aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/ModuloScheduling
diff options
context:
space:
mode:
authorGuochun Shi <gshi1@uiuc.edu>2003-03-27 17:57:44 +0000
committerGuochun Shi <gshi1@uiuc.edu>2003-03-27 17:57:44 +0000
commitf1c154f5e69fdd11426b4e2a5cdea98fcab1606b (patch)
treea92fed3ba423c4c5707e22978f4d6710931ad1fc /lib/CodeGen/ModuloScheduling
parentc277eaa41eb2ed6ab70855e170c07a17059c2bf3 (diff)
downloadexternal_llvm-f1c154f5e69fdd11426b4e2a5cdea98fcab1606b.zip
external_llvm-f1c154f5e69fdd11426b4e2a5cdea98fcab1606b.tar.gz
external_llvm-f1c154f5e69fdd11426b4e2a5cdea98fcab1606b.tar.bz2
*** empty log message ***
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5755 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/ModuloScheduling')
-rw-r--r--lib/CodeGen/ModuloScheduling/Makefile7
-rw-r--r--lib/CodeGen/ModuloScheduling/ModuloSchedGraph.cpp1313
-rw-r--r--lib/CodeGen/ModuloScheduling/ModuloSchedGraph.h347
-rw-r--r--lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp899
-rw-r--r--lib/CodeGen/ModuloScheduling/ModuloScheduling.h160
5 files changed, 2726 insertions, 0 deletions
diff --git a/lib/CodeGen/ModuloScheduling/Makefile b/lib/CodeGen/ModuloScheduling/Makefile
new file mode 100644
index 0000000..adbc021
--- /dev/null
+++ b/lib/CodeGen/ModuloScheduling/Makefile
@@ -0,0 +1,7 @@
+LEVEL = ../../..
+
+DIRS =
+
+LIBRARYNAME = modulosched
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/CodeGen/ModuloScheduling/ModuloSchedGraph.cpp b/lib/CodeGen/ModuloScheduling/ModuloSchedGraph.cpp
new file mode 100644
index 0000000..4e36b07
--- /dev/null
+++ b/lib/CodeGen/ModuloScheduling/ModuloSchedGraph.cpp
@@ -0,0 +1,1313 @@
+#include <math.h>
+#include "ModuloSchedGraph.h"
+#include "llvm/CodeGen/InstrSelection.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Function.h"
+#include "llvm/iOther.h"
+#include "Support/StringExtras.h"
+#include "Support/STLExtras.h"
+#include <iostream>
+#include <swig.h>
+#include "llvm/iOperators.h"
+#include "llvm/iOther.h"
+#include "llvm/iPHINode.h"
+#include "llvm/iTerminators.h"
+#include "llvm/iMemory.h"
+#include "llvm/Type.h"
+#include "llvm/CodeGen/MachineCodeForInstruction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Target/MachineSchedInfo.h"
+
+#define UNIDELAY 1
+#define min(a, b) ((a) < (b) ? (a) : (b))
+#define max(a, b) ((a) < (b) ? (b) : (a))
+
+using std::vector;
+using std::pair;
+//using std::hash_map;
+using std::cerr;
+extern std::ostream modSched_os;
+extern ModuloSchedDebugLevel_t ModuloSchedDebugLevel;
+//*********************** Internal Data Structures *************************/
+
+// The following two types need to be classes, not typedefs, so we can use
+// opaque declarations in SchedGraph.h
+//
+struct RefVec: public vector< pair<ModuloSchedGraphNode*, int> > {
+ typedef vector< pair<ModuloSchedGraphNode*, int> >:: iterator iterator;
+ typedef vector< pair<ModuloSchedGraphNode*, int> >::const_iterator const_iterator;
+};
+
+struct RegToRefVecMap: public hash_map<int, RefVec> {
+ typedef hash_map<int, RefVec>:: iterator iterator;
+ typedef hash_map<int, RefVec>::const_iterator const_iterator;
+};
+
+struct ValueToDefVecMap: public hash_map<const Instruction*, RefVec> {
+ typedef hash_map<const Instruction*, RefVec>:: iterator iterator;
+ typedef hash_map<const Instruction*, RefVec>::const_iterator const_iterator;
+};
+
+
+
+// class Modulo SchedGraphNode
+
+/*ctor*/
+ModuloSchedGraphNode::ModuloSchedGraphNode(unsigned int _nodeId,
+ const BasicBlock* _bb,
+ const Instruction* _inst,
+ int indexInBB,
+ const TargetMachine& target)
+ :
+ SchedGraphNodeCommon(_nodeId, _bb, indexInBB),
+ inst(_inst)
+{
+ if(inst)
+ {
+ //FIXME: find the latency
+ //currently setthe latency to zero
+ latency =0;
+ }
+
+}
+
+//class ModuloScheGraph
+
+
+void
+ModuloSchedGraph::addDummyEdges()
+{
+ assert(graphRoot->outEdges.size() == 0);
+
+ for (const_iterator I=begin(); I != end(); ++I)
+ {
+ ModuloSchedGraphNode* node = (ModuloSchedGraphNode*)( (*I).second);
+ assert(node != graphRoot && node != graphLeaf);
+ if (node->beginInEdges() == node->endInEdges())
+ (void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
+ SchedGraphEdge::NonDataDep, 0);
+ if (node->beginOutEdges() == node->endOutEdges())
+ (void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
+ SchedGraphEdge::NonDataDep, 0);
+ }
+}
+
+bool isDefinition(const Instruction* I)
+{
+ //if(TerminatorInst::classof(I)||FreeInst::classof(I) || StoreInst::classof(I) || CallInst::classof(I))
+ if(!I->hasName())
+ return false;
+ else
+ return true;
+}
+
+void ModuloSchedGraph::addDefUseEdges(const BasicBlock* bb)
+{
+ //collect def instructions, store them in vector
+ const MachineInstrInfo& mii = target.getInstrInfo();
+
+ typedef std::vector<ModuloSchedGraphNode*> DefVec;
+ DefVec defVec;
+
+ //find those def instructions
+ for(BasicBlock::const_iterator I=bb->begin(), E=bb->end(); I !=E; I++)
+ if(I->getType() != Type::VoidTy)
+ {
+ defVec.push_back(this->getGraphNodeForInst(I)) ;
+ }
+
+ for(unsigned int i=0; i < defVec.size();i++)
+ for(Value::use_const_iterator I=defVec[i]->getInst()->use_begin();I !=defVec[i]->getInst()->use_end() ;I++)
+ {
+ //for each use of a def, add a flow edge from the def instruction to the ref instruction
+
+
+ const Instruction* value=defVec[i]->getInst();
+ Instruction *inst=(Instruction*)(*I);
+ ModuloSchedGraphNode* node=NULL;
+
+ for(BasicBlock::const_iterator I=bb->begin(), E=bb->end(); I !=E; I++)
+ if((const Instruction*)I == inst)
+ {
+ node=(*this)[inst];
+ break;
+ }
+
+ assert(inst != NULL &&" Use not an Instruction ?" );
+
+ if(node == NULL) //inst is not an instruction in this block
+ {}
+ else
+ {
+ //add a flow edge from the def instruction to the ref instruction
+
+ //self loop will not happen in SSA form
+ assert(defVec[i] != node && "same node?");
+
+
+ //this is a true dependence, so the delay is equal to the delay of the pred node.
+ int delay=0;
+ MachineCodeForInstruction& tempMvec= MachineCodeForInstruction::get(value);
+ for(unsigned j=0;j< tempMvec.size();j++)
+ {
+ MachineInstr* temp=tempMvec[j];
+ //delay +=mii.minLatency(temp->getOpCode());
+ delay = max(delay, mii.minLatency(temp->getOpCode()));
+ }
+
+ SchedGraphEdge* trueEdge=new SchedGraphEdge(defVec[i],node,value, SchedGraphEdge::TrueDep,delay);
+
+ //if the ref instruction is before the def instrution
+ //then the def instruction must be a phi instruction
+ //add an anti-dependence edge to from the ref instruction to the def instruction
+ if( node->getOrigIndexInBB() < defVec[i]->getOrigIndexInBB())
+ {
+ assert(PHINode::classof(inst) && "the ref instruction befre def is not PHINode?");
+ trueEdge->setIteDiff(1);
+ }
+
+ }
+
+ }
+}
+
+void ModuloSchedGraph::addCDEdges(const BasicBlock* bb)
+{
+ //find the last instruction in the basic block
+ //see if it is an branch instruction.
+ //If yes, then add an edge from each node expcept the last node to the last node
+
+ const Instruction* inst=&(bb->back());
+ ModuloSchedGraphNode* lastNode=(*this)[inst];
+ if( TerminatorInst::classof(inst))
+ for(BasicBlock::const_iterator I=bb->begin(),E=bb->end(); I != E; I++)
+ {
+ if(inst != I)
+ {
+ ModuloSchedGraphNode* node = (*this)[I];
+ //use latency of 0
+ (void) new SchedGraphEdge(node,lastNode,SchedGraphEdge::CtrlDep,
+ SchedGraphEdge::NonDataDep,0);
+ }
+
+ }
+
+
+}
+
+
+
+
+static const int SG_LOAD_REF = 0;
+static const int SG_STORE_REF = 1;
+static const int SG_CALL_REF = 2;
+
+static const unsigned int SG_DepOrderArray[][3] = {
+ { SchedGraphEdge::NonDataDep,
+ SchedGraphEdge::AntiDep,
+ SchedGraphEdge::AntiDep },
+ { SchedGraphEdge::TrueDep,
+ SchedGraphEdge::OutputDep,
+ SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
+ { SchedGraphEdge::TrueDep,
+ SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
+ SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
+ | SchedGraphEdge::OutputDep }
+};
+
+
+// Add a dependence edge between every pair of machine load/store/call
+// instructions, where at least one is a store or a call.
+// Use latency 1 just to ensure that memory operations are ordered;
+// latency does not otherwise matter (true dependences enforce that).
+//
+void
+ModuloSchedGraph::addMemEdges(const BasicBlock* bb)
+{
+
+ vector<ModuloSchedGraphNode*> memNodeVec;
+
+ //construct the memNodeVec
+
+ for( BasicBlock::const_iterator I=bb->begin(), E=bb->end();I != E; I++)
+ if(LoadInst::classof(I) ||StoreInst::classof(I) || CallInst::classof(I))
+ {
+ ModuloSchedGraphNode* node =(*this)[(const Instruction*)I];
+ memNodeVec.push_back(node);
+ }
+ // Instructions in memNodeVec are in execution order within the basic block,
+ // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
+ //
+ for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
+ {
+ const Instruction* fromInst = memNodeVec[im]->getInst();
+ int fromType = CallInst::classof(fromInst)? SG_CALL_REF
+ : LoadInst::classof(fromInst)? SG_LOAD_REF
+ : SG_STORE_REF;
+ for (unsigned jm=im+1; jm < NM; jm++)
+ {
+ const Instruction* toInst=memNodeVec[jm]->getInst();
+ int toType = CallInst::classof(toInst)? SG_CALL_REF
+ : LoadInst::classof(toInst)? SG_LOAD_REF
+ : SG_STORE_REF;
+ if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF)
+ {
+ (void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm],
+ SchedGraphEdge::MemoryDep,
+ SG_DepOrderArray[fromType][toType], 1);
+
+ SchedGraphEdge* edge=new SchedGraphEdge(memNodeVec[jm],memNodeVec[im],
+ SchedGraphEdge::MemoryDep,
+ SG_DepOrderArray[toType][fromType],1);
+ edge->setIteDiff(1);
+
+ }
+ }
+ }
+}
+
+
+
+void ModuloSchedGraph::buildNodesforBB (const TargetMachine& target,
+ const BasicBlock* bb,
+ std::vector<ModuloSchedGraphNode*>& memNode,
+ RegToRefVecMap& regToRefVecMap,
+ ValueToDefVecMap& valueToDefVecMap)
+{
+ //const MachineInstrInfo& mii=target.getInstrInfo();
+
+ //Build graph nodes for each LLVM instruction and gather def/use info.
+ //Do both together in a single pass over all machine instructions.
+
+ int i=0;
+ for(BasicBlock::const_iterator I=bb->begin(), E=bb->end(); I!=E; I++)
+ {
+ ModuloSchedGraphNode* node=new ModuloSchedGraphNode(getNumNodes(), bb,I,i, target);
+ i++;
+ this->noteModuloSchedGraphNodeForInst(I,node);
+ }
+
+ //this function finds some info about instruction in basic block for later use
+ //findDefUseInfoAtInstr(target, node, memNode,regToRefVecMap,valueToDefVecMap);
+
+
+}
+
+
+bool ModuloSchedGraph::isLoop(const BasicBlock* bb)
+{
+ //only if the last instruction in the basicblock is branch instruction and
+ //there is at least an option to branch itself
+
+
+ const Instruction* inst=&(bb->back());
+ if( BranchInst::classof(inst))
+ for(unsigned i=0;i < ((BranchInst*)inst)->getNumSuccessors();i++)
+ {
+ BasicBlock* sb=((BranchInst*)inst)->getSuccessor(i);
+ if(sb ==bb) return true;
+ }
+
+ return false;
+
+}
+bool ModuloSchedGraph::isLoop()
+{
+ //only if the last instruction in the basicblock is branch instruction and
+ //there is at least an option to branch itself
+
+ assert(bbVec.size() ==1 &&"only 1 basicblock in a graph");
+ const BasicBlock* bb=bbVec[0];
+ const Instruction* inst=&(bb->back());
+ if( BranchInst::classof(inst))
+ for(unsigned i=0;i < ((BranchInst*)inst)->getNumSuccessors();i++)
+ {
+ BasicBlock* sb=((BranchInst*)inst)->getSuccessor(i);
+ if(sb ==bb) return true;
+ }
+
+ return false;
+
+}
+
+void ModuloSchedGraph::computeNodeASAP(const BasicBlock* bb)
+{
+
+ //FIXME: now assume the only backward edges come from the edges from other nodes to the phi Node
+ //so i will ignore all edges to the phi node; after this, there shall be no recurrence.
+
+ unsigned numNodes=bb->size();
+ for(unsigned i=2;i < numNodes+2;i++)
+ {
+ ModuloSchedGraphNode* node=getNode(i);
+ node->setPropertyComputed(false);
+ }
+
+ for(unsigned i=2;i < numNodes+2; i++)
+ {
+ ModuloSchedGraphNode* node=getNode(i);
+ node->ASAP=0;
+ if(i==2 ||node->getNumInEdges() ==0)
+ { node->setPropertyComputed(true);continue;}
+ for(ModuloSchedGraphNode::const_iterator I=node->beginInEdges(), E=node->endInEdges();I !=E; I++)
+ {
+ SchedGraphEdge* edge=*I;
+ ModuloSchedGraphNode* pred=(ModuloSchedGraphNode*)(edge->getSrc());
+ assert(pred->getPropertyComputed()&&"pred node property is not computed!");
+ int temp=pred->ASAP + edge->getMinDelay() - edge->getIteDiff()*this->MII;
+ node->ASAP= max(node->ASAP,temp);
+ }
+ node->setPropertyComputed(true);
+ }
+}
+
+void ModuloSchedGraph::computeNodeALAP(const BasicBlock* bb)
+{
+
+ unsigned numNodes=bb->size();
+ int maxASAP=0;
+ for(unsigned i=numNodes+1;i >= 2;i--)
+ {
+ ModuloSchedGraphNode* node=getNode(i);
+ node->setPropertyComputed(false);
+ //cerr<< " maxASAP= " <<maxASAP<<" node->ASAP= "<< node->ASAP<<"\n";
+ maxASAP=max(maxASAP,node->ASAP);
+ }
+
+ //cerr<<"maxASAP is "<<maxASAP<<"\n";
+
+ for(unsigned i=numNodes+1;i >= 2; i--)
+ {
+ ModuloSchedGraphNode* node=getNode(i);
+ node->ALAP=maxASAP;
+ for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges(); I!=E; I++)
+ {
+ SchedGraphEdge* edge= *I;
+ ModuloSchedGraphNode* succ=(ModuloSchedGraphNode*) (edge->getSink());
+ if(PHINode::classof(succ->getInst()))continue;
+ assert(succ->getPropertyComputed()&&"succ node property is not computed!");
+ int temp=succ->ALAP - edge->getMinDelay()+edge->getIteDiff()*this->MII;
+ node->ALAP =min(node->ALAP,temp);
+ }
+ node->setPropertyComputed(true);
+
+ }
+}
+
+void ModuloSchedGraph::computeNodeMov(const BasicBlock* bb)
+{
+ unsigned numNodes=bb->size();
+ for(unsigned i =2;i < numNodes +2 ;i++)
+ {
+ ModuloSchedGraphNode* node=getNode(i);
+ node->mov=node->ALAP-node->ASAP;
+ assert(node->mov >=0 &&"move freedom for this node is less than zero? ");
+ }
+}
+
+
+void ModuloSchedGraph::computeNodeDepth(const BasicBlock* bb)
+{
+
+ unsigned numNodes=bb->size();
+ for(unsigned i=2;i < numNodes+2;i++)
+ {
+ ModuloSchedGraphNode* node=getNode(i);
+ node->setPropertyComputed(false);
+ }
+
+ for(unsigned i=2;i < numNodes+2; i++)
+ {
+ ModuloSchedGraphNode* node=getNode(i);
+ node->depth=0;
+ if(i==2 ||node->getNumInEdges() ==0)
+ { node->setPropertyComputed(true);continue;}
+ for(ModuloSchedGraphNode::const_iterator I=node->beginInEdges(), E=node->endInEdges();I !=E; I++)
+ {
+ SchedGraphEdge* edge=*I;
+ ModuloSchedGraphNode* pred=(ModuloSchedGraphNode*)(edge->getSrc());
+ assert(pred->getPropertyComputed()&&"pred node property is not computed!");
+ int temp=pred->depth + edge->getMinDelay();
+ node->depth= max(node->depth,temp);
+ }
+ node->setPropertyComputed(true);
+ }
+
+}
+
+
+void ModuloSchedGraph::computeNodeHeight(const BasicBlock* bb)
+{
+ unsigned numNodes=bb->size();
+ for(unsigned i=numNodes+1;i >= 2;i--)
+ {
+ ModuloSchedGraphNode* node=getNode(i);
+ node->setPropertyComputed(false);
+ }
+
+ for(unsigned i=numNodes+1;i >= 2; i--)
+ {
+ ModuloSchedGraphNode* node=getNode(i);
+ node->height=0;
+ for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges(); I!=E; I++)
+ {
+ SchedGraphEdge* edge= *I;
+ ModuloSchedGraphNode* succ=(ModuloSchedGraphNode*)(edge->getSink());
+ if(PHINode::classof(succ->getInst())) continue;
+ assert(succ->getPropertyComputed()&&"succ node property is not computed!");
+ node->height=max(node->height, succ->height+edge->getMinDelay());
+
+ }
+ node->setPropertyComputed(true);
+
+ }
+
+}
+
+void ModuloSchedGraph::computeNodeProperty(const BasicBlock* bb)
+{
+ //FIXME: now assume the only backward edges come from the edges from other nodes to the phi Node
+ //so i will ignore all edges to the phi node; after this, there shall be no recurrence.
+
+ this->computeNodeASAP(bb);
+ this->computeNodeALAP(bb);
+ this->computeNodeMov(bb);
+ this->computeNodeDepth(bb);
+ this->computeNodeHeight(bb);
+}
+
+
+//do not consider the backedge in these two functions:
+// i.e. don't consider the edge with destination in phi node
+std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::predSet(std::vector<ModuloSchedGraphNode*> set, unsigned backEdgeSrc, unsigned backEdgeSink)
+{
+ std::vector<ModuloSchedGraphNode*> predS;
+ for(unsigned i=0; i < set.size(); i++)
+ {
+ ModuloSchedGraphNode* node = set[i];
+ for(ModuloSchedGraphNode::const_iterator I=node->beginInEdges(), E=node->endInEdges(); I !=E; I++)
+ {
+ SchedGraphEdge* edge= *I;
+ if(edge->getSrc()->getNodeId() ==backEdgeSrc && edge->getSink()->getNodeId() == backEdgeSink) continue;
+ ModuloSchedGraphNode* pred= (ModuloSchedGraphNode*)(edge->getSrc());
+ //if pred is not in the predSet, push it in vector
+ bool alreadyInset=false;
+ for(unsigned j=0; j < predS.size(); j++)
+ if(predS[j]->getNodeId() == pred->getNodeId() )
+ {alreadyInset=true;break;}
+
+ for(unsigned j=0; j < set.size(); j++)
+ if(set[j]->getNodeId() == pred->getNodeId() )
+ {alreadyInset=true; break;}
+
+ if(! alreadyInset)
+ predS.push_back(pred);
+ }
+ }
+ return predS;
+}
+
+ModuloSchedGraph::NodeVec ModuloSchedGraph::predSet(NodeVec set)
+{
+ //node number increases from 2
+ return predSet(set,0, 0);
+}
+
+
+std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::predSet(ModuloSchedGraphNode* _node, unsigned backEdgeSrc, unsigned backEdgeSink)
+{
+
+ std::vector<ModuloSchedGraphNode*> set;
+ set.push_back(_node);
+ return predSet(set, backEdgeSrc, backEdgeSink);
+
+}
+
+std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::predSet(ModuloSchedGraphNode* _node)
+{
+ return predSet(_node,0,0);
+}
+
+std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::succSet(std::vector<ModuloSchedGraphNode*> set,unsigned src, unsigned sink)
+{
+ vector<ModuloSchedGraphNode*> succS;
+ for(unsigned i=0; i < set.size(); i++)
+ {
+ ModuloSchedGraphNode* node = set[i];
+ for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges(); I !=E; I++)
+ {
+ SchedGraphEdge* edge= *I;
+ if(edge->getSrc()->getNodeId() == src && edge->getSink()->getNodeId() == sink) continue;
+ ModuloSchedGraphNode* succ= (ModuloSchedGraphNode*)(edge->getSink());
+ //if pred is not in the predSet, push it in vector
+ bool alreadyInset=false;
+ for(unsigned j=0; j < succS.size(); j++)
+ if(succS[j]->getNodeId() == succ->getNodeId() )
+ {alreadyInset=true;break;}
+
+ for(unsigned j=0; j < set.size(); j++)
+ if(set[j]->getNodeId() == succ->getNodeId() )
+ {alreadyInset=true;break;}
+ if(! alreadyInset)
+ succS.push_back(succ);
+ }
+ }
+ return succS;
+}
+
+ModuloSchedGraph::NodeVec ModuloSchedGraph::succSet(NodeVec set)
+{
+ return succSet(set,0,0);
+}
+
+
+std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::succSet(ModuloSchedGraphNode* _node,unsigned src, unsigned sink)
+{
+ std::vector<ModuloSchedGraphNode*> set;
+ set.push_back(_node);
+ return succSet(set, src, sink);
+
+
+}
+
+std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::succSet(ModuloSchedGraphNode* _node)
+{
+ return succSet(_node, 0, 0);
+}
+
+SchedGraphEdge* ModuloSchedGraph::getMaxDelayEdge(unsigned srcId, unsigned sinkId)
+{
+
+ ModuloSchedGraphNode* node =getNode(srcId);
+ SchedGraphEdge* maxDelayEdge=NULL;
+ int maxDelay=-1;
+ for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges();I !=E; I++)
+ {
+ SchedGraphEdge* edge= *I;
+ if(edge->getSink()->getNodeId() == sinkId)
+ if(edge->getMinDelay() > maxDelay){
+ maxDelayEdge=edge;
+ maxDelay=edge->getMinDelay();
+ }
+ }
+ assert(maxDelayEdge != NULL&&"no edge between the srcId and sinkId?");
+ return maxDelayEdge;
+}
+
+void ModuloSchedGraph::dumpCircuits()
+{
+ modSched_os<<"dumping circuits for graph: "<<"\n";
+ int j=-1;
+ while(circuits[++j][0] !=0){
+ int k=-1;
+ while(circuits[j][++k] !=0)
+ modSched_os<< circuits[j][k]<<"\t";
+ modSched_os<<"\n";
+ }
+}
+
+void ModuloSchedGraph::dumpSet(std::vector<ModuloSchedGraphNode*> set)
+{
+ for(unsigned i=0;i < set.size() ; i++)
+ modSched_os<< set[i]->getNodeId()<<"\t";
+ modSched_os<<"\n";
+}
+
+std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::vectorUnion(std::vector<ModuloSchedGraphNode*> set1,std::vector<ModuloSchedGraphNode*> set2 )
+{
+ std::vector<ModuloSchedGraphNode*> unionVec;
+ for(unsigned i=0;i<set1.size();i++)
+ unionVec.push_back(set1[i]);
+ for(unsigned j=0;j < set2.size();j++){
+ bool inset=false;
+ for(unsigned i=0;i < unionVec.size();i++)
+ if(set2[j]==unionVec[i]) inset=true;
+ if(!inset)unionVec.push_back(set2[j]);
+ }
+ return unionVec;
+}
+std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::vectorConj(std::vector<ModuloSchedGraphNode*> set1,std::vector<ModuloSchedGraphNode*> set2 )
+{
+ std::vector<ModuloSchedGraphNode*> conjVec;
+ for(unsigned i=0;i<set1.size();i++)
+ for(unsigned j=0;j < set2.size();j++)
+ if(set1[i]==set2[j]) conjVec.push_back(set1[i]);
+ return conjVec;
+}
+
+ModuloSchedGraph::NodeVec ModuloSchedGraph::vectorSub(NodeVec set1, NodeVec set2)
+{
+ NodeVec newVec;
+ for(NodeVec::iterator I=set1.begin(); I != set1.end(); I++){
+ bool inset=false;
+ for(NodeVec::iterator II=set2.begin(); II!=set2.end(); II++)
+ if( (*I)->getNodeId() ==(*II)->getNodeId())
+ {inset=true;break;}
+ if(!inset) newVec.push_back(*I);
+ }
+ return newVec;
+}
+
+void ModuloSchedGraph::orderNodes(){
+ oNodes.clear();
+
+ std::vector<ModuloSchedGraphNode*> set;
+ const BasicBlock* bb=bbVec[0];
+ unsigned numNodes = bb->size();
+
+ //first order all the sets
+ int j=-1;
+ int totalDelay=-1;
+ int preDelay=-1;
+ while(circuits[++j][0] !=0){
+ int k=-1;
+ preDelay=totalDelay;
+
+ while(circuits[j][++k] !=0){
+ ModuloSchedGraphNode* node =getNode(circuits[j][k]);
+ unsigned nextNodeId;
+ nextNodeId =circuits[j][k+1] !=0? circuits[j][k+1]:circuits[j][0];
+ SchedGraphEdge* edge = getMaxDelayEdge(circuits[j][k], nextNodeId);
+ totalDelay += edge->getMinDelay();
+ }
+ if(preDelay != -1 && totalDelay > preDelay){
+ //swap circuits[j][] and cuicuits[j-1][]
+ unsigned temp[MAXNODE];
+ for(int k=0;k<MAXNODE;k++){
+ temp[k]=circuits[j-1][k];
+ circuits[j-1][k]=circuits[j][k];
+ circuits[j][k]=temp[k];
+ }
+ //restart
+ j=-1;
+ }
+ }
+
+ //build the first set
+ int backEdgeSrc;
+ int backEdgeSink;
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"building the first set"<<"\n";
+ int setSeq=-1;
+ int k=-1;
+ setSeq++;
+ while(circuits[setSeq][++k]!=0)
+ set.push_back(getNode(circuits[setSeq][k]));
+ if(circuits[setSeq][0]!=0){
+ backEdgeSrc=circuits[setSeq][k-1];
+ backEdgeSink=circuits[setSeq][0];
+ }
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){
+ modSched_os<<"the first set is:";
+ dumpSet(set);
+ }
+
+ //implement the ordering algorithm
+ enum OrderSeq{ bottom_up, top_down};
+ OrderSeq order;
+ std::vector<ModuloSchedGraphNode*> R;
+ while(!set.empty())
+ {
+ std::vector<ModuloSchedGraphNode*> pset=predSet(oNodes);
+ std::vector<ModuloSchedGraphNode*> sset=succSet(oNodes);
+
+ if(!pset.empty() && !vectorConj(pset,set).empty())
+ {R=vectorConj(pset,set);order=bottom_up;}
+ else if( !sset.empty() && !vectorConj(sset,set).empty())
+ {R=vectorConj(sset,set);order=top_down;}
+ else
+ {
+ int maxASAP=-1;
+ int position=-1;
+ for(unsigned i=0;i<set.size();i++){
+ int temp= set[i]->getASAP();
+ if(temp>maxASAP ) {
+ maxASAP=temp;
+ position=i;
+ }
+ }
+ R.push_back(set[position]);
+ order=bottom_up;
+ }
+
+ while(!R.empty()){
+ if(order== top_down){
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"in top_down round"<<"\n";
+ while(!R.empty()){
+ int maxHeight=-1;
+ NodeVec::iterator chosenI;
+ for(NodeVec::iterator I=R.begin();I != R.end();I++){
+ int temp=(*I)->height;
+ if( (temp > maxHeight) || ( temp == maxHeight && (*I)->mov <= (*chosenI)->mov ) ){
+
+ if((temp > maxHeight) || ( temp == maxHeight && (*I)->mov < (*chosenI)->mov )){
+ maxHeight=temp;
+ chosenI=I;
+ continue;
+ }
+ //possible case: instruction A and B has the same height and mov, but A has dependence to B
+ //e.g B is the branch instruction in the end, or A is the phi instruction at the beginning
+ if((*I)->mov == (*chosenI)->mov)
+ for(ModuloSchedGraphNode::const_iterator oe=(*I)->beginOutEdges(), end=(*I)->endOutEdges();oe !=end; oe++){
+ if((*oe)->getSink() == (*chosenI)){
+ maxHeight=temp;
+ chosenI=I;
+ continue;
+ }
+ }
+ }
+ }
+ ModuloSchedGraphNode* mu= *chosenI;
+ oNodes.push_back(mu);
+ R.erase(chosenI);
+ std::vector<ModuloSchedGraphNode*> succ_mu= succSet(mu,backEdgeSrc,backEdgeSink);
+ std::vector<ModuloSchedGraphNode*> comm=vectorConj(succ_mu,set);
+ comm=vectorSub(comm,oNodes);
+ R = vectorUnion(comm, R);
+ }
+ order=bottom_up;
+ R= vectorConj(predSet(oNodes), set);
+ } else{
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"in bottom up round"<<"\n";
+ while(!R.empty()){
+ int maxDepth=-1;
+ NodeVec::iterator chosenI;
+ for(NodeVec::iterator I=R.begin();I != R.end();I++){
+ int temp=(*I)->depth;
+ if( (temp > maxDepth) || ( temp == maxDepth && (*I)->mov < (*chosenI)->mov )){
+ maxDepth=temp;
+ chosenI=I;
+ }
+ }
+ ModuloSchedGraphNode* mu=*chosenI;
+ oNodes.push_back(mu);
+ R.erase(chosenI);
+ std::vector<ModuloSchedGraphNode*> pred_mu= predSet(mu,backEdgeSrc,backEdgeSink);
+ std::vector<ModuloSchedGraphNode*> comm=vectorConj(pred_mu,set);
+ comm=vectorSub(comm,oNodes);
+ R = vectorUnion(comm, R);
+ }
+ order=top_down;
+ R= vectorConj(succSet(oNodes), set);
+ }
+ }
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){
+ modSched_os<<"order finished"<<"\n";
+ modSched_os<<"dumping the ordered nodes: "<<"\n";
+ dumpSet(oNodes);
+ dumpCircuits();
+ }
+ //create a new set
+ //FIXME: the nodes between onodes and this circuit should also be include in this set
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"building the next set"<<"\n";
+ set.clear();
+ int k=-1;
+ setSeq++;
+ while(circuits[setSeq][++k]!=0)
+ set.push_back(getNode(circuits[setSeq][k]));
+ if(circuits[setSeq][0]!=0){
+ backEdgeSrc=circuits[setSeq][k-1];
+ backEdgeSink=circuits[setSeq][0];
+ }
+ if(set.empty()){
+ //no circuits any more
+ //collect all other nodes
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"no circuits any more, collect the rest nodes"<<"\n";
+ for(unsigned i=2;i<numNodes+2;i++){
+ bool inset=false;
+ for(unsigned j=0;j< oNodes.size();j++)
+ if(oNodes[j]->getNodeId() == i)
+ {inset=true;break;}
+ if(!inset)set.push_back(getNode(i));
+ }
+ }
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){
+ modSched_os<<"next set is: "<<"\n";
+ dumpSet(set);
+ }
+ }//while(!set.empty())
+
+}
+
+
+
+
+
+
+void ModuloSchedGraph::buildGraph (const TargetMachine& target)
+{
+ const BasicBlock* bb=bbVec[0];
+
+ assert(bbVec.size() ==1 &&"only handling a single basic block here");
+
+ // Use this data structure to note all machine operands that compute
+ // ordinary LLVM values. These must be computed defs (i.e., instructions).
+ // Note that there may be multiple machine instructions that define
+ // each Value.
+ ValueToDefVecMap valueToDefVecMap;
+
+ // Use this data structure to note all memory instructions.
+ // We use this to add memory dependence edges without a second full walk.
+ //
+ // vector<const Instruction*> memVec;
+ vector<ModuloSchedGraphNode*> memNodeVec;
+
+ // Use this data structure to note any uses or definitions of
+ // machine registers so we can add edges for those later without
+ // extra passes over the nodes.
+ // The vector holds an ordered list of references to the machine reg,
+ // ordered according to control-flow order. This only works for a
+ // single basic block, hence the assertion. Each reference is identified
+ // by the pair: <node, operand-number>.
+ //
+ RegToRefVecMap regToRefVecMap;
+
+
+
+ // Make a dummy root node. We'll add edges to the real roots later.
+ graphRoot = new ModuloSchedGraphNode(0, NULL, NULL, -1,target);
+ graphLeaf = new ModuloSchedGraphNode(1, NULL, NULL, -1,target);
+
+ //----------------------------------------------------------------
+ // First add nodes for all the LLVM instructions in the basic block
+ // because this greatly simplifies identifying which edges to add.
+ // Do this one VM instruction at a time since the ModuloSchedGraphNode needs that.
+ // Also, remember the load/store instructions to add memory deps later.
+ //----------------------------------------------------------------
+
+ //FIXME:if there is call instruction, then we shall quit somewhere
+ // currently we leave call instruction and continue construct graph
+
+ //dump only the blocks which are from loops
+
+
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ this->dump(bb);
+
+ if(!isLoop(bb)){
+ modSched_os <<" dumping non-loop BB:"<<endl;
+ dump(bb);
+ }
+ if( isLoop(bb))
+ {
+ buildNodesforBB(target, bb, memNodeVec, regToRefVecMap, valueToDefVecMap);
+
+ this->addDefUseEdges(bb);
+
+ this->addCDEdges(bb);
+
+ this->addMemEdges(bb);
+
+ //this->dump();
+
+ int ResII=this->computeResII(bb);
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os << "ResII is " << ResII<<"\n";;
+ int RecII=this->computeRecII(bb);
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os << "RecII is " <<RecII<<"\n";
+
+ this->MII=max(ResII, RecII);
+
+ this->computeNodeProperty(bb);
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ this->dumpNodeProperty();
+
+ this->orderNodes();
+
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ this->dump();
+ //this->instrScheduling();
+
+ //this->dumpScheduling();
+
+
+ }
+}
+
+ModuloSchedGraphNode* ModuloSchedGraph::getNode (const unsigned nodeId) const
+{
+ for(const_iterator I=begin(), E=end();I !=E;I++)
+ if((*I).second->getNodeId() ==nodeId)
+ return (ModuloSchedGraphNode*)(*I).second;
+ return NULL;
+}
+
+int ModuloSchedGraph::computeRecII(const BasicBlock* bb)
+{
+
+ int RecII=0;
+
+ //os<<"begining computerRecII()"<<"\n";
+
+
+ //FIXME: only deal with circuits starting at the first node: the phi node nodeId=2;
+
+ //search all elementary circuits in the dependance graph
+ //assume maximum number of nodes is MAXNODE
+
+ unsigned path[MAXNODE];
+ unsigned stack[MAXNODE][MAXNODE];
+
+
+ for(int j=0;j<MAXNODE;j++)
+ {path[j]=0;
+ for(int k=0;k<MAXNODE;k++)
+ stack[j][k]=0;
+ }
+ //in our graph, the node number starts at 2
+
+ //number of nodes, because each instruction will result in one node
+ const unsigned numNodes= bb->size();
+
+ int i=0;
+ path[i]=2;
+
+ ModuloSchedGraphNode* initNode=getNode(path[0]);
+ unsigned initNodeId=initNode->getNodeId();
+ ModuloSchedGraphNode* currentNode=initNode;
+
+ while(currentNode != NULL)
+ {
+ unsigned currentNodeId=currentNode->getNodeId();
+ // modSched_os<<"current node is "<<currentNodeId<<"\n";
+
+ ModuloSchedGraphNode* nextNode=NULL;
+ for(ModuloSchedGraphNode::const_iterator I=currentNode->beginOutEdges(), E=currentNode->endOutEdges(); I !=E; I++)
+ {
+ //modSched_os <<" searching in outgoint edges of node "<<currentNodeId<<"\n";
+ unsigned nodeId=((SchedGraphEdge*) *I)->getSink()->getNodeId();
+ bool inpath=false,instack=false;
+ int k;
+
+ //modSched_os<<"nodeId is "<<nodeId<<"\n";
+
+ k=-1;
+ while(path[++k] !=0)
+ if(nodeId == path[k])
+ {inpath=true;break;}
+
+
+
+ k=-1;
+ while(stack[i][++k] !=0 )
+ if(nodeId == stack[i][k])
+ {instack =true; break;}
+
+
+ if( nodeId > currentNodeId && !inpath && !instack)
+ {nextNode=(ModuloSchedGraphNode*) ((SchedGraphEdge*)*I)->getSink();break;}
+
+ }
+ if(nextNode != NULL)
+ {
+ //modSched_os<<"find the next Node "<<nextNode->getNodeId()<<"\n";
+
+
+ int j=0;
+ while( stack[i][j] !=0) j++;
+ stack[i][j]=nextNode->getNodeId();
+
+
+ i++;
+ path[i]=nextNode->getNodeId();
+ currentNode=nextNode;
+ }
+ else
+ {
+ //modSched_os<<"no expansion any more"<<"\n";
+ //confirmCircuit();
+ for(ModuloSchedGraphNode::const_iterator I=currentNode->beginOutEdges(), E=currentNode->endOutEdges() ; I != E; I++)
+ {
+ unsigned nodeId=((SchedGraphEdge*)*I)->getSink()->getNodeId();
+ if(nodeId == initNodeId)
+ {
+
+ int j=-1;
+ while(circuits[++j][0] !=0);
+ for(int k=0;k<MAXNODE;k++)circuits[j][k]=path[k];
+
+ }
+ }
+ //remove this node in the path and clear the corresponding entries in the stack
+ path[i]=0;
+ int j=0;
+ for(j=0;j<MAXNODE;j++)stack[i][j]=0;
+ i--;
+ currentNode=getNode(path[i]);
+ }
+ if(i==0)
+ {
+
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"circuits found are: "<<"\n";
+ int j=-1;
+ while(circuits[++j][0] !=0){
+ int k=-1;
+ while(circuits[j][++k] !=0)
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<< circuits[j][k]<<"\t";
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"\n";
+
+
+ //for this circuit, compute the sum of all edge delay
+ int sumDelay=0;
+ k=-1;
+ while(circuits[j][++k] !=0)
+ {
+ //ModuloSchedGraphNode* node =getNode(circuits[j][k]);
+ unsigned nextNodeId;
+ nextNodeId =circuits[j][k+1] !=0? circuits[j][k+1]:circuits[j][0];
+
+ /*
+ for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges();I !=E; I++)
+ {
+ SchedGraphEdge* edge= *I;
+ if(edge->getSink()->getNodeId() == nextNodeId)
+ {sumDelay += edge->getMinDelay();break;}
+ }
+ */
+
+ sumDelay += getMaxDelayEdge(circuits[j][k],nextNodeId)->getMinDelay();
+
+ }
+ // assume we have distance 1, in this case the sumDelay is RecII
+ // this is correct for SSA form only
+ //
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"The total Delay in the circuit is " <<sumDelay<<"\n";
+
+ RecII= RecII > sumDelay? RecII: sumDelay;
+
+ }
+ return RecII;
+ }
+
+ }
+
+ return -1;
+}
+
+void ModuloSchedGraph::addResourceUsage(std::vector<pair<int,int> >& ruVec, int rid){
+ //modSched_os<<"\nadding a resouce , current resouceUsage vector size is "<<ruVec.size()<<"\n";
+ bool alreadyExists=false;
+ for(unsigned i=0;i <ruVec.size() ; i++){
+ if(rid == ruVec[i].first) {
+ ruVec[i].second++;
+ alreadyExists=true;
+ break;
+ }
+ }
+ if( !alreadyExists) ruVec.push_back(std::make_pair(rid, 1));
+ //modSched_os<<"current resouceUsage vector size is "<<ruVec.size()<<"\n";
+
+}
+void ModuloSchedGraph::dumpResourceUsage(std::vector< pair<int,int> > &ru)
+{
+ MachineSchedInfo& msi = (MachineSchedInfo&)target.getSchedInfo();
+
+ std::vector<pair<int,int> > resourceNumVector = msi.resourceNumVector;
+ modSched_os <<"resourceID\t"<<"resourceNum"<<"\n";
+ for(unsigned i=0;i<resourceNumVector.size();i++)
+ modSched_os <<resourceNumVector[i].first<<"\t"<<resourceNumVector[i].second<<"\n";
+
+ modSched_os <<" maxNumIssueTotal(issue slot in one cycle) = "<<msi.maxNumIssueTotal<<"\n";
+ modSched_os<<"resourceID\t resourceUsage\t ResourceNum"<<"\n";
+ for(unsigned i=0;i<ru.size();i++){
+ modSched_os<<ru[i].first<<"\t"<<ru[i].second;
+ const unsigned resNum=msi.getCPUResourceNum(ru[i].first);
+ modSched_os<<"\t"<<resNum<<"\n";
+ }
+}
+
+int ModuloSchedGraph::computeResII(const BasicBlock* bb)
+{
+
+ const MachineInstrInfo& mii = target.getInstrInfo();
+ const MachineSchedInfo& msi = target.getSchedInfo();
+
+ int ResII;
+ std::vector<pair<int,int> > resourceUsage; //pair<int resourceid, int resourceUsageTimes_in_the_whole_block>
+
+ //FIXME: number of functional units the target machine can provide should be get from Target
+ // here I temporary hardcode it
+
+ for(BasicBlock::const_iterator I=bb->begin(),E=bb->end(); I !=E; I++)
+ {
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){
+ modSched_os<<"machine instruction for llvm instruction( node "<<getGraphNodeForInst(I)->getNodeId()<<")" <<"\n";
+ modSched_os<<"\t"<<*I;
+ }
+ MachineCodeForInstruction& tempMvec= MachineCodeForInstruction::get(I);
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os <<"size =" <<tempMvec.size()<<"\n";
+ for(unsigned i=0;i< tempMvec.size();i++)
+ {
+ MachineInstr* minstr=tempMvec[i];
+
+ unsigned minDelay=mii.minLatency(minstr->getOpCode());
+ InstrRUsage rUsage=msi.getInstrRUsage(minstr->getOpCode());
+ InstrClassRUsage classRUsage=msi.getClassRUsage(mii.getSchedClass(minstr->getOpCode()));
+ unsigned totCycles= classRUsage.totCycles;
+
+ std::vector<std::vector<resourceId_t> > resources
+ =rUsage.resourcesByCycle;
+ assert(totCycles == resources.size());
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os <<"resources Usage for this Instr(totCycles=" << totCycles << ",mindLatency="<<mii.minLatency(minstr->getOpCode())<<"): "<< *minstr <<"\n";
+ for(unsigned j=0;j< resources.size();j++){
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"cycle "<<j<<": ";
+ for(unsigned k=0;k< resources[j].size(); k++){
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"\t"<<resources[j][k];
+ addResourceUsage(resourceUsage,resources[j][k]);
+ }
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"\n";
+ }
+ }
+ }
+ if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ this->dumpResourceUsage(resourceUsage);
+
+ //compute ResII
+ ResII=0;
+ int issueSlots=msi.maxNumIssueTotal;
+ for(unsigned i=0;i<resourceUsage.size();i++){
+ int resourceNum=msi.getCPUResourceNum(resourceUsage[i].first);
+ int useNum=resourceUsage[i].second;
+ double tempII;
+ if(resourceNum <= issueSlots)
+ tempII=ceil(1.0*useNum/resourceNum);
+ else
+ tempII=ceil(1.0*useNum/issueSlots);
+ ResII=max((int)tempII,ResII);
+ }
+ return ResII;
+}
+
+ModuloSchedGraphSet::ModuloSchedGraphSet(const Function* function, const TargetMachine& target)
+ :method(function)
+{
+ buildGraphsForMethod(method,target);
+
+}
+
+
+ModuloSchedGraphSet::~ModuloSchedGraphSet()
+{
+ //delete all the graphs
+ for(iterator I=begin(), E=end();I !=E; ++I)
+ delete *I;
+}
+
+void ModuloSchedGraphSet::dump() const
+{
+ modSched_os << " ====== ModuloSched graphs for function `" <<method->getName()
+ << "' =========\n\n";
+ for(const_iterator I=begin(); I != end(); ++I)
+ (*I)->dump();
+
+ modSched_os << "\n=========End graphs for funtion` "<<method->getName()
+ << "' ==========\n\n";
+}
+
+void ModuloSchedGraph::dump(const BasicBlock* bb)
+{
+ modSched_os<<"dumping basic block:";
+ modSched_os<<(bb->hasName()?bb->getName(): "block")
+ <<" (" << bb << ")"<<"\n";
+
+}
+
+void ModuloSchedGraph::dump(const BasicBlock* bb, std::ostream& os)
+{
+ os<<"dumping basic block:";
+ os<<(bb->hasName()?bb->getName(): "block")
+ <<" (" << bb << ")"<<"\n";
+}
+
+void
+ModuloSchedGraph::dump() const
+{
+ modSched_os << " ModuloSchedGraph for basic Blocks:";
+ for(unsigned i=0, N =bbVec.size(); i< N; i++)
+ {
+ modSched_os<<(bbVec[i]->hasName()?bbVec[i]->getName(): "block")
+ <<" (" << bbVec[i] << ")"
+ << ((i==N-1)?"":", ");
+ }
+
+ modSched_os <<"\n\n Actual Root nodes : ";
+ for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++)
+ modSched_os << graphRoot->outEdges[i]->getSink()->getNodeId()
+ << ((i == N-1)? "" : ", ");
+
+ modSched_os << "\n Graph Nodes:\n";
+ //for (const_iterator I=begin(); I != end(); ++I)
+ //modSched_os << "\n" << *I->second;
+ unsigned numNodes=bbVec[0]->size();
+ for(unsigned i=2;i< numNodes+2;i++)
+ {
+ ModuloSchedGraphNode* node= getNode(i);
+ modSched_os << "\n" << *node;
+ }
+
+ modSched_os << "\n";
+}
+void
+ModuloSchedGraph::dumpNodeProperty() const
+{
+ const BasicBlock* bb=bbVec[0];
+ unsigned numNodes=bb->size();
+ for(unsigned i=2;i < numNodes+2;i++)
+ {
+ ModuloSchedGraphNode* node=getNode(i);
+ modSched_os<<"NodeId "<<node->getNodeId()<<"\t";
+ modSched_os<<"ASAP "<<node->getASAP()<<"\t";
+ modSched_os<<"ALAP "<<node->getALAP()<<"\t";
+ modSched_os<<"mov " <<node->getMov() <<"\t";
+ modSched_os<<"depth "<<node->getDepth()<<"\t";
+ modSched_os<<"height "<<node->getHeight()<<"\t";
+ modSched_os<<"\n";
+ }
+}
+
+void ModuloSchedGraphSet::buildGraphsForMethod (const Function *F, const TargetMachine& target)
+{
+ for(Function::const_iterator BI = F->begin(); BI != F->end(); ++BI)
+ addGraph(new ModuloSchedGraph(BI,target));
+}
+
+std::ostream &operator<<(std::ostream &os, const ModuloSchedGraphNode& node)
+{
+ os << std::string(8, ' ')
+ << "Node " << node.nodeId << " : "
+ << "latency = " << node.latency << "\n" << std::string(12, ' ');
+
+
+
+ if (node.getInst() == NULL)
+ os << "(Dummy node)\n";
+ else
+ {
+ os << *node.getInst() << "\n" << std::string(12, ' ');
+ os << node.inEdges.size() << " Incoming Edges:\n";
+ for (unsigned i=0, N=node.inEdges.size(); i < N; i++)
+ os << std::string(16, ' ') << *node.inEdges[i];
+
+ os << std::string(12, ' ') << node.outEdges.size()
+ << " Outgoing Edges:\n";
+ for (unsigned i=0, N=node.outEdges.size(); i < N; i++)
+ os << std::string(16, ' ') << *node.outEdges[i];
+ }
+
+
+ return os;
+}
diff --git a/lib/CodeGen/ModuloScheduling/ModuloSchedGraph.h b/lib/CodeGen/ModuloScheduling/ModuloSchedGraph.h
new file mode 100644
index 0000000..07fde3c
--- /dev/null
+++ b/lib/CodeGen/ModuloScheduling/ModuloSchedGraph.h
@@ -0,0 +1,347 @@
+//===- ModuloSchedGraph.h - Represent a collection of data structures ----*- C++ -*-===//
+//
+// This header defines the primative classes that make up a data structure
+// graph.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_MODULO_SCHED_GRAPH_H
+#define LLVM_CODEGEN_MODULO_SCHED_GRAPH_H
+
+#include "Support/HashExtras.h"
+#include "Support/GraphTraits.h"
+#include "../InstrSched/SchedGraphCommon.h"
+#include "llvm/Instruction.h"
+#include "llvm/Target/TargetMachine.h"
+#include <iostream>
+using std::pair;
+
+//for debug information selecton
+enum ModuloSchedDebugLevel_t{
+ ModuloSched_NoDebugInfo,
+ ModuloSched_Disable,
+ ModuloSched_PrintSchedule,
+ ModuloSched_PrintScheduleProcess,
+};
+
+//===============------------------------------------------------------------------------
+///ModuloSchedGraphNode - Implement a data structure based on the SchedGraphNodeCommon
+///this class stores informtion needed later to order the nodes in modulo scheduling
+///
+class ModuloSchedGraphNode: public SchedGraphNodeCommon {
+private:
+ //the corresponding instruction
+ const Instruction* inst;
+
+ //whether this node's property(ASAP,ALAP, ...) has been computed
+ bool propertyComputed;
+
+ //ASAP: the earliest time the node could be scheduled
+ //ALAP: the latest time the node couldbe scheduled
+ //depth: the depth of the node
+ //height: the height of the node
+ //mov: the mobility function, computed as ALAP - ASAP
+ //scheTime: the scheduled time if this node has been scheduled
+ //earlyStart: the earliest time to be tried to schedule the node
+ //lateStart: the latest time to be tried to schedule the node
+ int ASAP, ALAP, depth, height, mov;
+ int schTime;
+ int earlyStart,lateStart;
+
+public:
+
+ //get the instruction
+ const Instruction* getInst() const { return inst;}
+
+ //get the instruction op-code name
+ const char* getInstOpcodeName() const{ return inst->getOpcodeName();}
+
+ //get the instruction op-code
+ const unsigned getInstOpcode() const { return inst->getOpcode();}
+
+ //return whether the node is NULL
+ bool isNullNode() const{ return(inst== NULL);}
+
+ //return whether the property of the node has been computed
+ bool getPropertyComputed() {return propertyComputed;}
+
+ //set the propertyComputed
+ void setPropertyComputed(bool _propertyComputed) {propertyComputed = _propertyComputed;}
+
+ //get the corresponding property
+ int getASAP(){ return ASAP;}
+ int getALAP(){ return ALAP;}
+ int getMov() { return mov;}
+ int getDepth(){return depth;}
+ int getHeight(){return height;}
+ int getSchTime(){return schTime;}
+ int getEarlyStart(){return earlyStart;}
+ int getLateStart() { return lateStart;}
+ void setEarlyStart(int _earlyStart) {earlyStart= _earlyStart;}
+ void setLateStart(int _lateStart) {lateStart= _lateStart;}
+ void setSchTime(int _time){schTime=_time;}
+
+ private:
+ friend class ModuloSchedGraph;
+ friend class SchedGraphNode;
+
+ //constructor:
+ //nodeId: the node id, unique within the each BasicBlock
+ //_bb: which BasicBlock the corresponding instruction belongs to
+ //_inst: the corresponding instruction
+ //indexInBB: the corresponding instruction's index in the BasicBlock
+ //target: the targetMachine
+ ModuloSchedGraphNode(unsigned int _nodeId,
+ const BasicBlock* _bb,
+ const Instruction* _inst,
+ int indexInBB,
+ const TargetMachine& target);
+
+
+ friend std::ostream& operator<<(std::ostream& os,const ModuloSchedGraphNode& edge);
+
+};
+
+
+
+
+
+//FIXME: these two value should not be used
+#define MAXNODE 100
+#define MAXCC 100
+
+
+
+//===----------------------------------------------------------------------===//
+/// ModuloSchedGraph- the data structure to store dependence between nodes
+/// it catches data dependence and constrol dependence
+///
+///
+
+class ModuloSchedGraph:
+ public SchedGraphCommon,
+ protected hash_map<const Instruction*, ModuloSchedGraphNode*>
+{
+
+private:
+ //iteration Interval
+ int MII;
+
+ //target machine
+ const TargetMachine& target;
+
+ //the circuits in the dependence graph
+ unsigned circuits[MAXCC][MAXNODE];
+
+ //the order nodes
+ std::vector<ModuloSchedGraphNode*> oNodes;
+
+ typedef std::vector<ModuloSchedGraphNode*> NodeVec;
+
+ //the function to compute properties
+ void computeNodeASAP(const BasicBlock* bb);
+ void computeNodeALAP(const BasicBlock* bb);
+ void computeNodeMov(const BasicBlock* bb);
+ void computeNodeDepth(const BasicBlock* bb);
+ void computeNodeHeight(const BasicBlock* bb);
+
+ //the function to compute node property
+ void computeNodeProperty(const BasicBlock* bb);
+
+ //the function to sort nodes
+ void orderNodes();
+
+ //add the resource usage
+ void addResourceUsage(std::vector<pair<int,int> >&, int);
+
+ //debug functions:
+ //dump circuits
+ void dumpCircuits();
+ //dump the input set of nodes
+ void dumpSet(std::vector<ModuloSchedGraphNode*> set);
+ //dump the input resource usage table
+ void dumpResourceUsage(std::vector<pair<int,int> >&);
+
+ public:
+ //help functions
+
+ //get the maxium the delay between two nodes
+ SchedGraphEdge* getMaxDelayEdge(unsigned srcId, unsigned sinkId);
+
+ //FIXME:
+ //get the predessor Set of the set
+ NodeVec predSet(NodeVec set, unsigned, unsigned);
+ NodeVec predSet(NodeVec set);
+
+ //get the predessor set of the node
+ NodeVec predSet(ModuloSchedGraphNode* node, unsigned,unsigned);
+ NodeVec predSet(ModuloSchedGraphNode* node);
+
+ //get the successor set of the set
+ NodeVec succSet(NodeVec set, unsigned, unsigned);
+ NodeVec succSet(NodeVec set);
+
+ //get the succssor set of the node
+ NodeVec succSet(ModuloSchedGraphNode* node,unsigned, unsigned);
+ NodeVec succSet(ModuloSchedGraphNode* node);
+
+ //return the uniton of the two vectors
+ NodeVec vectorUnion(NodeVec set1,NodeVec set2 );
+
+ //return the consjuction of the two vectors
+ NodeVec vectorConj(NodeVec set1,NodeVec set2 );
+
+ //return all nodes in set1 but not set2
+ NodeVec vectorSub(NodeVec set1, NodeVec set2);
+
+ typedef hash_map<const Instruction*, ModuloSchedGraphNode*> map_base;
+public:
+ using map_base::iterator;
+ using map_base::const_iterator;
+
+public:
+
+ //get target machine
+ const TargetMachine& getTarget(){return target;}
+
+ //get the iteration interval
+ const int getMII(){return MII;}
+
+ //get the ordered nodes
+ const NodeVec& getONodes(){return oNodes;}
+
+ //get the number of nodes (including the root and leaf)
+ //note: actually root and leaf is not used
+ const unsigned int getNumNodes() const {return size()+2;}
+
+ //return wether the BasicBlock 'bb' contains a loop
+ bool isLoop (const BasicBlock* bb);
+
+ //return this basibBlock contains a loop
+ bool isLoop ();
+
+
+ //return the node for the input instruction
+ ModuloSchedGraphNode* getGraphNodeForInst(const Instruction* inst) const{
+ const_iterator onePair = this->find(inst);
+ return (onePair != this->end())?(*onePair).second: NULL;
+ }
+
+ //Debugging support
+ //dump the graph
+ void dump() const;
+ //dump the basicBlock
+ void dump(const BasicBlock* bb);
+ //dump the basicBlock into 'os' stream
+ void dump(const BasicBlock* bb, std::ostream& os);
+ //dump the node property
+ void dumpNodeProperty() const ;
+
+ private:
+ friend class ModuloSchedGraphSet; //give access to ctor
+
+ public:
+ /*ctr*/
+ ModuloSchedGraph(const BasicBlock* bb, const TargetMachine& _target)
+ :SchedGraphCommon(bb), target(_target){
+ buildGraph(target);
+ }
+
+ /*dtr*/
+ ~ModuloSchedGraph(){
+ for(const_iterator I=begin(); I!=end(); ++I)
+ delete I->second;
+ }
+
+ //unorder iterators
+ //return values are pair<const Instruction*, ModuloSchedGraphNode*>
+ using map_base::begin;
+ using map_base::end;
+
+
+
+ inline void noteModuloSchedGraphNodeForInst(const Instruction* inst,
+ ModuloSchedGraphNode* node)
+ {
+ assert((*this)[inst] ==NULL);
+ (*this)[inst]=node;
+ }
+
+ //Graph builder
+
+ ModuloSchedGraphNode* getNode (const unsigned nodeId) const;
+
+ //build the graph from the basicBlock
+ void buildGraph (const TargetMachine& target);
+
+ //Build nodes for BasicBlock
+ void buildNodesforBB (const TargetMachine& target,
+ const BasicBlock* bb,
+ NodeVec& memNode,
+ RegToRefVecMap& regToRefVecMap,
+ ValueToDefVecMap& valueToDefVecMap);
+
+ //find definitiona and use information for all nodes
+ void findDefUseInfoAtInstr (const TargetMachine& target,
+ ModuloSchedGraphNode* node,
+ NodeVec& memNode,
+ RegToRefVecMap& regToRefVecMap,
+ ValueToDefVecMap& valueToDefVecMap);
+
+ //add def-use edge
+ void addDefUseEdges (const BasicBlock* bb);
+
+ //add control dependence edges
+ void addCDEdges (const BasicBlock* bb);
+
+ //add memory dependence dges
+ void addMemEdges (const BasicBlock* bb);
+
+ //add dummy edges
+ void addDummyEdges();
+
+ //computer source restrictoin II
+ int computeResII (const BasicBlock* bb);
+
+ //computer recurrence II
+ int computeRecII (const BasicBlock* bb);
+};
+
+///==================================-
+//gragh set
+
+class ModuloSchedGraphSet:
+ public std::vector<ModuloSchedGraph*>
+{
+private:
+ const Function* method;
+
+public:
+ typedef std::vector<ModuloSchedGraph*> baseVector;
+ using baseVector::iterator;
+ using baseVector::const_iterator;
+
+public:
+ /*ctor*/ ModuloSchedGraphSet (const Function* function, const TargetMachine& target);
+
+ /*dtor*/ ~ModuloSchedGraphSet ();
+
+ //iterators
+ using baseVector::begin;
+ using baseVector::end;
+
+
+ //Debugging support
+ void dump() const;
+
+private:
+ inline void addGraph(ModuloSchedGraph* graph){
+ assert(graph !=NULL);
+ this->push_back(graph);
+ }
+
+ //Graph builder
+ void buildGraphsForMethod (const Function *F, const TargetMachine& target);
+};
+
+#endif
diff --git a/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp b/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp
new file mode 100644
index 0000000..3f4002a
--- /dev/null
+++ b/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp
@@ -0,0 +1,899 @@
+
+//===- SPLInstrScheduling.cpp - Modulo Software Pipelining Instruction Scheduling support -------===//
+//
+// this file implements the llvm/CodeGen/ModuloScheduling.h interface
+//
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineCodeForInstruction.h"
+#include "llvm/CodeGen/MachineCodeForBasicBlock.h"
+#include "llvm/CodeGen/MachineCodeForMethod.h"
+#include "llvm/Analysis/LiveVar/FunctionLiveVarInfo.h" // FIXME: Remove when modularized better
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Instruction.h"
+#include "Support/CommandLine.h"
+#include <algorithm>
+#include "ModuloSchedGraph.h"
+#include "ModuloScheduling.h"
+#include "llvm/Target/MachineSchedInfo.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/iTerminators.h"
+#include "llvm/iPHINode.h"
+#include "llvm/Constants.h"
+#include <iostream>
+#include <swig.h>
+#include <fstream>
+#include "llvm/CodeGen/InstrSelection.h"
+
+#define max(x,y) (x>y?x:y)
+#define min(x,y) (x<y?x:y)
+using std::cerr;
+using std::cout;
+using std::ostream;
+using std::ios;
+using std::filebuf;
+
+//************************************************************
+//printing Debug information
+//ModuloSchedDebugLevel stores the value of debug level
+// modsched_os is the ostream to dump debug information, which is written into the file 'moduloSchedDebugInfo.output'
+//see ModuloSchedulingPass::runOnFunction()
+//************************************************************
+
+ModuloSchedDebugLevel_t ModuloSchedDebugLevel;
+static cl::opt<ModuloSchedDebugLevel_t, true>
+SDL_opt("modsched", cl::Hidden, cl::location(ModuloSchedDebugLevel),
+ cl::desc("enable modulo scheduling debugging information"),
+ cl::values(
+ clEnumValN(ModuloSched_NoDebugInfo, "n", "disable debug output"),
+ clEnumValN(ModuloSched_Disable, "off", "disable modulo scheduling"),
+ clEnumValN(ModuloSched_PrintSchedule, "psched", "print original and new schedule"),
+ clEnumValN(ModuloSched_PrintScheduleProcess,"pschedproc", "print how the new schdule is produced"),
+ 0));
+
+filebuf modSched_fb;
+ostream modSched_os(&modSched_fb);
+
+//************************************************************
+
+
+///the method to compute schedule and instert epilogue and prologue
+void ModuloScheduling::instrScheduling(){
+
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"*************************computing modulo schedule ************************\n";
+
+
+ const MachineSchedInfo& msi=target.getSchedInfo();
+
+ //number of issue slots in the in each cycle
+ int numIssueSlots=msi.maxNumIssueTotal;
+
+
+
+ //compute the schedule
+ bool success=false;
+ while(!success)
+ {
+ //clear memory from the last round and initialize if necessary
+ clearInitMem(msi);
+
+ //compute schedule and coreSchedule with the current II
+ success=computeSchedule();
+
+ if(!success){
+ II++;
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"increase II to "<<II<<"\n";
+ }
+ }
+
+ //print the final schedule if necessary
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintSchedule)
+ dumpScheduling();
+
+
+ //the schedule has been computed
+ //create epilogue, prologue and kernel BasicBlock
+
+ //find the successor for this BasicBlock
+ BasicBlock* succ_bb= getSuccBB(bb);
+
+ //print the original BasicBlock if necessary
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintSchedule){
+ modSched_os<<"dumping the orginal block\n";
+ graph.dump(bb);
+ }
+
+ //construction of prologue, kernel and epilogue
+ BasicBlock* kernel=bb->splitBasicBlock(bb->begin());
+ BasicBlock* prologue= bb;
+ BasicBlock* epilogue=kernel->splitBasicBlock(kernel->begin());
+
+
+ //construct prologue
+ constructPrologue(prologue);
+
+ //construct kernel
+ constructKernel(prologue,kernel,epilogue);
+
+ //construct epilogue
+ constructEpilogue(epilogue,succ_bb);
+
+
+ //print the BasicBlocks if necessary
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintSchedule){
+ modSched_os<<"dumping the prologue block:\n";
+ graph.dump(prologue);
+ modSched_os<<"dumping the kernel block\n";
+ graph.dump(kernel);
+ modSched_os<<"dumping the epilogue block\n";
+ graph.dump(epilogue);
+ }
+
+}
+
+//clear memory from the last round and initialize if necessary
+void ModuloScheduling::clearInitMem(const MachineSchedInfo& msi){
+
+
+ unsigned numIssueSlots = msi.maxNumIssueTotal;
+ //clear nodeScheduled from the last round
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){
+ modSched_os<< "***** new round with II= "<<II<<" *******************"<<endl;
+ modSched_os<< " **************clear the vector nodeScheduled**************** \n";
+ }
+ nodeScheduled.clear();
+
+
+ //clear resourceTable from the last round and reset it
+ resourceTable.clear();
+ for(unsigned i=0;i< II;i++)
+ resourceTable.push_back(msi.resourceNumVector);
+
+
+ //clear the schdule and coreSchedule from the last round
+ schedule.clear();
+ coreSchedule.clear();
+
+ //create a coreSchedule of size II*numIssueSlots
+ //each entry is NULL
+ while( coreSchedule.size() < II){
+ std::vector<ModuloSchedGraphNode*>* newCycle=new std::vector<ModuloSchedGraphNode*>();
+ for(unsigned k=0;k<numIssueSlots;k++)
+ newCycle->push_back(NULL);
+ coreSchedule.push_back(*newCycle);
+ }
+}
+
+
+//compute schedule and coreSchedule with the current II
+bool ModuloScheduling::computeSchedule(){
+
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os <<"start to compute schedule \n";
+
+ //loop over the ordered nodes
+ for(NodeVec::const_iterator I=oNodes.begin();I!=oNodes.end();I++)
+ {
+ //try to schedule for node I
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ dumpScheduling();
+ ModuloSchedGraphNode* node=*I;
+
+ //compute whether this node has successor(s)
+ bool succ=true;
+
+ //compute whether this node has predessor(s)
+ bool pred=true;
+
+ NodeVec schSucc=graph.vectorConj(nodeScheduled,graph.succSet(node));
+ if(schSucc.empty())
+ succ=false;
+ NodeVec schPred=graph.vectorConj(nodeScheduled,graph.predSet(node));
+ if(schPred.empty())
+ pred=false;
+
+ //startTime: the earliest time we will try to schedule this node
+ //endTime: the latest time we will try to schedule this node
+ int startTime, endTime;
+
+ //node's earlyStart: possible earliest time to schedule this node
+ //node's lateStart: possible latest time to schedule this node
+ node->setEarlyStart(-1);
+ node->setLateStart(9999);
+
+
+ //this node has predessor but no successor
+ if(!succ && pred){
+
+ //this node's earlyStart is it's predessor's schedule time + the edge delay
+ // - the iteration difference* II
+ for(unsigned i=0;i<schPred.size();i++){
+ ModuloSchedGraphNode* predNode=schPred[i];
+ SchedGraphEdge* edge=graph.getMaxDelayEdge(predNode->getNodeId(),node->getNodeId());
+ int temp=predNode->getSchTime()+edge->getMinDelay() - edge->getIteDiff()*II;
+ node->setEarlyStart( max(node->getEarlyStart(),temp));
+ }
+ startTime=node->getEarlyStart();
+ endTime=node->getEarlyStart()+II-1;
+ }
+
+
+ //this node has successor but no predessor
+ if(succ && !pred){
+ for(unsigned i=0;i<schSucc.size();i++){
+ ModuloSchedGraphNode* succNode=schSucc[i];
+ SchedGraphEdge* edge=graph.getMaxDelayEdge(succNode->getNodeId(),node->getNodeId());
+ int temp=succNode->getSchTime() - edge->getMinDelay() + edge->getIteDiff()*II;
+ node->setLateStart(min(node->getEarlyStart(),temp));
+ }
+ startTime=node->getLateStart()- II+1;
+ endTime=node->getLateStart();
+ }
+
+ //this node has both successors and predessors
+ if(succ && pred)
+ {
+ for(unsigned i=0;i<schPred.size();i++){
+ ModuloSchedGraphNode* predNode=schPred[i];
+ SchedGraphEdge* edge=graph.getMaxDelayEdge(predNode->getNodeId(),node->getNodeId());
+ int temp=predNode->getSchTime()+edge->getMinDelay() - edge->getIteDiff()*II;
+ node->setEarlyStart(max(node->getEarlyStart(),temp));
+ }
+ for(unsigned i=0;i<schSucc.size();i++){
+ ModuloSchedGraphNode* succNode=schSucc[i];
+ SchedGraphEdge* edge=graph.getMaxDelayEdge(succNode->getNodeId(),node->getNodeId());
+ int temp=succNode->getSchTime() - edge->getMinDelay() + edge->getIteDiff()*II;
+ node->setLateStart(min(node->getEarlyStart(),temp));
+ }
+ startTime=node->getEarlyStart();
+ endTime=min(node->getLateStart(),node->getEarlyStart()+((int)II)-1);
+ }
+
+ //this node has no successor or predessor
+ if(!succ && !pred){
+ node->setEarlyStart(node->getASAP());
+ startTime=node->getEarlyStart();
+ endTime=node->getEarlyStart()+II -1;
+ }
+
+ //try to schedule this node based on the startTime and endTime
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"scheduling the node "<<(*I)->getNodeId()<<"\n";
+
+ bool success= this->ScheduleNode(node,startTime, endTime,nodeScheduled);
+ if(!success)return false;
+ }
+ return true;
+}
+
+
+//get the successor of the BasicBlock
+BasicBlock* ModuloScheduling::getSuccBB(BasicBlock* bb){
+
+ BasicBlock* succ_bb;
+ for(unsigned i=0;i < II; i++)
+ for(unsigned j=0;j< coreSchedule[i].size();j++)
+ if(coreSchedule[i][j]){
+ const Instruction* ist=coreSchedule[i][j]->getInst();
+
+ //we can get successor from the BranchInst instruction
+ //assume we only have one successor (besides itself) here
+ if(BranchInst::classof(ist)){
+ BranchInst* bi=(BranchInst*)ist;
+ assert(bi->isConditional()&&"the branchInst is not a conditional one");
+ assert(bi->getNumSuccessors() ==2&&" more than two successors?");
+ BasicBlock* bb1=bi->getSuccessor(0);
+ BasicBlock* bb2=bi->getSuccessor(1);
+ assert( (bb1 == bb|| bb2 == bb) && " None of its successor is itself?");
+ if(bb1 == bb) succ_bb=bb2;
+ else succ_bb=bb1;
+ return succ_bb;
+ }
+ }
+ assert( 0 && "NO Successor?");
+ return NULL;
+}
+
+
+//get the predecessor of the BasicBlock
+BasicBlock* ModuloScheduling::getPredBB(BasicBlock* bb){
+
+ BasicBlock* pred_bb;
+
+ for(unsigned i=0;i < II; i++)
+ for(unsigned j=0;j< coreSchedule[i].size();j++)
+ if(coreSchedule[i][j]){
+ const Instruction* ist=coreSchedule[i][j]->getInst();
+
+ //we can get predecessor from the PHINode instruction
+ //assume we only have one predecessor (besides itself) here
+ if(PHINode::classof(ist)){
+ PHINode* phi=(PHINode*) ist;
+ assert(phi->getNumIncomingValues() == 2 &&" the number of incoming value is not equal to two? ");
+ BasicBlock* bb1= phi->getIncomingBlock(0);
+ BasicBlock* bb2= phi->getIncomingBlock(1);
+ assert( (bb1 == bb || bb2 == bb) && " None of its predecessor is itself?");
+ if(bb1 == bb) pred_bb=bb2;
+ else pred_bb=bb1;
+ return pred_bb;
+ }
+ }
+ assert(0 && " no predecessor?");
+ return NULL;
+}
+
+
+//construct the prologue
+void ModuloScheduling::constructPrologue(BasicBlock* prologue){
+
+ InstListType& prologue_ist = prologue->getInstList();
+ vvNodeType& tempSchedule_prologue= *(new vector< std::vector<ModuloSchedGraphNode*> >(schedule));
+
+ //compute the schedule for prologue
+ unsigned round=0;
+ unsigned scheduleSize=schedule.size();
+ while(round < scheduleSize/II){
+ round++;
+ for(unsigned i=0;i < scheduleSize ;i++){
+ if(round*II + i >= scheduleSize) break;
+ for(unsigned j=0;j < schedule[i].size(); j++)
+ if(schedule[i][j]){
+ assert( tempSchedule_prologue[round*II +i ][j] == NULL && "table not consitant with core table");
+
+ //move the schedule one iteration ahead and overlap with the original one
+ tempSchedule_prologue[round*II + i][j]=schedule[i][j];
+ }
+ }
+ }
+
+ //clear the clone memory in the core schedule instructions
+ clearCloneMemory();
+
+ //fill in the prologue
+ for(unsigned i=0;i < ceil(1.0*scheduleSize/II -1)*II ;i++)
+ for(unsigned j=0;j < tempSchedule_prologue[i].size();j++)
+ if(tempSchedule_prologue[i][j]){
+
+ //get the instruction
+ Instruction* orn=(Instruction*)tempSchedule_prologue[i][j]->getInst();
+
+ //made a clone of it
+ Instruction* cln=cloneInstSetMemory(orn);
+
+ //insert the instruction
+ prologue_ist.insert(prologue_ist.back(),cln );
+
+ //if there is PHINode in the prologue, the incoming value from itself should be removed
+ //because it is not a loop any longer
+ if( PHINode::classof(cln)){
+ PHINode* phi=(PHINode*)cln;
+ phi->removeIncomingValue(phi->getParent());
+ }
+ }
+}
+
+
+//construct the kernel BasicBlock
+void ModuloScheduling::constructKernel(BasicBlock* prologue,BasicBlock* kernel,BasicBlock* epilogue){
+
+ //*************fill instructions in the kernel****************
+ InstListType& kernel_ist = kernel->getInstList();
+ BranchInst* brchInst;
+ PHINode* phiInst, *phiCln;
+
+ for(unsigned i=0;i<coreSchedule.size();i++)
+ for(unsigned j=0;j<coreSchedule[i].size();j++)
+ if(coreSchedule[i][j]){
+
+ //we should take care of branch instruction differently with normal instructions
+ if(BranchInst::classof(coreSchedule[i][j]->getInst())){
+ brchInst=(BranchInst*)coreSchedule[i][j]->getInst();
+ continue;
+ }
+
+ //we should take care of PHINode instruction differently with normal instructions
+ if( PHINode::classof(coreSchedule[i][j]->getInst())){
+ phiInst= (PHINode*)coreSchedule[i][j]->getInst();
+ Instruction* cln=cloneInstSetMemory(phiInst);
+ kernel_ist.insert(kernel_ist.back(),cln);
+ phiCln=(PHINode*)cln;
+ continue;
+ }
+
+ //for normal instructions: made a clone and insert it in the kernel_ist
+ Instruction* cln=cloneInstSetMemory( (Instruction*)coreSchedule[i][j]->getInst());
+ kernel_ist.insert(kernel_ist.back(),cln);
+ }
+
+ //the two incoming BasicBlock for PHINode is the prologue and the kernel (itself)
+ phiCln->setIncomingBlock(0,prologue);
+ phiCln->setIncomingBlock(1,kernel);
+
+ //the incoming value for the kernel (itself) is the new value which is computed in the kernel
+ Instruction* originalVal=(Instruction*)phiInst->getIncomingValue(1);
+ phiCln->setIncomingValue(1, originalVal->getClone());
+
+
+ //make a clone of the branch instruction and insert it in the end
+ BranchInst* cln=(BranchInst*)cloneInstSetMemory( brchInst);
+ kernel_ist.insert(kernel_ist.back(),cln);
+
+ //delete the unconditional branch instruction, which is generated when splitting the basicBlock
+ kernel_ist.erase( --kernel_ist.end());
+
+ //set the first successor to itself
+ ((BranchInst*)cln)->setSuccessor(0, kernel);
+ //set the second successor to eiplogue
+ ((BranchInst*)cln)->setSuccessor(1,epilogue);
+
+ //*****change the condition*******
+
+ //get the condition instruction
+ Instruction* cond=(Instruction*)cln->getCondition();
+
+ //get the condition's second operand, it should be a constant
+ Value* operand=cond->getOperand(1);
+ assert(ConstantSInt::classof(operand));
+
+ //change the constant in the condtion instruction
+ ConstantSInt* iteTimes=ConstantSInt::get(operand->getType(),((ConstantSInt*)operand)->getValue()-II+1);
+ cond->setOperand(1,iteTimes);
+
+}
+
+
+
+
+
+//construct the epilogue
+void ModuloScheduling::constructEpilogue(BasicBlock* epilogue, BasicBlock* succ_bb){
+
+ //compute the schedule for epilogue
+ vvNodeType& tempSchedule_epilogue= *(new vector< std::vector<ModuloSchedGraphNode*> >(schedule));
+ unsigned scheduleSize=schedule.size();
+ int round =0;
+ while(round < ceil(1.0*scheduleSize/II )-1 ){
+ round++;
+ for( unsigned i=0;i < scheduleSize ; i++){
+ if(i + round *II >= scheduleSize) break;
+ for(unsigned j=0;j < schedule[i].size();j++)
+ if(schedule[i + round*II ][j]){
+ assert( tempSchedule_epilogue[i][j] == NULL && "table not consitant with core table");
+
+ //move the schdule one iteration behind and overlap
+ tempSchedule_epilogue[i][j]=schedule[i + round*II][j];
+ }
+ }
+ }
+
+ //fill in the epilogue
+ InstListType& epilogue_ist = epilogue->getInstList();
+ for(unsigned i=II;i <scheduleSize ;i++)
+ for(unsigned j=0;j < tempSchedule_epilogue[i].size();j++)
+ if(tempSchedule_epilogue[i][j]){
+ Instruction* inst=(Instruction*)tempSchedule_epilogue[i][j]->getInst();
+
+ //BranchInst and PHINode should be treated differently
+ //BranchInst:unecessary, simly omitted
+ //PHINode: omitted
+ if( !BranchInst::classof(inst) && ! PHINode::classof(inst) ){
+ //make a clone instruction and insert it into the epilogue
+ Instruction* cln=cloneInstSetMemory(inst);
+ epilogue_ist.push_front(cln);
+ }
+ }
+
+
+ //*************delete the original instructions****************//
+ //to delete the original instructions, we have to make sure their use is zero
+
+ //update original core instruction's uses, using its clone instread
+ for(unsigned i=0;i < II; i++)
+ for(unsigned j=0;j < coreSchedule[i].size() ;j++){
+ if(coreSchedule[i][j])
+ updateUseWithClone((Instruction*)coreSchedule[i][j]->getInst() );
+ }
+
+ //erase these instructions
+ for(unsigned i=0;i < II; i++)
+ for(unsigned j=0;j < coreSchedule[i].size();j++)
+ if(coreSchedule[i][j]){
+ Instruction* ist=(Instruction*)coreSchedule[i][j]->getInst();
+ ist->getParent()->getInstList().erase(ist);
+ }
+ //**************************************************************//
+
+
+ //finally, insert an unconditional branch instruction at the end
+ epilogue_ist.push_back(new BranchInst(succ_bb));
+
+}
+
+
+//----------------------------------------------------------------------------------------------
+//this function replace the value(instruction) ist in other instructions with its latest clone
+//i.e. after this function is called, the ist is not used anywhere and it can be erased.
+//----------------------------------------------------------------------------------------------
+void ModuloScheduling::updateUseWithClone(Instruction* ist){
+
+ while(ist->use_size() >0){
+ bool destroyed=false;
+
+ //other instruction is using this value ist
+ assert(Instruction::classof(*ist->use_begin()));
+ Instruction *inst=(Instruction*)(* ist->use_begin());
+
+ for(unsigned i=0;i<inst->getNumOperands();i++)
+ if(inst->getOperand(i) == ist && ist->getClone()){
+
+ //if the instruction is TmpInstruction, simly delete it because it has no parent
+ // and it does not belongs to any BasicBlock
+ if(TmpInstruction::classof(inst)) {
+ delete inst;
+ destroyed=true;
+ break;
+ }
+
+
+ //otherwise, set the instruction's operand to the value's clone
+ inst->setOperand(i, ist->getClone());
+
+ //the use from the original value ist is destroyed
+ destroyed=true;
+ break;
+ }
+ if( !destroyed)
+ {
+ //if the use can not be destroyed , something is wrong
+ inst->dump();
+ assert( 0 &&"this use can not be destroyed");
+ }
+ }
+
+}
+
+
+//********************************************************
+//this function clear all clone mememoy
+//i.e. set all instruction's clone memory to NULL
+//*****************************************************
+void ModuloScheduling::clearCloneMemory(){
+for(unsigned i=0; i < coreSchedule.size();i++)
+ for(unsigned j=0;j<coreSchedule[i].size();j++)
+ if(coreSchedule[i][j]) ((Instruction*)coreSchedule[i][j]->getInst())->clearClone();
+
+}
+
+
+//********************************************************************************
+//this function make a clone of the instruction orn
+//the cloned instruction will use the orn's operands' latest clone as its operands
+//it is done this way because LLVM is in SSA form and we should use the correct value
+//
+//this fuction also update the instruction orn's latest clone memory
+//**********************************************************************************
+Instruction* ModuloScheduling::cloneInstSetMemory(Instruction* orn) {
+
+//make a clone instruction
+ Instruction* cln=orn->clone();
+
+
+ //update the operands
+ for(unsigned k=0;k<orn->getNumOperands();k++){
+ const Value* op=orn->getOperand(k);
+ if(Instruction::classof(op) && ((Instruction*)op)->getClone()){
+ Instruction* op_inst=(Instruction*)op;
+ cln->setOperand(k, op_inst->getClone());
+ }
+ }
+
+ //update clone memory
+ orn->setClone(cln);
+ return cln;
+}
+
+
+
+bool ModuloScheduling::ScheduleNode(ModuloSchedGraphNode* node,unsigned start, unsigned end, NodeVec& nodeScheduled)
+{
+
+ const MachineSchedInfo& msi=target.getSchedInfo();
+ unsigned int numIssueSlots=msi.maxNumIssueTotal;
+
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<<"startTime= "<<start<<" endTime= "<<end<<"\n";
+ bool isScheduled=false;
+ for(unsigned i=start;i<= end;i++){
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os<< " now try cycle " <<i<<":"<<"\n";
+ for(unsigned j=0;j<numIssueSlots;j++){
+ unsigned int core_i = i%II;
+ unsigned int core_j=j;
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os <<"\t Trying slot "<<j<<"...........";
+ //check the resouce table, make sure there is no resource conflicts
+ const Instruction* instr=node->getInst();
+ MachineCodeForInstruction& tempMvec= MachineCodeForInstruction::get(instr);
+ bool resourceConflict=false;
+ const MachineInstrInfo &mii=msi.getInstrInfo();
+
+ if(coreSchedule.size() < core_i+1 || !coreSchedule[core_i][core_j]){
+ //this->dumpResourceUsageTable();
+ int latency=0;
+ for(unsigned k=0;k< tempMvec.size();k++)
+ {
+ MachineInstr* minstr=tempMvec[k];
+ InstrRUsage rUsage=msi.getInstrRUsage(minstr->getOpCode());
+ std::vector<std::vector<resourceId_t> > resources
+ =rUsage.resourcesByCycle;
+ updateResourceTable(resources,i + latency);
+ latency +=max(mii.minLatency(minstr->getOpCode()),1) ;
+ }
+
+ //this->dumpResourceUsageTable();
+
+ latency=0;
+ if( resourceTableNegative()){
+
+ //undo-update the resource table
+ for(unsigned k=0;k< tempMvec.size();k++){
+ MachineInstr* minstr=tempMvec[k];
+ InstrRUsage rUsage=msi.getInstrRUsage(minstr->getOpCode());
+ std::vector<std::vector<resourceId_t> > resources
+ =rUsage.resourcesByCycle;
+ undoUpdateResourceTable(resources,i + latency);
+ latency +=max(mii.minLatency(minstr->getOpCode()),1) ;
+ }
+ resourceConflict=true;
+ }
+ }
+ if( !resourceConflict && !coreSchedule[core_i][core_j]){
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){
+ modSched_os <<" OK!"<<"\n";
+ modSched_os<<"Node "<<node->getNodeId()<< " is scheduleed."<<"\n";
+ }
+ //schedule[i][j]=node;
+ while(schedule.size() <= i){
+ std::vector<ModuloSchedGraphNode*>* newCycle=new std::vector<ModuloSchedGraphNode*>();
+ for(unsigned k=0;k<numIssueSlots;k++)
+ newCycle->push_back(NULL);
+ schedule.push_back(*newCycle);
+ }
+ vector<ModuloSchedGraphNode*>::iterator startIterator;
+ startIterator = schedule[i].begin();
+ schedule[i].insert(startIterator+j,node);
+ startIterator = schedule[i].begin();
+ schedule[i].erase(startIterator+j+1);
+
+ //update coreSchedule
+ //coreSchedule[core_i][core_j]=node;
+ while(coreSchedule.size() <= core_i){
+ std::vector<ModuloSchedGraphNode*>* newCycle=new std::vector<ModuloSchedGraphNode*>();
+ for(unsigned k=0;k<numIssueSlots;k++)
+ newCycle->push_back(NULL);
+ coreSchedule.push_back(*newCycle);
+ }
+
+ startIterator = coreSchedule[core_i].begin();
+ coreSchedule[core_i].insert(startIterator+core_j,node);
+ startIterator = coreSchedule[core_i].begin();
+ coreSchedule[core_i].erase(startIterator+core_j+1);
+
+ node->setSchTime(i);
+ isScheduled=true;
+ nodeScheduled.push_back(node);
+
+ break;
+ }
+ else if( coreSchedule[core_i][core_j]) {
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os <<" Slot not available "<<"\n";
+ }
+ else{
+ if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
+ modSched_os <<" Resource conflicts"<<"\n";
+ }
+ }
+ if(isScheduled) break;
+ }
+ //assert(nodeScheduled &&"this node can not be scheduled?");
+ return isScheduled;
+}
+
+void ModuloScheduling::updateResourceTable(std::vector<std::vector<unsigned int> > useResources, int startCycle){
+ for(unsigned i=0;i< useResources.size();i++){
+ int absCycle=startCycle+i;
+ int coreCycle=absCycle % II;
+ std::vector<pair<int,int> >& resourceRemained=resourceTable[coreCycle];
+ std::vector<unsigned int>& resourceUsed= useResources[i];
+ for(unsigned j=0;j< resourceUsed.size();j++){
+ for(unsigned k=0;k< resourceRemained.size();k++)
+ if((int)resourceUsed[j] == resourceRemained[k].first){
+ resourceRemained[k].second--;
+ }
+ }
+ }
+}
+
+void ModuloScheduling::undoUpdateResourceTable(std::vector<std::vector<unsigned int> > useResources, int startCycle){
+ for(unsigned i=0;i< useResources.size();i++){
+ int absCycle=startCycle+i;
+ int coreCycle=absCycle % II;
+ std::vector<pair<int,int> >& resourceRemained=resourceTable[coreCycle];
+ std::vector<unsigned int>& resourceUsed= useResources[i];
+ for(unsigned j=0;j< resourceUsed.size();j++){
+ for(unsigned k=0;k< resourceRemained.size();k++)
+ if((int)resourceUsed[j] == resourceRemained[k].first){
+ resourceRemained[k].second++;
+ }
+ }
+ }
+}
+
+
+//-----------------------------------------------------------------------
+//Function: resouceTableNegative
+//return value:
+// return false if any element in the resouceTable is negative
+// otherwise return true
+//Purpose:
+// this function is used to determine if an instruction is eligible for schedule at certain cycle
+//---------------------------------------------------------------------------------------
+
+bool ModuloScheduling::resourceTableNegative(){
+ assert(resourceTable.size() == (unsigned)II&& "resouceTable size must be equal to II");
+ bool isNegative=false;
+ for(unsigned i=0; i < resourceTable.size();i++)
+ for(unsigned j=0;j < resourceTable[i].size();j++){
+ if(resourceTable[i][j].second <0) {
+ isNegative=true;
+ break;
+ }
+ }
+ return isNegative;
+}
+
+
+//----------------------------------------------------------------------
+//Function: dumpResouceUsageTable
+//Purpose:
+// print out ResouceTable for debug
+//
+//------------------------------------------------------------------------
+
+void ModuloScheduling::dumpResourceUsageTable(){
+ modSched_os<<"dumping resource usage table"<<"\n";
+ for(unsigned i=0;i< resourceTable.size();i++){
+ for(unsigned j=0;j < resourceTable[i].size();j++)
+ modSched_os <<resourceTable[i][j].first<<":"<< resourceTable[i][j].second<<" ";
+ modSched_os <<"\n";
+ }
+
+}
+
+//----------------------------------------------------------------------
+//Function: dumpSchedule
+//Purpose:
+// print out thisSchedule for debug
+//
+//-----------------------------------------------------------------------
+void ModuloScheduling::dumpSchedule(std::vector< std::vector<ModuloSchedGraphNode*> > thisSchedule){
+
+ const MachineSchedInfo& msi=target.getSchedInfo();
+ unsigned numIssueSlots=msi.maxNumIssueTotal;
+ for(unsigned i=0;i< numIssueSlots;i++)
+ modSched_os <<"\t#";
+ modSched_os<<"\n";
+ for(unsigned i=0;i < thisSchedule.size();i++)
+ {
+ modSched_os<<"cycle"<<i<<": ";
+ for(unsigned j=0;j<thisSchedule[i].size();j++)
+ if(thisSchedule[i][j]!= NULL)
+ modSched_os<<thisSchedule[i][j]->getNodeId()<<"\t";
+ else
+ modSched_os<<"\t";
+ modSched_os<<"\n";
+ }
+
+}
+
+
+//----------------------------------------------------
+//Function: dumpScheduling
+//Purpose:
+// print out the schedule and coreSchedule for debug
+//
+//-------------------------------------------------------
+
+void ModuloScheduling::dumpScheduling(){
+ modSched_os<<"dump schedule:"<<"\n";
+ const MachineSchedInfo& msi=target.getSchedInfo();
+ unsigned numIssueSlots=msi.maxNumIssueTotal;
+ for(unsigned i=0;i< numIssueSlots;i++)
+ modSched_os <<"\t#";
+ modSched_os<<"\n";
+ for(unsigned i=0;i < schedule.size();i++)
+ {
+ modSched_os<<"cycle"<<i<<": ";
+ for(unsigned j=0;j<schedule[i].size();j++)
+ if(schedule[i][j]!= NULL)
+ modSched_os<<schedule[i][j]->getNodeId()<<"\t";
+ else
+ modSched_os<<"\t";
+ modSched_os<<"\n";
+ }
+
+ modSched_os<<"dump coreSchedule:"<<"\n";
+ for(unsigned i=0;i< numIssueSlots;i++)
+ modSched_os <<"\t#";
+ modSched_os<<"\n";
+ for(unsigned i=0;i < coreSchedule.size();i++){
+ modSched_os<<"cycle"<<i<<": ";
+ for(unsigned j=0;j< coreSchedule[i].size();j++)
+ if(coreSchedule[i][j] !=NULL)
+ modSched_os<<coreSchedule[i][j]->getNodeId()<<"\t";
+ else
+ modSched_os<<"\t";
+ modSched_os<<"\n";
+ }
+}
+
+
+
+//---------------------------------------------------------------------------
+// Function: ModuloSchedulingPass
+//
+// Purpose:
+// Entry point for Modulo Scheduling
+// Schedules LLVM instruction
+//
+//---------------------------------------------------------------------------
+
+namespace {
+ class ModuloSchedulingPass : public FunctionPass {
+ const TargetMachine &target;
+ public:
+ ModuloSchedulingPass(const TargetMachine &T) : target(T) {}
+ const char *getPassName() const { return "Modulo Scheduling"; }
+
+ // getAnalysisUsage - We use LiveVarInfo...
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ //AU.addRequired(FunctionLiveVarInfo::ID);
+ }
+ bool runOnFunction(Function &F);
+ };
+} // end anonymous namespace
+
+
+
+bool ModuloSchedulingPass::runOnFunction(Function &F)
+{
+
+ //if necessary , open the output for debug purpose
+ if(ModuloSchedDebugLevel== ModuloSched_Disable)
+ return false;
+
+ if(ModuloSchedDebugLevel>= ModuloSched_PrintSchedule){
+ modSched_fb.open("moduloSchedDebugInfo.output", ios::out);
+ modSched_os<<"******************Modula Scheduling debug information*************************"<<endl;
+ }
+
+ ModuloSchedGraphSet* graphSet = new ModuloSchedGraphSet(&F,target);
+ ModuloSchedulingSet ModuloSchedulingSet(*graphSet);
+
+ if(ModuloSchedDebugLevel>= ModuloSched_PrintSchedule)
+ modSched_fb.close();
+
+ return false;
+}
+
+
+Pass *createModuloSchedulingPass(const TargetMachine &tgt) {
+ return new ModuloSchedulingPass(tgt);
+}
+
diff --git a/lib/CodeGen/ModuloScheduling/ModuloScheduling.h b/lib/CodeGen/ModuloScheduling/ModuloScheduling.h
new file mode 100644
index 0000000..9f9fcaa
--- /dev/null
+++ b/lib/CodeGen/ModuloScheduling/ModuloScheduling.h
@@ -0,0 +1,160 @@
+//// - head file for the classes ModuloScheduling and ModuloScheduling ----*- C++ -*-===//
+//
+// This header defines the the classes ModuloScheduling and ModuloSchedulingSet 's structure
+//
+//
+//===----------------------------------------------------------------------===//
+
+
+#ifndef LLVM_CODEGEN_MODULOSCHEDULING_H
+#define LLVM_CODEGEN_MODULOSCHEDULING_H
+
+#include "ModuloSchedGraph.h"
+#include <iostream>
+
+class ModuloScheduling:NonCopyable {
+ private:
+ typedef std::vector<ModuloSchedGraphNode*> NodeVec;
+
+ /// the graph to feed in
+ ModuloSchedGraph& graph;
+ const TargetMachine& target;
+
+ //the BasicBlock to be scheduled
+ BasicBlock* bb;
+
+ ///Iteration Intervel
+ ///FIXME: II may be a better name for its meaning
+ unsigned II;
+
+ //the vector containing the nodes which have been scheduled
+ NodeVec nodeScheduled;
+
+ ///the remaining unscheduled nodes
+ const NodeVec& oNodes;
+
+ ///the machine resource table
+ std::vector< std::vector<pair<int,int> > > resourceTable ;
+
+ ///the schedule( with many schedule stage)
+ std::vector<std::vector<ModuloSchedGraphNode*> > schedule;
+
+ ///the kernel(core) schedule(length = II)
+ std::vector<std::vector<ModuloSchedGraphNode*> > coreSchedule;
+
+ typedef BasicBlock::InstListType InstListType;
+ typedef std::vector <std::vector<ModuloSchedGraphNode*> > vvNodeType;
+
+
+
+public:
+
+ ///constructor
+ ModuloScheduling(ModuloSchedGraph& _graph):
+ graph(_graph),
+ target(graph.getTarget()),
+ oNodes(graph.getONodes())
+ {
+ II = graph.getMII();
+ bb=(BasicBlock*)graph.getBasicBlocks()[0];
+
+ instrScheduling();
+ };
+
+ ///destructor
+ ~ModuloScheduling(){};
+
+ ///the method to compute schedule and instert epilogue and prologue
+ void instrScheduling();
+
+ ///debug functions:
+ ///dump the schedule and core schedule
+ void dumpScheduling();
+
+ ///dump the input vector of nodes
+ //sch: the input vector of nodes
+ void dumpSchedule( std::vector<std::vector<ModuloSchedGraphNode*> > sch);
+
+ ///dump the resource usage table
+ void dumpResourceUsageTable();
+
+
+ //*******************internel functions*******************************
+private:
+ //clear memory from the last round and initialize if necessary
+ void clearInitMem(const MachineSchedInfo& );
+
+ //compute schedule and coreSchedule with the current II
+ bool computeSchedule();
+
+ BasicBlock* getSuccBB(BasicBlock*);
+ BasicBlock* getPredBB(BasicBlock*);
+ void constructPrologue(BasicBlock* prologue);
+ void constructKernel(BasicBlock* prologue,BasicBlock* kernel,BasicBlock* epilogue);
+ void constructEpilogue(BasicBlock* epilogue,BasicBlock* succ_bb);
+
+ ///update the resource table at the startCycle
+ //vec: the resouce usage
+ //startCycle: the start cycle the resouce usage is
+ void updateResourceTable(std::vector<vector<unsigned int> > vec,int startCycle);
+
+ ///un-do the update in the resource table in the startCycle
+ //vec: the resouce usage
+ //startCycle: the start cycle the resouce usage is
+ void undoUpdateResourceTable(std::vector<vector<unsigned int> > vec,int startCycle);
+
+ ///return whether the resourcetable has negative element
+ ///this function is called after updateResouceTable() to determine whether a node can
+ /// be scheduled at certain cycle
+ bool resourceTableNegative();
+
+
+ ///try to Schedule the node starting from start to end cycle(inclusive)
+ //if it can be scheduled, put it in the schedule and update nodeScheduled
+ //node: the node to be scheduled
+ //start: start cycle
+ //end : end cycle
+ //nodeScheduled: a vector storing nodes which has been scheduled
+ bool ScheduleNode(ModuloSchedGraphNode* node,unsigned start, unsigned end, NodeVec& nodeScheduled);
+
+ //each instruction has a memory of the latest clone instruction
+ //the clone instruction can be get using getClone()
+ //this function clears the memory, i.e. getClone() after calling this function returns null
+ void clearCloneMemory();
+
+ //this fuction make a clone of this input Instruction and update the clone memory
+ //inst: the instrution to be cloned
+ Instruction* cloneInstSetMemory(Instruction* inst);
+
+ //this function update each instrutions which uses ist as its operand
+ //after update, each instruction will use ist's clone as its operand
+ void updateUseWithClone(Instruction* ist);
+
+};
+
+
+class ModuloSchedulingSet:NonCopyable{
+ private:
+
+ //the graphSet to feed in
+ ModuloSchedGraphSet& graphSet;
+ public:
+
+ //constructor
+ //Scheduling graph one by one
+ ModuloSchedulingSet(ModuloSchedGraphSet _graphSet):graphSet(_graphSet){
+ for(unsigned i=0;i<graphSet.size();i++){
+ ModuloSchedGraph& graph=*(graphSet[i]);
+ if(graph.isLoop())ModuloScheduling ModuloScheduling(graph);
+ }
+ };
+
+ //destructor
+ ~ModuloSchedulingSet(){};
+};
+
+
+
+#endif
+
+