincrement use iterator so we don't invalidate it.
+ ++UI;
+
+ // If this user is in the same block as the cast, don't change the cast.
+ if (UserBB == DefBB) continue;
+
+ // If we have already inserted a cast into this block, use it.
+ CastInst *&InsertedCast = InsertedCasts[UserBB];
+
+ if (!InsertedCast) {
+ BasicBlock::iterator InsertPt = UserBB->begin();
+ while (isa<PHINode>(InsertPt)) ++InsertPt;
+
+ InsertedCast =
+ CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
+ InsertPt);
+ MadeChange = true;
+ }
+
+ // Replace a use of the cast with a use of the new casat.
+ TheUse = InsertedCast;
+ }
+
+ // If we removed all uses, nuke the cast.
+ if (CI->use_empty())
+ CI->eraseFromParent();
+
+ return MadeChange;
+}
+
+
+
+// In this pass we look for GEP and cast instructions that are used
+// across basic blocks and rewrite them to improve basic-block-at-a-time
+// selection.
+bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
+ bool MadeChange = false;
+
+ // Split all critical edges where the dest block has a PHI and where the phi
+ // has shared immediate operands.
+ TerminatorInst *BBTI = BB.getTerminator();
+ if (BBTI->getNumSuccessors() > 1) {
+ for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
+ if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
+ isCriticalEdge(BBTI, i, true))
+ SplitEdgeNicely(BBTI, i, this);
+ }
+
+
+ for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
+ Instruction *I = BBI++;
+
+ if (CallInst *CI = dyn_cast<CallInst>(I)) {
+ // If we found an inline asm expession, and if the target knows how to
+ // lower it to normal LLVM code, do so now.
+ if (TLI && isa<InlineAsm>(CI->getCalledValue()))
+ if (const TargetAsmInfo *TAI =
+ TLI->getTargetMachine().getTargetAsmInfo()) {
+ if (TAI->ExpandInlineAsm(CI))
+ BBI = BB.begin();
+ }
+ } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
+ MadeChange |= OptimizeGEPExpression(GEPI);
+ } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
+ // If the source of the cast is a constant, then this should have
+ // already been constant folded. The only reason NOT to constant fold
+ // it is if something (e.g. LSR) was careful to place the constant
+ // evaluation in a block other than then one that uses it (e.g. to hoist
+ // the address of globals out of a loop). If this is the case, we don't
+ // want to forward-subst the cast.
+ if (isa<Constant>(CI->getOperand(0)))
+ continue;
+
+ if (!TLI) continue;
+
+ // If this is a noop copy, sink it into user blocks to reduce the number
+ // of virtual registers that must be created and coallesced.
+ MVT::ValueType SrcVT = TLI->getValueType(CI->getOperand(0)->getType());
+ MVT::ValueType DstVT = TLI->getValueType(CI->getType());
+
+ // This is an fp<->int conversion?
+ if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
+ continue;
+
+ // If this is an extension, it will be a zero or sign extension, which
+ // isn't a noop.
+ if (SrcVT < DstVT) continue;
+
+ // If these values will be promoted, find out what they will be promoted
+ // to. This helps us consider truncates on PPC as noop copies when they
+ // are.
+ if (TLI->getTypeAction(SrcVT) == TargetLowering::Promote)
+ SrcVT = TLI->getTypeToTransformTo(SrcVT);
+ if (TLI->getTypeAction(DstVT) == TargetLowering::Promote)
+ DstVT = TLI->getTypeToTransformTo(DstVT);
+
+ // If, after promotion, these are the same types, this is a noop copy.
+ if (SrcVT == DstVT)
+ MadeChange |= OptimizeNoopCopyExpression(CI);
+ } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I)) {
+ if (TLI)
+ MadeChange |= SinkInvariantGEPIndex(BinOp, *TLI);
+ }
+ }
+ return MadeChange;
+}
+