aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen
diff options
context:
space:
mode:
authorStephen Hines <srhines@google.com>2014-02-11 20:01:10 -0800
committerStephen Hines <srhines@google.com>2014-02-11 20:01:10 -0800
commitce9904c6ea8fd669978a8eefb854b330eb9828ff (patch)
tree2418ee2e96ea220977c8fb74959192036ab5b133 /lib/CodeGen
parentc27b10b198c1d9e9b51f2303994313ec2778edd7 (diff)
parentdbb832b83351cec97b025b61c26536ef50c3181c (diff)
downloadexternal_llvm-ce9904c6ea8fd669978a8eefb854b330eb9828ff.zip
external_llvm-ce9904c6ea8fd669978a8eefb854b330eb9828ff.tar.gz
external_llvm-ce9904c6ea8fd669978a8eefb854b330eb9828ff.tar.bz2
Merge remote-tracking branch 'upstream/release_34' into merge-20140211
Conflicts: lib/Linker/LinkModules.cpp lib/Support/Unix/Signals.inc Change-Id: Ia54f291fa5dc828052d2412736e8495c1282aa64
Diffstat (limited to 'lib/CodeGen')
-rw-r--r--lib/CodeGen/AggressiveAntiDepBreaker.cpp2
-rw-r--r--lib/CodeGen/Analysis.cpp66
-rw-r--r--lib/CodeGen/AsmPrinter/ARMException.cpp18
-rw-r--r--lib/CodeGen/AsmPrinter/AsmPrinter.cpp215
-rw-r--r--lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp6
-rw-r--r--lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp2
-rw-r--r--lib/CodeGen/AsmPrinter/CMakeLists.txt1
-rw-r--r--lib/CodeGen/AsmPrinter/DIE.cpp57
-rw-r--r--lib/CodeGen/AsmPrinter/DIE.h89
-rw-r--r--lib/CodeGen/AsmPrinter/DIEHash.cpp507
-rw-r--r--lib/CodeGen/AsmPrinter/DIEHash.h147
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp85
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfAccelTable.h122
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfCFIException.cpp2
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp1216
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfCompileUnit.h304
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfDebug.cpp1343
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfDebug.h118
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfException.h3
-rw-r--r--lib/CodeGen/BasicTargetTransformInfo.cpp27
-rw-r--r--lib/CodeGen/BranchFolding.h2
-rw-r--r--lib/CodeGen/CMakeLists.txt4
-rw-r--r--lib/CodeGen/CalcSpillWeights.cpp36
-rw-r--r--lib/CodeGen/CodeGen.cpp2
-rw-r--r--lib/CodeGen/DFAPacketizer.cpp3
-rw-r--r--lib/CodeGen/ExecutionDepsFix.cpp117
-rw-r--r--lib/CodeGen/ExpandPostRAPseudos.cpp2
-rw-r--r--lib/CodeGen/IfConversion.cpp215
-rw-r--r--lib/CodeGen/InlineSpiller.cpp160
-rw-r--r--lib/CodeGen/InterferenceCache.cpp8
-rw-r--r--lib/CodeGen/InterferenceCache.h2
-rw-r--r--lib/CodeGen/IntrinsicLowering.cpp5
-rw-r--r--lib/CodeGen/LLVMTargetMachine.cpp14
-rw-r--r--lib/CodeGen/LiveDebugVariables.cpp53
-rw-r--r--lib/CodeGen/LiveDebugVariables.h4
-rw-r--r--lib/CodeGen/LiveInterval.cpp391
-rw-r--r--lib/CodeGen/LiveIntervalAnalysis.cpp238
-rw-r--r--lib/CodeGen/LiveRangeCalc.cpp56
-rw-r--r--lib/CodeGen/LiveRangeCalc.h38
-rw-r--r--lib/CodeGen/LiveRangeEdit.cpp43
-rw-r--r--lib/CodeGen/LiveRegMatrix.cpp6
-rw-r--r--lib/CodeGen/LiveRegUnits.cpp111
-rw-r--r--lib/CodeGen/MachineBasicBlock.cpp6
-rw-r--r--lib/CodeGen/MachineInstr.cpp35
-rw-r--r--lib/CodeGen/MachineLICM.cpp12
-rw-r--r--lib/CodeGen/MachineRegisterInfo.cpp7
-rw-r--r--lib/CodeGen/MachineScheduler.cpp707
-rw-r--r--lib/CodeGen/MachineSink.cpp30
-rw-r--r--lib/CodeGen/MachineVerifier.cpp275
-rw-r--r--lib/CodeGen/PHIElimination.cpp18
-rw-r--r--lib/CodeGen/PHIEliminationUtils.h2
-rw-r--r--lib/CodeGen/Passes.cpp19
-rw-r--r--lib/CodeGen/PeepholeOptimizer.cpp250
-rw-r--r--lib/CodeGen/PostRASchedulerList.cpp29
-rw-r--r--lib/CodeGen/ProcessImplicitDefs.cpp2
-rw-r--r--lib/CodeGen/PrologEpilogInserter.cpp220
-rw-r--r--lib/CodeGen/PrologEpilogInserter.h99
-rw-r--r--lib/CodeGen/RegAllocBase.cpp14
-rw-r--r--lib/CodeGen/RegAllocBase.h5
-rw-r--r--lib/CodeGen/RegAllocBasic.cpp15
-rw-r--r--lib/CodeGen/RegAllocFast.cpp11
-rw-r--r--lib/CodeGen/RegAllocGreedy.cpp78
-rw-r--r--lib/CodeGen/RegAllocPBQP.cpp42
-rw-r--r--lib/CodeGen/RegisterCoalescer.cpp132
-rw-r--r--lib/CodeGen/RegisterPressure.cpp431
-rw-r--r--lib/CodeGen/ScheduleDAGInstrs.cpp78
-rw-r--r--lib/CodeGen/SelectionDAG/DAGCombiner.cpp1111
-rw-r--r--lib/CodeGen/SelectionDAG/FastISel.cpp40
-rw-r--r--lib/CodeGen/SelectionDAG/InstrEmitter.cpp36
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeDAG.cpp374
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp129
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp81
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeTypes.cpp30
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeTypes.h17
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp90
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp26
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp268
-rw-r--r--lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp13
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp2
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp16
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAG.cpp506
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp742
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h246
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp9
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp261
-rw-r--r--lib/CodeGen/SelectionDAG/TargetLowering.cpp119
-rw-r--r--lib/CodeGen/ShrinkWrapping.cpp1152
-rw-r--r--lib/CodeGen/SjLjEHPrepare.cpp215
-rw-r--r--lib/CodeGen/Spiller.cpp33
-rw-r--r--lib/CodeGen/SplitKit.cpp57
-rw-r--r--lib/CodeGen/StackColoring.cpp10
-rw-r--r--lib/CodeGen/StackMaps.cpp314
-rw-r--r--lib/CodeGen/StackProtector.cpp446
-rw-r--r--lib/CodeGen/StrongPHIElimination.cpp825
-rw-r--r--lib/CodeGen/TailDuplication.cpp2
-rw-r--r--lib/CodeGen/TargetInstrInfo.cpp52
-rw-r--r--lib/CodeGen/TargetLoweringBase.cpp65
-rw-r--r--lib/CodeGen/TargetLoweringObjectFileImpl.cpp38
-rw-r--r--lib/CodeGen/TargetOptionsImpl.cpp6
-rw-r--r--lib/CodeGen/TargetRegisterInfo.cpp8
-rw-r--r--lib/CodeGen/TargetSchedule.cpp10
-rw-r--r--lib/CodeGen/TwoAddressInstructionPass.cpp4
-rw-r--r--lib/CodeGen/UnreachableBlockElim.cpp4
-rw-r--r--lib/CodeGen/VirtRegMap.cpp46
104 files changed, 9241 insertions, 6519 deletions
diff --git a/lib/CodeGen/AggressiveAntiDepBreaker.cpp b/lib/CodeGen/AggressiveAntiDepBreaker.cpp
index e079707..2ee7767 100644
--- a/lib/CodeGen/AggressiveAntiDepBreaker.cpp
+++ b/lib/CodeGen/AggressiveAntiDepBreaker.cpp
@@ -782,7 +782,7 @@ unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
if (MI == CriticalPathMI) {
CriticalPathSU = CriticalPathStep(CriticalPathSU);
CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : 0;
- } else {
+ } else if (CriticalPathSet.any()) {
ExcludeRegs = &CriticalPathSet;
}
diff --git a/lib/CodeGen/Analysis.cpp b/lib/CodeGen/Analysis.cpp
index ca08b5b..1600c67 100644
--- a/lib/CodeGen/Analysis.cpp
+++ b/lib/CodeGen/Analysis.cpp
@@ -320,6 +320,7 @@ static const Value *getNoopInput(const Value *V,
static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
SmallVectorImpl<unsigned> &RetIndices,
SmallVectorImpl<unsigned> &CallIndices,
+ bool AllowDifferingSizes,
const TargetLoweringBase &TLI) {
// Trace the sub-value needed by the return value as far back up the graph as
@@ -350,7 +351,8 @@ static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
// all the bits that are needed by the "ret" have been provided by the "tail
// call". FIXME: with sufficiently cunning bit-tracking, we could look through
// extensions too.
- if (BitsProvided < BitsRequired)
+ if (BitsProvided < BitsRequired ||
+ (!AllowDifferingSizes && BitsProvided != BitsRequired))
return false;
return true;
@@ -382,9 +384,8 @@ static bool indexReallyValid(CompositeType *T, unsigned Idx) {
/// function again on a finished iterator will repeatedly return
/// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
/// aggregate or a non-aggregate
-static bool
-advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
- SmallVectorImpl<unsigned> &Path) {
+static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
+ SmallVectorImpl<unsigned> &Path) {
// First march back up the tree until we can successfully increment one of the
// coordinates in Path.
while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
@@ -454,8 +455,8 @@ static bool firstRealType(Type *Next,
/// Set the iterator data-structures to the next non-empty, non-aggregate
/// subtype.
-bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
- SmallVectorImpl<unsigned> &Path) {
+static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
+ SmallVectorImpl<unsigned> &Path) {
do {
if (!advanceToNextLeafType(SubTypes, Path))
return false;
@@ -509,6 +510,13 @@ bool llvm::isInTailCallPosition(ImmutableCallSite CS,
return false;
}
+ return returnTypeIsEligibleForTailCall(ExitBB->getParent(), I, Ret, TLI);
+}
+
+bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
+ const Instruction *I,
+ const ReturnInst *Ret,
+ const TargetLoweringBase &TLI) {
// If the block ends with a void return or unreachable, it doesn't matter
// what the call's return type is.
if (!Ret || Ret->getNumOperands() == 0) return true;
@@ -517,19 +525,38 @@ bool llvm::isInTailCallPosition(ImmutableCallSite CS,
// return type is.
if (isa<UndefValue>(Ret->getOperand(0))) return true;
- // Conservatively require the attributes of the call to match those of
- // the return. Ignore noalias because it doesn't affect the call sequence.
- const Function *F = ExitBB->getParent();
- AttributeSet CallerAttrs = F->getAttributes();
- if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex).
- removeAttribute(Attribute::NoAlias) !=
- AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex).
- removeAttribute(Attribute::NoAlias))
- return false;
+ // Make sure the attributes attached to each return are compatible.
+ AttrBuilder CallerAttrs(F->getAttributes(),
+ AttributeSet::ReturnIndex);
+ AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
+ AttributeSet::ReturnIndex);
+
+ // Noalias is completely benign as far as calling convention goes, it
+ // shouldn't affect whether the call is a tail call.
+ CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
+ CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
+
+ bool AllowDifferingSizes = true;
+ if (CallerAttrs.contains(Attribute::ZExt)) {
+ if (!CalleeAttrs.contains(Attribute::ZExt))
+ return false;
+
+ AllowDifferingSizes = false;
+ CallerAttrs.removeAttribute(Attribute::ZExt);
+ CalleeAttrs.removeAttribute(Attribute::ZExt);
+ } else if (CallerAttrs.contains(Attribute::SExt)) {
+ if (!CalleeAttrs.contains(Attribute::SExt))
+ return false;
+
+ AllowDifferingSizes = false;
+ CallerAttrs.removeAttribute(Attribute::SExt);
+ CalleeAttrs.removeAttribute(Attribute::SExt);
+ }
- // It's not safe to eliminate the sign / zero extension of the return value.
- if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
- CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
+ // If they're still different, there's some facet we don't understand
+ // (currently only "inreg", but in future who knows). It may be OK but the
+ // only safe option is to reject the tail call.
+ if (CallerAttrs != CalleeAttrs)
return false;
const Value *RetVal = Ret->getOperand(0), *CallVal = I;
@@ -571,7 +598,8 @@ bool llvm::isInTailCallPosition(ImmutableCallSite CS,
// Finally, we can check whether the value produced by the tail call at this
// index is compatible with the value we return.
- if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, TLI))
+ if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
+ AllowDifferingSizes, TLI))
return false;
CallEmpty = !nextRealType(CallSubTypes, CallPath);
diff --git a/lib/CodeGen/AsmPrinter/ARMException.cpp b/lib/CodeGen/AsmPrinter/ARMException.cpp
index 188047d..5d82dd9 100644
--- a/lib/CodeGen/AsmPrinter/ARMException.cpp
+++ b/lib/CodeGen/AsmPrinter/ARMException.cpp
@@ -47,13 +47,18 @@ ARMException::ARMException(AsmPrinter *A)
ARMException::~ARMException() {}
+ARMTargetStreamer &ARMException::getTargetStreamer() {
+ MCTargetStreamer &TS = Asm->OutStreamer.getTargetStreamer();
+ return static_cast<ARMTargetStreamer &>(TS);
+}
+
void ARMException::EndModule() {
}
/// BeginFunction - Gather pre-function exception information. Assumes it's
/// being emitted immediately after the function entry point.
void ARMException::BeginFunction(const MachineFunction *MF) {
- Asm->OutStreamer.EmitFnStart();
+ getTargetStreamer().emitFnStart();
if (Asm->MF->getFunction()->needsUnwindTableEntry())
Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("eh_func_begin",
Asm->getFunctionNumber()));
@@ -62,8 +67,9 @@ void ARMException::BeginFunction(const MachineFunction *MF) {
/// EndFunction - Gather and emit post-function exception information.
///
void ARMException::EndFunction() {
+ ARMTargetStreamer &ATS = getTargetStreamer();
if (!Asm->MF->getFunction()->needsUnwindTableEntry())
- Asm->OutStreamer.EmitCantUnwind();
+ ATS.emitCantUnwind();
else {
Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("eh_func_end",
Asm->getFunctionNumber()));
@@ -76,13 +82,13 @@ void ARMException::EndFunction() {
// Emit references to personality.
if (const Function * Personality =
MMI->getPersonalities()[MMI->getPersonalityIndex()]) {
- MCSymbol *PerSym = Asm->Mang->getSymbol(Personality);
+ MCSymbol *PerSym = Asm->getSymbol(Personality);
Asm->OutStreamer.EmitSymbolAttribute(PerSym, MCSA_Global);
- Asm->OutStreamer.EmitPersonality(PerSym);
+ ATS.emitPersonality(PerSym);
}
// Emit .handlerdata directive.
- Asm->OutStreamer.EmitHandlerData();
+ ATS.emitHandlerData();
// Emit actual exception table
EmitExceptionTable();
@@ -90,7 +96,7 @@ void ARMException::EndFunction() {
}
}
- Asm->OutStreamer.EmitFnEnd();
+ ATS.emitFnEnd();
}
void ARMException::EmitTypeInfos(unsigned TTypeEncoding) {
diff --git a/lib/CodeGen/AsmPrinter/AsmPrinter.cpp b/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
index 12c3574..308b0e0 100644
--- a/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
+++ b/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
@@ -48,6 +48,7 @@
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Transforms/Utils/GlobalStatus.h"
using namespace llvm;
static const char *const DWARFGroupName = "DWARF Emission";
@@ -94,7 +95,7 @@ static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
: MachineFunctionPass(ID),
- TM(tm), MAI(tm.getMCAsmInfo()),
+ TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()),
OutContext(Streamer.getContext()),
OutStreamer(Streamer),
LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
@@ -164,7 +165,7 @@ bool AsmPrinter::doInitialization(Module &M) {
OutStreamer.InitStreamer();
- Mang = new Mangler(OutContext, &TM);
+ Mang = new Mangler(&TM);
// Allow the target to emit any magic that it wants at the start of the file.
EmitStartOfAsmFile(M);
@@ -212,12 +213,12 @@ bool AsmPrinter::doInitialization(Module &M) {
llvm_unreachable("Unknown exception type.");
}
-void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
- switch ((GlobalValue::LinkageTypes)Linkage) {
+void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
+ GlobalValue::LinkageTypes Linkage = GV->getLinkage();
+ switch (Linkage) {
case GlobalValue::CommonLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
- case GlobalValue::LinkOnceODRAutoHideLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::LinkerPrivateWeakLinkage:
@@ -225,8 +226,19 @@ void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
// .globl _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
- if ((GlobalValue::LinkageTypes)Linkage !=
- GlobalValue::LinkOnceODRAutoHideLinkage)
+ bool CanBeHidden = false;
+
+ if (Linkage == GlobalValue::LinkOnceODRLinkage) {
+ if (GV->hasUnnamedAddr()) {
+ CanBeHidden = true;
+ } else {
+ GlobalStatus GS;
+ if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared)
+ CanBeHidden = true;
+ }
+ }
+
+ if (!CanBeHidden)
// .weak_definition _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
else
@@ -239,7 +251,7 @@ void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
// .weak _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
}
- break;
+ return;
case GlobalValue::DLLExportLinkage:
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
@@ -248,16 +260,23 @@ void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
// If external or appending, declare as a global symbol.
// .globl _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
- break;
+ return;
case GlobalValue::PrivateLinkage:
case GlobalValue::InternalLinkage:
case GlobalValue::LinkerPrivateLinkage:
- break;
- default:
- llvm_unreachable("Unknown linkage type!");
+ return;
+ case GlobalValue::AvailableExternallyLinkage:
+ llvm_unreachable("Should never emit this");
+ case GlobalValue::DLLImportLinkage:
+ case GlobalValue::ExternalWeakLinkage:
+ llvm_unreachable("Don't know how to emit these");
}
+ llvm_unreachable("Unknown linkage type!");
}
+MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
+ return getObjFileLowering().getSymbol(*Mang, GV);
+}
/// EmitGlobalVariable - Emit the specified global variable to the .s file.
void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
@@ -273,7 +292,7 @@ void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
}
}
- MCSymbol *GVSym = Mang->getSymbol(GV);
+ MCSymbol *GVSym = getSymbol(GV);
EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
if (!GV->hasInitializer()) // External globals require no extra code.
@@ -284,13 +303,16 @@ void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
- const DataLayout *TD = TM.getDataLayout();
- uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
+ const DataLayout *DL = TM.getDataLayout();
+ uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
// If the alignment is specified, we *must* obey it. Overaligning a global
// with a specified alignment is a prompt way to break globals emitted to
// sections and expected to be contiguous (e.g. ObjC metadata).
- unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
+ unsigned AlignLog = getGVAlignmentLog2(GV, *DL);
+
+ if (DD)
+ DD->setSymbolSize(GVSym, Size);
// Handle common and BSS local symbols (.lcomm).
if (GVKind.isCommon() || GVKind.isBSSLocal()) {
@@ -388,14 +410,14 @@ void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
OutStreamer.SwitchSection(TLVSect);
// Emit the linkage here.
- EmitLinkage(GV->getLinkage(), GVSym);
+ EmitLinkage(GV, GVSym);
OutStreamer.EmitLabel(GVSym);
// Three pointers in size:
// - __tlv_bootstrap - used to make sure support exists
// - spare pointer, used when mapped by the runtime
// - pointer to mangled symbol above with initializer
- unsigned PtrSize = TD->getPointerSizeInBits()/8;
+ unsigned PtrSize = DL->getPointerTypeSize(GV->getType());
OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
PtrSize);
OutStreamer.EmitIntValue(0, PtrSize);
@@ -407,7 +429,7 @@ void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
OutStreamer.SwitchSection(TheSection);
- EmitLinkage(GV->getLinkage(), GVSym);
+ EmitLinkage(GV, GVSym);
EmitAlignment(AlignLog, GV);
OutStreamer.EmitLabel(GVSym);
@@ -433,7 +455,7 @@ void AsmPrinter::EmitFunctionHeader() {
OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
EmitVisibility(CurrentFnSym, F->getVisibility());
- EmitLinkage(F->getLinkage(), CurrentFnSym);
+ EmitLinkage(F, CurrentFnSym);
EmitAlignment(MF->getAlignment(), F);
if (MAI->hasDotTypeDotSizeDirective())
@@ -459,16 +481,6 @@ void AsmPrinter::EmitFunctionHeader() {
OutStreamer.EmitLabel(DeadBlockSyms[i]);
}
- // Add some workaround for linkonce linkage on Cygwin\MinGW.
- if (MAI->getLinkOnceDirective() != 0 &&
- (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
- // FIXME: What is this?
- MCSymbol *FakeStub =
- OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
- CurrentFnSym->getName());
- OutStreamer.EmitLabel(FakeStub);
- }
-
// Emit pre-function debug and/or EH information.
if (DE) {
NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
@@ -478,6 +490,10 @@ void AsmPrinter::EmitFunctionHeader() {
NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
DD->beginFunction(MF);
}
+
+ // Emit the prefix data.
+ if (F->hasPrefixData())
+ EmitGlobalConstant(F->getPrefixData());
}
/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
@@ -530,11 +546,11 @@ static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
/// emitImplicitDef - This method emits the specified machine instruction
/// that is an implicit def.
-static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
+void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
unsigned RegNo = MI->getOperand(0).getReg();
- AP.OutStreamer.AddComment(Twine("implicit-def: ") +
- AP.TM.getRegisterInfo()->getName(RegNo));
- AP.OutStreamer.AddBlankLine();
+ OutStreamer.AddComment(Twine("implicit-def: ") +
+ TM.getRegisterInfo()->getName(RegNo));
+ OutStreamer.AddBlankLine();
}
static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
@@ -646,7 +662,7 @@ bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
}
void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
- MCSymbol *Label = MI.getOperand(0).getMCSymbol();
+ const MCSymbol *Label = MI.getOperand(0).getMCSymbol();
if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
return;
@@ -657,12 +673,12 @@ void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
if (MMI->getCompactUnwindEncoding() != 0)
OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
- MachineModuleInfo &MMI = MF->getMMI();
- std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions();
+ const MachineModuleInfo &MMI = MF->getMMI();
+ const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
bool FoundOne = false;
(void)FoundOne;
- for (std::vector<MCCFIInstruction>::iterator I = Instructions.begin(),
- E = Instructions.end(); I != E; ++I) {
+ for (std::vector<MCCFIInstruction>::const_iterator I = Instrs.begin(),
+ E = Instrs.end(); I != E; ++I) {
if (I->getLabel() == Label) {
emitCFIInstruction(*I);
FoundOne = true;
@@ -724,7 +740,7 @@ void AsmPrinter::EmitFunctionBody() {
}
break;
case TargetOpcode::IMPLICIT_DEF:
- if (isVerbose()) emitImplicitDef(II, *this);
+ if (isVerbose()) emitImplicitDef(II);
break;
case TargetOpcode::KILL:
if (isVerbose()) emitKill(II, *this);
@@ -877,7 +893,7 @@ bool AsmPrinter::doFinalization(Module &M) {
if (V == GlobalValue::DefaultVisibility)
continue;
- MCSymbol *Name = Mang->getSymbol(&F);
+ MCSymbol *Name = getSymbol(&F);
EmitVisibility(Name, V, false);
}
@@ -887,6 +903,9 @@ bool AsmPrinter::doFinalization(Module &M) {
if (!ModuleFlags.empty())
getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
+ // Make sure we wrote out everything we need.
+ OutStreamer.Flush();
+
// Finalize debug and EH information.
if (DE) {
{
@@ -914,12 +933,12 @@ bool AsmPrinter::doFinalization(Module &M) {
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (!I->hasExternalWeakLinkage()) continue;
- OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
+ OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference);
}
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
if (!I->hasExternalWeakLinkage()) continue;
- OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
+ OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference);
}
}
@@ -927,14 +946,19 @@ bool AsmPrinter::doFinalization(Module &M) {
OutStreamer.AddBlankLine();
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I) {
- MCSymbol *Name = Mang->getSymbol(I);
+ MCSymbol *Name = getSymbol(I);
const GlobalValue *GV = I->getAliasedGlobal();
- MCSymbol *Target = Mang->getSymbol(GV);
+ if (GV->isDeclaration()) {
+ report_fatal_error(Name->getName() +
+ ": Target doesn't support aliases to declarations");
+ }
+
+ MCSymbol *Target = getSymbol(GV);
if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
- else if (I->hasWeakLinkage())
+ else if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
else
assert(I->hasLocalLinkage() && "Invalid alias linkage");
@@ -953,6 +977,9 @@ bool AsmPrinter::doFinalization(Module &M) {
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
MP->finishAssembly(*this);
+ // Emit llvm.ident metadata in an '.ident' directive.
+ EmitModuleIdents(M);
+
// If we don't have any trampolines, then we don't require stack memory
// to be executable. Some targets have a directive to declare this.
Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
@@ -976,7 +1003,7 @@ bool AsmPrinter::doFinalization(Module &M) {
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
this->MF = &MF;
// Get the function symbol.
- CurrentFnSym = Mang->getSymbol(MF.getFunction());
+ CurrentFnSym = getSymbol(MF.getFunction());
CurrentFnSymForSize = CurrentFnSym;
if (isVerbose())
@@ -1283,16 +1310,10 @@ void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
const GlobalValue *GV =
dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
- OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
+ OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
}
}
-typedef std::pair<unsigned, Constant*> Structor;
-
-static bool priority_order(const Structor& lhs, const Structor& rhs) {
- return lhs.first < rhs.first;
-}
-
/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
/// priority.
void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
@@ -1309,6 +1330,7 @@ void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
!isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
// Gather the structors in a form that's convenient for sorting by priority.
+ typedef std::pair<unsigned, Constant *> Structor;
SmallVector<Structor, 8> Structors;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
@@ -1322,9 +1344,9 @@ void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
}
// Emit the function pointers in the target-specific order
- const DataLayout *TD = TM.getDataLayout();
- unsigned Align = Log2_32(TD->getPointerPrefAlignment());
- std::stable_sort(Structors.begin(), Structors.end(), priority_order);
+ const DataLayout *DL = TM.getDataLayout();
+ unsigned Align = Log2_32(DL->getPointerPrefAlignment());
+ std::stable_sort(Structors.begin(), Structors.end(), less_first());
for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
const MCSection *OutputSection =
(isCtor ?
@@ -1337,6 +1359,21 @@ void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
}
}
+void AsmPrinter::EmitModuleIdents(Module &M) {
+ if (!MAI->hasIdentDirective())
+ return;
+
+ if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
+ for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
+ const MDNode *N = NMD->getOperand(i);
+ assert(N->getNumOperands() == 1 &&
+ "llvm.ident metadata entry can have only one operand");
+ const MDString *S = cast<MDString>(N->getOperand(0));
+ OutStreamer.EmitIdent(S->getString());
+ }
+ }
+}
+
//===--------------------------------------------------------------------===//
// Emission and print routines
//
@@ -1402,12 +1439,12 @@ void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
OutContext);
if (!MAI->hasSetDirective())
- OutStreamer.EmitValue(Diff, 4);
+ OutStreamer.EmitValue(Diff, Size);
else {
// Otherwise, emit with .set (aka assignment).
MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
OutStreamer.EmitAssignment(SetLabel, Diff);
- OutStreamer.EmitSymbolValue(SetLabel, 4);
+ OutStreamer.EmitSymbolValue(SetLabel, Size);
}
}
@@ -1415,9 +1452,9 @@ void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
/// where the size in bytes of the directive is specified by Size and Label
/// specifies the label. This implicitly uses .set if it is available.
void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
- unsigned Size)
+ unsigned Size, bool IsSectionRelative)
const {
- if (MAI->needsDwarfSectionOffsetDirective() && Size == 4) { // secrel32 ONLY works for 32bits.
+ if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
OutStreamer.EmitCOFFSecRel32(Label);
return;
}
@@ -1468,7 +1505,7 @@ static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
- return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
+ return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
@@ -1498,10 +1535,10 @@ static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
report_fatal_error(OS.str());
}
case Instruction::GetElementPtr: {
- const DataLayout &TD = *AP.TM.getDataLayout();
+ const DataLayout &DL = *AP.TM.getDataLayout();
// Generate a symbolic expression for the byte address
- APInt OffsetAI(TD.getPointerSizeInBits(), 0);
- cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
+ APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
+ cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
if (!OffsetAI)
@@ -1522,17 +1559,17 @@ static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
return lowerConstant(CE->getOperand(0), AP);
case Instruction::IntToPtr: {
- const DataLayout &TD = *AP.TM.getDataLayout();
+ const DataLayout &DL = *AP.TM.getDataLayout();
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
- Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
+ Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
false/*ZExt*/);
return lowerConstant(Op, AP);
}
case Instruction::PtrToInt: {
- const DataLayout &TD = *AP.TM.getDataLayout();
+ const DataLayout &DL = *AP.TM.getDataLayout();
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
@@ -1542,13 +1579,13 @@ static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
// We can emit the pointer value into this slot if the slot is an
// integer slot equal to the size of the pointer.
- if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
+ if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
return OpExpr;
// Otherwise the pointer is smaller than the resultant integer, mask off
// the high bits so we are sure to get a proper truncation if the input is
// a constant expr.
- unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
+ unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
}
@@ -1699,9 +1736,9 @@ static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
}
}
- const DataLayout &TD = *AP.TM.getDataLayout();
- unsigned Size = TD.getTypeAllocSize(CDS->getType());
- unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
+ const DataLayout &DL = *AP.TM.getDataLayout();
+ unsigned Size = DL.getTypeAllocSize(CDS->getType());
+ unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
CDS->getNumElements();
if (unsigned Padding = Size - EmittedSize)
AP.OutStreamer.EmitZeros(Padding);
@@ -1727,9 +1764,9 @@ static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
emitGlobalConstantImpl(CV->getOperand(i), AP);
- const DataLayout &TD = *AP.TM.getDataLayout();
- unsigned Size = TD.getTypeAllocSize(CV->getType());
- unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
+ const DataLayout &DL = *AP.TM.getDataLayout();
+ unsigned Size = DL.getTypeAllocSize(CV->getType());
+ unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
CV->getType()->getNumElements();
if (unsigned Padding = Size - EmittedSize)
AP.OutStreamer.EmitZeros(Padding);
@@ -1737,15 +1774,15 @@ static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
// Print the fields in successive locations. Pad to align if needed!
- const DataLayout *TD = AP.TM.getDataLayout();
- unsigned Size = TD->getTypeAllocSize(CS->getType());
- const StructLayout *Layout = TD->getStructLayout(CS->getType());
+ const DataLayout *DL = AP.TM.getDataLayout();
+ unsigned Size = DL->getTypeAllocSize(CS->getType());
+ const StructLayout *Layout = DL->getStructLayout(CS->getType());
uint64_t SizeSoFar = 0;
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
const Constant *Field = CS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
- uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
+ uint64_t FieldSize = DL->getTypeAllocSize(Field->getType());
uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
- Layout->getElementOffset(i)) - FieldSize;
SizeSoFar += FieldSize + PadSize;
@@ -1802,13 +1839,13 @@ static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
}
// Emit the tail padding for the long double.
- const DataLayout &TD = *AP.TM.getDataLayout();
- AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
- TD.getTypeStoreSize(CFP->getType()));
+ const DataLayout &DL = *AP.TM.getDataLayout();
+ AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
+ DL.getTypeStoreSize(CFP->getType()));
}
static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
- const DataLayout *TD = AP.TM.getDataLayout();
+ const DataLayout *DL = AP.TM.getDataLayout();
unsigned BitWidth = CI->getBitWidth();
// Copy the value as we may massage the layout for constants whose bit width
@@ -1825,7 +1862,7 @@ static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
// Big endian:
// * Record the extra bits to emit.
// * Realign the raw data to emit the chunks of 64-bits.
- if (TD->isBigEndian()) {
+ if (DL->isBigEndian()) {
// Basically the structure of the raw data is a chunk of 64-bits cells:
// 0 1 BitWidth / 64
// [chunk1][chunk2] ... [chunkN].
@@ -1846,7 +1883,7 @@ static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
// quantities at a time.
const uint64_t *RawData = Realigned.getRawData();
for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
- uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
+ uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i];
AP.OutStreamer.EmitIntValue(Val, 8);
}
@@ -1864,8 +1901,8 @@ static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
}
static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
- const DataLayout *TD = AP.TM.getDataLayout();
- uint64_t Size = TD->getTypeAllocSize(CV->getType());
+ const DataLayout *DL = AP.TM.getDataLayout();
+ uint64_t Size = DL->getTypeAllocSize(CV->getType());
if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
return AP.OutStreamer.EmitZeros(Size);
@@ -1913,7 +1950,7 @@ static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
// If the constant expression's size is greater than 64-bits, then we have
// to emit the value in chunks. Try to constant fold the value and emit it
// that way.
- Constant *New = ConstantFoldConstantExpression(CE, TD);
+ Constant *New = ConstantFoldConstantExpression(CE, DL);
if (New && New != CE)
return emitGlobalConstantImpl(New, AP);
}
diff --git a/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp b/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp
index c141d60..b92f49c 100644
--- a/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp
+++ b/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp
@@ -185,5 +185,11 @@ void AsmPrinter::emitCFIInstruction(const MCCFIInstruction &Inst) const {
case MCCFIInstruction::OpOffset:
OutStreamer.EmitCFIOffset(Inst.getRegister(), Inst.getOffset());
break;
+ case MCCFIInstruction::OpRegister:
+ OutStreamer.EmitCFIRegister(Inst.getRegister(), Inst.getRegister2());
+ break;
+ case MCCFIInstruction::OpWindowSave:
+ OutStreamer.EmitCFIWindowSave();
+ break;
}
}
diff --git a/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp b/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp
index d8e9c95..4f927f6 100644
--- a/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp
+++ b/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp
@@ -123,7 +123,7 @@ void AsmPrinter::EmitInlineAsm(StringRef Str, const MDNode *LocMDNode,
TM.getTargetCPU(),
TM.getTargetFeatureString()));
OwningPtr<MCTargetAsmParser>
- TAP(TM.getTarget().createMCAsmParser(*STI, *Parser));
+ TAP(TM.getTarget().createMCAsmParser(*STI, *Parser, *MII));
if (!TAP)
report_fatal_error("Inline asm not supported by this streamer because"
" we don't have an asm parser for this target\n");
diff --git a/lib/CodeGen/AsmPrinter/CMakeLists.txt b/lib/CodeGen/AsmPrinter/CMakeLists.txt
index 65e7bee..be484a6 100644
--- a/lib/CodeGen/AsmPrinter/CMakeLists.txt
+++ b/lib/CodeGen/AsmPrinter/CMakeLists.txt
@@ -4,6 +4,7 @@ add_llvm_library(LLVMAsmPrinter
AsmPrinterDwarf.cpp
AsmPrinterInlineAsm.cpp
DIE.cpp
+ DIEHash.cpp
DwarfAccelTable.cpp
DwarfCFIException.cpp
DwarfCompileUnit.cpp
diff --git a/lib/CodeGen/AsmPrinter/DIE.cpp b/lib/CodeGen/AsmPrinter/DIE.cpp
index ab03861..6944428 100644
--- a/lib/CodeGen/AsmPrinter/DIE.cpp
+++ b/lib/CodeGen/AsmPrinter/DIE.cpp
@@ -34,8 +34,10 @@ using namespace llvm;
/// Profile - Used to gather unique data for the abbreviation folding set.
///
void DIEAbbrevData::Profile(FoldingSetNodeID &ID) const {
- ID.AddInteger(Attribute);
- ID.AddInteger(Form);
+ // Explicitly cast to an integer type for which FoldingSetNodeID has
+ // overloads. Otherwise MSVC 2010 thinks this call is ambiguous.
+ ID.AddInteger(unsigned(Attribute));
+ ID.AddInteger(unsigned(Form));
}
//===----------------------------------------------------------------------===//
@@ -45,7 +47,7 @@ void DIEAbbrevData::Profile(FoldingSetNodeID &ID) const {
/// Profile - Used to gather unique data for the abbreviation folding set.
///
void DIEAbbrev::Profile(FoldingSetNodeID &ID) const {
- ID.AddInteger(Tag);
+ ID.AddInteger(unsigned(Tag));
ID.AddInteger(ChildrenFlag);
// For each attribute description.
@@ -112,17 +114,25 @@ DIE::~DIE() {
/// Climb up the parent chain to get the compile unit DIE to which this DIE
/// belongs.
-DIE *DIE::getCompileUnit() {
- DIE *p = this;
+const DIE *DIE::getCompileUnit() const {
+ const DIE *Cu = getCompileUnitOrNull();
+ assert(Cu && "We should not have orphaned DIEs.");
+ return Cu;
+}
+
+/// Climb up the parent chain to get the compile unit DIE this DIE belongs
+/// to. Return NULL if DIE is not added to an owner yet.
+const DIE *DIE::getCompileUnitOrNull() const {
+ const DIE *p = this;
while (p) {
if (p->getTag() == dwarf::DW_TAG_compile_unit)
return p;
p = p->getParent();
}
- llvm_unreachable("We should not have orphaned DIEs.");
+ return NULL;
}
-DIEValue *DIE::findAttribute(unsigned Attribute) {
+DIEValue *DIE::findAttribute(uint16_t Attribute) {
const SmallVectorImpl<DIEValue *> &Values = getValues();
const DIEAbbrev &Abbrevs = getAbbrev();
@@ -199,14 +209,14 @@ void DIEValue::dump() const {
/// EmitValue - Emit integer of appropriate size.
///
-void DIEInteger::EmitValue(AsmPrinter *Asm, unsigned Form) const {
+void DIEInteger::EmitValue(AsmPrinter *Asm, dwarf::Form Form) const {
unsigned Size = ~0U;
switch (Form) {
case dwarf::DW_FORM_flag_present:
// Emit something to keep the lines and comments in sync.
// FIXME: Is there a better way to do this?
if (Asm->OutStreamer.hasRawTextSupport())
- Asm->OutStreamer.EmitRawText(StringRef(""));
+ Asm->OutStreamer.EmitRawText("");
return;
case dwarf::DW_FORM_flag: // Fall thru
case dwarf::DW_FORM_ref1: // Fall thru
@@ -231,7 +241,7 @@ void DIEInteger::EmitValue(AsmPrinter *Asm, unsigned Form) const {
/// SizeOf - Determine size of integer value in bytes.
///
-unsigned DIEInteger::SizeOf(AsmPrinter *AP, unsigned Form) const {
+unsigned DIEInteger::SizeOf(AsmPrinter *AP, dwarf::Form Form) const {
switch (Form) {
case dwarf::DW_FORM_flag_present: return 0;
case dwarf::DW_FORM_flag: // Fall thru
@@ -266,13 +276,13 @@ void DIEInteger::print(raw_ostream &O) const {
/// EmitValue - Emit expression value.
///
-void DIEExpr::EmitValue(AsmPrinter *AP, unsigned Form) const {
+void DIEExpr::EmitValue(AsmPrinter *AP, dwarf::Form Form) const {
AP->OutStreamer.EmitValue(Expr, SizeOf(AP, Form));
}
/// SizeOf - Determine size of expression value in bytes.
///
-unsigned DIEExpr::SizeOf(AsmPrinter *AP, unsigned Form) const {
+unsigned DIEExpr::SizeOf(AsmPrinter *AP, dwarf::Form Form) const {
if (Form == dwarf::DW_FORM_data4) return 4;
if (Form == dwarf::DW_FORM_sec_offset) return 4;
if (Form == dwarf::DW_FORM_strp) return 4;
@@ -292,13 +302,16 @@ void DIEExpr::print(raw_ostream &O) const {
/// EmitValue - Emit label value.
///
-void DIELabel::EmitValue(AsmPrinter *AP, unsigned Form) const {
- AP->EmitLabelReference(Label, SizeOf(AP, Form));
+void DIELabel::EmitValue(AsmPrinter *AP, dwarf::Form Form) const {
+ AP->EmitLabelReference(Label, SizeOf(AP, Form),
+ Form == dwarf::DW_FORM_strp ||
+ Form == dwarf::DW_FORM_sec_offset ||
+ Form == dwarf::DW_FORM_ref_addr);
}
/// SizeOf - Determine size of label value in bytes.
///
-unsigned DIELabel::SizeOf(AsmPrinter *AP, unsigned Form) const {
+unsigned DIELabel::SizeOf(AsmPrinter *AP, dwarf::Form Form) const {
if (Form == dwarf::DW_FORM_data4) return 4;
if (Form == dwarf::DW_FORM_sec_offset) return 4;
if (Form == dwarf::DW_FORM_strp) return 4;
@@ -317,13 +330,13 @@ void DIELabel::print(raw_ostream &O) const {
/// EmitValue - Emit delta value.
///
-void DIEDelta::EmitValue(AsmPrinter *AP, unsigned Form) const {
+void DIEDelta::EmitValue(AsmPrinter *AP, dwarf::Form Form) const {
AP->EmitLabelDifference(LabelHi, LabelLo, SizeOf(AP, Form));
}
/// SizeOf - Determine size of delta value in bytes.
///
-unsigned DIEDelta::SizeOf(AsmPrinter *AP, unsigned Form) const {
+unsigned DIEDelta::SizeOf(AsmPrinter *AP, dwarf::Form Form) const {
if (Form == dwarf::DW_FORM_data4) return 4;
if (Form == dwarf::DW_FORM_strp) return 4;
return AP->getDataLayout().getPointerSize();
@@ -341,13 +354,13 @@ void DIEDelta::print(raw_ostream &O) const {
/// EmitValue - Emit string value.
///
-void DIEString::EmitValue(AsmPrinter *AP, unsigned Form) const {
+void DIEString::EmitValue(AsmPrinter *AP, dwarf::Form Form) const {
Access->EmitValue(AP, Form);
}
/// SizeOf - Determine size of delta value in bytes.
///
-unsigned DIEString::SizeOf(AsmPrinter *AP, unsigned Form) const {
+unsigned DIEString::SizeOf(AsmPrinter *AP, dwarf::Form Form) const {
return Access->SizeOf(AP, Form);
}
@@ -364,7 +377,7 @@ void DIEString::print(raw_ostream &O) const {
/// EmitValue - Emit debug information entry offset.
///
-void DIEEntry::EmitValue(AsmPrinter *AP, unsigned Form) const {
+void DIEEntry::EmitValue(AsmPrinter *AP, dwarf::Form Form) const {
AP->EmitInt32(Entry->getOffset());
}
@@ -402,7 +415,7 @@ unsigned DIEBlock::ComputeSize(AsmPrinter *AP) {
/// EmitValue - Emit block data.
///
-void DIEBlock::EmitValue(AsmPrinter *Asm, unsigned Form) const {
+void DIEBlock::EmitValue(AsmPrinter *Asm, dwarf::Form Form) const {
switch (Form) {
default: llvm_unreachable("Improper form for block");
case dwarf::DW_FORM_block1: Asm->EmitInt8(Size); break;
@@ -418,7 +431,7 @@ void DIEBlock::EmitValue(AsmPrinter *Asm, unsigned Form) const {
/// SizeOf - Determine size of block data in bytes.
///
-unsigned DIEBlock::SizeOf(AsmPrinter *AP, unsigned Form) const {
+unsigned DIEBlock::SizeOf(AsmPrinter *AP, dwarf::Form Form) const {
switch (Form) {
case dwarf::DW_FORM_block1: return Size + sizeof(int8_t);
case dwarf::DW_FORM_block2: return Size + sizeof(int16_t);
diff --git a/lib/CodeGen/AsmPrinter/DIE.h b/lib/CodeGen/AsmPrinter/DIE.h
index bfd7d1d..f4fa326 100644
--- a/lib/CodeGen/AsmPrinter/DIE.h
+++ b/lib/CodeGen/AsmPrinter/DIE.h
@@ -33,17 +33,17 @@ namespace llvm {
class DIEAbbrevData {
/// Attribute - Dwarf attribute code.
///
- uint16_t Attribute;
+ dwarf::Attribute Attribute;
/// Form - Dwarf form code.
///
- uint16_t Form;
+ dwarf::Form Form;
public:
- DIEAbbrevData(uint16_t A, uint16_t F) : Attribute(A), Form(F) {}
+ DIEAbbrevData(dwarf::Attribute A, dwarf::Form F) : Attribute(A), Form(F) {}
// Accessors.
- uint16_t getAttribute() const { return Attribute; }
- uint16_t getForm() const { return Form; }
+ dwarf::Attribute getAttribute() const { return Attribute; }
+ dwarf::Form getForm() const { return Form; }
/// Profile - Used to gather unique data for the abbreviation folding set.
///
@@ -56,7 +56,7 @@ namespace llvm {
class DIEAbbrev : public FoldingSetNode {
/// Tag - Dwarf tag code.
///
- uint16_t Tag;
+ dwarf::Tag Tag;
/// ChildrenFlag - Dwarf children flag.
///
@@ -71,20 +71,19 @@ namespace llvm {
SmallVector<DIEAbbrevData, 12> Data;
public:
- DIEAbbrev(uint16_t T, uint16_t C) : Tag(T), ChildrenFlag(C), Data() {}
+ DIEAbbrev(dwarf::Tag T, uint16_t C) : Tag(T), ChildrenFlag(C), Data() {}
// Accessors.
- uint16_t getTag() const { return Tag; }
+ dwarf::Tag getTag() const { return Tag; }
unsigned getNumber() const { return Number; }
uint16_t getChildrenFlag() const { return ChildrenFlag; }
const SmallVectorImpl<DIEAbbrevData> &getData() const { return Data; }
- void setTag(uint16_t T) { Tag = T; }
void setChildrenFlag(uint16_t CF) { ChildrenFlag = CF; }
void setNumber(unsigned N) { Number = N; }
/// AddAttribute - Adds another set of attribute information to the
/// abbreviation.
- void AddAttribute(uint16_t Attribute, uint16_t Form) {
+ void AddAttribute(dwarf::Attribute Attribute, dwarf::Form Form) {
Data.push_back(DIEAbbrevData(Attribute, Form));
}
@@ -131,19 +130,17 @@ namespace llvm {
///
SmallVector<DIEValue*, 12> Values;
-#ifndef NDEBUG
- // Private data for print()
- mutable unsigned IndentCount;
-#endif
public:
explicit DIE(unsigned Tag)
- : Offset(0), Size(0), Abbrev(Tag, dwarf::DW_CHILDREN_no), Parent(0) {}
+ : Offset(0), Size(0), Abbrev((dwarf::Tag)Tag, dwarf::DW_CHILDREN_no),
+ Parent(0) {}
virtual ~DIE();
// Accessors.
DIEAbbrev &getAbbrev() { return Abbrev; }
+ const DIEAbbrev &getAbbrev() const { return Abbrev; }
unsigned getAbbrevNumber() const { return Abbrev.getNumber(); }
- unsigned getTag() const { return Abbrev.getTag(); }
+ dwarf::Tag getTag() const { return Abbrev.getTag(); }
unsigned getOffset() const { return Offset; }
unsigned getSize() const { return Size; }
const std::vector<DIE *> &getChildren() const { return Children; }
@@ -151,14 +148,17 @@ namespace llvm {
DIE *getParent() const { return Parent; }
/// Climb up the parent chain to get the compile unit DIE this DIE belongs
/// to.
- DIE *getCompileUnit();
- void setTag(unsigned Tag) { Abbrev.setTag(Tag); }
+ const DIE *getCompileUnit() const;
+ /// Similar to getCompileUnit, returns null when DIE is not added to an
+ /// owner yet.
+ const DIE *getCompileUnitOrNull() const;
void setOffset(unsigned O) { Offset = O; }
void setSize(unsigned S) { Size = S; }
/// addValue - Add a value and attributes to a DIE.
///
- void addValue(unsigned Attribute, unsigned Form, DIEValue *Value) {
+ void addValue(dwarf::Attribute Attribute, dwarf::Form Form,
+ DIEValue *Value) {
Abbrev.AddAttribute(Attribute, Form);
Values.push_back(Value);
}
@@ -166,10 +166,7 @@ namespace llvm {
/// addChild - Add a child to the DIE.
///
void addChild(DIE *Child) {
- if (Child->getParent()) {
- assert (Child->getParent() == this && "Unexpected DIE Parent!");
- return;
- }
+ assert(!Child->getParent());
Abbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
Children.push_back(Child);
Child->Parent = this;
@@ -177,7 +174,7 @@ namespace llvm {
/// findAttribute - Find a value in the DIE with the attribute given, returns NULL
/// if no such attribute exists.
- DIEValue *findAttribute(unsigned Attribute);
+ DIEValue *findAttribute(uint16_t Attribute);
#ifndef NDEBUG
void print(raw_ostream &O, unsigned IndentCount = 0) const;
@@ -213,11 +210,11 @@ namespace llvm {
/// EmitValue - Emit value via the Dwarf writer.
///
- virtual void EmitValue(AsmPrinter *AP, unsigned Form) const = 0;
+ virtual void EmitValue(AsmPrinter *AP, dwarf::Form Form) const = 0;
/// SizeOf - Return the size of a value in bytes.
///
- virtual unsigned SizeOf(AsmPrinter *AP, unsigned Form) const = 0;
+ virtual unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const = 0;
#ifndef NDEBUG
virtual void print(raw_ostream &O) const = 0;
@@ -235,7 +232,7 @@ namespace llvm {
/// BestForm - Choose the best form for integer.
///
- static unsigned BestForm(bool IsSigned, uint64_t Int) {
+ static dwarf::Form BestForm(bool IsSigned, uint64_t Int) {
if (IsSigned) {
const int64_t SignedInt = Int;
if ((char)Int == SignedInt) return dwarf::DW_FORM_data1;
@@ -251,13 +248,13 @@ namespace llvm {
/// EmitValue - Emit integer of appropriate size.
///
- virtual void EmitValue(AsmPrinter *AP, unsigned Form) const;
+ virtual void EmitValue(AsmPrinter *AP, dwarf::Form Form) const;
uint64_t getValue() const { return Integer; }
/// SizeOf - Determine size of integer value in bytes.
///
- virtual unsigned SizeOf(AsmPrinter *AP, unsigned Form) const;
+ virtual unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const;
// Implement isa/cast/dyncast.
static bool classof(const DIEValue *I) { return I->getType() == isInteger; }
@@ -277,7 +274,7 @@ namespace llvm {
/// EmitValue - Emit expression value.
///
- virtual void EmitValue(AsmPrinter *AP, unsigned Form) const;
+ virtual void EmitValue(AsmPrinter *AP, dwarf::Form Form) const;
/// getValue - Get MCExpr.
///
@@ -285,7 +282,7 @@ namespace llvm {
/// SizeOf - Determine size of expression value in bytes.
///
- virtual unsigned SizeOf(AsmPrinter *AP, unsigned Form) const;
+ virtual unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const;
// Implement isa/cast/dyncast.
static bool classof(const DIEValue *E) { return E->getType() == isExpr; }
@@ -305,7 +302,7 @@ namespace llvm {
/// EmitValue - Emit label value.
///
- virtual void EmitValue(AsmPrinter *AP, unsigned Form) const;
+ virtual void EmitValue(AsmPrinter *AP, dwarf::Form Form) const;
/// getValue - Get MCSymbol.
///
@@ -313,7 +310,7 @@ namespace llvm {
/// SizeOf - Determine size of label value in bytes.
///
- virtual unsigned SizeOf(AsmPrinter *AP, unsigned Form) const;
+ virtual unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const;
// Implement isa/cast/dyncast.
static bool classof(const DIEValue *L) { return L->getType() == isLabel; }
@@ -335,11 +332,11 @@ namespace llvm {
/// EmitValue - Emit delta value.
///
- virtual void EmitValue(AsmPrinter *AP, unsigned Form) const;
+ virtual void EmitValue(AsmPrinter *AP, dwarf::Form Form) const;
/// SizeOf - Determine size of delta value in bytes.
///
- virtual unsigned SizeOf(AsmPrinter *AP, unsigned Form) const;
+ virtual unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const;
// Implement isa/cast/dyncast.
static bool classof(const DIEValue *D) { return D->getType() == isDelta; }
@@ -365,11 +362,11 @@ namespace llvm {
/// EmitValue - Emit delta value.
///
- virtual void EmitValue(AsmPrinter *AP, unsigned Form) const;
+ virtual void EmitValue(AsmPrinter *AP, dwarf::Form Form) const;
/// SizeOf - Determine size of delta value in bytes.
///
- virtual unsigned SizeOf(AsmPrinter *AP, unsigned Form) const;
+ virtual unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const;
// Implement isa/cast/dyncast.
static bool classof(const DIEValue *D) { return D->getType() == isString; }
@@ -394,13 +391,13 @@ namespace llvm {
/// EmitValue - Emit debug information entry offset.
///
- virtual void EmitValue(AsmPrinter *AP, unsigned Form) const;
+ virtual void EmitValue(AsmPrinter *AP, dwarf::Form Form) const;
/// SizeOf - Determine size of debug information entry in bytes.
///
- virtual unsigned SizeOf(AsmPrinter *AP, unsigned Form) const {
- return Form == dwarf::DW_FORM_ref_addr ? getRefAddrSize(AP) :
- sizeof(int32_t);
+ virtual unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const {
+ return Form == dwarf::DW_FORM_ref_addr ? getRefAddrSize(AP)
+ : sizeof(int32_t);
}
/// Returns size of a ref_addr entry.
@@ -420,9 +417,7 @@ namespace llvm {
class DIEBlock : public DIEValue, public DIE {
unsigned Size; // Size in bytes excluding size header.
public:
- DIEBlock()
- : DIEValue(isBlock), DIE(0), Size(0) {}
- virtual ~DIEBlock() {}
+ DIEBlock() : DIEValue(isBlock), DIE(0), Size(0) {}
/// ComputeSize - calculate the size of the block.
///
@@ -430,7 +425,7 @@ namespace llvm {
/// BestForm - Choose the best form for data.
///
- unsigned BestForm() const {
+ dwarf::Form BestForm() const {
if ((unsigned char)Size == Size) return dwarf::DW_FORM_block1;
if ((unsigned short)Size == Size) return dwarf::DW_FORM_block2;
if ((unsigned int)Size == Size) return dwarf::DW_FORM_block4;
@@ -439,11 +434,11 @@ namespace llvm {
/// EmitValue - Emit block data.
///
- virtual void EmitValue(AsmPrinter *AP, unsigned Form) const;
+ virtual void EmitValue(AsmPrinter *AP, dwarf::Form Form) const;
/// SizeOf - Determine size of block data in bytes.
///
- virtual unsigned SizeOf(AsmPrinter *AP, unsigned Form) const;
+ virtual unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const;
// Implement isa/cast/dyncast.
static bool classof(const DIEValue *E) { return E->getType() == isBlock; }
diff --git a/lib/CodeGen/AsmPrinter/DIEHash.cpp b/lib/CodeGen/AsmPrinter/DIEHash.cpp
new file mode 100644
index 0000000..95eca90
--- /dev/null
+++ b/lib/CodeGen/AsmPrinter/DIEHash.cpp
@@ -0,0 +1,507 @@
+//===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for DWARF4 hashing of DIEs.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "dwarfdebug"
+
+#include "DIEHash.h"
+
+#include "DIE.h"
+#include "DwarfCompileUnit.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/MD5.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+/// \brief Grabs the string in whichever attribute is passed in and returns
+/// a reference to it.
+static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
+ const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
+ const DIEAbbrev &Abbrevs = Die.getAbbrev();
+
+ // Iterate through all the attributes until we find the one we're
+ // looking for, if we can't find it return an empty string.
+ for (size_t i = 0; i < Values.size(); ++i) {
+ if (Abbrevs.getData()[i].getAttribute() == Attr) {
+ DIEValue *V = Values[i];
+ assert(isa<DIEString>(V) && "String requested. Not a string.");
+ DIEString *S = cast<DIEString>(V);
+ return S->getString();
+ }
+ }
+ return StringRef("");
+}
+
+/// \brief Adds the string in \p Str to the hash. This also hashes
+/// a trailing NULL with the string.
+void DIEHash::addString(StringRef Str) {
+ DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
+ Hash.update(Str);
+ Hash.update(makeArrayRef((uint8_t)'\0'));
+}
+
+// FIXME: The LEB128 routines are copied and only slightly modified out of
+// LEB128.h.
+
+/// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128.
+void DIEHash::addULEB128(uint64_t Value) {
+ DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
+ do {
+ uint8_t Byte = Value & 0x7f;
+ Value >>= 7;
+ if (Value != 0)
+ Byte |= 0x80; // Mark this byte to show that more bytes will follow.
+ Hash.update(Byte);
+ } while (Value != 0);
+}
+
+void DIEHash::addSLEB128(int64_t Value) {
+ DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
+ bool More;
+ do {
+ uint8_t Byte = Value & 0x7f;
+ Value >>= 7;
+ More = !((((Value == 0 ) && ((Byte & 0x40) == 0)) ||
+ ((Value == -1) && ((Byte & 0x40) != 0))));
+ if (More)
+ Byte |= 0x80; // Mark this byte to show that more bytes will follow.
+ Hash.update(Byte);
+ } while (More);
+}
+
+/// \brief Including \p Parent adds the context of Parent to the hash..
+void DIEHash::addParentContext(const DIE &Parent) {
+
+ DEBUG(dbgs() << "Adding parent context to hash...\n");
+
+ // [7.27.2] For each surrounding type or namespace beginning with the
+ // outermost such construct...
+ SmallVector<const DIE *, 1> Parents;
+ const DIE *Cur = &Parent;
+ while (Cur->getTag() != dwarf::DW_TAG_compile_unit) {
+ Parents.push_back(Cur);
+ Cur = Cur->getParent();
+ }
+
+ // Reverse iterate over our list to go from the outermost construct to the
+ // innermost.
+ for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(),
+ E = Parents.rend();
+ I != E; ++I) {
+ const DIE &Die = **I;
+
+ // ... Append the letter "C" to the sequence...
+ addULEB128('C');
+
+ // ... Followed by the DWARF tag of the construct...
+ addULEB128(Die.getTag());
+
+ // ... Then the name, taken from the DW_AT_name attribute.
+ StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
+ DEBUG(dbgs() << "... adding context: " << Name << "\n");
+ if (!Name.empty())
+ addString(Name);
+ }
+}
+
+// Collect all of the attributes for a particular DIE in single structure.
+void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
+ const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
+ const DIEAbbrev &Abbrevs = Die.getAbbrev();
+
+#define COLLECT_ATTR(NAME) \
+ case dwarf::NAME: \
+ Attrs.NAME.Val = Values[i]; \
+ Attrs.NAME.Desc = &Abbrevs.getData()[i]; \
+ break
+
+ for (size_t i = 0, e = Values.size(); i != e; ++i) {
+ DEBUG(dbgs() << "Attribute: "
+ << dwarf::AttributeString(Abbrevs.getData()[i].getAttribute())
+ << " added.\n");
+ switch (Abbrevs.getData()[i].getAttribute()) {
+ COLLECT_ATTR(DW_AT_name);
+ COLLECT_ATTR(DW_AT_accessibility);
+ COLLECT_ATTR(DW_AT_address_class);
+ COLLECT_ATTR(DW_AT_allocated);
+ COLLECT_ATTR(DW_AT_artificial);
+ COLLECT_ATTR(DW_AT_associated);
+ COLLECT_ATTR(DW_AT_binary_scale);
+ COLLECT_ATTR(DW_AT_bit_offset);
+ COLLECT_ATTR(DW_AT_bit_size);
+ COLLECT_ATTR(DW_AT_bit_stride);
+ COLLECT_ATTR(DW_AT_byte_size);
+ COLLECT_ATTR(DW_AT_byte_stride);
+ COLLECT_ATTR(DW_AT_const_expr);
+ COLLECT_ATTR(DW_AT_const_value);
+ COLLECT_ATTR(DW_AT_containing_type);
+ COLLECT_ATTR(DW_AT_count);
+ COLLECT_ATTR(DW_AT_data_bit_offset);
+ COLLECT_ATTR(DW_AT_data_location);
+ COLLECT_ATTR(DW_AT_data_member_location);
+ COLLECT_ATTR(DW_AT_decimal_scale);
+ COLLECT_ATTR(DW_AT_decimal_sign);
+ COLLECT_ATTR(DW_AT_default_value);
+ COLLECT_ATTR(DW_AT_digit_count);
+ COLLECT_ATTR(DW_AT_discr);
+ COLLECT_ATTR(DW_AT_discr_list);
+ COLLECT_ATTR(DW_AT_discr_value);
+ COLLECT_ATTR(DW_AT_encoding);
+ COLLECT_ATTR(DW_AT_enum_class);
+ COLLECT_ATTR(DW_AT_endianity);
+ COLLECT_ATTR(DW_AT_explicit);
+ COLLECT_ATTR(DW_AT_is_optional);
+ COLLECT_ATTR(DW_AT_location);
+ COLLECT_ATTR(DW_AT_lower_bound);
+ COLLECT_ATTR(DW_AT_mutable);
+ COLLECT_ATTR(DW_AT_ordering);
+ COLLECT_ATTR(DW_AT_picture_string);
+ COLLECT_ATTR(DW_AT_prototyped);
+ COLLECT_ATTR(DW_AT_small);
+ COLLECT_ATTR(DW_AT_segment);
+ COLLECT_ATTR(DW_AT_string_length);
+ COLLECT_ATTR(DW_AT_threads_scaled);
+ COLLECT_ATTR(DW_AT_upper_bound);
+ COLLECT_ATTR(DW_AT_use_location);
+ COLLECT_ATTR(DW_AT_use_UTF8);
+ COLLECT_ATTR(DW_AT_variable_parameter);
+ COLLECT_ATTR(DW_AT_virtuality);
+ COLLECT_ATTR(DW_AT_visibility);
+ COLLECT_ATTR(DW_AT_vtable_elem_location);
+ COLLECT_ATTR(DW_AT_type);
+ default:
+ break;
+ }
+ }
+}
+
+void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
+ const DIE &Entry, StringRef Name) {
+ // append the letter 'N'
+ addULEB128('N');
+
+ // the DWARF attribute code (DW_AT_type or DW_AT_friend),
+ addULEB128(Attribute);
+
+ // the context of the tag,
+ if (const DIE *Parent = Entry.getParent())
+ addParentContext(*Parent);
+
+ // the letter 'E',
+ addULEB128('E');
+
+ // and the name of the type.
+ addString(Name);
+
+ // Currently DW_TAG_friends are not used by Clang, but if they do become so,
+ // here's the relevant spec text to implement:
+ //
+ // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
+ // the context is omitted and the name to be used is the ABI-specific name
+ // of the subprogram (e.g., the mangled linker name).
+}
+
+void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
+ unsigned DieNumber) {
+ // a) If T is in the list of [previously hashed types], use the letter
+ // 'R' as the marker
+ addULEB128('R');
+
+ addULEB128(Attribute);
+
+ // and use the unsigned LEB128 encoding of [the index of T in the
+ // list] as the attribute value;
+ addULEB128(DieNumber);
+}
+
+void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
+ const DIE &Entry) {
+ assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
+ "tags. Add support here when there's "
+ "a use case");
+ // Step 5
+ // If the tag in Step 3 is one of [the below tags]
+ if ((Tag == dwarf::DW_TAG_pointer_type ||
+ Tag == dwarf::DW_TAG_reference_type ||
+ Tag == dwarf::DW_TAG_rvalue_reference_type ||
+ Tag == dwarf::DW_TAG_ptr_to_member_type) &&
+ // and the referenced type (via the [below attributes])
+ // FIXME: This seems overly restrictive, and causes hash mismatches
+ // there's a decl/def difference in the containing type of a
+ // ptr_to_member_type, but it's what DWARF says, for some reason.
+ Attribute == dwarf::DW_AT_type) {
+ // ... has a DW_AT_name attribute,
+ StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
+ if (!Name.empty()) {
+ hashShallowTypeReference(Attribute, Entry, Name);
+ return;
+ }
+ }
+
+ unsigned &DieNumber = Numbering[&Entry];
+ if (DieNumber) {
+ hashRepeatedTypeReference(Attribute, DieNumber);
+ return;
+ }
+
+ // otherwise, b) use the letter 'T' as a the marker, ...
+ addULEB128('T');
+
+ addULEB128(Attribute);
+
+ // ... process the type T recursively by performing Steps 2 through 7, and
+ // use the result as the attribute value.
+ DieNumber = Numbering.size();
+ computeHash(Entry);
+}
+
+// Hash an individual attribute \param Attr based on the type of attribute and
+// the form.
+void DIEHash::hashAttribute(AttrEntry Attr, dwarf::Tag Tag) {
+ const DIEValue *Value = Attr.Val;
+ const DIEAbbrevData *Desc = Attr.Desc;
+ dwarf::Attribute Attribute = Desc->getAttribute();
+
+ // 7.27 Step 3
+ // ... An attribute that refers to another type entry T is processed as
+ // follows:
+ if (const DIEEntry *EntryAttr = dyn_cast<DIEEntry>(Value)) {
+ hashDIEEntry(Attribute, Tag, *EntryAttr->getEntry());
+ return;
+ }
+
+ // Other attribute values use the letter 'A' as the marker, ...
+ addULEB128('A');
+
+ addULEB128(Attribute);
+
+ // ... and the value consists of the form code (encoded as an unsigned LEB128
+ // value) followed by the encoding of the value according to the form code. To
+ // ensure reproducibility of the signature, the set of forms used in the
+ // signature computation is limited to the following: DW_FORM_sdata,
+ // DW_FORM_flag, DW_FORM_string, and DW_FORM_block.
+ switch (Desc->getForm()) {
+ case dwarf::DW_FORM_string:
+ llvm_unreachable(
+ "Add support for DW_FORM_string if we ever start emitting them again");
+ case dwarf::DW_FORM_GNU_str_index:
+ case dwarf::DW_FORM_strp:
+ addULEB128(dwarf::DW_FORM_string);
+ addString(cast<DIEString>(Value)->getString());
+ break;
+ case dwarf::DW_FORM_data1:
+ case dwarf::DW_FORM_data2:
+ case dwarf::DW_FORM_data4:
+ case dwarf::DW_FORM_data8:
+ case dwarf::DW_FORM_udata:
+ addULEB128(dwarf::DW_FORM_sdata);
+ addSLEB128((int64_t)cast<DIEInteger>(Value)->getValue());
+ break;
+ default:
+ llvm_unreachable("Add support for additional forms");
+ }
+}
+
+// Go through the attributes from \param Attrs in the order specified in 7.27.4
+// and hash them.
+void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
+#define ADD_ATTR(ATTR) \
+ { \
+ if (ATTR.Val != 0) \
+ hashAttribute(ATTR, Tag); \
+ }
+
+ ADD_ATTR(Attrs.DW_AT_name);
+ ADD_ATTR(Attrs.DW_AT_accessibility);
+ ADD_ATTR(Attrs.DW_AT_address_class);
+ ADD_ATTR(Attrs.DW_AT_allocated);
+ ADD_ATTR(Attrs.DW_AT_artificial);
+ ADD_ATTR(Attrs.DW_AT_associated);
+ ADD_ATTR(Attrs.DW_AT_binary_scale);
+ ADD_ATTR(Attrs.DW_AT_bit_offset);
+ ADD_ATTR(Attrs.DW_AT_bit_size);
+ ADD_ATTR(Attrs.DW_AT_bit_stride);
+ ADD_ATTR(Attrs.DW_AT_byte_size);
+ ADD_ATTR(Attrs.DW_AT_byte_stride);
+ ADD_ATTR(Attrs.DW_AT_const_expr);
+ ADD_ATTR(Attrs.DW_AT_const_value);
+ ADD_ATTR(Attrs.DW_AT_containing_type);
+ ADD_ATTR(Attrs.DW_AT_count);
+ ADD_ATTR(Attrs.DW_AT_data_bit_offset);
+ ADD_ATTR(Attrs.DW_AT_data_location);
+ ADD_ATTR(Attrs.DW_AT_data_member_location);
+ ADD_ATTR(Attrs.DW_AT_decimal_scale);
+ ADD_ATTR(Attrs.DW_AT_decimal_sign);
+ ADD_ATTR(Attrs.DW_AT_default_value);
+ ADD_ATTR(Attrs.DW_AT_digit_count);
+ ADD_ATTR(Attrs.DW_AT_discr);
+ ADD_ATTR(Attrs.DW_AT_discr_list);
+ ADD_ATTR(Attrs.DW_AT_discr_value);
+ ADD_ATTR(Attrs.DW_AT_encoding);
+ ADD_ATTR(Attrs.DW_AT_enum_class);
+ ADD_ATTR(Attrs.DW_AT_endianity);
+ ADD_ATTR(Attrs.DW_AT_explicit);
+ ADD_ATTR(Attrs.DW_AT_is_optional);
+ ADD_ATTR(Attrs.DW_AT_location);
+ ADD_ATTR(Attrs.DW_AT_lower_bound);
+ ADD_ATTR(Attrs.DW_AT_mutable);
+ ADD_ATTR(Attrs.DW_AT_ordering);
+ ADD_ATTR(Attrs.DW_AT_picture_string);
+ ADD_ATTR(Attrs.DW_AT_prototyped);
+ ADD_ATTR(Attrs.DW_AT_small);
+ ADD_ATTR(Attrs.DW_AT_segment);
+ ADD_ATTR(Attrs.DW_AT_string_length);
+ ADD_ATTR(Attrs.DW_AT_threads_scaled);
+ ADD_ATTR(Attrs.DW_AT_upper_bound);
+ ADD_ATTR(Attrs.DW_AT_use_location);
+ ADD_ATTR(Attrs.DW_AT_use_UTF8);
+ ADD_ATTR(Attrs.DW_AT_variable_parameter);
+ ADD_ATTR(Attrs.DW_AT_virtuality);
+ ADD_ATTR(Attrs.DW_AT_visibility);
+ ADD_ATTR(Attrs.DW_AT_vtable_elem_location);
+ ADD_ATTR(Attrs.DW_AT_type);
+
+ // FIXME: Add the extended attributes.
+}
+
+// Add all of the attributes for \param Die to the hash.
+void DIEHash::addAttributes(const DIE &Die) {
+ DIEAttrs Attrs = {};
+ collectAttributes(Die, Attrs);
+ hashAttributes(Attrs, Die.getTag());
+}
+
+void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
+ // 7.27 Step 7
+ // ... append the letter 'S',
+ addULEB128('S');
+
+ // the tag of C,
+ addULEB128(Die.getTag());
+
+ // and the name.
+ addString(Name);
+}
+
+// Compute the hash of a DIE. This is based on the type signature computation
+// given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
+// flattened description of the DIE.
+void DIEHash::computeHash(const DIE &Die) {
+ // Append the letter 'D', followed by the DWARF tag of the DIE.
+ addULEB128('D');
+ addULEB128(Die.getTag());
+
+ // Add each of the attributes of the DIE.
+ addAttributes(Die);
+
+ // Then hash each of the children of the DIE.
+ for (std::vector<DIE *>::const_iterator I = Die.getChildren().begin(),
+ E = Die.getChildren().end();
+ I != E; ++I) {
+ // 7.27 Step 7
+ // If C is a nested type entry or a member function entry, ...
+ if (isType((*I)->getTag()) || (*I)->getTag() == dwarf::DW_TAG_subprogram) {
+ StringRef Name = getDIEStringAttr(**I, dwarf::DW_AT_name);
+ // ... and has a DW_AT_name attribute
+ if (!Name.empty()) {
+ hashNestedType(**I, Name);
+ continue;
+ }
+ }
+ computeHash(**I);
+ }
+
+ // Following the last (or if there are no children), append a zero byte.
+ Hash.update(makeArrayRef((uint8_t)'\0'));
+}
+
+/// This is based on the type signature computation given in section 7.27 of the
+/// DWARF4 standard. It is the md5 hash of a flattened description of the DIE
+/// with the exception that we are hashing only the context and the name of the
+/// type.
+uint64_t DIEHash::computeDIEODRSignature(const DIE &Die) {
+
+ // Add the contexts to the hash. We won't be computing the ODR hash for
+ // function local types so it's safe to use the generic context hashing
+ // algorithm here.
+ // FIXME: If we figure out how to account for linkage in some way we could
+ // actually do this with a slight modification to the parent hash algorithm.
+ if (const DIE *Parent = Die.getParent())
+ addParentContext(*Parent);
+
+ // Add the current DIE information.
+
+ // Add the DWARF tag of the DIE.
+ addULEB128(Die.getTag());
+
+ // Add the name of the type to the hash.
+ addString(getDIEStringAttr(Die, dwarf::DW_AT_name));
+
+ // Now get the result.
+ MD5::MD5Result Result;
+ Hash.final(Result);
+
+ // ... take the least significant 8 bytes and return those. Our MD5
+ // implementation always returns its results in little endian, swap bytes
+ // appropriately.
+ return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
+}
+
+/// This is based on the type signature computation given in section 7.27 of the
+/// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
+/// with the inclusion of the full CU and all top level CU entities.
+// TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
+uint64_t DIEHash::computeCUSignature(const DIE &Die) {
+ Numbering.clear();
+ Numbering[&Die] = 1;
+
+ // Hash the DIE.
+ computeHash(Die);
+
+ // Now return the result.
+ MD5::MD5Result Result;
+ Hash.final(Result);
+
+ // ... take the least significant 8 bytes and return those. Our MD5
+ // implementation always returns its results in little endian, swap bytes
+ // appropriately.
+ return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
+}
+
+/// This is based on the type signature computation given in section 7.27 of the
+/// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
+/// with the inclusion of additional forms not specifically called out in the
+/// standard.
+uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
+ Numbering.clear();
+ Numbering[&Die] = 1;
+
+ if (const DIE *Parent = Die.getParent())
+ addParentContext(*Parent);
+
+ // Hash the DIE.
+ computeHash(Die);
+
+ // Now return the result.
+ MD5::MD5Result Result;
+ Hash.final(Result);
+
+ // ... take the least significant 8 bytes and return those. Our MD5
+ // implementation always returns its results in little endian, swap bytes
+ // appropriately.
+ return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
+}
diff --git a/lib/CodeGen/AsmPrinter/DIEHash.h b/lib/CodeGen/AsmPrinter/DIEHash.h
new file mode 100644
index 0000000..f0c4ef9
--- /dev/null
+++ b/lib/CodeGen/AsmPrinter/DIEHash.h
@@ -0,0 +1,147 @@
+//===-- llvm/CodeGen/DIEHash.h - Dwarf Hashing Framework -------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for DWARF4 hashing of DIEs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DIE.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/MD5.h"
+
+namespace llvm {
+
+class CompileUnit;
+
+/// \brief An object containing the capability of hashing and adding hash
+/// attributes onto a DIE.
+class DIEHash {
+ // The entry for a particular attribute.
+ struct AttrEntry {
+ const DIEValue *Val;
+ const DIEAbbrevData *Desc;
+ };
+
+ // Collection of all attributes used in hashing a particular DIE.
+ struct DIEAttrs {
+ AttrEntry DW_AT_name;
+ AttrEntry DW_AT_accessibility;
+ AttrEntry DW_AT_address_class;
+ AttrEntry DW_AT_allocated;
+ AttrEntry DW_AT_artificial;
+ AttrEntry DW_AT_associated;
+ AttrEntry DW_AT_binary_scale;
+ AttrEntry DW_AT_bit_offset;
+ AttrEntry DW_AT_bit_size;
+ AttrEntry DW_AT_bit_stride;
+ AttrEntry DW_AT_byte_size;
+ AttrEntry DW_AT_byte_stride;
+ AttrEntry DW_AT_const_expr;
+ AttrEntry DW_AT_const_value;
+ AttrEntry DW_AT_containing_type;
+ AttrEntry DW_AT_count;
+ AttrEntry DW_AT_data_bit_offset;
+ AttrEntry DW_AT_data_location;
+ AttrEntry DW_AT_data_member_location;
+ AttrEntry DW_AT_decimal_scale;
+ AttrEntry DW_AT_decimal_sign;
+ AttrEntry DW_AT_default_value;
+ AttrEntry DW_AT_digit_count;
+ AttrEntry DW_AT_discr;
+ AttrEntry DW_AT_discr_list;
+ AttrEntry DW_AT_discr_value;
+ AttrEntry DW_AT_encoding;
+ AttrEntry DW_AT_enum_class;
+ AttrEntry DW_AT_endianity;
+ AttrEntry DW_AT_explicit;
+ AttrEntry DW_AT_is_optional;
+ AttrEntry DW_AT_location;
+ AttrEntry DW_AT_lower_bound;
+ AttrEntry DW_AT_mutable;
+ AttrEntry DW_AT_ordering;
+ AttrEntry DW_AT_picture_string;
+ AttrEntry DW_AT_prototyped;
+ AttrEntry DW_AT_small;
+ AttrEntry DW_AT_segment;
+ AttrEntry DW_AT_string_length;
+ AttrEntry DW_AT_threads_scaled;
+ AttrEntry DW_AT_upper_bound;
+ AttrEntry DW_AT_use_location;
+ AttrEntry DW_AT_use_UTF8;
+ AttrEntry DW_AT_variable_parameter;
+ AttrEntry DW_AT_virtuality;
+ AttrEntry DW_AT_visibility;
+ AttrEntry DW_AT_vtable_elem_location;
+ AttrEntry DW_AT_type;
+
+ // Insert any additional ones here...
+ };
+
+public:
+ /// \brief Computes the ODR signature.
+ uint64_t computeDIEODRSignature(const DIE &Die);
+
+ /// \brief Computes the CU signature.
+ uint64_t computeCUSignature(const DIE &Die);
+
+ /// \brief Computes the type signature.
+ uint64_t computeTypeSignature(const DIE &Die);
+
+ // Helper routines to process parts of a DIE.
+private:
+ /// \brief Adds the parent context of \param Die to the hash.
+ void addParentContext(const DIE &Die);
+
+ /// \brief Adds the attributes of \param Die to the hash.
+ void addAttributes(const DIE &Die);
+
+ /// \brief Computes the full DWARF4 7.27 hash of the DIE.
+ void computeHash(const DIE &Die);
+
+ // Routines that add DIEValues to the hash.
+private:
+ /// \brief Encodes and adds \param Value to the hash as a ULEB128.
+ void addULEB128(uint64_t Value);
+
+ /// \brief Encodes and adds \param Value to the hash as a SLEB128.
+ void addSLEB128(int64_t Value);
+
+ /// \brief Adds \param Str to the hash and includes a NULL byte.
+ void addString(StringRef Str);
+
+ /// \brief Collects the attributes of DIE \param Die into the \param Attrs
+ /// structure.
+ void collectAttributes(const DIE &Die, DIEAttrs &Attrs);
+
+ /// \brief Hashes the attributes in \param Attrs in order.
+ void hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag);
+
+ /// \brief Hashes an individual attribute.
+ void hashAttribute(AttrEntry Attr, dwarf::Tag Tag);
+
+ /// \brief Hashes an attribute that refers to another DIE.
+ void hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
+ const DIE &Entry);
+
+ /// \brief Hashes a reference to a named type in such a way that is
+ /// independent of whether that type is described by a declaration or a
+ /// definition.
+ void hashShallowTypeReference(dwarf::Attribute Attribute, const DIE &Entry,
+ StringRef Name);
+
+ /// \brief Hashes a reference to a previously referenced type DIE.
+ void hashRepeatedTypeReference(dwarf::Attribute Attribute, unsigned DieNumber);
+
+ void hashNestedType(const DIE &Die, StringRef Name);
+
+private:
+ MD5 Hash;
+ DenseMap<const DIE *, unsigned> Numbering;
+};
+}
diff --git a/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp b/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp
index a82a149..689aeda 100644
--- a/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp
@@ -24,27 +24,14 @@
using namespace llvm;
-const char *DwarfAccelTable::Atom::AtomTypeString(enum AtomType AT) {
- switch (AT) {
- case eAtomTypeNULL: return "eAtomTypeNULL";
- case eAtomTypeDIEOffset: return "eAtomTypeDIEOffset";
- case eAtomTypeCUOffset: return "eAtomTypeCUOffset";
- case eAtomTypeTag: return "eAtomTypeTag";
- case eAtomTypeNameFlags: return "eAtomTypeNameFlags";
- case eAtomTypeTypeFlags: return "eAtomTypeTypeFlags";
- }
- llvm_unreachable("invalid AtomType!");
-}
-
// The length of the header data is always going to be 4 + 4 + 4*NumAtoms.
-DwarfAccelTable::DwarfAccelTable(ArrayRef<DwarfAccelTable::Atom> atomList) :
- Header(8 + (atomList.size() * 4)),
- HeaderData(atomList),
- Entries(Allocator) { }
+DwarfAccelTable::DwarfAccelTable(ArrayRef<DwarfAccelTable::Atom> atomList)
+ : Header(8 + (atomList.size() * 4)), HeaderData(atomList),
+ Entries(Allocator) {}
-DwarfAccelTable::~DwarfAccelTable() { }
+DwarfAccelTable::~DwarfAccelTable() {}
-void DwarfAccelTable::AddName(StringRef Name, DIE* die, char Flags) {
+void DwarfAccelTable::AddName(StringRef Name, DIE *die, char Flags) {
assert(Data.empty() && "Already finalized!");
// If the string is in the list already then add this die to the list
// otherwise add a new one.
@@ -59,13 +46,16 @@ void DwarfAccelTable::ComputeBucketCount(void) {
uniques[i] = Data[i]->HashValue;
array_pod_sort(uniques.begin(), uniques.end());
std::vector<uint32_t>::iterator p =
- std::unique(uniques.begin(), uniques.end());
+ std::unique(uniques.begin(), uniques.end());
uint32_t num = std::distance(uniques.begin(), p);
// Then compute the bucket size, minimum of 1 bucket.
- if (num > 1024) Header.bucket_count = num/4;
- if (num > 16) Header.bucket_count = num/2;
- else Header.bucket_count = num > 0 ? num : 1;
+ if (num > 1024)
+ Header.bucket_count = num / 4;
+ if (num > 16)
+ Header.bucket_count = num / 2;
+ else
+ Header.bucket_count = num > 0 ? num : 1;
Header.hashes_count = num;
}
@@ -78,13 +68,13 @@ static bool compareDIEs(const DwarfAccelTable::HashDataContents *A,
void DwarfAccelTable::FinalizeTable(AsmPrinter *Asm, StringRef Prefix) {
// Create the individual hash data outputs.
- for (StringMap<DataArray>::iterator
- EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) {
+ for (StringMap<DataArray>::iterator EI = Entries.begin(), EE = Entries.end();
+ EI != EE; ++EI) {
// Unique the entries.
std::stable_sort(EI->second.begin(), EI->second.end(), compareDIEs);
EI->second.erase(std::unique(EI->second.begin(), EI->second.end()),
- EI->second.end());
+ EI->second.end());
HashData *Entry = new (Allocator) HashData(EI->getKey(), EI->second);
Data.push_back(Entry);
@@ -126,7 +116,7 @@ void DwarfAccelTable::EmitHeader(AsmPrinter *Asm) {
Asm->EmitInt32(HeaderData.Atoms.size());
for (size_t i = 0; i < HeaderData.Atoms.size(); i++) {
Atom A = HeaderData.Atoms[i];
- Asm->OutStreamer.AddComment(Atom::AtomTypeString(A.type));
+ Asm->OutStreamer.AddComment(dwarf::AtomTypeString(A.type));
Asm->EmitInt16(A.type);
Asm->OutStreamer.AddComment(dwarf::FormEncodingString(A.form));
Asm->EmitInt16(A.form);
@@ -152,7 +142,8 @@ void DwarfAccelTable::EmitBuckets(AsmPrinter *Asm) {
void DwarfAccelTable::EmitHashes(AsmPrinter *Asm) {
for (size_t i = 0, e = Buckets.size(); i < e; ++i) {
for (HashList::const_iterator HI = Buckets[i].begin(),
- HE = Buckets[i].end(); HI != HE; ++HI) {
+ HE = Buckets[i].end();
+ HI != HE; ++HI) {
Asm->OutStreamer.AddComment("Hash in Bucket " + Twine(i));
Asm->EmitInt32((*HI)->HashValue);
}
@@ -166,13 +157,13 @@ void DwarfAccelTable::EmitHashes(AsmPrinter *Asm) {
void DwarfAccelTable::EmitOffsets(AsmPrinter *Asm, MCSymbol *SecBegin) {
for (size_t i = 0, e = Buckets.size(); i < e; ++i) {
for (HashList::const_iterator HI = Buckets[i].begin(),
- HE = Buckets[i].end(); HI != HE; ++HI) {
+ HE = Buckets[i].end();
+ HI != HE; ++HI) {
Asm->OutStreamer.AddComment("Offset in Bucket " + Twine(i));
MCContext &Context = Asm->OutStreamer.getContext();
- const MCExpr *Sub =
- MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create((*HI)->Sym, Context),
- MCSymbolRefExpr::Create(SecBegin, Context),
- Context);
+ const MCExpr *Sub = MCBinaryExpr::CreateSub(
+ MCSymbolRefExpr::Create((*HI)->Sym, Context),
+ MCSymbolRefExpr::Create(SecBegin, Context), Context);
Asm->OutStreamer.EmitValue(Sub, sizeof(uint32_t));
}
}
@@ -185,7 +176,8 @@ void DwarfAccelTable::EmitData(AsmPrinter *Asm, DwarfUnits *D) {
uint64_t PrevHash = UINT64_MAX;
for (size_t i = 0, e = Buckets.size(); i < e; ++i) {
for (HashList::const_iterator HI = Buckets[i].begin(),
- HE = Buckets[i].end(); HI != HE; ++HI) {
+ HE = Buckets[i].end();
+ HI != HE; ++HI) {
// Remember to emit the label for our offset.
Asm->OutStreamer.EmitLabel((*HI)->Sym);
Asm->OutStreamer.AddComment((*HI)->Str);
@@ -193,8 +185,9 @@ void DwarfAccelTable::EmitData(AsmPrinter *Asm, DwarfUnits *D) {
D->getStringPoolSym());
Asm->OutStreamer.AddComment("Num DIEs");
Asm->EmitInt32((*HI)->Data.size());
- for (ArrayRef<HashDataContents*>::const_iterator
- DI = (*HI)->Data.begin(), DE = (*HI)->Data.end();
+ for (ArrayRef<HashDataContents *>::const_iterator
+ DI = (*HI)->Data.begin(),
+ DE = (*HI)->Data.end();
DI != DE; ++DI) {
// Emit the DIE offset
Asm->EmitInt32((*DI)->Die->getOffset());
@@ -214,8 +207,7 @@ void DwarfAccelTable::EmitData(AsmPrinter *Asm, DwarfUnits *D) {
}
// Emit the entire data structure to the output file.
-void DwarfAccelTable::Emit(AsmPrinter *Asm, MCSymbol *SecBegin,
- DwarfUnits *D) {
+void DwarfAccelTable::Emit(AsmPrinter *Asm, MCSymbol *SecBegin, DwarfUnits *D) {
// Emit the header.
EmitHeader(Asm);
@@ -239,11 +231,12 @@ void DwarfAccelTable::print(raw_ostream &O) {
HeaderData.print(O);
O << "Entries: \n";
- for (StringMap<DataArray>::const_iterator
- EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) {
+ for (StringMap<DataArray>::const_iterator EI = Entries.begin(),
+ EE = Entries.end();
+ EI != EE; ++EI) {
O << "Name: " << EI->getKeyData() << "\n";
for (DataArray::const_iterator DI = EI->second.begin(),
- DE = EI->second.end();
+ DE = EI->second.end();
DI != DE; ++DI)
(*DI)->print(O);
}
@@ -251,14 +244,14 @@ void DwarfAccelTable::print(raw_ostream &O) {
O << "Buckets and Hashes: \n";
for (size_t i = 0, e = Buckets.size(); i < e; ++i)
for (HashList::const_iterator HI = Buckets[i].begin(),
- HE = Buckets[i].end(); HI != HE; ++HI)
+ HE = Buckets[i].end();
+ HI != HE; ++HI)
(*HI)->print(O);
O << "Data: \n";
- for (std::vector<HashData*>::const_iterator
- DI = Data.begin(), DE = Data.end(); DI != DE; ++DI)
- (*DI)->print(O);
-
-
+ for (std::vector<HashData *>::const_iterator DI = Data.begin(),
+ DE = Data.end();
+ DI != DE; ++DI)
+ (*DI)->print(O);
}
#endif
diff --git a/lib/CodeGen/AsmPrinter/DwarfAccelTable.h b/lib/CodeGen/AsmPrinter/DwarfAccelTable.h
index 3ef1dc5..7627313 100644
--- a/lib/CodeGen/AsmPrinter/DwarfAccelTable.h
+++ b/lib/CodeGen/AsmPrinter/DwarfAccelTable.h
@@ -67,11 +67,7 @@ class DwarfUnits;
class DwarfAccelTable {
- enum HashFunctionType {
- eHashFunctionDJB = 0u
- };
-
- static uint32_t HashDJB (StringRef Str) {
+ static uint32_t HashDJB(StringRef Str) {
uint32_t h = 5381;
for (unsigned i = 0, e = Str.size(); i != e; ++i)
h = ((h << 5) + h) + Str[i];
@@ -80,25 +76,25 @@ class DwarfAccelTable {
// Helper function to compute the number of buckets needed based on
// the number of unique hashes.
- void ComputeBucketCount (void);
+ void ComputeBucketCount(void);
struct TableHeader {
- uint32_t magic; // 'HASH' magic value to allow endian detection
- uint16_t version; // Version number.
- uint16_t hash_function; // The hash function enumeration that was used.
- uint32_t bucket_count; // The number of buckets in this hash table.
- uint32_t hashes_count; // The total number of unique hash values
- // and hash data offsets in this table.
- uint32_t header_data_len; // The bytes to skip to get to the hash
- // indexes (buckets) for correct alignment.
+ uint32_t magic; // 'HASH' magic value to allow endian detection
+ uint16_t version; // Version number.
+ uint16_t hash_function; // The hash function enumeration that was used.
+ uint32_t bucket_count; // The number of buckets in this hash table.
+ uint32_t hashes_count; // The total number of unique hash values
+ // and hash data offsets in this table.
+ uint32_t header_data_len; // The bytes to skip to get to the hash
+ // indexes (buckets) for correct alignment.
// Also written to disk is the implementation specific header data.
static const uint32_t MagicHash = 0x48415348;
- TableHeader (uint32_t data_len) :
- magic (MagicHash), version (1), hash_function (eHashFunctionDJB),
- bucket_count (0), hashes_count (0), header_data_len (data_len)
- {}
+ TableHeader(uint32_t data_len)
+ : magic(MagicHash), version(1),
+ hash_function(dwarf::DW_hash_function_djb), bucket_count(0),
+ hashes_count(0), header_data_len(data_len) {}
#ifndef NDEBUG
void print(raw_ostream &O) {
@@ -124,62 +120,38 @@ public:
// uint32_t die_offset_base
// uint32_t atom_count
// atom_count Atoms
- enum AtomType {
- eAtomTypeNULL = 0u,
- eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
- eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that
- // contains the item in question
- eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as
- // DW_FORM_data1 (if no tags exceed 255) or
- // DW_FORM_data2.
- eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
- eAtomTypeTypeFlags = 5u // Flags from enum TypeFlags
- };
-
- enum TypeFlags {
- eTypeFlagClassMask = 0x0000000fu,
-
- // Always set for C++, only set for ObjC if this is the
- // @implementation for a class.
- eTypeFlagClassIsImplementation = ( 1u << 1 )
- };
// Make these public so that they can be used as a general interface to
// the class.
struct Atom {
- AtomType type; // enum AtomType
+ uint16_t type; // enum AtomType
uint16_t form; // DWARF DW_FORM_ defines
- Atom(AtomType type, uint16_t form) : type(type), form(form) {}
- static const char * AtomTypeString(enum AtomType);
+ Atom(uint16_t type, uint16_t form) : type(type), form(form) {}
#ifndef NDEBUG
void print(raw_ostream &O) {
- O << "Type: " << AtomTypeString(type) << "\n"
+ O << "Type: " << dwarf::AtomTypeString(type) << "\n"
<< "Form: " << dwarf::FormEncodingString(form) << "\n";
}
- void dump() {
- print(dbgs());
- }
+ void dump() { print(dbgs()); }
#endif
};
- private:
+private:
struct TableHeaderData {
uint32_t die_offset_base;
SmallVector<Atom, 1> Atoms;
TableHeaderData(ArrayRef<Atom> AtomList, uint32_t offset = 0)
- : die_offset_base(offset), Atoms(AtomList.begin(), AtomList.end()) { }
+ : die_offset_base(offset), Atoms(AtomList.begin(), AtomList.end()) {}
#ifndef NDEBUG
- void print (raw_ostream &O) {
+ void print(raw_ostream &O) {
O << "die_offset_base: " << die_offset_base << "\n";
for (size_t i = 0; i < Atoms.size(); i++)
Atoms[i].print(O);
}
- void dump() {
- print(dbgs());
- }
+ void dump() { print(dbgs()); }
#endif
};
@@ -193,37 +165,38 @@ public:
// HashData[hash_data_count]
public:
struct HashDataContents {
- DIE *Die; // Offsets
+ DIE *Die; // Offsets
char Flags; // Specific flags to output
- HashDataContents(DIE *D, char Flags) :
- Die(D),
- Flags(Flags) { }
- #ifndef NDEBUG
+ HashDataContents(DIE *D, char Flags) : Die(D), Flags(Flags) {}
+#ifndef NDEBUG
void print(raw_ostream &O) const {
O << " Offset: " << Die->getOffset() << "\n";
O << " Tag: " << dwarf::TagString(Die->getTag()) << "\n";
O << " Flags: " << Flags << "\n";
}
- #endif
+#endif
};
+
private:
struct HashData {
StringRef Str;
uint32_t HashValue;
MCSymbol *Sym;
- ArrayRef<HashDataContents*> Data; // offsets
- HashData(StringRef S, ArrayRef<HashDataContents*> Data)
- : Str(S), Data(Data) {
+ ArrayRef<HashDataContents *> Data; // offsets
+ HashData(StringRef S, ArrayRef<HashDataContents *> Data)
+ : Str(S), Data(Data) {
HashValue = DwarfAccelTable::HashDJB(S);
}
- #ifndef NDEBUG
+#ifndef NDEBUG
void print(raw_ostream &O) {
O << "Name: " << Str << "\n";
O << " Hash Value: " << format("0x%x", HashValue) << "\n";
- O << " Symbol: " ;
- if (Sym) Sym->print(O);
- else O << "<none>";
+ O << " Symbol: ";
+ if (Sym)
+ Sym->print(O);
+ else
+ O << "<none>";
O << "\n";
for (size_t i = 0; i < Data.size(); i++) {
O << " Offset: " << Data[i]->Die->getOffset() << "\n";
@@ -231,14 +204,12 @@ private:
O << " Flags: " << Data[i]->Flags << "\n";
}
}
- void dump() {
- print(dbgs());
- }
- #endif
+ void dump() { print(dbgs()); }
+#endif
};
- DwarfAccelTable(const DwarfAccelTable&) LLVM_DELETED_FUNCTION;
- void operator=(const DwarfAccelTable&) LLVM_DELETED_FUNCTION;
+ DwarfAccelTable(const DwarfAccelTable &) LLVM_DELETED_FUNCTION;
+ void operator=(const DwarfAccelTable &) LLVM_DELETED_FUNCTION;
// Internal Functions
void EmitHeader(AsmPrinter *);
@@ -253,24 +224,24 @@ private:
// Output Variables
TableHeader Header;
TableHeaderData HeaderData;
- std::vector<HashData*> Data;
+ std::vector<HashData *> Data;
// String Data
- typedef std::vector<HashDataContents*> DataArray;
- typedef StringMap<DataArray, BumpPtrAllocator&> StringEntries;
+ typedef std::vector<HashDataContents *> DataArray;
+ typedef StringMap<DataArray, BumpPtrAllocator &> StringEntries;
StringEntries Entries;
// Buckets/Hashes/Offsets
- typedef std::vector<HashData*> HashList;
+ typedef std::vector<HashData *> HashList;
typedef std::vector<HashList> BucketList;
BucketList Buckets;
HashList Hashes;
// Public Implementation
- public:
+public:
DwarfAccelTable(ArrayRef<DwarfAccelTable::Atom>);
~DwarfAccelTable();
- void AddName(StringRef, DIE*, char = 0);
+ void AddName(StringRef, DIE *, char = 0);
void FinalizeTable(AsmPrinter *, StringRef);
void Emit(AsmPrinter *, MCSymbol *, DwarfUnits *);
#ifndef NDEBUG
@@ -278,6 +249,5 @@ private:
void dump() { print(dbgs()); }
#endif
};
-
}
#endif
diff --git a/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp b/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp
index fec5ced..8918f3d 100644
--- a/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp
@@ -68,7 +68,7 @@ void DwarfCFIException::EndModule() {
for (size_t i = 0, e = Personalities.size(); i != e; ++i) {
if (!Personalities[i])
continue;
- MCSymbol *Sym = Asm->Mang->getSymbol(Personalities[i]);
+ MCSymbol *Sym = Asm->getSymbol(Personalities[i]);
TLOF.emitPersonalityValue(Asm->OutStreamer, Asm->TM, Sym);
AtLeastOne = true;
}
diff --git a/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp b/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp
index df8ca17..a6ff953 100644
--- a/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp
@@ -22,8 +22,8 @@
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCStreamer.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetMachine.h"
@@ -33,12 +33,12 @@
using namespace llvm;
/// CompileUnit - Compile unit constructor.
-CompileUnit::CompileUnit(unsigned UID, unsigned L, DIE *D, const MDNode *N,
+CompileUnit::CompileUnit(unsigned UID, DIE *D, DICompileUnit Node,
AsmPrinter *A, DwarfDebug *DW, DwarfUnits *DWU)
- : UniqueID(UID), Language(L), CUDie(D), Asm(A), DD(DW), DU(DWU),
- IndexTyDie(0), DebugInfoOffset(0) {
+ : UniqueID(UID), Node(Node), CUDie(D), Asm(A), DD(DW), DU(DWU),
+ IndexTyDie(0), DebugInfoOffset(0) {
DIEIntegerOne = new (DIEValueAllocator) DIEInteger(1);
- insertDIE(N, D);
+ insertDIE(Node, D);
}
/// ~CompileUnit - Destructor for compile unit.
@@ -57,7 +57,7 @@ DIEEntry *CompileUnit::createDIEEntry(DIE *Entry) {
/// getDefaultLowerBound - Return the default lower bound for an array. If the
/// DWARF version doesn't handle the language, return -1.
int64_t CompileUnit::getDefaultLowerBound() const {
- switch (Language) {
+ switch (getLanguage()) {
default:
break;
@@ -98,32 +98,71 @@ int64_t CompileUnit::getDefaultLowerBound() const {
return -1;
}
+/// Check whether the DIE for this MDNode can be shared across CUs.
+static bool isShareableAcrossCUs(DIDescriptor D) {
+ // When the MDNode can be part of the type system, the DIE can be
+ // shared across CUs.
+ return D.isType() ||
+ (D.isSubprogram() && !DISubprogram(D).isDefinition());
+}
+
+/// getDIE - Returns the debug information entry map slot for the
+/// specified debug variable. We delegate the request to DwarfDebug
+/// when the DIE for this MDNode can be shared across CUs. The mappings
+/// will be kept in DwarfDebug for shareable DIEs.
+DIE *CompileUnit::getDIE(DIDescriptor D) const {
+ if (isShareableAcrossCUs(D))
+ return DD->getDIE(D);
+ return MDNodeToDieMap.lookup(D);
+}
+
+/// insertDIE - Insert DIE into the map. We delegate the request to DwarfDebug
+/// when the DIE for this MDNode can be shared across CUs. The mappings
+/// will be kept in DwarfDebug for shareable DIEs.
+void CompileUnit::insertDIE(DIDescriptor Desc, DIE *D) {
+ if (isShareableAcrossCUs(Desc)) {
+ DD->insertDIE(Desc, D);
+ return;
+ }
+ MDNodeToDieMap.insert(std::make_pair(Desc, D));
+}
+
/// addFlag - Add a flag that is true.
-void CompileUnit::addFlag(DIE *Die, unsigned Attribute) {
- if (!DD->useDarwinGDBCompat())
- Die->addValue(Attribute, dwarf::DW_FORM_flag_present,
- DIEIntegerOne);
+void CompileUnit::addFlag(DIE *Die, dwarf::Attribute Attribute) {
+ if (DD->getDwarfVersion() >= 4)
+ Die->addValue(Attribute, dwarf::DW_FORM_flag_present, DIEIntegerOne);
else
- addUInt(Die, Attribute, dwarf::DW_FORM_flag, 1);
+ Die->addValue(Attribute, dwarf::DW_FORM_flag, DIEIntegerOne);
}
/// addUInt - Add an unsigned integer attribute data and value.
///
-void CompileUnit::addUInt(DIE *Die, unsigned Attribute,
- unsigned Form, uint64_t Integer) {
- if (!Form) Form = DIEInteger::BestForm(false, Integer);
- DIEValue *Value = Integer == 1 ?
- DIEIntegerOne : new (DIEValueAllocator) DIEInteger(Integer);
- Die->addValue(Attribute, Form, Value);
+void CompileUnit::addUInt(DIE *Die, dwarf::Attribute Attribute,
+ Optional<dwarf::Form> Form, uint64_t Integer) {
+ if (!Form)
+ Form = DIEInteger::BestForm(false, Integer);
+ DIEValue *Value = Integer == 1 ? DIEIntegerOne : new (DIEValueAllocator)
+ DIEInteger(Integer);
+ Die->addValue(Attribute, *Form, Value);
+}
+
+void CompileUnit::addUInt(DIEBlock *Block, dwarf::Form Form, uint64_t Integer) {
+ addUInt(Block, (dwarf::Attribute)0, Form, Integer);
}
/// addSInt - Add an signed integer attribute data and value.
///
-void CompileUnit::addSInt(DIE *Die, unsigned Attribute,
- unsigned Form, int64_t Integer) {
- if (!Form) Form = DIEInteger::BestForm(true, Integer);
+void CompileUnit::addSInt(DIE *Die, dwarf::Attribute Attribute,
+ Optional<dwarf::Form> Form, int64_t Integer) {
+ if (!Form)
+ Form = DIEInteger::BestForm(true, Integer);
DIEValue *Value = new (DIEValueAllocator) DIEInteger(Integer);
- Die->addValue(Attribute, Form, Value);
+ Die->addValue(Attribute, *Form, Value);
+}
+
+void CompileUnit::addSInt(DIEBlock *Die, Optional<dwarf::Form> Form,
+ int64_t Integer) {
+ addSInt(Die, (dwarf::Attribute)0, Form, Integer);
}
/// addString - Add a string attribute data and value. We always emit a
@@ -131,9 +170,10 @@ void CompileUnit::addSInt(DIE *Die, unsigned Attribute,
/// more predictable sizes. In the case of split dwarf we emit an index
/// into another table which gets us the static offset into the string
/// table.
-void CompileUnit::addString(DIE *Die, unsigned Attribute, StringRef String) {
+void CompileUnit::addString(DIE *Die, dwarf::Attribute Attribute,
+ StringRef String) {
DIEValue *Value;
- unsigned Form;
+ dwarf::Form Form;
if (!DD->useSplitDwarf()) {
MCSymbol *Symb = DU->getStringPoolEntry(String);
if (Asm->needsRelocationsForDwarfStringPool())
@@ -154,7 +194,7 @@ void CompileUnit::addString(DIE *Die, unsigned Attribute, StringRef String) {
/// addLocalString - Add a string attribute data and value. This is guaranteed
/// to be in the local string pool instead of indirected.
-void CompileUnit::addLocalString(DIE *Die, unsigned Attribute,
+void CompileUnit::addLocalString(DIE *Die, dwarf::Attribute Attribute,
StringRef String) {
MCSymbol *Symb = DU->getStringPoolEntry(String);
DIEValue *Value;
@@ -169,25 +209,32 @@ void CompileUnit::addLocalString(DIE *Die, unsigned Attribute,
/// addExpr - Add a Dwarf expression attribute data and value.
///
-void CompileUnit::addExpr(DIE *Die, unsigned Attribute, unsigned Form,
- const MCExpr *Expr) {
+void CompileUnit::addExpr(DIEBlock *Die, dwarf::Form Form, const MCExpr *Expr) {
DIEValue *Value = new (DIEValueAllocator) DIEExpr(Expr);
- Die->addValue(Attribute, Form, Value);
+ Die->addValue((dwarf::Attribute)0, Form, Value);
}
/// addLabel - Add a Dwarf label attribute data and value.
///
-void CompileUnit::addLabel(DIE *Die, unsigned Attribute, unsigned Form,
- const MCSymbol *Label) {
+void CompileUnit::addLabel(DIE *Die, dwarf::Attribute Attribute,
+ dwarf::Form Form, const MCSymbol *Label) {
DIEValue *Value = new (DIEValueAllocator) DIELabel(Label);
Die->addValue(Attribute, Form, Value);
}
+void CompileUnit::addLabel(DIEBlock *Die, dwarf::Form Form,
+ const MCSymbol *Label) {
+ addLabel(Die, (dwarf::Attribute)0, Form, Label);
+}
+
/// addLabelAddress - Add a dwarf label attribute data and value using
/// DW_FORM_addr or DW_FORM_GNU_addr_index.
///
-void CompileUnit::addLabelAddress(DIE *Die, unsigned Attribute,
+void CompileUnit::addLabelAddress(DIE *Die, dwarf::Attribute Attribute,
MCSymbol *Label) {
+ if (Label)
+ DD->addArangeLabel(SymbolCU(this, Label));
+
if (!DD->useSplitDwarf()) {
if (Label != NULL) {
DIEValue *Value = new (DIEValueAllocator) DIELabel(Label);
@@ -206,34 +253,60 @@ void CompileUnit::addLabelAddress(DIE *Die, unsigned Attribute,
/// addOpAddress - Add a dwarf op address data and value using the
/// form given and an op of either DW_FORM_addr or DW_FORM_GNU_addr_index.
///
-void CompileUnit::addOpAddress(DIE *Die, const MCSymbol *Sym) {
+void CompileUnit::addOpAddress(DIEBlock *Die, const MCSymbol *Sym) {
+ DD->addArangeLabel(SymbolCU(this, Sym));
if (!DD->useSplitDwarf()) {
- addUInt(Die, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_addr);
- addLabel(Die, 0, dwarf::DW_FORM_udata, Sym);
+ addUInt(Die, dwarf::DW_FORM_data1, dwarf::DW_OP_addr);
+ addLabel(Die, dwarf::DW_FORM_udata, Sym);
} else {
- addUInt(Die, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_addr_index);
- addUInt(Die, 0, dwarf::DW_FORM_GNU_addr_index, DU->getAddrPoolIndex(Sym));
+ addUInt(Die, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_addr_index);
+ addUInt(Die, dwarf::DW_FORM_GNU_addr_index, DU->getAddrPoolIndex(Sym));
}
}
/// addDelta - Add a label delta attribute data and value.
///
-void CompileUnit::addDelta(DIE *Die, unsigned Attribute, unsigned Form,
- const MCSymbol *Hi, const MCSymbol *Lo) {
+void CompileUnit::addDelta(DIE *Die, dwarf::Attribute Attribute,
+ dwarf::Form Form, const MCSymbol *Hi,
+ const MCSymbol *Lo) {
DIEValue *Value = new (DIEValueAllocator) DIEDelta(Hi, Lo);
Die->addValue(Attribute, Form, Value);
}
/// addDIEEntry - Add a DIE attribute data and value.
///
-void CompileUnit::addDIEEntry(DIE *Die, unsigned Attribute, unsigned Form,
+void CompileUnit::addDIEEntry(DIE *Die, dwarf::Attribute Attribute,
DIE *Entry) {
- Die->addValue(Attribute, Form, createDIEEntry(Entry));
+ addDIEEntry(Die, Attribute, createDIEEntry(Entry));
+}
+
+void CompileUnit::addDIEEntry(DIE *Die, dwarf::Attribute Attribute,
+ DIEEntry *Entry) {
+ const DIE *DieCU = Die->getCompileUnitOrNull();
+ const DIE *EntryCU = Entry->getEntry()->getCompileUnitOrNull();
+ if (!DieCU)
+ // We assume that Die belongs to this CU, if it is not linked to any CU yet.
+ DieCU = getCUDie();
+ if (!EntryCU)
+ EntryCU = getCUDie();
+ Die->addValue(Attribute, EntryCU == DieCU ? dwarf::DW_FORM_ref4
+ : dwarf::DW_FORM_ref_addr,
+ Entry);
+}
+
+/// Create a DIE with the given Tag, add the DIE to its parent, and
+/// call insertDIE if MD is not null.
+DIE *CompileUnit::createAndAddDIE(unsigned Tag, DIE &Parent, DIDescriptor N) {
+ DIE *Die = new DIE(Tag);
+ Parent.addChild(Die);
+ if (N)
+ insertDIE(N, Die);
+ return Die;
}
/// addBlock - Add block data.
///
-void CompileUnit::addBlock(DIE *Die, unsigned Attribute, unsigned Form,
+void CompileUnit::addBlock(DIE *Die, dwarf::Attribute Attribute,
DIEBlock *Block) {
Block->ComputeSize(Asm);
DIEBlocks.push_back(Block); // Memoize so we can call the destructor later on.
@@ -250,12 +323,12 @@ void CompileUnit::addSourceLine(DIE *Die, DIVariable V) {
unsigned Line = V.getLineNumber();
if (Line == 0)
return;
- unsigned FileID = DD->getOrCreateSourceID(V.getContext().getFilename(),
- V.getContext().getDirectory(),
- getUniqueID());
+ unsigned FileID =
+ DD->getOrCreateSourceID(V.getContext().getFilename(),
+ V.getContext().getDirectory(), getUniqueID());
assert(FileID && "Invalid file id");
- addUInt(Die, dwarf::DW_AT_decl_file, 0, FileID);
- addUInt(Die, dwarf::DW_AT_decl_line, 0, Line);
+ addUInt(Die, dwarf::DW_AT_decl_file, None, FileID);
+ addUInt(Die, dwarf::DW_AT_decl_line, None, Line);
}
/// addSourceLine - Add location information to specified debug information
@@ -268,11 +341,11 @@ void CompileUnit::addSourceLine(DIE *Die, DIGlobalVariable G) {
unsigned Line = G.getLineNumber();
if (Line == 0)
return;
- unsigned FileID = DD->getOrCreateSourceID(G.getFilename(), G.getDirectory(),
- getUniqueID());
+ unsigned FileID =
+ DD->getOrCreateSourceID(G.getFilename(), G.getDirectory(), getUniqueID());
assert(FileID && "Invalid file id");
- addUInt(Die, dwarf::DW_AT_decl_file, 0, FileID);
- addUInt(Die, dwarf::DW_AT_decl_line, 0, Line);
+ addUInt(Die, dwarf::DW_AT_decl_file, None, FileID);
+ addUInt(Die, dwarf::DW_AT_decl_line, None, Line);
}
/// addSourceLine - Add location information to specified debug information
@@ -287,11 +360,11 @@ void CompileUnit::addSourceLine(DIE *Die, DISubprogram SP) {
if (Line == 0)
return;
- unsigned FileID = DD->getOrCreateSourceID(SP.getFilename(),
- SP.getDirectory(), getUniqueID());
+ unsigned FileID = DD->getOrCreateSourceID(SP.getFilename(), SP.getDirectory(),
+ getUniqueID());
assert(FileID && "Invalid file id");
- addUInt(Die, dwarf::DW_AT_decl_file, 0, FileID);
- addUInt(Die, dwarf::DW_AT_decl_line, 0, Line);
+ addUInt(Die, dwarf::DW_AT_decl_file, None, FileID);
+ addUInt(Die, dwarf::DW_AT_decl_line, None, Line);
}
/// addSourceLine - Add location information to specified debug information
@@ -304,11 +377,11 @@ void CompileUnit::addSourceLine(DIE *Die, DIType Ty) {
unsigned Line = Ty.getLineNumber();
if (Line == 0)
return;
- unsigned FileID = DD->getOrCreateSourceID(Ty.getFilename(),
- Ty.getDirectory(), getUniqueID());
+ unsigned FileID = DD->getOrCreateSourceID(Ty.getFilename(), Ty.getDirectory(),
+ getUniqueID());
assert(FileID && "Invalid file id");
- addUInt(Die, dwarf::DW_AT_decl_file, 0, FileID);
- addUInt(Die, dwarf::DW_AT_decl_line, 0, Line);
+ addUInt(Die, dwarf::DW_AT_decl_file, None, FileID);
+ addUInt(Die, dwarf::DW_AT_decl_line, None, Line);
}
/// addSourceLine - Add location information to specified debug information
@@ -325,8 +398,8 @@ void CompileUnit::addSourceLine(DIE *Die, DIObjCProperty Ty) {
unsigned FileID = DD->getOrCreateSourceID(File.getFilename(),
File.getDirectory(), getUniqueID());
assert(FileID && "Invalid file id");
- addUInt(Die, dwarf::DW_AT_decl_file, 0, FileID);
- addUInt(Die, dwarf::DW_AT_decl_line, 0, Line);
+ addUInt(Die, dwarf::DW_AT_decl_file, None, FileID);
+ addUInt(Die, dwarf::DW_AT_decl_line, None, Line);
}
/// addSourceLine - Add location information to specified debug information
@@ -341,11 +414,11 @@ void CompileUnit::addSourceLine(DIE *Die, DINameSpace NS) {
return;
StringRef FN = NS.getFilename();
- unsigned FileID = DD->getOrCreateSourceID(FN, NS.getDirectory(),
- getUniqueID());
+ unsigned FileID =
+ DD->getOrCreateSourceID(FN, NS.getDirectory(), getUniqueID());
assert(FileID && "Invalid file id");
- addUInt(Die, dwarf::DW_AT_decl_file, 0, FileID);
- addUInt(Die, dwarf::DW_AT_decl_line, 0, Line);
+ addUInt(Die, dwarf::DW_AT_decl_file, None, FileID);
+ addUInt(Die, dwarf::DW_AT_decl_line, None, Line);
}
/// addVariableAddress - Add DW_AT_location attribute for a
@@ -362,38 +435,38 @@ void CompileUnit::addVariableAddress(const DbgVariable &DV, DIE *Die,
}
/// addRegisterOp - Add register operand.
-void CompileUnit::addRegisterOp(DIE *TheDie, unsigned Reg) {
+void CompileUnit::addRegisterOp(DIEBlock *TheDie, unsigned Reg) {
const TargetRegisterInfo *RI = Asm->TM.getRegisterInfo();
unsigned DWReg = RI->getDwarfRegNum(Reg, false);
if (DWReg < 32)
- addUInt(TheDie, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_reg0 + DWReg);
+ addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_reg0 + DWReg);
else {
- addUInt(TheDie, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_regx);
- addUInt(TheDie, 0, dwarf::DW_FORM_udata, DWReg);
+ addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_regx);
+ addUInt(TheDie, dwarf::DW_FORM_udata, DWReg);
}
}
/// addRegisterOffset - Add register offset.
-void CompileUnit::addRegisterOffset(DIE *TheDie, unsigned Reg,
+void CompileUnit::addRegisterOffset(DIEBlock *TheDie, unsigned Reg,
int64_t Offset) {
const TargetRegisterInfo *RI = Asm->TM.getRegisterInfo();
unsigned DWReg = RI->getDwarfRegNum(Reg, false);
const TargetRegisterInfo *TRI = Asm->TM.getRegisterInfo();
if (Reg == TRI->getFrameRegister(*Asm->MF))
// If variable offset is based in frame register then use fbreg.
- addUInt(TheDie, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_fbreg);
+ addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_fbreg);
else if (DWReg < 32)
- addUInt(TheDie, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_breg0 + DWReg);
+ addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_breg0 + DWReg);
else {
- addUInt(TheDie, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_bregx);
- addUInt(TheDie, 0, dwarf::DW_FORM_udata, DWReg);
+ addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_bregx);
+ addUInt(TheDie, dwarf::DW_FORM_udata, DWReg);
}
- addSInt(TheDie, 0, dwarf::DW_FORM_sdata, Offset);
+ addSInt(TheDie, dwarf::DW_FORM_sdata, Offset);
}
/// addAddress - Add an address attribute to a die based on the location
/// provided.
-void CompileUnit::addAddress(DIE *Die, unsigned Attribute,
+void CompileUnit::addAddress(DIE *Die, dwarf::Attribute Attribute,
const MachineLocation &Location, bool Indirect) {
DIEBlock *Block = new (DIEValueAllocator) DIEBlock();
@@ -402,12 +475,12 @@ void CompileUnit::addAddress(DIE *Die, unsigned Attribute,
else {
addRegisterOffset(Block, Location.getReg(), Location.getOffset());
if (Indirect && !Location.isReg()) {
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
}
}
// Now attach the location information to the DIE.
- addBlock(Die, Attribute, 0, Block);
+ addBlock(Die, Attribute, Block);
}
/// addComplexAddress - Start with the address based on the location provided,
@@ -416,7 +489,7 @@ void CompileUnit::addAddress(DIE *Die, unsigned Attribute,
/// the starting location. Add the DWARF information to the die.
///
void CompileUnit::addComplexAddress(const DbgVariable &DV, DIE *Die,
- unsigned Attribute,
+ dwarf::Attribute Attribute,
const MachineLocation &Location) {
DIEBlock *Block = new (DIEValueAllocator) DIEBlock();
unsigned N = DV.getNumAddrElements();
@@ -429,23 +502,23 @@ void CompileUnit::addComplexAddress(const DbgVariable &DV, DIE *Die,
i = 2;
} else
addRegisterOp(Block, Location.getReg());
- }
- else
+ } else
addRegisterOffset(Block, Location.getReg(), Location.getOffset());
- for (;i < N; ++i) {
+ for (; i < N; ++i) {
uint64_t Element = DV.getAddrElement(i);
if (Element == DIBuilder::OpPlus) {
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
- addUInt(Block, 0, dwarf::DW_FORM_udata, DV.getAddrElement(++i));
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
+ addUInt(Block, dwarf::DW_FORM_udata, DV.getAddrElement(++i));
} else if (Element == DIBuilder::OpDeref) {
if (!Location.isReg())
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
- } else llvm_unreachable("unknown DIBuilder Opcode");
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
+ } else
+ llvm_unreachable("unknown DIBuilder Opcode");
}
// Now attach the location information to the DIE.
- addBlock(Die, Attribute, 0, Block);
+ addBlock(Die, Attribute, Block);
}
/* Byref variables, in Blocks, are declared by the programmer as "SomeType
@@ -509,44 +582,41 @@ void CompileUnit::addComplexAddress(const DbgVariable &DV, DIE *Die,
/// more information, read large comment just above here.
///
void CompileUnit::addBlockByrefAddress(const DbgVariable &DV, DIE *Die,
- unsigned Attribute,
+ dwarf::Attribute Attribute,
const MachineLocation &Location) {
DIType Ty = DV.getType();
DIType TmpTy = Ty;
- unsigned Tag = Ty.getTag();
+ uint16_t Tag = Ty.getTag();
bool isPointer = false;
StringRef varName = DV.getName();
if (Tag == dwarf::DW_TAG_pointer_type) {
- DIDerivedType DTy = DIDerivedType(Ty);
- TmpTy = DTy.getTypeDerivedFrom();
+ DIDerivedType DTy(Ty);
+ TmpTy = resolve(DTy.getTypeDerivedFrom());
isPointer = true;
}
- DICompositeType blockStruct = DICompositeType(TmpTy);
+ DICompositeType blockStruct(TmpTy);
// Find the __forwarding field and the variable field in the __Block_byref
// struct.
DIArray Fields = blockStruct.getTypeArray();
- DIDescriptor varField = DIDescriptor();
- DIDescriptor forwardingField = DIDescriptor();
+ DIDerivedType varField;
+ DIDerivedType forwardingField;
for (unsigned i = 0, N = Fields.getNumElements(); i < N; ++i) {
- DIDescriptor Element = Fields.getElement(i);
- DIDerivedType DT = DIDerivedType(Element);
+ DIDerivedType DT(Fields.getElement(i));
StringRef fieldName = DT.getName();
if (fieldName == "__forwarding")
- forwardingField = Element;
+ forwardingField = DT;
else if (fieldName == varName)
- varField = Element;
+ varField = DT;
}
// Get the offsets for the forwarding field and the variable field.
- unsigned forwardingFieldOffset =
- DIDerivedType(forwardingField).getOffsetInBits() >> 3;
- unsigned varFieldOffset =
- DIDerivedType(varField).getOffsetInBits() >> 3;
+ unsigned forwardingFieldOffset = forwardingField.getOffsetInBits() >> 3;
+ unsigned varFieldOffset = varField.getOffsetInBits() >> 2;
// Decode the original location, and use that as the start of the byref
// variable's location.
@@ -560,45 +630,91 @@ void CompileUnit::addBlockByrefAddress(const DbgVariable &DV, DIE *Die,
// If we started with a pointer to the __Block_byref... struct, then
// the first thing we need to do is dereference the pointer (DW_OP_deref).
if (isPointer)
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
// Next add the offset for the '__forwarding' field:
// DW_OP_plus_uconst ForwardingFieldOffset. Note there's no point in
// adding the offset if it's 0.
if (forwardingFieldOffset > 0) {
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
- addUInt(Block, 0, dwarf::DW_FORM_udata, forwardingFieldOffset);
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
+ addUInt(Block, dwarf::DW_FORM_udata, forwardingFieldOffset);
}
// Now dereference the __forwarding field to get to the real __Block_byref
// struct: DW_OP_deref.
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
// Now that we've got the real __Block_byref... struct, add the offset
// for the variable's field to get to the location of the actual variable:
// DW_OP_plus_uconst varFieldOffset. Again, don't add if it's 0.
if (varFieldOffset > 0) {
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
- addUInt(Block, 0, dwarf::DW_FORM_udata, varFieldOffset);
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
+ addUInt(Block, dwarf::DW_FORM_udata, varFieldOffset);
}
// Now attach the location information to the DIE.
- addBlock(Die, Attribute, 0, Block);
+ addBlock(Die, Attribute, Block);
}
/// isTypeSigned - Return true if the type is signed.
-static bool isTypeSigned(DIType Ty, int *SizeInBits) {
+static bool isTypeSigned(DwarfDebug *DD, DIType Ty, int *SizeInBits) {
if (Ty.isDerivedType())
- return isTypeSigned(DIDerivedType(Ty).getTypeDerivedFrom(), SizeInBits);
+ return isTypeSigned(DD, DD->resolve(DIDerivedType(Ty).getTypeDerivedFrom()),
+ SizeInBits);
if (Ty.isBasicType())
- if (DIBasicType(Ty).getEncoding() == dwarf::DW_ATE_signed
- || DIBasicType(Ty).getEncoding() == dwarf::DW_ATE_signed_char) {
+ if (DIBasicType(Ty).getEncoding() == dwarf::DW_ATE_signed ||
+ DIBasicType(Ty).getEncoding() == dwarf::DW_ATE_signed_char) {
*SizeInBits = Ty.getSizeInBits();
return true;
}
return false;
}
+/// Return true if type encoding is unsigned.
+static bool isUnsignedDIType(DwarfDebug *DD, DIType Ty) {
+ DIDerivedType DTy(Ty);
+ if (DTy.isDerivedType())
+ return isUnsignedDIType(DD, DD->resolve(DTy.getTypeDerivedFrom()));
+
+ DIBasicType BTy(Ty);
+ if (BTy.isBasicType()) {
+ unsigned Encoding = BTy.getEncoding();
+ if (Encoding == dwarf::DW_ATE_unsigned ||
+ Encoding == dwarf::DW_ATE_unsigned_char ||
+ Encoding == dwarf::DW_ATE_boolean)
+ return true;
+ }
+ return false;
+}
+
+/// If this type is derived from a base type then return base type size.
+static uint64_t getBaseTypeSize(DwarfDebug *DD, DIDerivedType Ty) {
+ unsigned Tag = Ty.getTag();
+
+ if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
+ Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
+ Tag != dwarf::DW_TAG_restrict_type)
+ return Ty.getSizeInBits();
+
+ DIType BaseType = DD->resolve(Ty.getTypeDerivedFrom());
+
+ // If this type is not derived from any type then take conservative approach.
+ if (!BaseType.isValid())
+ return Ty.getSizeInBits();
+
+ // If this is a derived type, go ahead and get the base type, unless it's a
+ // reference then it's just the size of the field. Pointer types have no need
+ // of this since they're a different type of qualification on the type.
+ if (BaseType.getTag() == dwarf::DW_TAG_reference_type ||
+ BaseType.getTag() == dwarf::DW_TAG_rvalue_reference_type)
+ return Ty.getSizeInBits();
+
+ if (BaseType.isDerivedType())
+ return getBaseTypeSize(DD, DIDerivedType(BaseType));
+
+ return BaseType.getSizeInBits();
+}
+
/// addConstantValue - Add constant value entry in variable DIE.
void CompileUnit::addConstantValue(DIE *Die, const MachineOperand &MO,
DIType Ty) {
@@ -606,32 +722,47 @@ void CompileUnit::addConstantValue(DIE *Die, const MachineOperand &MO,
// their maximum bit width which is a bit unfortunate (& doesn't prefer
// udata/sdata over dataN as suggested by the DWARF spec)
assert(MO.isImm() && "Invalid machine operand!");
- DIEBlock *Block = new (DIEValueAllocator) DIEBlock();
int SizeInBits = -1;
- bool SignedConstant = isTypeSigned(Ty, &SizeInBits);
- unsigned Form = SignedConstant ? dwarf::DW_FORM_sdata : dwarf::DW_FORM_udata;
- switch (SizeInBits) {
- case 8: Form = dwarf::DW_FORM_data1; break;
- case 16: Form = dwarf::DW_FORM_data2; break;
- case 32: Form = dwarf::DW_FORM_data4; break;
- case 64: Form = dwarf::DW_FORM_data8; break;
- default: break;
+ bool SignedConstant = isTypeSigned(DD, Ty, &SizeInBits);
+ dwarf::Form Form;
+
+ // If we're a signed constant definitely use sdata.
+ if (SignedConstant) {
+ addSInt(Die, dwarf::DW_AT_const_value, dwarf::DW_FORM_sdata, MO.getImm());
+ return;
}
- SignedConstant ? addSInt(Block, 0, Form, MO.getImm())
- : addUInt(Block, 0, Form, MO.getImm());
- addBlock(Die, dwarf::DW_AT_const_value, 0, Block);
+ // Else use data for now unless it's larger than we can deal with.
+ switch (SizeInBits) {
+ case 8:
+ Form = dwarf::DW_FORM_data1;
+ break;
+ case 16:
+ Form = dwarf::DW_FORM_data2;
+ break;
+ case 32:
+ Form = dwarf::DW_FORM_data4;
+ break;
+ case 64:
+ Form = dwarf::DW_FORM_data8;
+ break;
+ default:
+ Form = dwarf::DW_FORM_udata;
+ addUInt(Die, dwarf::DW_AT_const_value, Form, MO.getImm());
+ return;
+ }
+ addUInt(Die, dwarf::DW_AT_const_value, Form, MO.getImm());
}
/// addConstantFPValue - Add constant value entry in variable DIE.
void CompileUnit::addConstantFPValue(DIE *Die, const MachineOperand &MO) {
- assert (MO.isFPImm() && "Invalid machine operand!");
+ assert(MO.isFPImm() && "Invalid machine operand!");
DIEBlock *Block = new (DIEValueAllocator) DIEBlock();
APFloat FPImm = MO.getFPImm()->getValueAPF();
// Get the raw data form of the floating point.
const APInt FltVal = FPImm.bitcastToAPInt();
- const char *FltPtr = (const char*)FltVal.getRawData();
+ const char *FltPtr = (const char *)FltVal.getRawData();
int NumBytes = FltVal.getBitWidth() / 8; // 8 bits per byte.
bool LittleEndian = Asm->getDataLayout().isLittleEndian();
@@ -641,15 +772,15 @@ void CompileUnit::addConstantFPValue(DIE *Die, const MachineOperand &MO) {
// Output the constant to DWARF one byte at a time.
for (; Start != Stop; Start += Incr)
- addUInt(Block, 0, dwarf::DW_FORM_data1,
- (unsigned char)0xFF & FltPtr[Start]);
+ addUInt(Block, dwarf::DW_FORM_data1, (unsigned char)0xFF & FltPtr[Start]);
- addBlock(Die, dwarf::DW_AT_const_value, 0, Block);
+ addBlock(Die, dwarf::DW_AT_const_value, Block);
}
/// addConstantFPValue - Add constant value entry in variable DIE.
void CompileUnit::addConstantFPValue(DIE *Die, const ConstantFP *CFP) {
- addConstantValue(Die, CFP->getValueAPF().bitcastToAPInt(), false);
+ // Pass this down to addConstantValue as an unsigned bag of bits.
+ addConstantValue(Die, CFP->getValueAPF().bitcastToAPInt(), true);
}
/// addConstantValue - Add constant value entry in variable DIE.
@@ -662,19 +793,34 @@ void CompileUnit::addConstantValue(DIE *Die, const ConstantInt *CI,
void CompileUnit::addConstantValue(DIE *Die, const APInt &Val, bool Unsigned) {
unsigned CIBitWidth = Val.getBitWidth();
if (CIBitWidth <= 64) {
- unsigned form = 0;
+ // If we're a signed constant definitely use sdata.
+ if (!Unsigned) {
+ addSInt(Die, dwarf::DW_AT_const_value, dwarf::DW_FORM_sdata,
+ Val.getSExtValue());
+ return;
+ }
+
+ // Else use data for now unless it's larger than we can deal with.
+ dwarf::Form Form;
switch (CIBitWidth) {
- case 8: form = dwarf::DW_FORM_data1; break;
- case 16: form = dwarf::DW_FORM_data2; break;
- case 32: form = dwarf::DW_FORM_data4; break;
- case 64: form = dwarf::DW_FORM_data8; break;
+ case 8:
+ Form = dwarf::DW_FORM_data1;
+ break;
+ case 16:
+ Form = dwarf::DW_FORM_data2;
+ break;
+ case 32:
+ Form = dwarf::DW_FORM_data4;
+ break;
+ case 64:
+ Form = dwarf::DW_FORM_data8;
+ break;
default:
- form = Unsigned ? dwarf::DW_FORM_udata : dwarf::DW_FORM_sdata;
+ addUInt(Die, dwarf::DW_AT_const_value, dwarf::DW_FORM_udata,
+ Val.getZExtValue());
+ return;
}
- if (Unsigned)
- addUInt(Die, dwarf::DW_AT_const_value, form, Val.getZExtValue());
- else
- addSInt(Die, dwarf::DW_AT_const_value, form, Val.getSExtValue());
+ addUInt(Die, dwarf::DW_AT_const_value, Form, Val.getZExtValue());
return;
}
@@ -693,10 +839,10 @@ void CompileUnit::addConstantValue(DIE *Die, const APInt &Val, bool Unsigned) {
c = Ptr64[i / 8] >> (8 * (i & 7));
else
c = Ptr64[(NumBytes - 1 - i) / 8] >> (8 * ((NumBytes - 1 - i) & 7));
- addUInt(Block, 0, dwarf::DW_FORM_data1, c);
+ addUInt(Block, dwarf::DW_FORM_data1, c);
}
- addBlock(Die, dwarf::DW_AT_const_value, 0, Block);
+ addBlock(Die, dwarf::DW_AT_const_value, Block);
}
/// addTemplateParams - Add template parameters into buffer.
@@ -705,47 +851,48 @@ void CompileUnit::addTemplateParams(DIE &Buffer, DIArray TParams) {
for (unsigned i = 0, e = TParams.getNumElements(); i != e; ++i) {
DIDescriptor Element = TParams.getElement(i);
if (Element.isTemplateTypeParameter())
- Buffer.addChild(getOrCreateTemplateTypeParameterDIE(
- DITemplateTypeParameter(Element)));
+ constructTemplateTypeParameterDIE(Buffer,
+ DITemplateTypeParameter(Element));
else if (Element.isTemplateValueParameter())
- Buffer.addChild(getOrCreateTemplateValueParameterDIE(
- DITemplateValueParameter(Element)));
+ constructTemplateValueParameterDIE(Buffer,
+ DITemplateValueParameter(Element));
}
}
/// getOrCreateContextDIE - Get context owner's DIE.
-DIE *CompileUnit::getOrCreateContextDIE(DIDescriptor Context) {
+DIE *CompileUnit::getOrCreateContextDIE(DIScope Context) {
+ if (!Context || Context.isFile())
+ return getCUDie();
if (Context.isType())
return getOrCreateTypeDIE(DIType(Context));
- else if (Context.isNameSpace())
+ if (Context.isNameSpace())
return getOrCreateNameSpace(DINameSpace(Context));
- else if (Context.isSubprogram())
+ if (Context.isSubprogram())
return getOrCreateSubprogramDIE(DISubprogram(Context));
- else
- return getDIE(Context);
-}
-
-/// addToContextOwner - Add Die into the list of its context owner's children.
-void CompileUnit::addToContextOwner(DIE *Die, DIDescriptor Context) {
- if (DIE *ContextDIE = getOrCreateContextDIE(Context))
- ContextDIE->addChild(Die);
- else
- addDie(Die);
+ return getDIE(Context);
}
/// getOrCreateTypeDIE - Find existing DIE or create new DIE for the
/// given DIType.
DIE *CompileUnit::getOrCreateTypeDIE(const MDNode *TyNode) {
- DIType Ty(TyNode);
- if (!Ty.isType())
+ if (!TyNode)
return NULL;
+
+ DIType Ty(TyNode);
+ assert(Ty.isType());
+
+ // Construct the context before querying for the existence of the DIE in case
+ // such construction creates the DIE.
+ DIE *ContextDIE = getOrCreateContextDIE(resolve(Ty.getContext()));
+ assert(ContextDIE);
+
DIE *TyDIE = getDIE(Ty);
if (TyDIE)
return TyDIE;
// Create new type.
- TyDIE = new DIE(dwarf::DW_TAG_base_type);
- insertDIE(Ty, TyDIE);
+ TyDIE = createAndAddDIE(Ty.getTag(), *ContextDIE, Ty);
+
if (Ty.isBasicType())
constructTypeDIE(*TyDIE, DIBasicType(Ty));
else if (Ty.isCompositeType())
@@ -762,28 +909,24 @@ DIE *CompileUnit::getOrCreateTypeDIE(const MDNode *TyNode) {
DICompositeType CT(Ty);
// A runtime language of 0 actually means C/C++ and that any
// non-negative value is some version of Objective-C/C++.
- IsImplementation = (CT.getRunTimeLang() == 0) ||
- CT.isObjcClassComplete();
+ IsImplementation = (CT.getRunTimeLang() == 0) || CT.isObjcClassComplete();
}
- unsigned Flags = IsImplementation ?
- DwarfAccelTable::eTypeFlagClassIsImplementation : 0;
+ unsigned Flags = IsImplementation ? dwarf::DW_FLAG_type_implementation : 0;
addAccelType(Ty.getName(), std::make_pair(TyDIE, Flags));
}
- addToContextOwner(TyDIE, Ty.getContext());
return TyDIE;
}
/// addType - Add a new type attribute to the specified entity.
-void CompileUnit::addType(DIE *Entity, DIType Ty, unsigned Attribute) {
- if (!Ty.isType())
- return;
+void CompileUnit::addType(DIE *Entity, DIType Ty, dwarf::Attribute Attribute) {
+ assert(Ty && "Trying to add a type that doesn't exist?");
// Check for pre-existence.
DIEEntry *Entry = getDIEEntry(Ty);
// If it exists then use the existing value.
if (Entry) {
- Entity->addValue(Attribute, dwarf::DW_FORM_ref4, Entry);
+ addDIEEntry(Entity, Attribute, Entry);
return;
}
@@ -793,28 +936,105 @@ void CompileUnit::addType(DIE *Entity, DIType Ty, unsigned Attribute) {
// Set up proxy.
Entry = createDIEEntry(Buffer);
insertDIEEntry(Ty, Entry);
- Entity->addValue(Attribute, dwarf::DW_FORM_ref4, Entry);
+ addDIEEntry(Entity, Attribute, Entry);
// If this is a complete composite type then include it in the
// list of global types.
addGlobalType(Ty);
}
+// Accelerator table mutators - add each name along with its companion
+// DIE to the proper table while ensuring that the name that we're going
+// to reference is in the string table. We do this since the names we
+// add may not only be identical to the names in the DIE.
+void CompileUnit::addAccelName(StringRef Name, DIE *Die) {
+ DU->getStringPoolEntry(Name);
+ std::vector<DIE *> &DIEs = AccelNames[Name];
+ DIEs.push_back(Die);
+}
+
+void CompileUnit::addAccelObjC(StringRef Name, DIE *Die) {
+ DU->getStringPoolEntry(Name);
+ std::vector<DIE *> &DIEs = AccelObjC[Name];
+ DIEs.push_back(Die);
+}
+
+void CompileUnit::addAccelNamespace(StringRef Name, DIE *Die) {
+ DU->getStringPoolEntry(Name);
+ std::vector<DIE *> &DIEs = AccelNamespace[Name];
+ DIEs.push_back(Die);
+}
+
+void CompileUnit::addAccelType(StringRef Name, std::pair<DIE *, unsigned> Die) {
+ DU->getStringPoolEntry(Name);
+ std::vector<std::pair<DIE *, unsigned> > &DIEs = AccelTypes[Name];
+ DIEs.push_back(Die);
+}
+
+/// addGlobalName - Add a new global name to the compile unit.
+void CompileUnit::addGlobalName(StringRef Name, DIE *Die, DIScope Context) {
+ std::string FullName = getParentContextString(Context) + Name.str();
+ GlobalNames[FullName] = Die;
+}
+
/// addGlobalType - Add a new global type to the compile unit.
///
void CompileUnit::addGlobalType(DIType Ty) {
- DIDescriptor Context = Ty.getContext();
- if (Ty.isCompositeType() && !Ty.getName().empty() && !Ty.isForwardDecl()
- && (!Context || Context.isCompileUnit() || Context.isFile()
- || Context.isNameSpace()))
- if (DIEEntry *Entry = getDIEEntry(Ty))
- GlobalTypes[Ty.getName()] = Entry->getEntry();
+ DIScope Context = resolve(Ty.getContext());
+ if (!Ty.getName().empty() && !Ty.isForwardDecl() &&
+ (!Context || Context.isCompileUnit() || Context.isFile() ||
+ Context.isNameSpace()))
+ if (DIEEntry *Entry = getDIEEntry(Ty)) {
+ std::string FullName =
+ getParentContextString(Context) + Ty.getName().str();
+ GlobalTypes[FullName] = Entry->getEntry();
+ }
+}
+
+/// getParentContextString - Walks the metadata parent chain in a language
+/// specific manner (using the compile unit language) and returns
+/// it as a string. This is done at the metadata level because DIEs may
+/// not currently have been added to the parent context and walking the
+/// DIEs looking for names is more expensive than walking the metadata.
+std::string CompileUnit::getParentContextString(DIScope Context) const {
+ if (!Context)
+ return "";
+
+ // FIXME: Decide whether to implement this for non-C++ languages.
+ if (getLanguage() != dwarf::DW_LANG_C_plus_plus)
+ return "";
+
+ std::string CS;
+ SmallVector<DIScope, 1> Parents;
+ while (!Context.isCompileUnit()) {
+ Parents.push_back(Context);
+ if (Context.getContext())
+ Context = resolve(Context.getContext());
+ else
+ // Structure, etc types will have a NULL context if they're at the top
+ // level.
+ break;
+ }
+
+ // Reverse iterate over our list to go from the outermost construct to the
+ // innermost.
+ for (SmallVectorImpl<DIScope>::reverse_iterator I = Parents.rbegin(),
+ E = Parents.rend();
+ I != E; ++I) {
+ DIScope Ctx = *I;
+ StringRef Name = Ctx.getName();
+ if (!Name.empty()) {
+ CS += Name;
+ CS += "::";
+ }
+ }
+ return CS;
}
-/// addPubTypes - Add type for pubtypes section.
+/// addPubTypes - Add subprogram argument types for pubtypes section.
void CompileUnit::addPubTypes(DISubprogram SP) {
DICompositeType SPTy = SP.getType();
- unsigned SPTag = SPTy.getTag();
+ uint16_t SPTag = SPTy.getTag();
if (SPTag != dwarf::DW_TAG_subroutine_type)
return;
@@ -835,18 +1055,15 @@ void CompileUnit::constructTypeDIE(DIE &Buffer, DIBasicType BTy) {
if (!Name.empty())
addString(&Buffer, dwarf::DW_AT_name, Name);
- if (BTy.getTag() == dwarf::DW_TAG_unspecified_type) {
- Buffer.setTag(dwarf::DW_TAG_unspecified_type);
- // An unspecified type only has a name attribute.
+ // An unspecified type only has a name attribute.
+ if (BTy.getTag() == dwarf::DW_TAG_unspecified_type)
return;
- }
- Buffer.setTag(dwarf::DW_TAG_base_type);
addUInt(&Buffer, dwarf::DW_AT_encoding, dwarf::DW_FORM_data1,
BTy.getEncoding());
uint64_t Size = BTy.getSizeInBits() >> 3;
- addUInt(&Buffer, dwarf::DW_AT_byte_size, 0, Size);
+ addUInt(&Buffer, dwarf::DW_AT_byte_size, None, Size);
}
/// constructTypeDIE - Construct derived type die from DIDerivedType.
@@ -854,16 +1071,12 @@ void CompileUnit::constructTypeDIE(DIE &Buffer, DIDerivedType DTy) {
// Get core information.
StringRef Name = DTy.getName();
uint64_t Size = DTy.getSizeInBits() >> 3;
- unsigned Tag = DTy.getTag();
-
- // FIXME - Workaround for templates.
- if (Tag == dwarf::DW_TAG_inheritance) Tag = dwarf::DW_TAG_reference_type;
-
- Buffer.setTag(Tag);
+ uint16_t Tag = Buffer.getTag();
// Map to main type, void will not have a type.
- DIType FromTy = DTy.getTypeDerivedFrom();
- addType(&Buffer, FromTy);
+ DIType FromTy = resolve(DTy.getTypeDerivedFrom());
+ if (FromTy)
+ addType(&Buffer, FromTy);
// Add name if not anonymous or intermediate type.
if (!Name.empty())
@@ -871,11 +1084,11 @@ void CompileUnit::constructTypeDIE(DIE &Buffer, DIDerivedType DTy) {
// Add size if non-zero (derived types might be zero-sized.)
if (Size && Tag != dwarf::DW_TAG_pointer_type)
- addUInt(&Buffer, dwarf::DW_AT_byte_size, 0, Size);
+ addUInt(&Buffer, dwarf::DW_AT_byte_size, None, Size);
if (Tag == dwarf::DW_TAG_ptr_to_member_type)
- addDIEEntry(&Buffer, dwarf::DW_AT_containing_type, dwarf::DW_FORM_ref4,
- getOrCreateTypeDIE(DTy.getClassType()));
+ addDIEEntry(&Buffer, dwarf::DW_AT_containing_type,
+ getOrCreateTypeDIE(resolve(DTy.getClassType())));
// Add source line info if available and TyDesc is not a forward declaration.
if (!DTy.isForwardDecl())
addSourceLine(&Buffer, DTy);
@@ -883,20 +1096,20 @@ void CompileUnit::constructTypeDIE(DIE &Buffer, DIDerivedType DTy) {
/// Return true if the type is appropriately scoped to be contained inside
/// its own type unit.
-static bool isTypeUnitScoped(DIType Ty) {
- DIScope Parent = Ty.getContext();
+static bool isTypeUnitScoped(DIType Ty, const DwarfDebug *DD) {
+ DIScope Parent = DD->resolve(Ty.getContext());
while (Parent) {
// Don't generate a hash for anything scoped inside a function.
if (Parent.isSubprogram())
return false;
- Parent = Parent.getContext();
+ Parent = DD->resolve(Parent.getContext());
}
return true;
}
/// Return true if the type should be split out into a type unit.
-static bool shouldCreateTypeUnit(DICompositeType CTy) {
- unsigned Tag = CTy.getTag();
+static bool shouldCreateTypeUnit(DICompositeType CTy, const DwarfDebug *DD) {
+ uint16_t Tag = CTy.getTag();
switch (Tag) {
case dwarf::DW_TAG_structure_type:
@@ -904,13 +1117,11 @@ static bool shouldCreateTypeUnit(DICompositeType CTy) {
case dwarf::DW_TAG_enumeration_type:
case dwarf::DW_TAG_class_type:
// If this is a class, structure, union, or enumeration type
- // that is not a declaration, is a type definition, and not scoped
+ // that is a definition (not a declaration), and not scoped
// inside a function then separate this out as a type unit.
- if (CTy.isForwardDecl() || !isTypeUnitScoped(CTy))
- return 0;
- return 1;
+ return !CTy.isForwardDecl() && isTypeUnitScoped(CTy, DD);
default:
- return 0;
+ return false;
}
}
@@ -920,69 +1131,47 @@ void CompileUnit::constructTypeDIE(DIE &Buffer, DICompositeType CTy) {
StringRef Name = CTy.getName();
uint64_t Size = CTy.getSizeInBits() >> 3;
- unsigned Tag = CTy.getTag();
- Buffer.setTag(Tag);
+ uint16_t Tag = Buffer.getTag();
switch (Tag) {
case dwarf::DW_TAG_array_type:
- constructArrayTypeDIE(Buffer, &CTy);
+ constructArrayTypeDIE(Buffer, CTy);
break;
- case dwarf::DW_TAG_enumeration_type: {
- DIArray Elements = CTy.getTypeArray();
-
- // Add enumerators to enumeration type.
- for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
- DIE *ElemDie = NULL;
- DIDescriptor Enum(Elements.getElement(i));
- if (Enum.isEnumerator()) {
- ElemDie = constructEnumTypeDIE(DIEnumerator(Enum));
- Buffer.addChild(ElemDie);
- }
- }
- DIType DTy = CTy.getTypeDerivedFrom();
- if (DTy.isType()) {
- addType(&Buffer, DTy);
- addUInt(&Buffer, dwarf::DW_AT_enum_class, dwarf::DW_FORM_flag, 1);
- }
- }
+ case dwarf::DW_TAG_enumeration_type:
+ constructEnumTypeDIE(Buffer, CTy);
break;
case dwarf::DW_TAG_subroutine_type: {
- // Add return type.
+ // Add return type. A void return won't have a type.
DIArray Elements = CTy.getTypeArray();
- DIDescriptor RTy = Elements.getElement(0);
- addType(&Buffer, DIType(RTy));
+ DIType RTy(Elements.getElement(0));
+ if (RTy)
+ addType(&Buffer, RTy);
bool isPrototyped = true;
// Add arguments.
for (unsigned i = 1, N = Elements.getNumElements(); i < N; ++i) {
DIDescriptor Ty = Elements.getElement(i);
if (Ty.isUnspecifiedParameter()) {
- DIE *Arg = new DIE(dwarf::DW_TAG_unspecified_parameters);
- Buffer.addChild(Arg);
+ createAndAddDIE(dwarf::DW_TAG_unspecified_parameters, Buffer);
isPrototyped = false;
} else {
- DIE *Arg = new DIE(dwarf::DW_TAG_formal_parameter);
+ DIE *Arg = createAndAddDIE(dwarf::DW_TAG_formal_parameter, Buffer);
addType(Arg, DIType(Ty));
if (DIType(Ty).isArtificial())
addFlag(Arg, dwarf::DW_AT_artificial);
- Buffer.addChild(Arg);
}
}
// Add prototype flag if we're dealing with a C language and the
// function has been prototyped.
+ uint16_t Language = getLanguage();
if (isPrototyped &&
- (Language == dwarf::DW_LANG_C89 ||
- Language == dwarf::DW_LANG_C99 ||
+ (Language == dwarf::DW_LANG_C89 || Language == dwarf::DW_LANG_C99 ||
Language == dwarf::DW_LANG_ObjC))
addFlag(&Buffer, dwarf::DW_AT_prototyped);
- }
- break;
+ } break;
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_union_type:
case dwarf::DW_TAG_class_type: {
- if (CTy.isForwardDecl())
- break;
-
// Add elements to structure type.
DIArray Elements = CTy.getTypeArray();
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
@@ -990,7 +1179,7 @@ void CompileUnit::constructTypeDIE(DIE &Buffer, DICompositeType CTy) {
DIE *ElemDie = NULL;
if (Element.isSubprogram()) {
DISubprogram SP(Element);
- ElemDie = getOrCreateSubprogramDIE(DISubprogram(Element));
+ ElemDie = getOrCreateSubprogramDIE(SP);
if (SP.isProtected())
addUInt(ElemDie, dwarf::DW_AT_accessibility, dwarf::DW_FORM_data1,
dwarf::DW_ACCESS_protected);
@@ -999,21 +1188,23 @@ void CompileUnit::constructTypeDIE(DIE &Buffer, DICompositeType CTy) {
dwarf::DW_ACCESS_private);
else
addUInt(ElemDie, dwarf::DW_AT_accessibility, dwarf::DW_FORM_data1,
- dwarf::DW_ACCESS_public);
+ dwarf::DW_ACCESS_public);
if (SP.isExplicit())
addFlag(ElemDie, dwarf::DW_AT_explicit);
} else if (Element.isDerivedType()) {
DIDerivedType DDTy(Element);
if (DDTy.getTag() == dwarf::DW_TAG_friend) {
- ElemDie = new DIE(dwarf::DW_TAG_friend);
- addType(ElemDie, DDTy.getTypeDerivedFrom(), dwarf::DW_AT_friend);
- } else if (DDTy.isStaticMember())
- ElemDie = createStaticMemberDIE(DDTy);
- else
- ElemDie = createMemberDIE(DDTy);
+ ElemDie = createAndAddDIE(dwarf::DW_TAG_friend, Buffer);
+ addType(ElemDie, resolve(DDTy.getTypeDerivedFrom()),
+ dwarf::DW_AT_friend);
+ } else if (DDTy.isStaticMember()) {
+ getOrCreateStaticMemberDIE(DDTy);
+ } else {
+ constructMemberDIE(Buffer, DDTy);
+ }
} else if (Element.isObjCProperty()) {
DIObjCProperty Property(Element);
- ElemDie = new DIE(Property.getTag());
+ ElemDie = createAndAddDIE(Property.getTag(), Buffer);
StringRef PropertyName = Property.getObjCPropertyName();
addString(ElemDie, dwarf::DW_AT_APPLE_property_name, PropertyName);
addType(ElemDie, Property.getType());
@@ -1038,8 +1229,8 @@ void CompileUnit::constructTypeDIE(DIE &Buffer, DICompositeType CTy) {
if (Property.isNonAtomicObjCProperty())
PropertyAttributes |= dwarf::DW_APPLE_PROPERTY_nonatomic;
if (PropertyAttributes)
- addUInt(ElemDie, dwarf::DW_AT_APPLE_property_attribute, 0,
- PropertyAttributes);
+ addUInt(ElemDie, dwarf::DW_AT_APPLE_property_attribute, None,
+ PropertyAttributes);
DIEEntry *Entry = getDIEEntry(Element);
if (!Entry) {
@@ -1048,18 +1239,15 @@ void CompileUnit::constructTypeDIE(DIE &Buffer, DICompositeType CTy) {
}
} else
continue;
- Buffer.addChild(ElemDie);
}
if (CTy.isAppleBlockExtension())
addFlag(&Buffer, dwarf::DW_AT_APPLE_block);
- DICompositeType ContainingType = CTy.getContainingType();
- if (DIDescriptor(ContainingType).isCompositeType())
- addDIEEntry(&Buffer, dwarf::DW_AT_containing_type, dwarf::DW_FORM_ref4,
- getOrCreateTypeDIE(DIType(ContainingType)));
- else
- addToContextOwner(&Buffer, CTy.getContext());
+ DICompositeType ContainingType(resolve(CTy.getContainingType()));
+ if (ContainingType)
+ addDIEEntry(&Buffer, dwarf::DW_AT_containing_type,
+ getOrCreateTypeDIE(ContainingType));
if (CTy.isObjcClassComplete())
addFlag(&Buffer, dwarf::DW_AT_APPLE_objc_complete_type);
@@ -1067,8 +1255,7 @@ void CompileUnit::constructTypeDIE(DIE &Buffer, DICompositeType CTy) {
// Add template parameters to a class, structure or union types.
// FIXME: The support isn't in the metadata for this yet.
if (Tag == dwarf::DW_TAG_class_type ||
- Tag == dwarf::DW_TAG_structure_type ||
- Tag == dwarf::DW_TAG_union_type)
+ Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type)
addTemplateParams(Buffer, CTy.getTemplateParams());
break;
@@ -1082,16 +1269,15 @@ void CompileUnit::constructTypeDIE(DIE &Buffer, DICompositeType CTy) {
addString(&Buffer, dwarf::DW_AT_name, Name);
if (Tag == dwarf::DW_TAG_enumeration_type ||
- Tag == dwarf::DW_TAG_class_type ||
- Tag == dwarf::DW_TAG_structure_type ||
+ Tag == dwarf::DW_TAG_class_type || Tag == dwarf::DW_TAG_structure_type ||
Tag == dwarf::DW_TAG_union_type) {
// Add size if non-zero (derived types might be zero-sized.)
// TODO: Do we care about size for enum forward declarations?
if (Size)
- addUInt(&Buffer, dwarf::DW_AT_byte_size, 0, Size);
+ addUInt(&Buffer, dwarf::DW_AT_byte_size, None, Size);
else if (!CTy.isForwardDecl())
// Add zero size if it is not a forward declaration.
- addUInt(&Buffer, dwarf::DW_AT_byte_size, 0, 0);
+ addUInt(&Buffer, dwarf::DW_AT_byte_size, None, 0);
// If we're a forward decl, say so.
if (CTy.isForwardDecl())
@@ -1104,131 +1290,126 @@ void CompileUnit::constructTypeDIE(DIE &Buffer, DICompositeType CTy) {
// No harm in adding the runtime language to the declaration.
unsigned RLang = CTy.getRunTimeLang();
if (RLang)
- addUInt(&Buffer, dwarf::DW_AT_APPLE_runtime_class,
- dwarf::DW_FORM_data1, RLang);
+ addUInt(&Buffer, dwarf::DW_AT_APPLE_runtime_class, dwarf::DW_FORM_data1,
+ RLang);
}
// If this is a type applicable to a type unit it then add it to the
// list of types we'll compute a hash for later.
- if (shouldCreateTypeUnit(CTy))
+ if (shouldCreateTypeUnit(CTy, DD))
DD->addTypeUnitType(&Buffer);
}
-/// getOrCreateTemplateTypeParameterDIE - Find existing DIE or create new DIE
-/// for the given DITemplateTypeParameter.
-DIE *
-CompileUnit::getOrCreateTemplateTypeParameterDIE(DITemplateTypeParameter TP) {
- DIE *ParamDIE = getDIE(TP);
- if (ParamDIE)
- return ParamDIE;
-
- ParamDIE = new DIE(dwarf::DW_TAG_template_type_parameter);
- addType(ParamDIE, TP.getType());
+/// constructTemplateTypeParameterDIE - Construct new DIE for the given
+/// DITemplateTypeParameter.
+void
+CompileUnit::constructTemplateTypeParameterDIE(DIE &Buffer,
+ DITemplateTypeParameter TP) {
+ DIE *ParamDIE =
+ createAndAddDIE(dwarf::DW_TAG_template_type_parameter, Buffer);
+ // Add the type if it exists, it could be void and therefore no type.
+ if (TP.getType())
+ addType(ParamDIE, resolve(TP.getType()));
if (!TP.getName().empty())
addString(ParamDIE, dwarf::DW_AT_name, TP.getName());
- return ParamDIE;
-}
-
-/// getOrCreateTemplateValueParameterDIE - Find existing DIE or create new DIE
-/// for the given DITemplateValueParameter.
-DIE *
-CompileUnit::getOrCreateTemplateValueParameterDIE(DITemplateValueParameter TPV){
- DIE *ParamDIE = getDIE(TPV);
- if (ParamDIE)
- return ParamDIE;
-
- ParamDIE = new DIE(TPV.getTag());
- addType(ParamDIE, TPV.getType());
- if (!TPV.getName().empty())
- addString(ParamDIE, dwarf::DW_AT_name, TPV.getName());
- if (Value *Val = TPV.getValue()) {
+}
+
+/// constructTemplateValueParameterDIE - Construct new DIE for the given
+/// DITemplateValueParameter.
+void
+CompileUnit::constructTemplateValueParameterDIE(DIE &Buffer,
+ DITemplateValueParameter VP) {
+ DIE *ParamDIE = createAndAddDIE(VP.getTag(), Buffer);
+
+ // Add the type if there is one, template template and template parameter
+ // packs will not have a type.
+ if (VP.getTag() == dwarf::DW_TAG_template_value_parameter)
+ addType(ParamDIE, resolve(VP.getType()));
+ if (!VP.getName().empty())
+ addString(ParamDIE, dwarf::DW_AT_name, VP.getName());
+ if (Value *Val = VP.getValue()) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val))
- addConstantValue(ParamDIE, CI, TPV.getType().isUnsignedDIType());
+ addConstantValue(ParamDIE, CI,
+ isUnsignedDIType(DD, resolve(VP.getType())));
else if (GlobalValue *GV = dyn_cast<GlobalValue>(Val)) {
// For declaration non-type template parameters (such as global values and
// functions)
DIEBlock *Block = new (DIEValueAllocator) DIEBlock();
- addOpAddress(Block, Asm->Mang->getSymbol(GV));
+ addOpAddress(Block, Asm->getSymbol(GV));
// Emit DW_OP_stack_value to use the address as the immediate value of the
// parameter, rather than a pointer to it.
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_stack_value);
- addBlock(ParamDIE, dwarf::DW_AT_location, 0, Block);
- } else if (TPV.getTag() == dwarf::DW_TAG_GNU_template_template_param) {
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_stack_value);
+ addBlock(ParamDIE, dwarf::DW_AT_location, Block);
+ } else if (VP.getTag() == dwarf::DW_TAG_GNU_template_template_param) {
assert(isa<MDString>(Val));
addString(ParamDIE, dwarf::DW_AT_GNU_template_name,
cast<MDString>(Val)->getString());
- } else if (TPV.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack) {
+ } else if (VP.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack) {
assert(isa<MDNode>(Val));
DIArray A(cast<MDNode>(Val));
addTemplateParams(*ParamDIE, A);
}
}
-
- return ParamDIE;
}
/// getOrCreateNameSpace - Create a DIE for DINameSpace.
DIE *CompileUnit::getOrCreateNameSpace(DINameSpace NS) {
+ // Construct the context before querying for the existence of the DIE in case
+ // such construction creates the DIE.
+ DIE *ContextDIE = getOrCreateContextDIE(NS.getContext());
+
DIE *NDie = getDIE(NS);
if (NDie)
return NDie;
- NDie = new DIE(dwarf::DW_TAG_namespace);
- insertDIE(NS, NDie);
+ NDie = createAndAddDIE(dwarf::DW_TAG_namespace, *ContextDIE, NS);
+
if (!NS.getName().empty()) {
addString(NDie, dwarf::DW_AT_name, NS.getName());
addAccelNamespace(NS.getName(), NDie);
+ addGlobalName(NS.getName(), NDie, NS.getContext());
} else
addAccelNamespace("(anonymous namespace)", NDie);
addSourceLine(NDie, NS);
- addToContextOwner(NDie, NS.getContext());
return NDie;
}
/// getOrCreateSubprogramDIE - Create new DIE using SP.
DIE *CompileUnit::getOrCreateSubprogramDIE(DISubprogram SP) {
+ // Construct the context before querying for the existence of the DIE in case
+ // such construction creates the DIE (as is the case for member function
+ // declarations).
+ DIE *ContextDIE = getOrCreateContextDIE(resolve(SP.getContext()));
+
DIE *SPDie = getDIE(SP);
if (SPDie)
return SPDie;
- SPDie = new DIE(dwarf::DW_TAG_subprogram);
+ DISubprogram SPDecl = SP.getFunctionDeclaration();
+ if (SPDecl.isSubprogram())
+ // Add subprogram definitions to the CU die directly.
+ ContextDIE = CUDie.get();
// DW_TAG_inlined_subroutine may refer to this DIE.
- insertDIE(SP, SPDie);
+ SPDie = createAndAddDIE(dwarf::DW_TAG_subprogram, *ContextDIE, SP);
- DISubprogram SPDecl = SP.getFunctionDeclaration();
DIE *DeclDie = NULL;
- if (SPDecl.isSubprogram()) {
+ if (SPDecl.isSubprogram())
DeclDie = getOrCreateSubprogramDIE(SPDecl);
- }
-
- // Add to context owner.
- addToContextOwner(SPDie, SP.getContext());
// Add function template parameters.
addTemplateParams(*SPDie, SP.getTemplateParams());
- // Unfortunately this code needs to stay here instead of below the
- // AT_specification code in order to work around a bug in older
- // gdbs that requires the linkage name to resolve multiple template
- // functions.
- // TODO: Remove this set of code when we get rid of the old gdb
- // compatibility.
- StringRef LinkageName = SP.getLinkageName();
- if (!LinkageName.empty() && DD->useDarwinGDBCompat())
- addString(SPDie, dwarf::DW_AT_MIPS_linkage_name,
- GlobalValue::getRealLinkageName(LinkageName));
-
// If this DIE is going to refer declaration info using AT_specification
// then there is no need to add other attributes.
if (DeclDie) {
// Refer function declaration directly.
- addDIEEntry(SPDie, dwarf::DW_AT_specification, dwarf::DW_FORM_ref4,
- DeclDie);
+ addDIEEntry(SPDie, dwarf::DW_AT_specification, DeclDie);
return SPDie;
}
// Add the linkage name if we have one.
- if (!LinkageName.empty() && !DD->useDarwinGDBCompat())
+ StringRef LinkageName = SP.getLinkageName();
+ if (!LinkageName.empty())
addString(SPDie, dwarf::DW_AT_MIPS_linkage_name,
GlobalValue::getRealLinkageName(LinkageName));
@@ -1240,29 +1421,31 @@ DIE *CompileUnit::getOrCreateSubprogramDIE(DISubprogram SP) {
// Add the prototype if we have a prototype and we have a C like
// language.
+ uint16_t Language = getLanguage();
if (SP.isPrototyped() &&
- (Language == dwarf::DW_LANG_C89 ||
- Language == dwarf::DW_LANG_C99 ||
+ (Language == dwarf::DW_LANG_C89 || Language == dwarf::DW_LANG_C99 ||
Language == dwarf::DW_LANG_ObjC))
addFlag(SPDie, dwarf::DW_AT_prototyped);
- // Add Return Type.
DICompositeType SPTy = SP.getType();
assert(SPTy.getTag() == dwarf::DW_TAG_subroutine_type &&
"the type of a subprogram should be a subroutine");
DIArray Args = SPTy.getTypeArray();
- addType(SPDie, DIType(Args.getElement(0)));
+ // Add a return type. If this is a type like a C/C++ void type we don't add a
+ // return type.
+ if (Args.getElement(0))
+ addType(SPDie, DIType(Args.getElement(0)));
unsigned VK = SP.getVirtuality();
if (VK) {
addUInt(SPDie, dwarf::DW_AT_virtuality, dwarf::DW_FORM_data1, VK);
DIEBlock *Block = getDIEBlock();
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_constu);
- addUInt(Block, 0, dwarf::DW_FORM_udata, SP.getVirtualIndex());
- addBlock(SPDie, dwarf::DW_AT_vtable_elem_location, 0, Block);
- ContainingTypeMap.insert(std::make_pair(SPDie,
- SP.getContainingType()));
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_constu);
+ addUInt(Block, dwarf::DW_FORM_udata, SP.getVirtualIndex());
+ addBlock(SPDie, dwarf::DW_AT_vtable_elem_location, Block);
+ ContainingTypeMap.insert(
+ std::make_pair(SPDie, resolve(SP.getContainingType())));
}
if (!SP.isDefinition()) {
@@ -1270,13 +1453,12 @@ DIE *CompileUnit::getOrCreateSubprogramDIE(DISubprogram SP) {
// Add arguments. Do not add arguments for subprogram definition. They will
// be handled while processing variables.
- for (unsigned i = 1, N = Args.getNumElements(); i < N; ++i) {
- DIE *Arg = new DIE(dwarf::DW_TAG_formal_parameter);
- DIType ATy = DIType(Args.getElement(i));
+ for (unsigned i = 1, N = Args.getNumElements(); i < N; ++i) {
+ DIE *Arg = createAndAddDIE(dwarf::DW_TAG_formal_parameter, *SPDie);
+ DIType ATy(Args.getElement(i));
addType(Arg, ATy);
if (ATy.isArtificial())
addFlag(Arg, dwarf::DW_AT_artificial);
- SPDie->addChild(Arg);
}
}
@@ -1324,16 +1506,16 @@ static const ConstantExpr *getMergedGlobalExpr(const Value *V) {
}
/// createGlobalVariableDIE - create global variable DIE.
-void CompileUnit::createGlobalVariableDIE(const MDNode *N) {
+void CompileUnit::createGlobalVariableDIE(DIGlobalVariable GV) {
+
// Check for pre-existence.
- if (getDIE(N))
+ if (getDIE(GV))
return;
- DIGlobalVariable GV(N);
if (!GV.isGlobalVariable())
return;
- DIDescriptor GVContext = GV.getContext();
+ DIScope GVContext = GV.getContext();
DIType GTy = GV.getType();
// If this is a static data member definition, some attributes belong
@@ -1344,35 +1526,30 @@ void CompileUnit::createGlobalVariableDIE(const MDNode *N) {
if (SDMDecl.Verify()) {
assert(SDMDecl.isStaticMember() && "Expected static member decl");
// We need the declaration DIE that is in the static member's class.
- // But that class might not exist in the DWARF yet.
- // Creating the class will create the static member decl DIE.
- getOrCreateContextDIE(SDMDecl.getContext());
- VariableDIE = getDIE(SDMDecl);
- assert(VariableDIE && "Static member decl has no context?");
+ VariableDIE = getOrCreateStaticMemberDIE(SDMDecl);
IsStaticMember = true;
}
// If this is not a static data member definition, create the variable
// DIE and add the initial set of attributes to it.
if (!VariableDIE) {
- VariableDIE = new DIE(GV.getTag());
+ // Construct the context before querying for the existence of the DIE in
+ // case such construction creates the DIE.
+ DIE *ContextDIE = getOrCreateContextDIE(GVContext);
+
// Add to map.
- insertDIE(N, VariableDIE);
+ VariableDIE = createAndAddDIE(GV.getTag(), *ContextDIE, GV);
// Add name and type.
addString(VariableDIE, dwarf::DW_AT_name, GV.getDisplayName());
addType(VariableDIE, GTy);
// Add scoping info.
- if (!GV.isLocalToUnit()) {
+ if (!GV.isLocalToUnit())
addFlag(VariableDIE, dwarf::DW_AT_external);
- addGlobalName(GV.getName(), VariableDIE);
- }
// Add line number info.
addSourceLine(VariableDIE, GV);
- // Add to context owner.
- addToContextOwner(VariableDIE, GVContext);
}
// Add location.
@@ -1382,7 +1559,7 @@ void CompileUnit::createGlobalVariableDIE(const MDNode *N) {
if (isGlobalVariable) {
addToAccelTable = true;
DIEBlock *Block = new (DIEValueAllocator) DIEBlock();
- const MCSymbol *Sym = Asm->Mang->getSymbol(GV.getGlobal());
+ const MCSymbol *Sym = Asm->getSymbol(GV.getGlobal());
if (GV.getGlobal()->isThreadLocal()) {
// FIXME: Make this work with -gsplit-dwarf.
unsigned PointerSize = Asm->getDataLayout().getPointerSize();
@@ -1393,68 +1570,62 @@ void CompileUnit::createGlobalVariableDIE(const MDNode *N) {
// Based on GCC's support for TLS:
if (!DD->useSplitDwarf()) {
// 1) Start with a constNu of the appropriate pointer size
- addUInt(Block, 0, dwarf::DW_FORM_data1,
+ addUInt(Block, dwarf::DW_FORM_data1,
PointerSize == 4 ? dwarf::DW_OP_const4u : dwarf::DW_OP_const8u);
- // 2) containing the (relocated) address of the TLS variable
- addExpr(Block, 0, dwarf::DW_FORM_udata, Expr);
+ // 2) containing the (relocated) offset of the TLS variable
+ // within the module's TLS block.
+ addExpr(Block, dwarf::DW_FORM_udata, Expr);
} else {
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_const_index);
- addUInt(Block, 0, dwarf::DW_FORM_udata, DU->getAddrPoolIndex(Expr));
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_const_index);
+ addUInt(Block, dwarf::DW_FORM_udata, DU->getAddrPoolIndex(Expr));
}
- // 3) followed by a custom OP to tell the debugger about TLS (presumably)
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_lo_user);
+ // 3) followed by a custom OP to make the debugger do a TLS lookup.
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_push_tls_address);
} else
addOpAddress(Block, Sym);
// Do not create specification DIE if context is either compile unit
// or a subprogram.
if (GVContext && GV.isDefinition() && !GVContext.isCompileUnit() &&
- !GVContext.isFile() && !isSubprogramContext(GVContext)) {
+ !GVContext.isFile() && !DD->isSubprogramContext(GVContext)) {
// Create specification DIE.
- VariableSpecDIE = new DIE(dwarf::DW_TAG_variable);
- addDIEEntry(VariableSpecDIE, dwarf::DW_AT_specification,
- dwarf::DW_FORM_ref4, VariableDIE);
- addBlock(VariableSpecDIE, dwarf::DW_AT_location, 0, Block);
+ VariableSpecDIE = createAndAddDIE(dwarf::DW_TAG_variable, *CUDie);
+ addDIEEntry(VariableSpecDIE, dwarf::DW_AT_specification, VariableDIE);
+ addBlock(VariableSpecDIE, dwarf::DW_AT_location, Block);
// A static member's declaration is already flagged as such.
if (!SDMDecl.Verify())
addFlag(VariableDIE, dwarf::DW_AT_declaration);
- addDie(VariableSpecDIE);
} else {
- addBlock(VariableDIE, dwarf::DW_AT_location, 0, Block);
+ addBlock(VariableDIE, dwarf::DW_AT_location, Block);
}
- // Add linkage name.
+ // Add the linkage name.
StringRef LinkageName = GV.getLinkageName();
- if (!LinkageName.empty()) {
+ if (!LinkageName.empty())
// From DWARF4: DIEs to which DW_AT_linkage_name may apply include:
// TAG_common_block, TAG_constant, TAG_entry_point, TAG_subprogram and
// TAG_variable.
- addString(IsStaticMember && VariableSpecDIE ?
- VariableSpecDIE : VariableDIE, dwarf::DW_AT_MIPS_linkage_name,
+ addString(IsStaticMember && VariableSpecDIE ? VariableSpecDIE
+ : VariableDIE,
+ dwarf::DW_AT_MIPS_linkage_name,
GlobalValue::getRealLinkageName(LinkageName));
- // In compatibility mode with older gdbs we put the linkage name on both
- // the TAG_variable DIE and on the TAG_member DIE.
- if (IsStaticMember && VariableSpecDIE && DD->useDarwinGDBCompat())
- addString(VariableDIE, dwarf::DW_AT_MIPS_linkage_name,
- GlobalValue::getRealLinkageName(LinkageName));
- }
} else if (const ConstantInt *CI =
- dyn_cast_or_null<ConstantInt>(GV.getConstant())) {
+ dyn_cast_or_null<ConstantInt>(GV.getConstant())) {
// AT_const_value was added when the static member was created. To avoid
// emitting AT_const_value multiple times, we only add AT_const_value when
// it is not a static member.
if (!IsStaticMember)
- addConstantValue(VariableDIE, CI, GTy.isUnsignedDIType());
- } else if (const ConstantExpr *CE = getMergedGlobalExpr(N->getOperand(11))) {
+ addConstantValue(VariableDIE, CI, isUnsignedDIType(DD, GTy));
+ } else if (const ConstantExpr *CE = getMergedGlobalExpr(GV->getOperand(11))) {
addToAccelTable = true;
// GV is a merged global.
DIEBlock *Block = new (DIEValueAllocator) DIEBlock();
Value *Ptr = CE->getOperand(0);
- addOpAddress(Block, Asm->Mang->getSymbol(cast<GlobalValue>(Ptr)));
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_constu);
- SmallVector<Value*, 3> Idx(CE->op_begin()+1, CE->op_end());
- addUInt(Block, 0, dwarf::DW_FORM_udata,
- Asm->getDataLayout().getIndexedOffset(Ptr->getType(), Idx));
- addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_plus);
- addBlock(VariableDIE, dwarf::DW_AT_location, 0, Block);
+ addOpAddress(Block, Asm->getSymbol(cast<GlobalValue>(Ptr)));
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_constu);
+ SmallVector<Value *, 3> Idx(CE->op_begin() + 1, CE->op_end());
+ addUInt(Block, dwarf::DW_FORM_udata,
+ Asm->getDataLayout().getIndexedOffset(Ptr->getType(), Idx));
+ addUInt(Block, dwarf::DW_FORM_data1, dwarf::DW_OP_plus);
+ addBlock(VariableDIE, dwarf::DW_AT_location, Block);
}
if (addToAccelTable) {
@@ -1466,13 +1637,17 @@ void CompileUnit::createGlobalVariableDIE(const MDNode *N) {
if (GV.getLinkageName() != "" && GV.getName() != GV.getLinkageName())
addAccelName(GV.getLinkageName(), AddrDIE);
}
+
+ if (!GV.isLocalToUnit())
+ addGlobalName(GV.getName(), VariableSpecDIE ? VariableSpecDIE : VariableDIE,
+ GV.getContext());
}
/// constructSubrangeDIE - Construct subrange DIE from DISubrange.
void CompileUnit::constructSubrangeDIE(DIE &Buffer, DISubrange SR,
DIE *IndexTy) {
- DIE *DW_Subrange = new DIE(dwarf::DW_TAG_subrange_type);
- addDIEEntry(DW_Subrange, dwarf::DW_AT_type, dwarf::DW_FORM_ref4, IndexTy);
+ DIE *DW_Subrange = createAndAddDIE(dwarf::DW_TAG_subrange_type, Buffer);
+ addDIEEntry(DW_Subrange, dwarf::DW_AT_type, IndexTy);
// The LowerBound value defines the lower bounds which is typically zero for
// C/C++. The Count value is the number of elements. Values are 64 bit. If
@@ -1485,26 +1660,22 @@ void CompileUnit::constructSubrangeDIE(DIE &Buffer, DISubrange SR,
int64_t Count = SR.getCount();
if (DefaultLowerBound == -1 || LowerBound != DefaultLowerBound)
- addUInt(DW_Subrange, dwarf::DW_AT_lower_bound, 0, LowerBound);
+ addUInt(DW_Subrange, dwarf::DW_AT_lower_bound, None, LowerBound);
if (Count != -1 && Count != 0)
// FIXME: An unbounded array should reference the expression that defines
// the array.
- addUInt(DW_Subrange, dwarf::DW_AT_upper_bound, 0, LowerBound + Count - 1);
-
- Buffer.addChild(DW_Subrange);
+ addUInt(DW_Subrange, dwarf::DW_AT_upper_bound, None,
+ LowerBound + Count - 1);
}
/// constructArrayTypeDIE - Construct array type DIE from DICompositeType.
-void CompileUnit::constructArrayTypeDIE(DIE &Buffer,
- DICompositeType *CTy) {
- Buffer.setTag(dwarf::DW_TAG_array_type);
- if (CTy->isVector())
+void CompileUnit::constructArrayTypeDIE(DIE &Buffer, DICompositeType CTy) {
+ if (CTy.isVector())
addFlag(&Buffer, dwarf::DW_AT_GNU_vector);
- // Emit derived type.
- addType(&Buffer, CTy->getTypeDerivedFrom());
- DIArray Elements = CTy->getTypeArray();
+ // Emit the element type.
+ addType(&Buffer, resolve(CTy.getTypeDerivedFrom()));
// Get an anonymous type for index type.
// FIXME: This type should be passed down from the front end
@@ -1512,16 +1683,16 @@ void CompileUnit::constructArrayTypeDIE(DIE &Buffer,
DIE *IdxTy = getIndexTyDie();
if (!IdxTy) {
// Construct an anonymous type for index type.
- IdxTy = new DIE(dwarf::DW_TAG_base_type);
+ IdxTy = createAndAddDIE(dwarf::DW_TAG_base_type, *CUDie.get());
addString(IdxTy, dwarf::DW_AT_name, "int");
- addUInt(IdxTy, dwarf::DW_AT_byte_size, 0, sizeof(int32_t));
+ addUInt(IdxTy, dwarf::DW_AT_byte_size, None, sizeof(int32_t));
addUInt(IdxTy, dwarf::DW_AT_encoding, dwarf::DW_FORM_data1,
dwarf::DW_ATE_signed);
- addDie(IdxTy);
setIndexTyDie(IdxTy);
}
// Add subranges to array type.
+ DIArray Elements = CTy.getTypeArray();
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
DIDescriptor Element = Elements.getElement(i);
if (Element.getTag() == dwarf::DW_TAG_subrange_type)
@@ -1529,168 +1700,180 @@ void CompileUnit::constructArrayTypeDIE(DIE &Buffer,
}
}
-/// constructEnumTypeDIE - Construct enum type DIE from DIEnumerator.
-DIE *CompileUnit::constructEnumTypeDIE(DIEnumerator ETy) {
- DIE *Enumerator = new DIE(dwarf::DW_TAG_enumerator);
- StringRef Name = ETy.getName();
- addString(Enumerator, dwarf::DW_AT_name, Name);
- int64_t Value = ETy.getEnumValue();
- addSInt(Enumerator, dwarf::DW_AT_const_value, dwarf::DW_FORM_sdata, Value);
- return Enumerator;
+/// constructEnumTypeDIE - Construct an enum type DIE from DICompositeType.
+void CompileUnit::constructEnumTypeDIE(DIE &Buffer, DICompositeType CTy) {
+ DIArray Elements = CTy.getTypeArray();
+
+ // Add enumerators to enumeration type.
+ for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
+ DIEnumerator Enum(Elements.getElement(i));
+ if (Enum.isEnumerator()) {
+ DIE *Enumerator = createAndAddDIE(dwarf::DW_TAG_enumerator, Buffer);
+ StringRef Name = Enum.getName();
+ addString(Enumerator, dwarf::DW_AT_name, Name);
+ int64_t Value = Enum.getEnumValue();
+ addSInt(Enumerator, dwarf::DW_AT_const_value, dwarf::DW_FORM_sdata, Value);
+ }
+ }
+ DIType DTy = resolve(CTy.getTypeDerivedFrom());
+ if (DTy) {
+ addType(&Buffer, DTy);
+ addFlag(&Buffer, dwarf::DW_AT_enum_class);
+ }
}
/// constructContainingTypeDIEs - Construct DIEs for types that contain
/// vtables.
void CompileUnit::constructContainingTypeDIEs() {
for (DenseMap<DIE *, const MDNode *>::iterator CI = ContainingTypeMap.begin(),
- CE = ContainingTypeMap.end(); CI != CE; ++CI) {
+ CE = ContainingTypeMap.end();
+ CI != CE; ++CI) {
DIE *SPDie = CI->first;
- const MDNode *N = CI->second;
- if (!N) continue;
- DIE *NDie = getDIE(N);
- if (!NDie) continue;
- addDIEEntry(SPDie, dwarf::DW_AT_containing_type, dwarf::DW_FORM_ref4, NDie);
+ DIDescriptor D(CI->second);
+ if (!D)
+ continue;
+ DIE *NDie = getDIE(D);
+ if (!NDie)
+ continue;
+ addDIEEntry(SPDie, dwarf::DW_AT_containing_type, NDie);
}
}
/// constructVariableDIE - Construct a DIE for the given DbgVariable.
-DIE *CompileUnit::constructVariableDIE(DbgVariable *DV,
- bool isScopeAbstract) {
- StringRef Name = DV->getName();
-
- // Translate tag to proper Dwarf tag.
- unsigned Tag = DV->getTag();
+DIE *CompileUnit::constructVariableDIE(DbgVariable &DV, bool isScopeAbstract) {
+ StringRef Name = DV.getName();
// Define variable debug information entry.
- DIE *VariableDie = new DIE(Tag);
- DbgVariable *AbsVar = DV->getAbstractVariable();
+ DIE *VariableDie = new DIE(DV.getTag());
+ DbgVariable *AbsVar = DV.getAbstractVariable();
DIE *AbsDIE = AbsVar ? AbsVar->getDIE() : NULL;
if (AbsDIE)
- addDIEEntry(VariableDie, dwarf::DW_AT_abstract_origin,
- dwarf::DW_FORM_ref4, AbsDIE);
+ addDIEEntry(VariableDie, dwarf::DW_AT_abstract_origin, AbsDIE);
else {
- addString(VariableDie, dwarf::DW_AT_name, Name);
- addSourceLine(VariableDie, DV->getVariable());
- addType(VariableDie, DV->getType());
+ if (!Name.empty())
+ addString(VariableDie, dwarf::DW_AT_name, Name);
+ addSourceLine(VariableDie, DV.getVariable());
+ addType(VariableDie, DV.getType());
}
- if (DV->isArtificial())
+ if (DV.isArtificial())
addFlag(VariableDie, dwarf::DW_AT_artificial);
if (isScopeAbstract) {
- DV->setDIE(VariableDie);
+ DV.setDIE(VariableDie);
return VariableDie;
}
// Add variable address.
- unsigned Offset = DV->getDotDebugLocOffset();
+ unsigned Offset = DV.getDotDebugLocOffset();
if (Offset != ~0U) {
- addLabel(VariableDie, dwarf::DW_AT_location, dwarf::DW_FORM_data4,
+ addLabel(VariableDie, dwarf::DW_AT_location,
+ DD->getDwarfVersion() >= 4 ? dwarf::DW_FORM_sec_offset
+ : dwarf::DW_FORM_data4,
Asm->GetTempSymbol("debug_loc", Offset));
- DV->setDIE(VariableDie);
+ DV.setDIE(VariableDie);
return VariableDie;
}
// Check if variable is described by a DBG_VALUE instruction.
- if (const MachineInstr *DVInsn = DV->getMInsn()) {
+ if (const MachineInstr *DVInsn = DV.getMInsn()) {
assert(DVInsn->getNumOperands() == 3);
if (DVInsn->getOperand(0).isReg()) {
const MachineOperand RegOp = DVInsn->getOperand(0);
// If the second operand is an immediate, this is an indirect value.
if (DVInsn->getOperand(1).isImm()) {
- MachineLocation Location(RegOp.getReg(), DVInsn->getOperand(1).getImm());
- addVariableAddress(*DV, VariableDie, Location);
+ MachineLocation Location(RegOp.getReg(),
+ DVInsn->getOperand(1).getImm());
+ addVariableAddress(DV, VariableDie, Location);
} else if (RegOp.getReg())
- addVariableAddress(*DV, VariableDie, MachineLocation(RegOp.getReg()));
+ addVariableAddress(DV, VariableDie, MachineLocation(RegOp.getReg()));
} else if (DVInsn->getOperand(0).isImm())
- addConstantValue(VariableDie, DVInsn->getOperand(0), DV->getType());
+ addConstantValue(VariableDie, DVInsn->getOperand(0), DV.getType());
else if (DVInsn->getOperand(0).isFPImm())
addConstantFPValue(VariableDie, DVInsn->getOperand(0));
else if (DVInsn->getOperand(0).isCImm())
addConstantValue(VariableDie, DVInsn->getOperand(0).getCImm(),
- DV->getType().isUnsignedDIType());
+ isUnsignedDIType(DD, DV.getType()));
- DV->setDIE(VariableDie);
+ DV.setDIE(VariableDie);
return VariableDie;
} else {
// .. else use frame index.
- int FI = DV->getFrameIndex();
+ int FI = DV.getFrameIndex();
if (FI != ~0) {
unsigned FrameReg = 0;
const TargetFrameLowering *TFI = Asm->TM.getFrameLowering();
- int Offset =
- TFI->getFrameIndexReference(*Asm->MF, FI, FrameReg);
+ int Offset = TFI->getFrameIndexReference(*Asm->MF, FI, FrameReg);
MachineLocation Location(FrameReg, Offset);
- addVariableAddress(*DV, VariableDie, Location);
+ addVariableAddress(DV, VariableDie, Location);
}
}
- DV->setDIE(VariableDie);
+ DV.setDIE(VariableDie);
return VariableDie;
}
-/// createMemberDIE - Create new member DIE.
-DIE *CompileUnit::createMemberDIE(DIDerivedType DT) {
- DIE *MemberDie = new DIE(DT.getTag());
+/// constructMemberDIE - Construct member DIE from DIDerivedType.
+void CompileUnit::constructMemberDIE(DIE &Buffer, DIDerivedType DT) {
+ DIE *MemberDie = createAndAddDIE(DT.getTag(), Buffer);
StringRef Name = DT.getName();
if (!Name.empty())
addString(MemberDie, dwarf::DW_AT_name, Name);
- addType(MemberDie, DT.getTypeDerivedFrom());
+ addType(MemberDie, resolve(DT.getTypeDerivedFrom()));
addSourceLine(MemberDie, DT);
DIEBlock *MemLocationDie = new (DIEValueAllocator) DIEBlock();
- addUInt(MemLocationDie, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
-
- uint64_t Size = DT.getSizeInBits();
- uint64_t FieldSize = DT.getOriginalTypeSize();
-
- if (Size != FieldSize) {
- // Handle bitfield.
- addUInt(MemberDie, dwarf::DW_AT_byte_size, 0, DT.getOriginalTypeSize()>>3);
- addUInt(MemberDie, dwarf::DW_AT_bit_size, 0, DT.getSizeInBits());
-
- uint64_t Offset = DT.getOffsetInBits();
- uint64_t AlignMask = ~(DT.getAlignInBits() - 1);
- uint64_t HiMark = (Offset + FieldSize) & AlignMask;
- uint64_t FieldOffset = (HiMark - FieldSize);
- Offset -= FieldOffset;
-
- // Maybe we need to work from the other end.
- if (Asm->getDataLayout().isLittleEndian())
- Offset = FieldSize - (Offset + Size);
- addUInt(MemberDie, dwarf::DW_AT_bit_offset, 0, Offset);
-
- // Here WD_AT_data_member_location points to the anonymous
- // field that includes this bit field.
- addUInt(MemLocationDie, 0, dwarf::DW_FORM_udata, FieldOffset >> 3);
-
- } else
- // This is not a bitfield.
- addUInt(MemLocationDie, 0, dwarf::DW_FORM_udata, DT.getOffsetInBits() >> 3);
+ addUInt(MemLocationDie, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
- if (DT.getTag() == dwarf::DW_TAG_inheritance
- && DT.isVirtual()) {
+ if (DT.getTag() == dwarf::DW_TAG_inheritance && DT.isVirtual()) {
// For C++, virtual base classes are not at fixed offset. Use following
// expression to extract appropriate offset from vtable.
// BaseAddr = ObAddr + *((*ObAddr) - Offset)
DIEBlock *VBaseLocationDie = new (DIEValueAllocator) DIEBlock();
- addUInt(VBaseLocationDie, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_dup);
- addUInt(VBaseLocationDie, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
- addUInt(VBaseLocationDie, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_constu);
- addUInt(VBaseLocationDie, 0, dwarf::DW_FORM_udata, DT.getOffsetInBits());
- addUInt(VBaseLocationDie, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_minus);
- addUInt(VBaseLocationDie, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
- addUInt(VBaseLocationDie, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_plus);
-
- addBlock(MemberDie, dwarf::DW_AT_data_member_location, 0,
- VBaseLocationDie);
- } else
- addBlock(MemberDie, dwarf::DW_AT_data_member_location, 0, MemLocationDie);
+ addUInt(VBaseLocationDie, dwarf::DW_FORM_data1, dwarf::DW_OP_dup);
+ addUInt(VBaseLocationDie, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
+ addUInt(VBaseLocationDie, dwarf::DW_FORM_data1, dwarf::DW_OP_constu);
+ addUInt(VBaseLocationDie, dwarf::DW_FORM_udata, DT.getOffsetInBits());
+ addUInt(VBaseLocationDie, dwarf::DW_FORM_data1, dwarf::DW_OP_minus);
+ addUInt(VBaseLocationDie, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
+ addUInt(VBaseLocationDie, dwarf::DW_FORM_data1, dwarf::DW_OP_plus);
+
+ addBlock(MemberDie, dwarf::DW_AT_data_member_location, VBaseLocationDie);
+ } else {
+ uint64_t Size = DT.getSizeInBits();
+ uint64_t FieldSize = getBaseTypeSize(DD, DT);
+ uint64_t OffsetInBytes;
+
+ if (Size != FieldSize) {
+ // Handle bitfield.
+ addUInt(MemberDie, dwarf::DW_AT_byte_size, None,
+ getBaseTypeSize(DD, DT) >> 3);
+ addUInt(MemberDie, dwarf::DW_AT_bit_size, None, DT.getSizeInBits());
+
+ uint64_t Offset = DT.getOffsetInBits();
+ uint64_t AlignMask = ~(DT.getAlignInBits() - 1);
+ uint64_t HiMark = (Offset + FieldSize) & AlignMask;
+ uint64_t FieldOffset = (HiMark - FieldSize);
+ Offset -= FieldOffset;
+
+ // Maybe we need to work from the other end.
+ if (Asm->getDataLayout().isLittleEndian())
+ Offset = FieldSize - (Offset + Size);
+ addUInt(MemberDie, dwarf::DW_AT_bit_offset, None, Offset);
+
+ // Here WD_AT_data_member_location points to the anonymous
+ // field that includes this bit field.
+ OffsetInBytes = FieldOffset >> 3;
+ } else
+ // This is not a bitfield.
+ OffsetInBytes = DT.getOffsetInBits() >> 3;
+ addUInt(MemberDie, dwarf::DW_AT_data_member_location, None, OffsetInBytes);
+ }
if (DT.isProtected())
addUInt(MemberDie, dwarf::DW_AT_accessibility, dwarf::DW_FORM_data1,
@@ -1714,17 +1897,26 @@ DIE *CompileUnit::createMemberDIE(DIDerivedType DT) {
if (DT.isArtificial())
addFlag(MemberDie, dwarf::DW_AT_artificial);
-
- return MemberDie;
}
-/// createStaticMemberDIE - Create new DIE for C++ static member.
-DIE *CompileUnit::createStaticMemberDIE(const DIDerivedType DT) {
+/// getOrCreateStaticMemberDIE - Create new DIE for C++ static member.
+DIE *CompileUnit::getOrCreateStaticMemberDIE(DIDerivedType DT) {
if (!DT.Verify())
return NULL;
- DIE *StaticMemberDIE = new DIE(DT.getTag());
- DIType Ty = DT.getTypeDerivedFrom();
+ // Construct the context before querying for the existence of the DIE in case
+ // such construction creates the DIE.
+ DIE *ContextDIE = getOrCreateContextDIE(resolve(DT.getContext()));
+ assert(dwarf::isType(ContextDIE->getTag()) &&
+ "Static member should belong to a type.");
+
+ DIE *StaticMemberDIE = getDIE(DT);
+ if (StaticMemberDIE)
+ return StaticMemberDIE;
+
+ StaticMemberDIE = createAndAddDIE(DT.getTag(), *ContextDIE, DT);
+
+ DIType Ty = resolve(DT.getTypeDerivedFrom());
addString(StaticMemberDIE, dwarf::DW_AT_name, DT.getName());
addType(StaticMemberDIE, Ty);
@@ -1745,10 +1937,20 @@ DIE *CompileUnit::createStaticMemberDIE(const DIDerivedType DT) {
dwarf::DW_ACCESS_public);
if (const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(DT.getConstant()))
- addConstantValue(StaticMemberDIE, CI, Ty.isUnsignedDIType());
+ addConstantValue(StaticMemberDIE, CI, isUnsignedDIType(DD, Ty));
if (const ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(DT.getConstant()))
addConstantFPValue(StaticMemberDIE, CFP);
- insertDIE(DT, StaticMemberDIE);
return StaticMemberDIE;
}
+
+void CompileUnit::emitHeader(const MCSection *ASection,
+ const MCSymbol *ASectionSym) {
+ Asm->OutStreamer.AddComment("DWARF version number");
+ Asm->EmitInt16(DD->getDwarfVersion());
+ Asm->OutStreamer.AddComment("Offset Into Abbrev. Section");
+ Asm->EmitSectionOffset(Asm->GetTempSymbol(ASection->getLabelBeginName()),
+ ASectionSym);
+ Asm->OutStreamer.AddComment("Address Size (in bytes)");
+ Asm->EmitInt8(Asm->getDataLayout().getPointerSize());
+}
diff --git a/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h b/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h
index 3908b37..d782c88 100644
--- a/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h
+++ b/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h
@@ -15,7 +15,9 @@
#define CODEGEN_ASMPRINTER_DWARFCOMPILEUNIT_H
#include "DIE.h"
+#include "DwarfDebug.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/DebugInfo.h"
@@ -23,8 +25,6 @@
namespace llvm {
-class DwarfDebug;
-class DwarfUnits;
class MachineLocation;
class MachineOperand;
class ConstantInt;
@@ -39,11 +39,10 @@ class CompileUnit {
///
unsigned UniqueID;
- /// Language - The DW_AT_language of the compile unit
- ///
- unsigned Language;
+ /// Node - MDNode for the compile unit.
+ DICompileUnit Node;
- /// Die - Compile unit debug information entry.
+ /// CUDie - Compile unit debug information entry.
///
const OwningPtr<DIE> CUDie;
@@ -67,18 +66,18 @@ class CompileUnit {
/// GlobalNames - A map of globally visible named entities for this unit.
///
- StringMap<DIE*> GlobalNames;
+ StringMap<DIE *> GlobalNames;
/// GlobalTypes - A map of globally visible types for this unit.
///
- StringMap<DIE*> GlobalTypes;
+ StringMap<DIE *> GlobalTypes;
/// AccelNames - A map of names for the name accelerator table.
///
- StringMap<std::vector<DIE*> > AccelNames;
- StringMap<std::vector<DIE*> > AccelObjC;
- StringMap<std::vector<DIE*> > AccelNamespace;
- StringMap<std::vector<std::pair<DIE*, unsigned> > > AccelTypes;
+ StringMap<std::vector<DIE *> > AccelNames;
+ StringMap<std::vector<DIE *> > AccelObjC;
+ StringMap<std::vector<DIE *> > AccelNamespace;
+ StringMap<std::vector<std::pair<DIE *, unsigned> > > AccelTypes;
/// DIEBlocks - A list of all the DIEBlocks in use.
std::vector<DIEBlock *> DIEBlocks;
@@ -88,165 +87,154 @@ class CompileUnit {
/// corresponds to the MDNode mapped with the subprogram DIE.
DenseMap<DIE *, const MDNode *> ContainingTypeMap;
- /// Offset of the CUDie from beginning of debug info section.
- unsigned DebugInfoOffset;
+ // DIEValueAllocator - All DIEValues are allocated through this allocator.
+ BumpPtrAllocator DIEValueAllocator;
- /// getLowerBoundDefault - Return the default lower bound for an array. If the
- /// DWARF version doesn't handle the language, return -1.
- int64_t getDefaultLowerBound() const;
+ // DIEIntegerOne - A preallocated DIEValue because 1 is used frequently.
+ DIEInteger *DIEIntegerOne;
public:
- CompileUnit(unsigned UID, unsigned L, DIE *D, const MDNode *N, AsmPrinter *A,
+ CompileUnit(unsigned UID, DIE *D, DICompileUnit CU, AsmPrinter *A,
DwarfDebug *DW, DwarfUnits *DWU);
~CompileUnit();
// Accessors.
- unsigned getUniqueID() const { return UniqueID; }
- unsigned getLanguage() const { return Language; }
- DIE* getCUDie() const { return CUDie.get(); }
- unsigned getDebugInfoOffset() const { return DebugInfoOffset; }
- const StringMap<DIE*> &getGlobalNames() const { return GlobalNames; }
- const StringMap<DIE*> &getGlobalTypes() const { return GlobalTypes; }
-
- const StringMap<std::vector<DIE*> > &getAccelNames() const {
+ unsigned getUniqueID() const { return UniqueID; }
+ uint16_t getLanguage() const { return Node.getLanguage(); }
+ DICompileUnit getNode() const { return Node; }
+ DIE *getCUDie() const { return CUDie.get(); }
+ const StringMap<DIE *> &getGlobalNames() const { return GlobalNames; }
+ const StringMap<DIE *> &getGlobalTypes() const { return GlobalTypes; }
+
+ const StringMap<std::vector<DIE *> > &getAccelNames() const {
return AccelNames;
}
- const StringMap<std::vector<DIE*> > &getAccelObjC() const {
+ const StringMap<std::vector<DIE *> > &getAccelObjC() const {
return AccelObjC;
}
- const StringMap<std::vector<DIE*> > &getAccelNamespace() const {
+ const StringMap<std::vector<DIE *> > &getAccelNamespace() const {
return AccelNamespace;
}
- const StringMap<std::vector<std::pair<DIE*, unsigned > > >
- &getAccelTypes() const {
+ const StringMap<std::vector<std::pair<DIE *, unsigned> > > &
+ getAccelTypes() const {
return AccelTypes;
}
+ unsigned getDebugInfoOffset() const { return DebugInfoOffset; }
void setDebugInfoOffset(unsigned DbgInfoOff) { DebugInfoOffset = DbgInfoOff; }
+
/// hasContent - Return true if this compile unit has something to write out.
///
bool hasContent() const { return !CUDie->getChildren().empty(); }
+ /// getParentContextString - Get a string containing the language specific
+ /// context for a global name.
+ std::string getParentContextString(DIScope Context) const;
+
/// addGlobalName - Add a new global entity to the compile unit.
///
- void addGlobalName(StringRef Name, DIE *Die) { GlobalNames[Name] = Die; }
+ void addGlobalName(StringRef Name, DIE *Die, DIScope Context);
/// addGlobalType - Add a new global type to the compile unit.
///
void addGlobalType(DIType Ty);
+ /// addPubTypes - Add a set of types from the subprogram to the global types.
+ void addPubTypes(DISubprogram SP);
/// addAccelName - Add a new name to the name accelerator table.
- void addAccelName(StringRef Name, DIE *Die) {
- std::vector<DIE*> &DIEs = AccelNames[Name];
- DIEs.push_back(Die);
- }
- void addAccelObjC(StringRef Name, DIE *Die) {
- std::vector<DIE*> &DIEs = AccelObjC[Name];
- DIEs.push_back(Die);
- }
- void addAccelNamespace(StringRef Name, DIE *Die) {
- std::vector<DIE*> &DIEs = AccelNamespace[Name];
- DIEs.push_back(Die);
- }
- void addAccelType(StringRef Name, std::pair<DIE *, unsigned> Die) {
- std::vector<std::pair<DIE *, unsigned> > &DIEs = AccelTypes[Name];
- DIEs.push_back(Die);
- }
+ void addAccelName(StringRef Name, DIE *Die);
- /// getDIE - Returns the debug information entry map slot for the
- /// specified debug variable.
- DIE *getDIE(const MDNode *N) const { return MDNodeToDieMap.lookup(N); }
+ /// addAccelObjC - Add a new name to the ObjC accelerator table.
+ void addAccelObjC(StringRef Name, DIE *Die);
- DIEBlock *getDIEBlock() {
- return new (DIEValueAllocator) DIEBlock();
- }
+ /// addAccelNamespace - Add a new name to the namespace accelerator table.
+ void addAccelNamespace(StringRef Name, DIE *Die);
- /// insertDIE - Insert DIE into the map.
- void insertDIE(const MDNode *N, DIE *D) {
- MDNodeToDieMap.insert(std::make_pair(N, D));
- }
+ /// addAccelType - Add a new type to the type accelerator table.
+ void addAccelType(StringRef Name, std::pair<DIE *, unsigned> Die);
- /// getDIEEntry - Returns the debug information entry for the specified
- /// debug variable.
- DIEEntry *getDIEEntry(const MDNode *N) const {
- return MDNodeToDIEEntryMap.lookup(N);
- }
+ /// getDIE - Returns the debug information entry map slot for the
+ /// specified debug variable. We delegate the request to DwarfDebug
+ /// when the MDNode can be part of the type system, since DIEs for
+ /// the type system can be shared across CUs and the mappings are
+ /// kept in DwarfDebug.
+ DIE *getDIE(DIDescriptor D) const;
- /// insertDIEEntry - Insert debug information entry into the map.
- void insertDIEEntry(const MDNode *N, DIEEntry *E) {
- MDNodeToDIEEntryMap.insert(std::make_pair(N, E));
- }
+ DIEBlock *getDIEBlock() { return new (DIEValueAllocator) DIEBlock(); }
+
+ /// insertDIE - Insert DIE into the map. We delegate the request to DwarfDebug
+ /// when the MDNode can be part of the type system, since DIEs for
+ /// the type system can be shared across CUs and the mappings are
+ /// kept in DwarfDebug.
+ void insertDIE(DIDescriptor Desc, DIE *D);
/// addDie - Adds or interns the DIE to the compile unit.
///
- void addDie(DIE *Buffer) {
- this->CUDie->addChild(Buffer);
- }
-
- // getIndexTyDie - Get an anonymous type for index type.
- DIE *getIndexTyDie() {
- return IndexTyDie;
- }
-
- // setIndexTyDie - Set D as anonymous type for index which can be reused
- // later.
- void setIndexTyDie(DIE *D) {
- IndexTyDie = D;
- }
+ void addDie(DIE *Buffer) { CUDie->addChild(Buffer); }
/// addFlag - Add a flag that is true to the DIE.
- void addFlag(DIE *Die, unsigned Attribute);
+ void addFlag(DIE *Die, dwarf::Attribute Attribute);
/// addUInt - Add an unsigned integer attribute data and value.
///
- void addUInt(DIE *Die, unsigned Attribute, unsigned Form, uint64_t Integer);
+ void addUInt(DIE *Die, dwarf::Attribute Attribute, Optional<dwarf::Form> Form,
+ uint64_t Integer);
+
+ void addUInt(DIEBlock *Block, dwarf::Form Form, uint64_t Integer);
/// addSInt - Add an signed integer attribute data and value.
///
- void addSInt(DIE *Die, unsigned Attribute, unsigned Form, int64_t Integer);
+ void addSInt(DIE *Die, dwarf::Attribute Attribute, Optional<dwarf::Form> Form,
+ int64_t Integer);
+
+ void addSInt(DIEBlock *Die, Optional<dwarf::Form> Form, int64_t Integer);
/// addString - Add a string attribute data and value.
///
- void addString(DIE *Die, unsigned Attribute, const StringRef Str);
+ void addString(DIE *Die, dwarf::Attribute Attribute, const StringRef Str);
/// addLocalString - Add a string attribute data and value.
///
- void addLocalString(DIE *Die, unsigned Attribute, const StringRef Str);
+ void addLocalString(DIE *Die, dwarf::Attribute Attribute, const StringRef Str);
/// addExpr - Add a Dwarf expression attribute data and value.
///
- void addExpr(DIE *Die, unsigned Attribute, unsigned Form,
- const MCExpr *Expr);
+ void addExpr(DIEBlock *Die, dwarf::Form Form, const MCExpr *Expr);
/// addLabel - Add a Dwarf label attribute data and value.
///
- void addLabel(DIE *Die, unsigned Attribute, unsigned Form,
+ void addLabel(DIE *Die, dwarf::Attribute Attribute, dwarf::Form Form,
const MCSymbol *Label);
+ void addLabel(DIEBlock *Die, dwarf::Form Form, const MCSymbol *Label);
+
/// addLabelAddress - Add a dwarf label attribute data and value using
/// either DW_FORM_addr or DW_FORM_GNU_addr_index.
///
- void addLabelAddress(DIE *Die, unsigned Attribute, MCSymbol *Label);
+ void addLabelAddress(DIE *Die, dwarf::Attribute Attribute, MCSymbol *Label);
/// addOpAddress - Add a dwarf op address data and value using the
/// form given and an op of either DW_FORM_addr or DW_FORM_GNU_addr_index.
///
- void addOpAddress(DIE *Die, const MCSymbol *Label);
- void addOpAddress(DIE *Die, const MCSymbolRefExpr *Label);
+ void addOpAddress(DIEBlock *Die, const MCSymbol *Label);
/// addDelta - Add a label delta attribute data and value.
///
- void addDelta(DIE *Die, unsigned Attribute, unsigned Form,
- const MCSymbol *Hi, const MCSymbol *Lo);
+ void addDelta(DIE *Die, dwarf::Attribute Attribute, dwarf::Form Form, const MCSymbol *Hi,
+ const MCSymbol *Lo);
/// addDIEEntry - Add a DIE attribute data and value.
///
- void addDIEEntry(DIE *Die, unsigned Attribute, unsigned Form, DIE *Entry);
+ void addDIEEntry(DIE *Die, dwarf::Attribute Attribute, DIE *Entry);
+
+ /// addDIEEntry - Add a DIE attribute data and value.
+ ///
+ void addDIEEntry(DIE *Die, dwarf::Attribute Attribute, DIEEntry *Entry);
/// addBlock - Add block data.
///
- void addBlock(DIE *Die, unsigned Attribute, unsigned Form, DIEBlock *Block);
+ void addBlock(DIE *Die, dwarf::Attribute Attribute, DIEBlock *Block);
/// addSourceLine - Add location information to specified debug information
/// entry.
@@ -259,8 +247,8 @@ public:
/// addAddress - Add an address attribute to a die based on the location
/// provided.
- void addAddress(DIE *Die, unsigned Attribute,
- const MachineLocation &Location, bool Indirect = false);
+ void addAddress(DIE *Die, dwarf::Attribute Attribute, const MachineLocation &Location,
+ bool Indirect = false);
/// addConstantValue - Add constant value entry in variable DIE.
void addConstantValue(DIE *Die, const MachineOperand &MO, DIType Ty);
@@ -275,17 +263,17 @@ public:
void addTemplateParams(DIE &Buffer, DIArray TParams);
/// addRegisterOp - Add register operand.
- void addRegisterOp(DIE *TheDie, unsigned Reg);
+ void addRegisterOp(DIEBlock *TheDie, unsigned Reg);
/// addRegisterOffset - Add register offset.
- void addRegisterOffset(DIE *TheDie, unsigned Reg, int64_t Offset);
+ void addRegisterOffset(DIEBlock *TheDie, unsigned Reg, int64_t Offset);
/// addComplexAddress - Start with the address based on the location provided,
/// and generate the DWARF information necessary to find the actual variable
/// (navigating the extra location information encoded in the type) based on
/// the starting location. Add the DWARF information to the die.
///
- void addComplexAddress(const DbgVariable &DV, DIE *Die, unsigned Attribute,
+ void addComplexAddress(const DbgVariable &DV, DIE *Die, dwarf::Attribute Attribute,
const MachineLocation &Location);
// FIXME: Should be reformulated in terms of addComplexAddress.
@@ -295,7 +283,7 @@ public:
/// starting location. Add the DWARF information to the die. Obsolete,
/// please use addComplexAddress instead.
///
- void addBlockByrefAddress(const DbgVariable &DV, DIE *Die, unsigned Attribute,
+ void addBlockByrefAddress(const DbgVariable &DV, DIE *Die, dwarf::Attribute Attribute,
const MachineLocation &Location);
/// addVariableAddress - Add DW_AT_location attribute for a
@@ -303,13 +291,10 @@ public:
void addVariableAddress(const DbgVariable &DV, DIE *Die,
MachineLocation Location);
- /// addToContextOwner - Add Die into the list of its context owner's children.
- void addToContextOwner(DIE *Die, DIDescriptor Context);
-
/// addType - Add a new type attribute to the specified entity. This takes
/// and attribute parameter because DW_AT_friend attributes are also
/// type references.
- void addType(DIE *Entity, DIType Ty, unsigned Attribute = dwarf::DW_AT_type);
+ void addType(DIE *Entity, DIType Ty, dwarf::Attribute Attribute = dwarf::DW_AT_type);
/// getOrCreateNameSpace - Create a DIE for DINameSpace.
DIE *getOrCreateNameSpace(DINameSpace NS);
@@ -321,66 +306,103 @@ public:
/// given DIType.
DIE *getOrCreateTypeDIE(const MDNode *N);
- /// getOrCreateTemplateTypeParameterDIE - Find existing DIE or create new DIE
- /// for the given DITemplateTypeParameter.
- DIE *getOrCreateTemplateTypeParameterDIE(DITemplateTypeParameter TP);
+ /// getOrCreateContextDIE - Get context owner's DIE.
+ DIE *getOrCreateContextDIE(DIScope Context);
- /// getOrCreateTemplateValueParameterDIE - Find existing DIE or create
- /// new DIE for the given DITemplateValueParameter.
- DIE *getOrCreateTemplateValueParameterDIE(DITemplateValueParameter TVP);
+ /// createGlobalVariableDIE - create global variable DIE.
+ void createGlobalVariableDIE(DIGlobalVariable GV);
- /// createDIEEntry - Creates a new DIEEntry to be a proxy for a debug
- /// information entry.
- DIEEntry *createDIEEntry(DIE *Entry);
+ /// constructContainingTypeDIEs - Construct DIEs for types that contain
+ /// vtables.
+ void constructContainingTypeDIEs();
- /// createGlobalVariableDIE - create global variable DIE.
- void createGlobalVariableDIE(const MDNode *N);
+ /// constructVariableDIE - Construct a DIE for the given DbgVariable.
+ DIE *constructVariableDIE(DbgVariable &DV, bool isScopeAbstract);
+
+ /// Create a DIE with the given Tag, add the DIE to its parent, and
+ /// call insertDIE if MD is not null.
+ DIE *createAndAddDIE(unsigned Tag, DIE &Parent, DIDescriptor N = DIDescriptor());
+
+ /// Compute the size of a header for this unit, not including the initial
+ /// length field.
+ unsigned getHeaderSize() const {
+ return sizeof(int16_t) + // DWARF version number
+ sizeof(int32_t) + // Offset Into Abbrev. Section
+ sizeof(int8_t); // Pointer Size (in bytes)
+ }
- void addPubTypes(DISubprogram SP);
+ /// Emit the header for this unit, not including the initial length field.
+ void emitHeader(const MCSection *ASection, const MCSymbol *ASectionSym);
+private:
/// constructTypeDIE - Construct basic type die from DIBasicType.
- void constructTypeDIE(DIE &Buffer,
- DIBasicType BTy);
+ void constructTypeDIE(DIE &Buffer, DIBasicType BTy);
/// constructTypeDIE - Construct derived type die from DIDerivedType.
- void constructTypeDIE(DIE &Buffer,
- DIDerivedType DTy);
+ void constructTypeDIE(DIE &Buffer, DIDerivedType DTy);
/// constructTypeDIE - Construct type DIE from DICompositeType.
- void constructTypeDIE(DIE &Buffer,
- DICompositeType CTy);
+ void constructTypeDIE(DIE &Buffer, DICompositeType CTy);
/// constructSubrangeDIE - Construct subrange DIE from DISubrange.
void constructSubrangeDIE(DIE &Buffer, DISubrange SR, DIE *IndexTy);
/// constructArrayTypeDIE - Construct array type DIE from DICompositeType.
- void constructArrayTypeDIE(DIE &Buffer,
- DICompositeType *CTy);
+ void constructArrayTypeDIE(DIE &Buffer, DICompositeType CTy);
/// constructEnumTypeDIE - Construct enum type DIE from DIEnumerator.
- DIE *constructEnumTypeDIE(DIEnumerator ETy);
+ void constructEnumTypeDIE(DIE &Buffer, DICompositeType CTy);
- /// constructContainingTypeDIEs - Construct DIEs for types that contain
- /// vtables.
- void constructContainingTypeDIEs();
+ /// constructMemberDIE - Construct member DIE from DIDerivedType.
+ void constructMemberDIE(DIE &Buffer, DIDerivedType DT);
- /// constructVariableDIE - Construct a DIE for the given DbgVariable.
- DIE *constructVariableDIE(DbgVariable *DV, bool isScopeAbstract);
+ /// constructTemplateTypeParameterDIE - Construct new DIE for the given
+ /// DITemplateTypeParameter.
+ void constructTemplateTypeParameterDIE(DIE &Buffer,
+ DITemplateTypeParameter TP);
- /// createMemberDIE - Create new member DIE.
- DIE *createMemberDIE(DIDerivedType DT);
+ /// constructTemplateValueParameterDIE - Construct new DIE for the given
+ /// DITemplateValueParameter.
+ void constructTemplateValueParameterDIE(DIE &Buffer,
+ DITemplateValueParameter TVP);
- /// createStaticMemberDIE - Create new static data member DIE.
- DIE *createStaticMemberDIE(DIDerivedType DT);
+ /// getOrCreateStaticMemberDIE - Create new static data member DIE.
+ DIE *getOrCreateStaticMemberDIE(DIDerivedType DT);
- /// getOrCreateContextDIE - Get context owner's DIE.
- DIE *getOrCreateContextDIE(DIDescriptor Context);
+ /// Offset of the CUDie from beginning of debug info section.
+ unsigned DebugInfoOffset;
-private:
+ /// getLowerBoundDefault - Return the default lower bound for an array. If the
+ /// DWARF version doesn't handle the language, return -1.
+ int64_t getDefaultLowerBound() const;
- // DIEValueAllocator - All DIEValues are allocated through this allocator.
- BumpPtrAllocator DIEValueAllocator;
- DIEInteger *DIEIntegerOne;
+ /// getDIEEntry - Returns the debug information entry for the specified
+ /// debug variable.
+ DIEEntry *getDIEEntry(const MDNode *N) const {
+ return MDNodeToDIEEntryMap.lookup(N);
+ }
+
+ /// insertDIEEntry - Insert debug information entry into the map.
+ void insertDIEEntry(const MDNode *N, DIEEntry *E) {
+ MDNodeToDIEEntryMap.insert(std::make_pair(N, E));
+ }
+
+ // getIndexTyDie - Get an anonymous type for index type.
+ DIE *getIndexTyDie() { return IndexTyDie; }
+
+ // setIndexTyDie - Set D as anonymous type for index which can be reused
+ // later.
+ void setIndexTyDie(DIE *D) { IndexTyDie = D; }
+
+ /// createDIEEntry - Creates a new DIEEntry to be a proxy for a debug
+ /// information entry.
+ DIEEntry *createDIEEntry(DIE *Entry);
+
+ /// resolve - Look in the DwarfDebug map for the MDNode that
+ /// corresponds to the reference.
+ template <typename T> T resolve(DIRef<T> Ref) const {
+ return DD->resolve(Ref);
+ }
};
} // end llvm namespace
diff --git a/lib/CodeGen/AsmPrinter/DwarfDebug.cpp b/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
index 979c0c3..24e2c05 100644
--- a/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
@@ -14,6 +14,7 @@
#define DEBUG_TYPE "dwarfdebug"
#include "DwarfDebug.h"
#include "DIE.h"
+#include "DIEHash.h"
#include "DwarfAccelTable.h"
#include "DwarfCompileUnit.h"
#include "llvm/ADT/STLExtras.h"
@@ -34,6 +35,7 @@
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/MD5.h"
@@ -57,15 +59,20 @@ static cl::opt<bool> UnknownLocations(
cl::init(false));
static cl::opt<bool>
-GenerateDwarfPubNamesSection("generate-dwarf-pubnames", cl::Hidden,
- cl::init(false),
- cl::desc("Generate DWARF pubnames section"));
-
-static cl::opt<bool>
GenerateODRHash("generate-odr-hash", cl::Hidden,
cl::desc("Add an ODR hash to external type DIEs."),
cl::init(false));
+static cl::opt<bool>
+GenerateCUHash("generate-cu-hash", cl::Hidden,
+ cl::desc("Add the CU hash as the dwo_id."),
+ cl::init(false));
+
+static cl::opt<bool>
+GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden,
+ cl::desc("Generate GNU-style pubnames and pubtypes"),
+ cl::init(false));
+
namespace {
enum DefaultOnOff {
Default,
@@ -83,14 +90,6 @@ DwarfAccelTables("dwarf-accel-tables", cl::Hidden,
cl::init(Default));
static cl::opt<DefaultOnOff>
-DarwinGDBCompat("darwin-gdb-compat", cl::Hidden,
- cl::desc("Compatibility with Darwin gdb."),
- cl::values(clEnumVal(Default, "Default for platform"),
- clEnumVal(Enable, "Enabled"),
- clEnumVal(Disable, "Disabled"), clEnumValEnd),
- cl::init(Default));
-
-static cl::opt<DefaultOnOff>
SplitDwarf("split-dwarf", cl::Hidden,
cl::desc("Output prototype dwarf split debug info."),
cl::values(clEnumVal(Default, "Default for platform"),
@@ -98,16 +97,16 @@ SplitDwarf("split-dwarf", cl::Hidden,
clEnumVal(Disable, "Disabled"), clEnumValEnd),
cl::init(Default));
-namespace {
- const char *const DWARFGroupName = "DWARF Emission";
- const char *const DbgTimerName = "DWARF Debug Writer";
+static cl::opt<DefaultOnOff>
+DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden,
+ cl::desc("Generate DWARF pubnames and pubtypes sections"),
+ cl::values(clEnumVal(Default, "Default for platform"),
+ clEnumVal(Enable, "Enabled"),
+ clEnumVal(Disable, "Disabled"), clEnumValEnd),
+ cl::init(Default));
- struct CompareFirst {
- template <typename T> bool operator()(const T &lhs, const T &rhs) const {
- return lhs.first < rhs.first;
- }
- };
-} // end anonymous namespace
+static const char *const DWARFGroupName = "DWARF Emission";
+static const char *const DbgTimerName = "DWARF Debug Writer";
//===----------------------------------------------------------------------===//
@@ -117,6 +116,13 @@ static const unsigned InitAbbreviationsSetSize = 9; // log2(512)
namespace llvm {
+/// resolve - Look in the DwarfDebug map for the MDNode that
+/// corresponds to the reference.
+template <typename T>
+T DbgVariable::resolve(DIRef<T> Ref) const {
+ return DD->resolve(Ref);
+}
+
DIType DbgVariable::getType() const {
DIType Ty = Var.getType();
// FIXME: isBlockByrefVariable should be reformulated in terms of complex
@@ -147,21 +153,16 @@ DIType DbgVariable::getType() const {
the pointers and __Block_byref_x_VarName struct to find the actual
value of the variable. The function addBlockByrefType does this. */
DIType subType = Ty;
- unsigned tag = Ty.getTag();
+ uint16_t tag = Ty.getTag();
- if (tag == dwarf::DW_TAG_pointer_type) {
- DIDerivedType DTy = DIDerivedType(Ty);
- subType = DTy.getTypeDerivedFrom();
- }
-
- DICompositeType blockStruct = DICompositeType(subType);
- DIArray Elements = blockStruct.getTypeArray();
+ if (tag == dwarf::DW_TAG_pointer_type)
+ subType = resolve(DIDerivedType(Ty).getTypeDerivedFrom());
+ DIArray Elements = DICompositeType(subType).getTypeArray();
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
- DIDescriptor Element = Elements.getElement(i);
- DIDerivedType DT = DIDerivedType(Element);
+ DIDerivedType DT(Elements.getElement(i));
if (getName() == DT.getName())
- return (DT.getTypeDerivedFrom());
+ return (resolve(DT.getTypeDerivedFrom()));
}
}
return Ty;
@@ -182,10 +183,10 @@ DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
AbbreviationsSet(InitAbbreviationsSetSize),
SourceIdMap(DIEValueAllocator),
PrevLabel(NULL), GlobalCUIndexCount(0),
- InfoHolder(A, &AbbreviationsSet, &Abbreviations, "info_string",
+ InfoHolder(A, &AbbreviationsSet, Abbreviations, "info_string",
DIEValueAllocator),
SkeletonAbbrevSet(InitAbbreviationsSetSize),
- SkeletonHolder(A, &SkeletonAbbrevSet, &SkeletonAbbrevs, "skel_string",
+ SkeletonHolder(A, &SkeletonAbbrevSet, SkeletonAbbrevs, "skel_string",
DIEValueAllocator) {
DwarfInfoSectionSym = DwarfAbbrevSectionSym = 0;
@@ -195,29 +196,24 @@ DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
DwarfAbbrevDWOSectionSym = DwarfStrDWOSectionSym = 0;
FunctionBeginSym = FunctionEndSym = 0;
- // Turn on accelerator tables and older gdb compatibility
- // for Darwin.
+ // Turn on accelerator tables for Darwin by default, pubnames by
+ // default for non-Darwin, and handle split dwarf.
bool IsDarwin = Triple(A->getTargetTriple()).isOSDarwin();
- if (DarwinGDBCompat == Default) {
- if (IsDarwin)
- IsDarwinGDBCompat = true;
- else
- IsDarwinGDBCompat = false;
- } else
- IsDarwinGDBCompat = DarwinGDBCompat == Enable ? true : false;
- if (DwarfAccelTables == Default) {
- if (IsDarwin)
- HasDwarfAccelTables = true;
- else
- HasDwarfAccelTables = false;
- } else
- HasDwarfAccelTables = DwarfAccelTables == Enable ? true : false;
+ if (DwarfAccelTables == Default)
+ HasDwarfAccelTables = IsDarwin;
+ else
+ HasDwarfAccelTables = DwarfAccelTables == Enable;
if (SplitDwarf == Default)
HasSplitDwarf = false;
else
- HasSplitDwarf = SplitDwarf == Enable ? true : false;
+ HasSplitDwarf = SplitDwarf == Enable;
+
+ if (DwarfPubSections == Default)
+ HasDwarfPubSections = !IsDarwin;
+ else
+ HasDwarfPubSections = DwarfPubSections == Enable;
DwarfVersion = getDwarfVersionFromModule(MMI->getModule());
@@ -226,8 +222,6 @@ DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
beginModule();
}
}
-DwarfDebug::~DwarfDebug() {
-}
// Switch to the specified MCSection and emit an assembler
// temporary label to it if SymbolStem is specified.
@@ -285,10 +279,10 @@ void DwarfUnits::assignAbbrevNumber(DIEAbbrev &Abbrev) {
// If it's newly added.
if (InSet == &Abbrev) {
// Add to abbreviation list.
- Abbreviations->push_back(&Abbrev);
+ Abbreviations.push_back(&Abbrev);
// Assign the vector position + 1 as its number.
- Abbrev.setNumber(Abbreviations->size());
+ Abbrev.setNumber(Abbreviations.size());
} else {
// Assign existing abbreviation number.
Abbrev.setNumber(InSet->getNumber());
@@ -302,12 +296,7 @@ static bool isObjCClass(StringRef Name) {
static bool hasObjCCategory(StringRef Name) {
if (!isObjCClass(Name)) return false;
- size_t pos = Name.find(')');
- if (pos != std::string::npos) {
- if (Name[pos+1] != ' ') return false;
- return true;
- }
- return false;
+ return Name.find(") ") != StringRef::npos;
}
static void getObjCClassCategory(StringRef In, StringRef &Class,
@@ -327,11 +316,20 @@ static StringRef getObjCMethodName(StringRef In) {
return In.slice(In.find(' ') + 1, In.find(']'));
}
+// Helper for sorting sections into a stable output order.
+static bool SectionSort(const MCSection *A, const MCSection *B) {
+ std::string LA = (A ? A->getLabelBeginName() : "");
+ std::string LB = (B ? B->getLabelBeginName() : "");
+ return LA < LB;
+}
+
// Add the various names to the Dwarf accelerator table names.
+// TODO: Determine whether or not we should add names for programs
+// that do not have a DW_AT_name or DW_AT_linkage_name field - this
+// is only slightly different than the lookup of non-standard ObjC names.
static void addSubprogramNames(CompileUnit *TheCU, DISubprogram SP,
DIE* Die) {
if (!SP.isDefinition()) return;
-
TheCU->addAccelName(SP.getName(), Die);
// If the linkage name is different than the name, go ahead and output
@@ -352,30 +350,34 @@ static void addSubprogramNames(CompileUnit *TheCU, DISubprogram SP,
}
}
+/// isSubprogramContext - Return true if Context is either a subprogram
+/// or another context nested inside a subprogram.
+bool DwarfDebug::isSubprogramContext(const MDNode *Context) {
+ if (!Context)
+ return false;
+ DIDescriptor D(Context);
+ if (D.isSubprogram())
+ return true;
+ if (D.isType())
+ return isSubprogramContext(resolve(DIType(Context).getContext()));
+ return false;
+}
+
// Find DIE for the given subprogram and attach appropriate DW_AT_low_pc
// and DW_AT_high_pc attributes. If there are global variables in this
// scope then create and insert DIEs for these variables.
-DIE *DwarfDebug::updateSubprogramScopeDIE(CompileUnit *SPCU,
- const MDNode *SPNode) {
- DIE *SPDie = SPCU->getDIE(SPNode);
+DIE *DwarfDebug::updateSubprogramScopeDIE(CompileUnit *SPCU, DISubprogram SP) {
+ DIE *SPDie = SPCU->getDIE(SP);
assert(SPDie && "Unable to find subprogram DIE!");
- DISubprogram SP(SPNode);
// If we're updating an abstract DIE, then we will be adding the children and
// object pointer later on. But what we don't want to do is process the
// concrete DIE twice.
- DIE *AbsSPDIE = AbstractSPDies.lookup(SPNode);
- if (AbsSPDIE) {
- bool InSameCU = (AbsSPDIE->getCompileUnit() == SPCU->getCUDie());
+ if (DIE *AbsSPDIE = AbstractSPDies.lookup(SP)) {
// Pick up abstract subprogram DIE.
- SPDie = new DIE(dwarf::DW_TAG_subprogram);
- // If AbsSPDIE belongs to a different CU, use DW_FORM_ref_addr instead of
- // DW_FORM_ref4.
- SPCU->addDIEEntry(SPDie, dwarf::DW_AT_abstract_origin,
- InSameCU ? dwarf::DW_FORM_ref4 : dwarf::DW_FORM_ref_addr,
- AbsSPDIE);
- SPCU->addDie(SPDie);
+ SPDie = SPCU->createAndAddDIE(dwarf::DW_TAG_subprogram, *SPCU->getCUDie());
+ SPCU->addDIEEntry(SPDie, dwarf::DW_AT_abstract_origin, AbsSPDIE);
} else {
DISubprogram SPDecl = SP.getFunctionDeclaration();
if (!SPDecl.isSubprogram()) {
@@ -384,32 +386,31 @@ DIE *DwarfDebug::updateSubprogramScopeDIE(CompileUnit *SPCU,
// function then gdb prefers the definition at top level and but does not
// expect specification DIE in parent function. So avoid creating
// specification DIE for a function defined inside a function.
- if (SP.isDefinition() && !SP.getContext().isCompileUnit() &&
- !SP.getContext().isFile() &&
- !isSubprogramContext(SP.getContext())) {
+ DIScope SPContext = resolve(SP.getContext());
+ if (SP.isDefinition() && !SPContext.isCompileUnit() &&
+ !SPContext.isFile() &&
+ !isSubprogramContext(SPContext)) {
SPCU->addFlag(SPDie, dwarf::DW_AT_declaration);
// Add arguments.
DICompositeType SPTy = SP.getType();
DIArray Args = SPTy.getTypeArray();
- unsigned SPTag = SPTy.getTag();
+ uint16_t SPTag = SPTy.getTag();
if (SPTag == dwarf::DW_TAG_subroutine_type)
for (unsigned i = 1, N = Args.getNumElements(); i < N; ++i) {
- DIE *Arg = new DIE(dwarf::DW_TAG_formal_parameter);
- DIType ATy = DIType(Args.getElement(i));
+ DIE *Arg =
+ SPCU->createAndAddDIE(dwarf::DW_TAG_formal_parameter, *SPDie);
+ DIType ATy(Args.getElement(i));
SPCU->addType(Arg, ATy);
if (ATy.isArtificial())
SPCU->addFlag(Arg, dwarf::DW_AT_artificial);
if (ATy.isObjectPointer())
- SPCU->addDIEEntry(SPDie, dwarf::DW_AT_object_pointer,
- dwarf::DW_FORM_ref4, Arg);
- SPDie->addChild(Arg);
+ SPCU->addDIEEntry(SPDie, dwarf::DW_AT_object_pointer, Arg);
}
DIE *SPDeclDie = SPDie;
- SPDie = new DIE(dwarf::DW_TAG_subprogram);
- SPCU->addDIEEntry(SPDie, dwarf::DW_AT_specification,
- dwarf::DW_FORM_ref4, SPDeclDie);
- SPCU->addDie(SPDie);
+ SPDie =
+ SPCU->createAndAddDIE(dwarf::DW_TAG_subprogram, *SPCU->getCUDie());
+ SPCU->addDIEEntry(SPDie, dwarf::DW_AT_specification, SPDeclDie);
}
}
}
@@ -431,18 +432,39 @@ DIE *DwarfDebug::updateSubprogramScopeDIE(CompileUnit *SPCU,
return SPDie;
}
+/// Check whether we should create a DIE for the given Scope, return true
+/// if we don't create a DIE (the corresponding DIE is null).
+bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
+ if (Scope->isAbstractScope())
+ return false;
+
+ // We don't create a DIE if there is no Range.
+ const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
+ if (Ranges.empty())
+ return true;
+
+ if (Ranges.size() > 1)
+ return false;
+
+ // We don't create a DIE if we have a single Range and the end label
+ // is null.
+ SmallVectorImpl<InsnRange>::const_iterator RI = Ranges.begin();
+ MCSymbol *End = getLabelAfterInsn(RI->second);
+ return !End;
+}
+
// Construct new DW_TAG_lexical_block for this scope and attach
// DW_AT_low_pc/DW_AT_high_pc labels.
DIE *DwarfDebug::constructLexicalScopeDIE(CompileUnit *TheCU,
LexicalScope *Scope) {
+ if (isLexicalScopeDIENull(Scope))
+ return 0;
+
DIE *ScopeDIE = new DIE(dwarf::DW_TAG_lexical_block);
if (Scope->isAbstractScope())
return ScopeDIE;
const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
- if (Ranges.empty())
- return 0;
-
// If we have multiple ranges, emit them into the range section.
if (Ranges.size() > 1) {
// .debug_range section has not been laid out yet. Emit offset in
@@ -467,8 +489,7 @@ DIE *DwarfDebug::constructLexicalScopeDIE(CompileUnit *TheCU,
SmallVectorImpl<InsnRange>::const_iterator RI = Ranges.begin();
MCSymbol *Start = getLabelBeforeInsn(RI->first);
MCSymbol *End = getLabelAfterInsn(RI->second);
-
- if (End == 0) return 0;
+ assert(End && "End label should not be null!");
assert(Start->isDefined() && "Invalid starting label for an inlined scope!");
assert(End->isDefined() && "Invalid end label for an inlined scope!");
@@ -498,8 +519,7 @@ DIE *DwarfDebug::constructInlinedScopeDIE(CompileUnit *TheCU,
}
DIE *ScopeDIE = new DIE(dwarf::DW_TAG_inlined_subroutine);
- TheCU->addDIEEntry(ScopeDIE, dwarf::DW_AT_abstract_origin,
- dwarf::DW_FORM_ref4, OriginDIE);
+ TheCU->addDIEEntry(ScopeDIE, dwarf::DW_AT_abstract_origin, OriginDIE);
if (Ranges.size() > 1) {
// .debug_range section has not been laid out yet. Emit offset in
@@ -535,26 +555,10 @@ DIE *DwarfDebug::constructInlinedScopeDIE(CompileUnit *TheCU,
// Add the call site information to the DIE.
DILocation DL(Scope->getInlinedAt());
- TheCU->addUInt(ScopeDIE, dwarf::DW_AT_call_file, 0,
+ TheCU->addUInt(ScopeDIE, dwarf::DW_AT_call_file, None,
getOrCreateSourceID(DL.getFilename(), DL.getDirectory(),
TheCU->getUniqueID()));
- TheCU->addUInt(ScopeDIE, dwarf::DW_AT_call_line, 0, DL.getLineNumber());
-
- // Track the start label for this inlined function.
- //.debug_inlined section specification does not clearly state how
- // to emit inlined scopes that are split into multiple instruction ranges.
- // For now, use the first instruction range and emit low_pc/high_pc pair and
- // corresponding the .debug_inlined section entry for this pair.
- if (Asm->MAI->doesDwarfUseInlineInfoSection()) {
- MCSymbol *StartLabel = getLabelBeforeInsn(Ranges.begin()->first);
- InlineInfoMap::iterator I = InlineInfo.find(InlinedSP);
-
- if (I == InlineInfo.end()) {
- InlineInfo[InlinedSP].push_back(std::make_pair(StartLabel, ScopeDIE));
- InlinedSPNodes.push_back(InlinedSP);
- } else
- I->second.push_back(std::make_pair(StartLabel, ScopeDIE));
- }
+ TheCU->addUInt(ScopeDIE, dwarf::DW_AT_call_line, None, DL.getLineNumber());
// Add name to the name table, we do this here because we're guaranteed
// to have concrete versions of our DW_TAG_inlined_subprogram nodes.
@@ -563,26 +567,16 @@ DIE *DwarfDebug::constructInlinedScopeDIE(CompileUnit *TheCU,
return ScopeDIE;
}
-// Construct a DIE for this scope.
-DIE *DwarfDebug::constructScopeDIE(CompileUnit *TheCU, LexicalScope *Scope) {
- if (!Scope || !Scope->getScopeNode())
- return NULL;
-
- DIScope DS(Scope->getScopeNode());
- // Early return to avoid creating dangling variable|scope DIEs.
- if (!Scope->getInlinedAt() && DS.isSubprogram() && Scope->isAbstractScope() &&
- !TheCU->getDIE(DS))
- return NULL;
-
- SmallVector<DIE *, 8> Children;
- DIE *ObjectPointer = NULL;
+DIE *DwarfDebug::createScopeChildrenDIE(CompileUnit *TheCU, LexicalScope *Scope,
+ SmallVectorImpl<DIE*> &Children) {
+ DIE *ObjectPointer = NULL;
// Collect arguments for current function.
if (LScopes.isCurrentFunctionScope(Scope))
for (unsigned i = 0, N = CurrentFnArguments.size(); i < N; ++i)
if (DbgVariable *ArgDV = CurrentFnArguments[i])
if (DIE *Arg =
- TheCU->constructVariableDIE(ArgDV, Scope->isAbstractScope())) {
+ TheCU->constructVariableDIE(*ArgDV, Scope->isAbstractScope())) {
Children.push_back(Arg);
if (ArgDV->isObjectPointer()) ObjectPointer = Arg;
}
@@ -591,7 +585,7 @@ DIE *DwarfDebug::constructScopeDIE(CompileUnit *TheCU, LexicalScope *Scope) {
const SmallVectorImpl<DbgVariable *> &Variables =ScopeVariables.lookup(Scope);
for (unsigned i = 0, N = Variables.size(); i < N; ++i)
if (DIE *Variable =
- TheCU->constructVariableDIE(Variables[i], Scope->isAbstractScope())) {
+ TheCU->constructVariableDIE(*Variables[i], Scope->isAbstractScope())) {
Children.push_back(Variable);
if (Variables[i]->isObjectPointer()) ObjectPointer = Variable;
}
@@ -599,6 +593,23 @@ DIE *DwarfDebug::constructScopeDIE(CompileUnit *TheCU, LexicalScope *Scope) {
for (unsigned j = 0, M = Scopes.size(); j < M; ++j)
if (DIE *Nested = constructScopeDIE(TheCU, Scopes[j]))
Children.push_back(Nested);
+ return ObjectPointer;
+}
+
+// Construct a DIE for this scope.
+DIE *DwarfDebug::constructScopeDIE(CompileUnit *TheCU, LexicalScope *Scope) {
+ if (!Scope || !Scope->getScopeNode())
+ return NULL;
+
+ DIScope DS(Scope->getScopeNode());
+
+ SmallVector<DIE *, 8> Children;
+ DIE *ObjectPointer = NULL;
+ bool ChildrenCreated = false;
+
+ // We try to create the scope DIE first, then the children DIEs. This will
+ // avoid creating un-used children then removing them later when we find out
+ // the scope DIE is null.
DIE *ScopeDIE = NULL;
if (Scope->getInlinedAt())
ScopeDIE = constructInlinedScopeDIE(TheCU, Scope);
@@ -609,26 +620,41 @@ DIE *DwarfDebug::constructScopeDIE(CompileUnit *TheCU, LexicalScope *Scope) {
// Note down abstract DIE.
if (ScopeDIE)
AbstractSPDies.insert(std::make_pair(DS, ScopeDIE));
- }
- else
- ScopeDIE = updateSubprogramScopeDIE(TheCU, DS);
- }
- else {
+ } else
+ ScopeDIE = updateSubprogramScopeDIE(TheCU, DISubprogram(DS));
+ } else {
+ // Early exit when we know the scope DIE is going to be null.
+ if (isLexicalScopeDIENull(Scope))
+ return NULL;
+
+ // We create children here when we know the scope DIE is not going to be
+ // null and the children will be added to the scope DIE.
+ ObjectPointer = createScopeChildrenDIE(TheCU, Scope, Children);
+ ChildrenCreated = true;
+
// There is no need to emit empty lexical block DIE.
std::pair<ImportedEntityMap::const_iterator,
ImportedEntityMap::const_iterator> Range = std::equal_range(
ScopesWithImportedEntities.begin(), ScopesWithImportedEntities.end(),
std::pair<const MDNode *, const MDNode *>(DS, (const MDNode*)0),
- CompareFirst());
+ less_first());
if (Children.empty() && Range.first == Range.second)
return NULL;
ScopeDIE = constructLexicalScopeDIE(TheCU, Scope);
+ assert(ScopeDIE && "Scope DIE should not be null.");
for (ImportedEntityMap::const_iterator i = Range.first; i != Range.second;
++i)
constructImportedEntityDIE(TheCU, i->second, ScopeDIE);
}
- if (!ScopeDIE) return NULL;
+ if (!ScopeDIE) {
+ assert(Children.empty() &&
+ "We create children only when the scope DIE is not null.");
+ return NULL;
+ }
+ if (!ChildrenCreated)
+ // We create children when the scope DIE is not null.
+ ObjectPointer = createScopeChildrenDIE(TheCU, Scope, Children);
// Add children
for (SmallVectorImpl<DIE *>::iterator I = Children.begin(),
@@ -636,8 +662,7 @@ DIE *DwarfDebug::constructScopeDIE(CompileUnit *TheCU, LexicalScope *Scope) {
ScopeDIE->addChild(*I);
if (DS.isSubprogram() && ObjectPointer != NULL)
- TheCU->addDIEEntry(ScopeDIE, dwarf::DW_AT_object_pointer,
- dwarf::DW_FORM_ref4, ObjectPointer);
+ TheCU->addDIEEntry(ScopeDIE, dwarf::DW_AT_object_pointer, ObjectPointer);
if (DS.isSubprogram())
TheCU->addPubTypes(DISubprogram(DS));
@@ -653,8 +678,10 @@ unsigned DwarfDebug::getOrCreateSourceID(StringRef FileName,
StringRef DirName, unsigned CUID) {
// If we use .loc in assembly, we can't separate .file entries according to
// compile units. Thus all files will belong to the default compile unit.
- if (Asm->TM.hasMCUseLoc() &&
- Asm->OutStreamer.getKind() == MCStreamer::SK_AsmStreamer)
+
+ // FIXME: add a better feature test than hasRawTextSupport. Even better,
+ // extend .file to support this.
+ if (Asm->TM.hasMCUseLoc() && Asm->OutStreamer.hasRawTextSupport())
CUID = 0;
// If FE did not provide a file name, then assume stdin.
@@ -689,14 +716,12 @@ unsigned DwarfDebug::getOrCreateSourceID(StringRef FileName,
// Create new CompileUnit for the given metadata node with tag
// DW_TAG_compile_unit.
-CompileUnit *DwarfDebug::constructCompileUnit(const MDNode *N) {
- DICompileUnit DIUnit(N);
+CompileUnit *DwarfDebug::constructCompileUnit(DICompileUnit DIUnit) {
StringRef FN = DIUnit.getFilename();
CompilationDir = DIUnit.getDirectory();
DIE *Die = new DIE(dwarf::DW_TAG_compile_unit);
- CompileUnit *NewCU = new CompileUnit(GlobalCUIndexCount++,
- DIUnit.getLanguage(), Die, N, Asm,
+ CompileUnit *NewCU = new CompileUnit(GlobalCUIndexCount++, Die, DIUnit, Asm,
this, &InfoHolder);
FileIDCUMap[NewCU->getUniqueID()] = 0;
@@ -723,31 +748,57 @@ CompileUnit *DwarfDebug::constructCompileUnit(const MDNode *N) {
// Use a single line table if we are using .loc and generating assembly.
bool UseTheFirstCU =
- (Asm->TM.hasMCUseLoc() &&
- Asm->OutStreamer.getKind() == MCStreamer::SK_AsmStreamer) ||
- (NewCU->getUniqueID() == 0);
+ (Asm->TM.hasMCUseLoc() && Asm->OutStreamer.hasRawTextSupport()) ||
+ (NewCU->getUniqueID() == 0);
- // DW_AT_stmt_list is a offset of line number information for this
- // compile unit in debug_line section. For split dwarf this is
- // left in the skeleton CU and so not included.
- // The line table entries are not always emitted in assembly, so it
- // is not okay to use line_table_start here.
if (!useSplitDwarf()) {
+ // DW_AT_stmt_list is a offset of line number information for this
+ // compile unit in debug_line section. For split dwarf this is
+ // left in the skeleton CU and so not included.
+ // The line table entries are not always emitted in assembly, so it
+ // is not okay to use line_table_start here.
if (Asm->MAI->doesDwarfUseRelocationsAcrossSections())
- NewCU->addLabel(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_data4,
- UseTheFirstCU ?
- Asm->GetTempSymbol("section_line") : LineTableStartSym);
+ NewCU->addLabel(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_sec_offset,
+ UseTheFirstCU ? Asm->GetTempSymbol("section_line")
+ : LineTableStartSym);
else if (UseTheFirstCU)
NewCU->addUInt(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_data4, 0);
else
NewCU->addDelta(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_data4,
LineTableStartSym, DwarfLineSectionSym);
+
+ // If we're using split dwarf the compilation dir is going to be in the
+ // skeleton CU and so we don't need to duplicate it here.
+ if (!CompilationDir.empty())
+ NewCU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
+
+ // Flags to let the linker know we have emitted new style pubnames. Only
+ // emit it here if we don't have a skeleton CU for split dwarf.
+ if (GenerateGnuPubSections) {
+ if (Asm->MAI->doesDwarfUseRelocationsAcrossSections())
+ NewCU->addLabel(Die, dwarf::DW_AT_GNU_pubnames,
+ dwarf::DW_FORM_sec_offset,
+ Asm->GetTempSymbol("gnu_pubnames",
+ NewCU->getUniqueID()));
+ else
+ NewCU->addDelta(Die, dwarf::DW_AT_GNU_pubnames, dwarf::DW_FORM_data4,
+ Asm->GetTempSymbol("gnu_pubnames",
+ NewCU->getUniqueID()),
+ DwarfGnuPubNamesSectionSym);
+
+ if (Asm->MAI->doesDwarfUseRelocationsAcrossSections())
+ NewCU->addLabel(Die, dwarf::DW_AT_GNU_pubtypes,
+ dwarf::DW_FORM_sec_offset,
+ Asm->GetTempSymbol("gnu_pubtypes",
+ NewCU->getUniqueID()));
+ else
+ NewCU->addDelta(Die, dwarf::DW_AT_GNU_pubtypes, dwarf::DW_FORM_data4,
+ Asm->GetTempSymbol("gnu_pubtypes",
+ NewCU->getUniqueID()),
+ DwarfGnuPubTypesSectionSym);
+ }
}
- // If we're using split dwarf the compilation dir is going to be in the
- // skeleton CU and so we don't need to duplicate it here.
- if (!useSplitDwarf() && !CompilationDir.empty())
- NewCU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
if (DIUnit.isOptimized())
NewCU->addFlag(Die, dwarf::DW_AT_APPLE_optimized);
@@ -764,13 +815,17 @@ CompileUnit *DwarfDebug::constructCompileUnit(const MDNode *N) {
InfoHolder.addUnit(NewCU);
- CUMap.insert(std::make_pair(N, NewCU));
+ CUMap.insert(std::make_pair(DIUnit, NewCU));
+ CUDieMap.insert(std::make_pair(Die, NewCU));
return NewCU;
}
// Construct subprogram DIE.
-void DwarfDebug::constructSubprogramDIE(CompileUnit *TheCU,
- const MDNode *N) {
+void DwarfDebug::constructSubprogramDIE(CompileUnit *TheCU, const MDNode *N) {
+ // FIXME: We should only call this routine once, however, during LTO if a
+ // program is defined in multiple CUs we could end up calling it out of
+ // beginModule as we walk the CUs.
+
CompileUnit *&CURef = SPMap[N];
if (CURef)
return;
@@ -784,15 +839,8 @@ void DwarfDebug::constructSubprogramDIE(CompileUnit *TheCU,
DIE *SubprogramDie = TheCU->getOrCreateSubprogramDIE(SP);
- // Add to map.
- TheCU->insertDIE(N, SubprogramDie);
-
- // Add to context owner.
- TheCU->addToContextOwner(SubprogramDie, SP.getContext());
-
- // Expose as global, if requested.
- if (GenerateDwarfPubNamesSection)
- TheCU->addGlobalName(SP.getName(), SubprogramDie);
+ // Expose as a global name.
+ TheCU->addGlobalName(SP.getName(), SubprogramDie, resolve(SP.getContext()));
}
void DwarfDebug::constructImportedEntityDIE(CompileUnit *TheCU,
@@ -833,10 +881,9 @@ void DwarfDebug::constructImportedEntityDIE(CompileUnit *TheCU,
unsigned FileID = getOrCreateSourceID(Module.getContext().getFilename(),
Module.getContext().getDirectory(),
TheCU->getUniqueID());
- TheCU->addUInt(IMDie, dwarf::DW_AT_decl_file, 0, FileID);
- TheCU->addUInt(IMDie, dwarf::DW_AT_decl_line, 0, Module.getLineNumber());
- TheCU->addDIEEntry(IMDie, dwarf::DW_AT_import, dwarf::DW_FORM_ref4,
- EntityDie);
+ TheCU->addUInt(IMDie, dwarf::DW_AT_decl_file, None, FileID);
+ TheCU->addUInt(IMDie, dwarf::DW_AT_decl_line, None, Module.getLineNumber());
+ TheCU->addDIEEntry(IMDie, dwarf::DW_AT_import, EntityDie);
StringRef Name = Module.getName();
if (!Name.empty())
TheCU->addString(IMDie, dwarf::DW_AT_name, Name);
@@ -857,6 +904,7 @@ void DwarfDebug::beginModule() {
NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu");
if (!CU_Nodes)
return;
+ TypeIdentifierMap = generateDITypeIdentifierMap(CU_Nodes);
// Emit initial sections so we can reference labels later.
emitSectionLabels();
@@ -870,10 +918,10 @@ void DwarfDebug::beginModule() {
DIImportedEntity(ImportedEntities.getElement(i)).getContext(),
ImportedEntities.getElement(i)));
std::sort(ScopesWithImportedEntities.begin(),
- ScopesWithImportedEntities.end(), CompareFirst());
+ ScopesWithImportedEntities.end(), less_first());
DIArray GVs = CUNode.getGlobalVariables();
for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i)
- CU->createGlobalVariableDIE(GVs.getElement(i));
+ CU->createGlobalVariableDIE(DIGlobalVariable(GVs.getElement(i)));
DIArray SPs = CUNode.getSubprograms();
for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i)
constructSubprogramDIE(CU, SPs.getElement(i));
@@ -887,22 +935,13 @@ void DwarfDebug::beginModule() {
// available.
for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i)
constructImportedEntityDIE(CU, ImportedEntities.getElement(i));
- // If we're splitting the dwarf out now that we've got the entire
- // CU then construct a skeleton CU based upon it.
- if (useSplitDwarf()) {
- // This should be a unique identifier when we want to build .dwp files.
- CU->addUInt(CU->getCUDie(), dwarf::DW_AT_GNU_dwo_id,
- dwarf::DW_FORM_data8, 0);
- // Now construct the skeleton CU associated.
- constructSkeletonCU(CUNode);
- }
}
// Tell MMI that we have debug info.
MMI->setDebugInfoAvailability(true);
// Prime section data.
- SectionMap.insert(Asm->getObjFileLowering().getTextSection());
+ SectionMap[Asm->getObjFileLowering().getTextSection()];
}
// Attach DW_AT_inline attribute with inlined subprogram DIEs.
@@ -911,21 +950,20 @@ void DwarfDebug::computeInlinedDIEs() {
for (SmallPtrSet<DIE *, 4>::iterator AI = InlinedSubprogramDIEs.begin(),
AE = InlinedSubprogramDIEs.end(); AI != AE; ++AI) {
DIE *ISP = *AI;
- FirstCU->addUInt(ISP, dwarf::DW_AT_inline, 0, dwarf::DW_INL_inlined);
+ FirstCU->addUInt(ISP, dwarf::DW_AT_inline, None, dwarf::DW_INL_inlined);
}
for (DenseMap<const MDNode *, DIE *>::iterator AI = AbstractSPDies.begin(),
AE = AbstractSPDies.end(); AI != AE; ++AI) {
DIE *ISP = AI->second;
if (InlinedSubprogramDIEs.count(ISP))
continue;
- FirstCU->addUInt(ISP, dwarf::DW_AT_inline, 0, dwarf::DW_INL_inlined);
+ FirstCU->addUInt(ISP, dwarf::DW_AT_inline, None, dwarf::DW_INL_inlined);
}
}
// Collect info for variables that were optimized out.
void DwarfDebug::collectDeadVariables() {
const Module *M = MMI->getModule();
- DenseMap<const MDNode *, LexicalScope *> DeadFnScopeMap;
if (NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu")) {
for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) {
@@ -933,37 +971,38 @@ void DwarfDebug::collectDeadVariables() {
DIArray Subprograms = TheCU.getSubprograms();
for (unsigned i = 0, e = Subprograms.getNumElements(); i != e; ++i) {
DISubprogram SP(Subprograms.getElement(i));
- if (ProcessedSPNodes.count(SP) != 0) continue;
- if (!SP.isSubprogram()) continue;
- if (!SP.isDefinition()) continue;
+ if (ProcessedSPNodes.count(SP) != 0)
+ continue;
+ if (!SP.isSubprogram())
+ continue;
+ if (!SP.isDefinition())
+ continue;
DIArray Variables = SP.getVariables();
- if (Variables.getNumElements() == 0) continue;
-
- LexicalScope *Scope =
- new LexicalScope(NULL, DIDescriptor(SP), NULL, false);
- DeadFnScopeMap[SP] = Scope;
+ if (Variables.getNumElements() == 0)
+ continue;
// Construct subprogram DIE and add variables DIEs.
CompileUnit *SPCU = CUMap.lookup(TheCU);
assert(SPCU && "Unable to find Compile Unit!");
+ // FIXME: See the comment in constructSubprogramDIE about duplicate
+ // subprogram DIEs.
constructSubprogramDIE(SPCU, SP);
- DIE *ScopeDIE = SPCU->getDIE(SP);
+ DIE *SPDIE = SPCU->getDIE(SP);
for (unsigned vi = 0, ve = Variables.getNumElements(); vi != ve; ++vi) {
DIVariable DV(Variables.getElement(vi));
- if (!DV.isVariable()) continue;
- DbgVariable NewVar(DV, NULL);
+ if (!DV.isVariable())
+ continue;
+ DbgVariable NewVar(DV, NULL, this);
if (DIE *VariableDIE =
- SPCU->constructVariableDIE(&NewVar, Scope->isAbstractScope()))
- ScopeDIE->addChild(VariableDIE);
+ SPCU->constructVariableDIE(NewVar, false))
+ SPDIE->addChild(VariableDIE);
}
}
}
}
- DeleteContainerSeconds(DeadFnScopeMap);
}
-// Type Signature [7.27] computation code.
-typedef ArrayRef<uint8_t> HashValue;
+// Type Signature [7.27] and ODR Hash code.
/// \brief Grabs the string in whichever attribute is passed in and returns
/// a reference to it. Returns "" if the attribute doesn't exist.
@@ -976,100 +1015,6 @@ static StringRef getDIEStringAttr(DIE *Die, unsigned Attr) {
return StringRef("");
}
-/// \brief Adds the string in \p Str to the hash in \p Hash. This also hashes
-/// a trailing NULL with the string.
-static void addStringToHash(MD5 &Hash, StringRef Str) {
- DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
- Hash.update(Str);
- Hash.update(makeArrayRef((uint8_t)'\0'));
-}
-
-// FIXME: These are copied and only slightly modified out of LEB128.h.
-
-/// \brief Adds the unsigned in \p N to the hash in \p Hash. This also encodes
-/// the unsigned as a ULEB128.
-static void addULEB128ToHash(MD5 &Hash, uint64_t Value) {
- DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
- do {
- uint8_t Byte = Value & 0x7f;
- Value >>= 7;
- if (Value != 0)
- Byte |= 0x80; // Mark this byte to show that more bytes will follow.
- Hash.update(Byte);
- } while (Value != 0);
-}
-
-/// \brief Including \p Parent adds the context of Parent to \p Hash.
-static void addParentContextToHash(MD5 &Hash, DIE *Parent) {
-
- DEBUG(dbgs() << "Adding parent context to hash...\n");
-
- // [7.27.2] For each surrounding type or namespace beginning with the
- // outermost such construct...
- SmallVector<DIE *, 1> Parents;
- while (Parent->getTag() != dwarf::DW_TAG_compile_unit) {
- Parents.push_back(Parent);
- Parent = Parent->getParent();
- }
-
- // Reverse iterate over our list to go from the outermost construct to the
- // innermost.
- for (SmallVectorImpl<DIE *>::reverse_iterator I = Parents.rbegin(),
- E = Parents.rend();
- I != E; ++I) {
- DIE *Die = *I;
-
- // ... Append the letter "C" to the sequence...
- addULEB128ToHash(Hash, 'C');
-
- // ... Followed by the DWARF tag of the construct...
- addULEB128ToHash(Hash, Die->getTag());
-
- // ... Then the name, taken from the DW_AT_name attribute.
- StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
- DEBUG(dbgs() << "... adding context: " << Name << "\n");
- if (!Name.empty())
- addStringToHash(Hash, Name);
- }
-}
-
-/// This is based on the type signature computation given in section 7.27 of the
-/// DWARF4 standard. It is the md5 hash of a flattened description of the DIE with
-/// the exception that we are hashing only the context and the name of the type.
-static void addDIEODRSignature(MD5 &Hash, CompileUnit *CU, DIE *Die) {
-
- // Add the contexts to the hash. We won't be computing the ODR hash for
- // function local types so it's safe to use the generic context hashing
- // algorithm here.
- // FIXME: If we figure out how to account for linkage in some way we could
- // actually do this with a slight modification to the parent hash algorithm.
- DIE *Parent = Die->getParent();
- if (Parent)
- addParentContextToHash(Hash, Parent);
-
- // Add the current DIE information.
-
- // Add the DWARF tag of the DIE.
- addULEB128ToHash(Hash, Die->getTag());
-
- // Add the name of the type to the hash.
- addStringToHash(Hash, getDIEStringAttr(Die, dwarf::DW_AT_name));
-
- // Now get the result.
- MD5::MD5Result Result;
- Hash.final(Result);
-
- // ... take the least significant 8 bytes and store those as the attribute.
- // Our MD5 implementation always returns its results in little endian, swap
- // bytes appropriately.
- uint64_t Signature = *reinterpret_cast<support::ulittle64_t *>(Result + 8);
-
- // FIXME: This should be added onto the type unit, not the type, but this
- // works as an intermediate stage.
- CU->addUInt(Die, dwarf::DW_AT_GNU_odr_signature, dwarf::DW_FORM_data8,
- Signature);
-}
-
/// Return true if the current DIE is contained within an anonymous namespace.
static bool isContainedInAnonNamespace(DIE *Die) {
DIE *Parent = Die->getParent();
@@ -1090,7 +1035,7 @@ static bool shouldAddODRHash(CompileUnit *CU, DIE *Die) {
return CU->getLanguage() == dwarf::DW_LANG_C_plus_plus &&
getDIEStringAttr(Die, dwarf::DW_AT_name) != "" &&
!isContainedInAnonNamespace(Die);
- }
+}
void DwarfDebug::finalizeModuleInfo() {
// Collect info for variables that were optimized out.
@@ -1099,43 +1044,102 @@ void DwarfDebug::finalizeModuleInfo() {
// Attach DW_AT_inline attribute with inlined subprogram DIEs.
computeInlinedDIEs();
- // Emit DW_AT_containing_type attribute to connect types with their
- // vtable holding type.
- for (DenseMap<const MDNode *, CompileUnit *>::iterator CUI = CUMap.begin(),
- CUE = CUMap.end(); CUI != CUE; ++CUI) {
- CompileUnit *TheCU = CUI->second;
- TheCU->constructContainingTypeDIEs();
- }
-
// Split out type units and conditionally add an ODR tag to the split
// out type.
// FIXME: Do type splitting.
for (unsigned i = 0, e = TypeUnits.size(); i != e; ++i) {
- MD5 Hash;
DIE *Die = TypeUnits[i];
+ DIEHash Hash;
// If we've requested ODR hashes and it's applicable for an ODR hash then
// add the ODR signature now.
+ // FIXME: This should be added onto the type unit, not the type, but this
+ // works as an intermediate stage.
if (GenerateODRHash && shouldAddODRHash(CUMap.begin()->second, Die))
- addDIEODRSignature(Hash, CUMap.begin()->second, Die);
+ CUMap.begin()->second->addUInt(Die, dwarf::DW_AT_GNU_odr_signature,
+ dwarf::DW_FORM_data8,
+ Hash.computeDIEODRSignature(*Die));
}
- // Compute DIE offsets and sizes.
+ // Handle anything that needs to be done on a per-cu basis.
+ for (DenseMap<const MDNode *, CompileUnit *>::iterator CUI = CUMap.begin(),
+ CUE = CUMap.end();
+ CUI != CUE; ++CUI) {
+ CompileUnit *TheCU = CUI->second;
+ // Emit DW_AT_containing_type attribute to connect types with their
+ // vtable holding type.
+ TheCU->constructContainingTypeDIEs();
+
+ // If we're splitting the dwarf out now that we've got the entire
+ // CU then construct a skeleton CU based upon it.
+ if (useSplitDwarf()) {
+ uint64_t ID = 0;
+ if (GenerateCUHash) {
+ DIEHash CUHash;
+ ID = CUHash.computeCUSignature(*TheCU->getCUDie());
+ }
+ // This should be a unique identifier when we want to build .dwp files.
+ TheCU->addUInt(TheCU->getCUDie(), dwarf::DW_AT_GNU_dwo_id,
+ dwarf::DW_FORM_data8, ID);
+ // Now construct the skeleton CU associated.
+ CompileUnit *SkCU = constructSkeletonCU(TheCU);
+ // This should be a unique identifier when we want to build .dwp files.
+ SkCU->addUInt(SkCU->getCUDie(), dwarf::DW_AT_GNU_dwo_id,
+ dwarf::DW_FORM_data8, ID);
+ }
+ }
+
+ // Compute DIE offsets and sizes.
InfoHolder.computeSizeAndOffsets();
if (useSplitDwarf())
SkeletonHolder.computeSizeAndOffsets();
}
void DwarfDebug::endSections() {
- // Standard sections final addresses.
- Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getTextSection());
- Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("text_end"));
- Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getDataSection());
- Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("data_end"));
+ // Filter labels by section.
+ for (size_t n = 0; n < ArangeLabels.size(); n++) {
+ const SymbolCU &SCU = ArangeLabels[n];
+ if (SCU.Sym->isInSection()) {
+ // Make a note of this symbol and it's section.
+ const MCSection *Section = &SCU.Sym->getSection();
+ if (!Section->getKind().isMetadata())
+ SectionMap[Section].push_back(SCU);
+ } else {
+ // Some symbols (e.g. common/bss on mach-o) can have no section but still
+ // appear in the output. This sucks as we rely on sections to build
+ // arange spans. We can do it without, but it's icky.
+ SectionMap[NULL].push_back(SCU);
+ }
+ }
- // End text sections.
- for (unsigned I = 0, E = SectionMap.size(); I != E; ++I) {
- Asm->OutStreamer.SwitchSection(SectionMap[I]);
- Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("section_end", I+1));
+ // Build a list of sections used.
+ std::vector<const MCSection *> Sections;
+ for (SectionMapType::iterator it = SectionMap.begin(); it != SectionMap.end();
+ it++) {
+ const MCSection *Section = it->first;
+ Sections.push_back(Section);
+ }
+
+ // Sort the sections into order.
+ // This is only done to ensure consistent output order across different runs.
+ std::sort(Sections.begin(), Sections.end(), SectionSort);
+
+ // Add terminating symbols for each section.
+ for (unsigned ID=0;ID<Sections.size();ID++) {
+ const MCSection *Section = Sections[ID];
+ MCSymbol *Sym = NULL;
+
+ if (Section) {
+ // We can't call MCSection::getLabelEndName, as it's only safe to do so
+ // if we know the section name up-front. For user-created sections, the resulting
+ // label may not be valid to use as a label. (section names can use a greater
+ // set of characters on some systems)
+ Sym = Asm->GetTempSymbol("debug_end", ID);
+ Asm->OutStreamer.SwitchSection(Section);
+ Asm->OutStreamer.EmitLabel(Sym);
+ }
+
+ // Insert a final terminator.
+ SectionMap[Section].push_back(SymbolCU(NULL, Sym));
}
}
@@ -1152,6 +1156,8 @@ void DwarfDebug::endModule() {
finalizeModuleInfo();
if (!useSplitDwarf()) {
+ emitDebugStr();
+
// Emit all the DIEs into a debug info section.
emitDebugInfo();
@@ -1170,15 +1176,12 @@ void DwarfDebug::endModule() {
// Emit info into a debug macinfo section.
emitDebugMacInfo();
- // Emit inline info.
- // TODO: When we don't need the option anymore we
- // can remove all of the code that this section
- // depends upon.
- if (useDarwinGDBCompat())
- emitDebugInlineInfo();
} else {
// TODO: Fill this in for separated debug sections and separate
// out information into new sections.
+ emitDebugStr();
+ if (useSplitDwarf())
+ emitDebugStrDWO();
// Emit the debug info section and compile units.
emitDebugInfo();
@@ -1203,12 +1206,6 @@ void DwarfDebug::endModule() {
// Emit DWO addresses.
InfoHolder.emitAddresses(Asm->getObjFileLowering().getDwarfAddrSection());
- // Emit inline info.
- // TODO: When we don't need the option anymore we
- // can remove all of the code that this section
- // depends upon.
- if (useDarwinGDBCompat())
- emitDebugInlineInfo();
}
// Emit info into the dwarf accelerator table sections.
@@ -1219,20 +1216,11 @@ void DwarfDebug::endModule() {
emitAccelTypes();
}
- // Emit info into a debug pubnames section, if requested.
- if (GenerateDwarfPubNamesSection)
- emitDebugPubnames();
-
- // Emit info into a debug pubtypes section.
- // TODO: When we don't need the option anymore we can
- // remove all of the code that adds to the table.
- if (useDarwinGDBCompat())
- emitDebugPubTypes();
-
- // Finally emit string information into a string table.
- emitDebugStr();
- if (useSplitDwarf())
- emitDebugStrDWO();
+ // Emit the pubnames and pubtypes sections if requested.
+ if (HasDwarfPubSections) {
+ emitDebugPubNames(GenerateGnuPubSections);
+ emitDebugPubTypes(GenerateGnuPubSections);
+ }
// clean up.
SPMap.clear();
@@ -1262,7 +1250,7 @@ DbgVariable *DwarfDebug::findAbstractVariable(DIVariable &DV,
if (!Scope)
return NULL;
- AbsDbgVariable = new DbgVariable(Var, NULL);
+ AbsDbgVariable = new DbgVariable(Var, NULL, this);
addScopeVariable(Scope, AbsDbgVariable);
AbstractVariables[Var] = AbsDbgVariable;
return AbsDbgVariable;
@@ -1311,7 +1299,7 @@ DwarfDebug::collectVariableInfoFromMMITable(const MachineFunction *MF,
continue;
DbgVariable *AbsDbgVariable = findAbstractVariable(DV, VP.second);
- DbgVariable *RegVar = new DbgVariable(DV, AbsDbgVariable);
+ DbgVariable *RegVar = new DbgVariable(DV, AbsDbgVariable, this);
RegVar->setFrameIndex(VP.first);
if (!addCurrentFnArgument(MF, RegVar, Scope))
addScopeVariable(Scope, RegVar);
@@ -1396,7 +1384,7 @@ DwarfDebug::collectVariableInfo(const MachineFunction *MF,
Processed.insert(DV);
assert(MInsn->isDebugValue() && "History must begin with debug value");
DbgVariable *AbsVar = findAbstractVariable(DV, MInsn->getDebugLoc());
- DbgVariable *RegVar = new DbgVariable(DV, AbsVar);
+ DbgVariable *RegVar = new DbgVariable(DV, AbsVar, this);
if (!addCurrentFnArgument(MF, RegVar, Scope))
addScopeVariable(Scope, RegVar);
if (AbsVar)
@@ -1459,7 +1447,7 @@ DwarfDebug::collectVariableInfo(const MachineFunction *MF,
if (!DV || !DV.isVariable() || !Processed.insert(DV))
continue;
if (LexicalScope *Scope = LScopes.findLexicalScope(DV.getContext()))
- addScopeVariable(Scope, new DbgVariable(DV, NULL));
+ addScopeVariable(Scope, new DbgVariable(DV, NULL, this));
}
}
@@ -1602,36 +1590,45 @@ static DebugLoc getFnDebugLoc(DebugLoc DL, const LLVMContext &Ctx) {
// Gather pre-function debug information. Assumes being called immediately
// after the function entry point has been emitted.
void DwarfDebug::beginFunction(const MachineFunction *MF) {
- if (!MMI->hasDebugInfo()) return;
+
+ // If there's no debug info for the function we're not going to do anything.
+ if (!MMI->hasDebugInfo())
+ return;
+
+ // Grab the lexical scopes for the function, if we don't have any of those
+ // then we're not going to be able to do anything.
LScopes.initialize(*MF);
- if (LScopes.empty()) return;
+ if (LScopes.empty())
+ return;
+
+ assert(UserVariables.empty() && DbgValues.empty() && "Maps weren't cleaned");
+
+ // Make sure that each lexical scope will have a begin/end label.
identifyScopeMarkers();
// Set DwarfCompileUnitID in MCContext to the Compile Unit this function
- // belongs to.
+ // belongs to so that we add to the correct per-cu line table in the
+ // non-asm case.
LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
CompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode());
assert(TheCU && "Unable to find compile unit!");
- if (Asm->TM.hasMCUseLoc() &&
- Asm->OutStreamer.getKind() == MCStreamer::SK_AsmStreamer)
+ if (Asm->TM.hasMCUseLoc() && Asm->OutStreamer.hasRawTextSupport())
// Use a single line table if we are using .loc and generating assembly.
Asm->OutStreamer.getContext().setDwarfCompileUnitID(0);
else
Asm->OutStreamer.getContext().setDwarfCompileUnitID(TheCU->getUniqueID());
- FunctionBeginSym = Asm->GetTempSymbol("func_begin",
- Asm->getFunctionNumber());
+ // Emit a label for the function so that we have a beginning address.
+ FunctionBeginSym = Asm->GetTempSymbol("func_begin", Asm->getFunctionNumber());
// Assumes in correct section after the entry point.
Asm->OutStreamer.EmitLabel(FunctionBeginSym);
- assert(UserVariables.empty() && DbgValues.empty() && "Maps weren't cleaned");
-
const TargetRegisterInfo *TRI = Asm->TM.getRegisterInfo();
// LiveUserVar - Map physreg numbers to the MDNode they contain.
- std::vector<const MDNode*> LiveUserVar(TRI->getNumRegs());
+ std::vector<const MDNode *> LiveUserVar(TRI->getNumRegs());
- for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
- I != E; ++I) {
+ for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
+ ++I) {
bool AtBlockEntry = true;
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
II != IE; ++II) {
@@ -1642,22 +1639,21 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
// Keep track of user variables.
const MDNode *Var =
- MI->getOperand(MI->getNumOperands() - 1).getMetadata();
+ MI->getOperand(MI->getNumOperands() - 1).getMetadata();
// Variable is in a register, we need to check for clobbers.
if (isDbgValueInDefinedReg(MI))
LiveUserVar[MI->getOperand(0).getReg()] = Var;
// Check the history of this variable.
- SmallVectorImpl<const MachineInstr*> &History = DbgValues[Var];
+ SmallVectorImpl<const MachineInstr *> &History = DbgValues[Var];
if (History.empty()) {
UserVariables.push_back(Var);
// The first mention of a function argument gets the FunctionBeginSym
// label, so arguments are visible when breaking at function entry.
DIVariable DV(Var);
if (DV.isVariable() && DV.getTag() == dwarf::DW_TAG_arg_variable &&
- DISubprogram(getDISubprogram(DV.getContext()))
- .describes(MF->getFunction()))
+ getDISubprogram(DV.getContext()).describes(MF->getFunction()))
LabelsBeforeInsn[MI] = FunctionBeginSym;
} else {
// We have seen this variable before. Try to coalesce DBG_VALUEs.
@@ -1667,8 +1663,8 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
if (History.size() >= 2 &&
Prev->isIdenticalTo(History[History.size() - 2])) {
DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n"
- << "\t" << *Prev
- << "\t" << *History[History.size() - 2] << "\n");
+ << "\t" << *Prev << "\t"
+ << *History[History.size() - 2] << "\n");
History.pop_back();
}
@@ -1679,11 +1675,11 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
// Previous register assignment needs to terminate at the end of
// its basic block.
MachineBasicBlock::const_iterator LastMI =
- PrevMBB->getLastNonDebugInstr();
+ PrevMBB->getLastNonDebugInstr();
if (LastMI == PrevMBB->end()) {
// Drop DBG_VALUE for empty range.
DEBUG(dbgs() << "Dropping DBG_VALUE for empty range:\n"
- << "\t" << *Prev << "\n");
+ << "\t" << *Prev << "\n");
History.pop_back();
} else if (llvm::next(PrevMBB) != PrevMBB->getParent()->end())
// Terminate after LastMI.
@@ -1705,11 +1701,12 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
// Check if the instruction clobbers any registers with debug vars.
for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
- MOE = MI->operands_end(); MOI != MOE; ++MOI) {
+ MOE = MI->operands_end();
+ MOI != MOE; ++MOI) {
if (!MOI->isReg() || !MOI->isDef() || !MOI->getReg())
continue;
- for (MCRegAliasIterator AI(MOI->getReg(), TRI, true);
- AI.isValid(); ++AI) {
+ for (MCRegAliasIterator AI(MOI->getReg(), TRI, true); AI.isValid();
+ ++AI) {
unsigned Reg = *AI;
const MDNode *Var = LiveUserVar[Reg];
if (!Var)
@@ -1721,7 +1718,7 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
DbgValueHistoryMap::iterator HistI = DbgValues.find(Var);
if (HistI == DbgValues.end())
continue;
- SmallVectorImpl<const MachineInstr*> &History = HistI->second;
+ SmallVectorImpl<const MachineInstr *> &History = HistI->second;
if (History.empty())
continue;
const MachineInstr *Prev = History.back();
@@ -1743,7 +1740,7 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
for (DbgValueHistoryMap::iterator I = DbgValues.begin(), E = DbgValues.end();
I != E; ++I) {
- SmallVectorImpl<const MachineInstr*> &History = I->second;
+ SmallVectorImpl<const MachineInstr *> &History = I->second;
if (History.empty())
continue;
@@ -1752,7 +1749,7 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
if (Prev->isDebugValue() && isDbgValueInDefinedReg(Prev)) {
const MachineBasicBlock *PrevMBB = Prev->getParent();
MachineBasicBlock::const_iterator LastMI =
- PrevMBB->getLastNonDebugInstr();
+ PrevMBB->getLastNonDebugInstr();
if (LastMI == PrevMBB->end())
// Drop DBG_VALUE for empty range.
History.pop_back();
@@ -1776,13 +1773,14 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
// Record beginning of function.
if (!PrologEndLoc.isUnknown()) {
- DebugLoc FnStartDL = getFnDebugLoc(PrologEndLoc,
- MF->getFunction()->getContext());
- recordSourceLine(FnStartDL.getLine(), FnStartDL.getCol(),
- FnStartDL.getScope(MF->getFunction()->getContext()),
- // We'd like to list the prologue as "not statements" but GDB behaves
- // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
- DWARF2_FLAG_IS_STMT);
+ DebugLoc FnStartDL =
+ getFnDebugLoc(PrologEndLoc, MF->getFunction()->getContext());
+ recordSourceLine(
+ FnStartDL.getLine(), FnStartDL.getCol(),
+ FnStartDL.getScope(MF->getFunction()->getContext()),
+ // We'd like to list the prologue as "not statements" but GDB behaves
+ // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
+ DWARF2_FLAG_IS_STMT);
}
}
@@ -1855,7 +1853,7 @@ void DwarfDebug::endFunction(const MachineFunction *MF) {
if (AbstractVariables.lookup(CleanDV))
continue;
if (LexicalScope *Scope = LScopes.findAbstractScope(DV.getContext()))
- addScopeVariable(Scope, new DbgVariable(DV, NULL));
+ addScopeVariable(Scope, new DbgVariable(DV, NULL, this));
}
}
if (ProcessedSPNodes.count(AScope->getScopeNode()) == 0)
@@ -1924,7 +1922,8 @@ void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
// Emit Methods
//===----------------------------------------------------------------------===//
-// Compute the size and offset of a DIE.
+// Compute the size and offset of a DIE. The offset is relative to start of the
+// CU. It returns the offset after laying out the DIE.
unsigned
DwarfUnits::computeSizeAndOffset(DIE *Die, unsigned Offset) {
// Get the children.
@@ -1935,7 +1934,7 @@ DwarfUnits::computeSizeAndOffset(DIE *Die, unsigned Offset) {
// Get the abbreviation for this DIE.
unsigned AbbrevNumber = Die->getAbbrevNumber();
- const DIEAbbrev *Abbrev = Abbreviations->at(AbbrevNumber - 1);
+ const DIEAbbrev *Abbrev = Abbreviations[AbbrevNumber - 1];
// Set DIE offset
Die->setOffset(Offset);
@@ -1967,19 +1966,23 @@ DwarfUnits::computeSizeAndOffset(DIE *Die, unsigned Offset) {
return Offset;
}
-// Compute the size and offset of all the DIEs.
+// Compute the size and offset for each DIE.
void DwarfUnits::computeSizeAndOffsets() {
- // Offset from the beginning of debug info section.
+ // Offset from the first CU in the debug info section is 0 initially.
unsigned SecOffset = 0;
+
+ // Iterate over each compile unit and set the size and offsets for each
+ // DIE within each compile unit. All offsets are CU relative.
for (SmallVectorImpl<CompileUnit *>::iterator I = CUs.begin(),
E = CUs.end(); I != E; ++I) {
(*I)->setDebugInfoOffset(SecOffset);
- unsigned Offset =
- sizeof(int32_t) + // Length of Compilation Unit Info
- sizeof(int16_t) + // DWARF version number
- sizeof(int32_t) + // Offset Into Abbrev. Section
- sizeof(int8_t); // Pointer Size (in bytes)
+ // CU-relative offset is reset to 0 here.
+ unsigned Offset = sizeof(int32_t) + // Length of Unit Info
+ (*I)->getHeaderSize(); // Unit-specific headers
+
+ // EndOffset here is CU-relative, after laying out
+ // all of the CU DIE.
unsigned EndOffset = computeSizeAndOffset((*I)->getCUDie(), Offset);
SecOffset += EndOffset;
}
@@ -2006,9 +2009,16 @@ void DwarfDebug::emitSectionLabels() {
DwarfLineSectionSym =
emitSectionSym(Asm, TLOF.getDwarfLineSection(), "section_line");
emitSectionSym(Asm, TLOF.getDwarfLocSection());
- if (GenerateDwarfPubNamesSection)
+ if (GenerateGnuPubSections) {
+ DwarfGnuPubNamesSectionSym =
+ emitSectionSym(Asm, TLOF.getDwarfGnuPubNamesSection());
+ DwarfGnuPubTypesSectionSym =
+ emitSectionSym(Asm, TLOF.getDwarfGnuPubTypesSection());
+ } else if (HasDwarfPubSections) {
emitSectionSym(Asm, TLOF.getDwarfPubNamesSection());
- emitSectionSym(Asm, TLOF.getDwarfPubTypesSection());
+ emitSectionSym(Asm, TLOF.getDwarfPubTypesSection());
+ }
+
DwarfStrSectionSym =
emitSectionSym(Asm, TLOF.getDwarfStrSection(), "info_string");
if (useSplitDwarf()) {
@@ -2028,10 +2038,10 @@ void DwarfDebug::emitSectionLabels() {
}
// Recursively emits a debug information entry.
-void DwarfDebug::emitDIE(DIE *Die, std::vector<DIEAbbrev *> *Abbrevs) {
+void DwarfDebug::emitDIE(DIE *Die, ArrayRef<DIEAbbrev *> Abbrevs) {
// Get the abbreviation for this DIE.
unsigned AbbrevNumber = Die->getAbbrevNumber();
- const DIEAbbrev *Abbrev = Abbrevs->at(AbbrevNumber - 1);
+ const DIEAbbrev *Abbrev = Abbrevs[AbbrevNumber - 1];
// Emit the code (index) for the abbreviation.
if (Asm->isVerbose())
@@ -2046,27 +2056,44 @@ void DwarfDebug::emitDIE(DIE *Die, std::vector<DIEAbbrev *> *Abbrevs) {
// Emit the DIE attribute values.
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
- unsigned Attr = AbbrevData[i].getAttribute();
- unsigned Form = AbbrevData[i].getForm();
+ dwarf::Attribute Attr = AbbrevData[i].getAttribute();
+ dwarf::Form Form = AbbrevData[i].getForm();
assert(Form && "Too many attributes for DIE (check abbreviation)");
if (Asm->isVerbose())
Asm->OutStreamer.AddComment(dwarf::AttributeString(Attr));
switch (Attr) {
- case dwarf::DW_AT_abstract_origin: {
+ case dwarf::DW_AT_abstract_origin:
+ case dwarf::DW_AT_type:
+ case dwarf::DW_AT_friend:
+ case dwarf::DW_AT_specification:
+ case dwarf::DW_AT_import:
+ case dwarf::DW_AT_containing_type: {
DIEEntry *E = cast<DIEEntry>(Values[i]);
DIE *Origin = E->getEntry();
unsigned Addr = Origin->getOffset();
if (Form == dwarf::DW_FORM_ref_addr) {
+ assert(!useSplitDwarf() && "TODO: dwo files can't have relocations.");
// For DW_FORM_ref_addr, output the offset from beginning of debug info
// section. Origin->getOffset() returns the offset from start of the
// compile unit.
- DwarfUnits &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
- Addr += Holder.getCUOffset(Origin->getCompileUnit());
+ CompileUnit *CU = CUDieMap.lookup(Origin->getCompileUnit());
+ assert(CU && "CUDie should belong to a CU.");
+ Addr += CU->getDebugInfoOffset();
+ if (Asm->MAI->doesDwarfUseRelocationsAcrossSections())
+ Asm->EmitLabelPlusOffset(DwarfInfoSectionSym, Addr,
+ DIEEntry::getRefAddrSize(Asm));
+ else
+ Asm->EmitLabelOffsetDifference(DwarfInfoSectionSym, Addr,
+ DwarfInfoSectionSym,
+ DIEEntry::getRefAddrSize(Asm));
+ } else {
+ // Make sure Origin belong to the same CU.
+ assert(Die->getCompileUnit() == Origin->getCompileUnit() &&
+ "The referenced DIE should belong to the same CU in ref4");
+ Asm->EmitInt32(Addr);
}
- Asm->OutStreamer.EmitIntValue(Addr,
- Form == dwarf::DW_FORM_ref_addr ? DIEEntry::getRefAddrSize(Asm) : 4);
break;
}
case dwarf::DW_AT_ranges: {
@@ -2088,7 +2115,7 @@ void DwarfDebug::emitDIE(DIE *Die, std::vector<DIEAbbrev *> *Abbrevs) {
case dwarf::DW_AT_location: {
if (DIELabel *L = dyn_cast<DIELabel>(Values[i])) {
if (Asm->MAI->doesDwarfUseRelocationsAcrossSections())
- Asm->EmitLabelReference(L->getValue(), 4);
+ Asm->EmitSectionOffset(L->getValue(), DwarfDebugLocSectionSym);
else
Asm->EmitLabelDifference(L->getValue(), DwarfDebugLocSectionSym, 4);
} else {
@@ -2142,20 +2169,10 @@ void DwarfUnits::emitUnits(DwarfDebug *DD,
TheCU->getUniqueID()));
// Emit size of content not including length itself
- unsigned ContentSize = Die->getSize() +
- sizeof(int16_t) + // DWARF version number
- sizeof(int32_t) + // Offset Into Abbrev. Section
- sizeof(int8_t); // Pointer Size (in bytes)
+ Asm->OutStreamer.AddComment("Length of Unit");
+ Asm->EmitInt32(TheCU->getHeaderSize() + Die->getSize());
- Asm->OutStreamer.AddComment("Length of Compilation Unit Info");
- Asm->EmitInt32(ContentSize);
- Asm->OutStreamer.AddComment("DWARF version number");
- Asm->EmitInt16(DD->getDwarfVersion());
- Asm->OutStreamer.AddComment("Offset Into Abbrev. Section");
- Asm->EmitSectionOffset(Asm->GetTempSymbol(ASection->getLabelBeginName()),
- ASectionSym);
- Asm->OutStreamer.AddComment("Address Size (in bytes)");
- Asm->EmitInt8(Asm->getDataLayout().getPointerSize());
+ TheCU->emitHeader(ASection, ASectionSym);
DD->emitDIE(Die, Abbreviations);
Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol(USection->getLabelEndName(),
@@ -2163,19 +2180,6 @@ void DwarfUnits::emitUnits(DwarfDebug *DD,
}
}
-/// For a given compile unit DIE, returns offset from beginning of debug info.
-unsigned DwarfUnits::getCUOffset(DIE *Die) {
- assert(Die->getTag() == dwarf::DW_TAG_compile_unit &&
- "Input DIE should be compile unit in getCUOffset.");
- for (SmallVectorImpl<CompileUnit *>::iterator I = CUs.begin(),
- E = CUs.end(); I != E; ++I) {
- CompileUnit *TheCU = *I;
- if (TheCU->getCUDie() == Die)
- return TheCU->getDebugInfoOffset();
- }
- llvm_unreachable("The compile unit DIE should belong to CUs in DwarfUnits.");
-}
-
// Emit the debug info section.
void DwarfDebug::emitDebugInfo() {
DwarfUnits &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
@@ -2249,7 +2253,7 @@ void DwarfDebug::emitEndOfLineMatrix(unsigned SectionEnd) {
// Emit visible names into a hashed accelerator table section.
void DwarfDebug::emitAccelNames() {
- DwarfAccelTable AT(DwarfAccelTable::Atom(DwarfAccelTable::eAtomTypeDIEOffset,
+ DwarfAccelTable AT(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
dwarf::DW_FORM_data4));
for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(),
E = CUMap.end(); I != E; ++I) {
@@ -2278,7 +2282,7 @@ void DwarfDebug::emitAccelNames() {
// Emit objective C classes and categories into a hashed accelerator table
// section.
void DwarfDebug::emitAccelObjC() {
- DwarfAccelTable AT(DwarfAccelTable::Atom(DwarfAccelTable::eAtomTypeDIEOffset,
+ DwarfAccelTable AT(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
dwarf::DW_FORM_data4));
for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(),
E = CUMap.end(); I != E; ++I) {
@@ -2306,7 +2310,7 @@ void DwarfDebug::emitAccelObjC() {
// Emit namespace dies into a hashed accelerator table.
void DwarfDebug::emitAccelNamespaces() {
- DwarfAccelTable AT(DwarfAccelTable::Atom(DwarfAccelTable::eAtomTypeDIEOffset,
+ DwarfAccelTable AT(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
dwarf::DW_FORM_data4));
for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(),
E = CUMap.end(); I != E; ++I) {
@@ -2335,11 +2339,11 @@ void DwarfDebug::emitAccelNamespaces() {
// Emit type dies into a hashed accelerator table.
void DwarfDebug::emitAccelTypes() {
std::vector<DwarfAccelTable::Atom> Atoms;
- Atoms.push_back(DwarfAccelTable::Atom(DwarfAccelTable::eAtomTypeDIEOffset,
+ Atoms.push_back(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
dwarf::DW_FORM_data4));
- Atoms.push_back(DwarfAccelTable::Atom(DwarfAccelTable::eAtomTypeTag,
+ Atoms.push_back(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag,
dwarf::DW_FORM_data2));
- Atoms.push_back(DwarfAccelTable::Atom(DwarfAccelTable::eAtomTypeTypeFlags,
+ Atoms.push_back(DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags,
dwarf::DW_FORM_data1));
DwarfAccelTable AT(Atoms);
for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(),
@@ -2367,23 +2371,85 @@ void DwarfDebug::emitAccelTypes() {
AT.Emit(Asm, SectionBegin, &InfoHolder);
}
-/// emitDebugPubnames - Emit visible names into a debug pubnames section.
+// Public name handling.
+// The format for the various pubnames:
+//
+// dwarf pubnames - offset/name pairs where the offset is the offset into the CU
+// for the DIE that is named.
+//
+// gnu pubnames - offset/index value/name tuples where the offset is the offset
+// into the CU and the index value is computed according to the type of value
+// for the DIE that is named.
+//
+// For type units the offset is the offset of the skeleton DIE. For split dwarf
+// it's the offset within the debug_info/debug_types dwo section, however, the
+// reference in the pubname header doesn't change.
+
+/// computeIndexValue - Compute the gdb index value for the DIE and CU.
+static dwarf::PubIndexEntryDescriptor computeIndexValue(CompileUnit *CU,
+ DIE *Die) {
+ dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
+
+ // We could have a specification DIE that has our most of our knowledge,
+ // look for that now.
+ DIEValue *SpecVal = Die->findAttribute(dwarf::DW_AT_specification);
+ if (SpecVal) {
+ DIE *SpecDIE = cast<DIEEntry>(SpecVal)->getEntry();
+ if (SpecDIE->findAttribute(dwarf::DW_AT_external))
+ Linkage = dwarf::GIEL_EXTERNAL;
+ } else if (Die->findAttribute(dwarf::DW_AT_external))
+ Linkage = dwarf::GIEL_EXTERNAL;
+
+ switch (Die->getTag()) {
+ case dwarf::DW_TAG_class_type:
+ case dwarf::DW_TAG_structure_type:
+ case dwarf::DW_TAG_union_type:
+ case dwarf::DW_TAG_enumeration_type:
+ return dwarf::PubIndexEntryDescriptor(
+ dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus
+ ? dwarf::GIEL_STATIC
+ : dwarf::GIEL_EXTERNAL);
+ case dwarf::DW_TAG_typedef:
+ case dwarf::DW_TAG_base_type:
+ case dwarf::DW_TAG_subrange_type:
+ return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
+ case dwarf::DW_TAG_namespace:
+ return dwarf::GIEK_TYPE;
+ case dwarf::DW_TAG_subprogram:
+ return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
+ case dwarf::DW_TAG_constant:
+ case dwarf::DW_TAG_variable:
+ return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
+ case dwarf::DW_TAG_enumerator:
+ return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
+ dwarf::GIEL_STATIC);
+ default:
+ return dwarf::GIEK_NONE;
+ }
+}
+
+/// emitDebugPubNames - Emit visible names into a debug pubnames section.
///
-void DwarfDebug::emitDebugPubnames() {
+void DwarfDebug::emitDebugPubNames(bool GnuStyle) {
const MCSection *ISec = Asm->getObjFileLowering().getDwarfInfoSection();
+ const MCSection *PSec =
+ GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
+ : Asm->getObjFileLowering().getDwarfPubNamesSection();
typedef DenseMap<const MDNode*, CompileUnit*> CUMapType;
for (CUMapType::iterator I = CUMap.begin(), E = CUMap.end(); I != E; ++I) {
CompileUnit *TheCU = I->second;
unsigned ID = TheCU->getUniqueID();
- if (TheCU->getGlobalNames().empty())
- continue;
-
// Start the dwarf pubnames section.
- Asm->OutStreamer.SwitchSection(
- Asm->getObjFileLowering().getDwarfPubNamesSection());
+ Asm->OutStreamer.SwitchSection(PSec);
+
+ // Emit a label so we can reference the beginning of this pubname section.
+ if (GnuStyle)
+ Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("gnu_pubnames",
+ TheCU->getUniqueID()));
+ // Emit the header.
Asm->OutStreamer.AddComment("Length of Public Names Info");
Asm->EmitLabelDifference(Asm->GetTempSymbol("pubnames_end", ID),
Asm->GetTempSymbol("pubnames_begin", ID), 4);
@@ -2391,7 +2457,7 @@ void DwarfDebug::emitDebugPubnames() {
Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("pubnames_begin", ID));
Asm->OutStreamer.AddComment("DWARF Version");
- Asm->EmitInt16(DwarfVersion);
+ Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION);
Asm->OutStreamer.AddComment("Offset of Compilation Unit Info");
Asm->EmitSectionOffset(Asm->GetTempSymbol(ISec->getLabelBeginName(), ID),
@@ -2402,15 +2468,24 @@ void DwarfDebug::emitDebugPubnames() {
Asm->GetTempSymbol(ISec->getLabelBeginName(), ID),
4);
+ // Emit the pubnames for this compilation unit.
const StringMap<DIE*> &Globals = TheCU->getGlobalNames();
for (StringMap<DIE*>::const_iterator
GI = Globals.begin(), GE = Globals.end(); GI != GE; ++GI) {
const char *Name = GI->getKeyData();
- const DIE *Entity = GI->second;
+ DIE *Entity = GI->second;
Asm->OutStreamer.AddComment("DIE offset");
Asm->EmitInt32(Entity->getOffset());
+ if (GnuStyle) {
+ dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheCU, Entity);
+ Asm->OutStreamer.AddComment(
+ Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " +
+ dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
+ Asm->EmitInt8(Desc.toBits());
+ }
+
if (Asm->isVerbose())
Asm->OutStreamer.AddComment("External Name");
Asm->OutStreamer.EmitBytes(StringRef(Name, GI->getKeyLength()+1));
@@ -2422,55 +2497,78 @@ void DwarfDebug::emitDebugPubnames() {
}
}
-void DwarfDebug::emitDebugPubTypes() {
+void DwarfDebug::emitDebugPubTypes(bool GnuStyle) {
+ const MCSection *ISec = Asm->getObjFileLowering().getDwarfInfoSection();
+ const MCSection *PSec =
+ GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
+ : Asm->getObjFileLowering().getDwarfPubTypesSection();
+
for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(),
- E = CUMap.end(); I != E; ++I) {
+ E = CUMap.end();
+ I != E; ++I) {
CompileUnit *TheCU = I->second;
// Start the dwarf pubtypes section.
- Asm->OutStreamer.SwitchSection(
- Asm->getObjFileLowering().getDwarfPubTypesSection());
+ Asm->OutStreamer.SwitchSection(PSec);
+
+ // Emit a label so we can reference the beginning of this pubtype section.
+ if (GnuStyle)
+ Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("gnu_pubtypes",
+ TheCU->getUniqueID()));
+
+ // Emit the header.
Asm->OutStreamer.AddComment("Length of Public Types Info");
Asm->EmitLabelDifference(
- Asm->GetTempSymbol("pubtypes_end", TheCU->getUniqueID()),
- Asm->GetTempSymbol("pubtypes_begin", TheCU->getUniqueID()), 4);
+ Asm->GetTempSymbol("pubtypes_end", TheCU->getUniqueID()),
+ Asm->GetTempSymbol("pubtypes_begin", TheCU->getUniqueID()), 4);
- Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("pubtypes_begin",
- TheCU->getUniqueID()));
+ Asm->OutStreamer.EmitLabel(
+ Asm->GetTempSymbol("pubtypes_begin", TheCU->getUniqueID()));
- if (Asm->isVerbose()) Asm->OutStreamer.AddComment("DWARF Version");
- Asm->EmitInt16(DwarfVersion);
+ if (Asm->isVerbose())
+ Asm->OutStreamer.AddComment("DWARF Version");
+ Asm->EmitInt16(dwarf::DW_PUBTYPES_VERSION);
Asm->OutStreamer.AddComment("Offset of Compilation Unit Info");
- const MCSection *ISec = Asm->getObjFileLowering().getDwarfInfoSection();
- Asm->EmitSectionOffset(Asm->GetTempSymbol(ISec->getLabelBeginName(),
- TheCU->getUniqueID()),
- DwarfInfoSectionSym);
+ Asm->EmitSectionOffset(
+ Asm->GetTempSymbol(ISec->getLabelBeginName(), TheCU->getUniqueID()),
+ DwarfInfoSectionSym);
Asm->OutStreamer.AddComment("Compilation Unit Length");
- Asm->EmitLabelDifference(Asm->GetTempSymbol(ISec->getLabelEndName(),
- TheCU->getUniqueID()),
- Asm->GetTempSymbol(ISec->getLabelBeginName(),
- TheCU->getUniqueID()),
- 4);
-
- const StringMap<DIE*> &Globals = TheCU->getGlobalTypes();
- for (StringMap<DIE*>::const_iterator
- GI = Globals.begin(), GE = Globals.end(); GI != GE; ++GI) {
+ Asm->EmitLabelDifference(
+ Asm->GetTempSymbol(ISec->getLabelEndName(), TheCU->getUniqueID()),
+ Asm->GetTempSymbol(ISec->getLabelBeginName(), TheCU->getUniqueID()), 4);
+
+ // Emit the pubtypes.
+ const StringMap<DIE *> &Globals = TheCU->getGlobalTypes();
+ for (StringMap<DIE *>::const_iterator GI = Globals.begin(),
+ GE = Globals.end();
+ GI != GE; ++GI) {
const char *Name = GI->getKeyData();
DIE *Entity = GI->second;
- if (Asm->isVerbose()) Asm->OutStreamer.AddComment("DIE offset");
+ if (Asm->isVerbose())
+ Asm->OutStreamer.AddComment("DIE offset");
Asm->EmitInt32(Entity->getOffset());
- if (Asm->isVerbose()) Asm->OutStreamer.AddComment("External Name");
+ if (GnuStyle) {
+ dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheCU, Entity);
+ Asm->OutStreamer.AddComment(
+ Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " +
+ dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
+ Asm->EmitInt8(Desc.toBits());
+ }
+
+ if (Asm->isVerbose())
+ Asm->OutStreamer.AddComment("External Name");
+
// Emit the name with a terminating null byte.
- Asm->OutStreamer.EmitBytes(StringRef(Name, GI->getKeyLength()+1));
+ Asm->OutStreamer.EmitBytes(StringRef(Name, GI->getKeyLength() + 1));
}
Asm->OutStreamer.AddComment("End Mark");
Asm->EmitInt32(0);
- Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("pubtypes_end",
- TheCU->getUniqueID()));
+ Asm->OutStreamer.EmitLabel(
+ Asm->GetTempSymbol("pubtypes_end", TheCU->getUniqueID()));
}
}
@@ -2649,18 +2747,178 @@ void DwarfDebug::emitDebugLoc() {
}
}
-// Emit visible names into a debug aranges section.
+struct SymbolCUSorter {
+ SymbolCUSorter(const MCStreamer &s) : Streamer(s) {}
+ const MCStreamer &Streamer;
+
+ bool operator() (const SymbolCU &A, const SymbolCU &B) {
+ unsigned IA = A.Sym ? Streamer.GetSymbolOrder(A.Sym) : 0;
+ unsigned IB = B.Sym ? Streamer.GetSymbolOrder(B.Sym) : 0;
+
+ // Symbols with no order assigned should be placed at the end.
+ // (e.g. section end labels)
+ if (IA == 0)
+ IA = (unsigned)(-1);
+ if (IB == 0)
+ IB = (unsigned)(-1);
+ return IA < IB;
+ }
+};
+
+static bool CUSort(const CompileUnit *A, const CompileUnit *B) {
+ return (A->getUniqueID() < B->getUniqueID());
+}
+
+struct ArangeSpan {
+ const MCSymbol *Start, *End;
+};
+
+// Emit a debug aranges section, containing a CU lookup for any
+// address we can tie back to a CU.
void DwarfDebug::emitDebugARanges() {
// Start the dwarf aranges section.
- Asm->OutStreamer.SwitchSection(
- Asm->getObjFileLowering().getDwarfARangesSection());
+ Asm->OutStreamer
+ .SwitchSection(Asm->getObjFileLowering().getDwarfARangesSection());
+
+ typedef DenseMap<CompileUnit *, std::vector<ArangeSpan> > SpansType;
+
+ SpansType Spans;
+
+ // Build a list of sections used.
+ std::vector<const MCSection *> Sections;
+ for (SectionMapType::iterator it = SectionMap.begin(); it != SectionMap.end();
+ it++) {
+ const MCSection *Section = it->first;
+ Sections.push_back(Section);
+ }
+
+ // Sort the sections into order.
+ // This is only done to ensure consistent output order across different runs.
+ std::sort(Sections.begin(), Sections.end(), SectionSort);
+
+ // Build a set of address spans, sorted by CU.
+ for (size_t SecIdx=0;SecIdx<Sections.size();SecIdx++) {
+ const MCSection *Section = Sections[SecIdx];
+ SmallVector<SymbolCU, 8> &List = SectionMap[Section];
+ if (List.size() < 2)
+ continue;
+
+ // Sort the symbols by offset within the section.
+ SymbolCUSorter sorter(Asm->OutStreamer);
+ std::sort(List.begin(), List.end(), sorter);
+
+ // If we have no section (e.g. common), just write out
+ // individual spans for each symbol.
+ if (Section == NULL) {
+ for (size_t n = 0; n < List.size(); n++) {
+ const SymbolCU &Cur = List[n];
+
+ ArangeSpan Span;
+ Span.Start = Cur.Sym;
+ Span.End = NULL;
+ if (Cur.CU)
+ Spans[Cur.CU].push_back(Span);
+ }
+ } else {
+ // Build spans between each label.
+ const MCSymbol *StartSym = List[0].Sym;
+ for (size_t n = 1; n < List.size(); n++) {
+ const SymbolCU &Prev = List[n - 1];
+ const SymbolCU &Cur = List[n];
+
+ // Try and build the longest span we can within the same CU.
+ if (Cur.CU != Prev.CU) {
+ ArangeSpan Span;
+ Span.Start = StartSym;
+ Span.End = Cur.Sym;
+ Spans[Prev.CU].push_back(Span);
+ StartSym = Cur.Sym;
+ }
+ }
+ }
+ }
+
+ const MCSection *ISec = Asm->getObjFileLowering().getDwarfInfoSection();
+ unsigned PtrSize = Asm->getDataLayout().getPointerSize();
+
+ // Build a list of CUs used.
+ std::vector<CompileUnit *> CUs;
+ for (SpansType::iterator it = Spans.begin(); it != Spans.end(); it++) {
+ CompileUnit *CU = it->first;
+ CUs.push_back(CU);
+ }
+
+ // Sort the CU list (again, to ensure consistent output order).
+ std::sort(CUs.begin(), CUs.end(), CUSort);
+
+ // Emit an arange table for each CU we used.
+ for (size_t CUIdx=0;CUIdx<CUs.size();CUIdx++) {
+ CompileUnit *CU = CUs[CUIdx];
+ std::vector<ArangeSpan> &List = Spans[CU];
+
+ // Emit size of content not including length itself.
+ unsigned ContentSize
+ = sizeof(int16_t) // DWARF ARange version number
+ + sizeof(int32_t) // Offset of CU in the .debug_info section
+ + sizeof(int8_t) // Pointer Size (in bytes)
+ + sizeof(int8_t); // Segment Size (in bytes)
+
+ unsigned TupleSize = PtrSize * 2;
+
+ // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
+ unsigned Padding = 0;
+ while (((sizeof(int32_t) + ContentSize + Padding) % TupleSize) != 0)
+ Padding++;
+
+ ContentSize += Padding;
+ ContentSize += (List.size() + 1) * TupleSize;
+
+ // For each compile unit, write the list of spans it covers.
+ Asm->OutStreamer.AddComment("Length of ARange Set");
+ Asm->EmitInt32(ContentSize);
+ Asm->OutStreamer.AddComment("DWARF Arange version number");
+ Asm->EmitInt16(dwarf::DW_ARANGES_VERSION);
+ Asm->OutStreamer.AddComment("Offset Into Debug Info Section");
+ Asm->EmitSectionOffset(
+ Asm->GetTempSymbol(ISec->getLabelBeginName(), CU->getUniqueID()),
+ DwarfInfoSectionSym);
+ Asm->OutStreamer.AddComment("Address Size (in bytes)");
+ Asm->EmitInt8(PtrSize);
+ Asm->OutStreamer.AddComment("Segment Size (in bytes)");
+ Asm->EmitInt8(0);
+
+ for (unsigned n = 0; n < Padding; n++)
+ Asm->EmitInt8(0xff);
+
+ for (unsigned n = 0; n < List.size(); n++) {
+ const ArangeSpan &Span = List[n];
+ Asm->EmitLabelReference(Span.Start, PtrSize);
+
+ // Calculate the size as being from the span start to it's end.
+ if (Span.End) {
+ Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
+ } else {
+ // For symbols without an end marker (e.g. common), we
+ // write a single arange entry containing just that one symbol.
+ uint64_t Size = SymSize[Span.Start];
+ if (Size == 0)
+ Size = 1;
+
+ Asm->OutStreamer.EmitIntValue(Size, PtrSize);
+ }
+ }
+
+ Asm->OutStreamer.AddComment("ARange terminator");
+ Asm->OutStreamer.EmitIntValue(0, PtrSize);
+ Asm->OutStreamer.EmitIntValue(0, PtrSize);
+ }
}
// Emit visible names into a debug ranges section.
void DwarfDebug::emitDebugRanges() {
// Start the dwarf ranges section.
- Asm->OutStreamer.SwitchSection(
- Asm->getObjFileLowering().getDwarfRangesSection());
+ Asm->OutStreamer
+ .SwitchSection(Asm->getObjFileLowering().getDwarfRangesSection());
unsigned char Size = Asm->getDataLayout().getPointerSize();
for (SmallVectorImpl<const MCSymbol *>::iterator
I = DebugRangeSymbols.begin(), E = DebugRangeSymbols.end();
@@ -2681,103 +2939,19 @@ void DwarfDebug::emitDebugMacInfo() {
}
}
-// Emit inline info using following format.
-// Section Header:
-// 1. length of section
-// 2. Dwarf version number
-// 3. address size.
-//
-// Entries (one "entry" for each function that was inlined):
-//
-// 1. offset into __debug_str section for MIPS linkage name, if exists;
-// otherwise offset into __debug_str for regular function name.
-// 2. offset into __debug_str section for regular function name.
-// 3. an unsigned LEB128 number indicating the number of distinct inlining
-// instances for the function.
-//
-// The rest of the entry consists of a {die_offset, low_pc} pair for each
-// inlined instance; the die_offset points to the inlined_subroutine die in the
-// __debug_info section, and the low_pc is the starting address for the
-// inlining instance.
-void DwarfDebug::emitDebugInlineInfo() {
- if (!Asm->MAI->doesDwarfUseInlineInfoSection())
- return;
-
- if (!FirstCU)
- return;
-
- Asm->OutStreamer.SwitchSection(
- Asm->getObjFileLowering().getDwarfDebugInlineSection());
-
- Asm->OutStreamer.AddComment("Length of Debug Inlined Information Entry");
- Asm->EmitLabelDifference(Asm->GetTempSymbol("debug_inlined_end", 1),
- Asm->GetTempSymbol("debug_inlined_begin", 1), 4);
-
- Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("debug_inlined_begin", 1));
-
- Asm->OutStreamer.AddComment("Dwarf Version");
- Asm->EmitInt16(DwarfVersion);
- Asm->OutStreamer.AddComment("Address Size (in bytes)");
- Asm->EmitInt8(Asm->getDataLayout().getPointerSize());
-
- for (SmallVectorImpl<const MDNode *>::iterator I = InlinedSPNodes.begin(),
- E = InlinedSPNodes.end(); I != E; ++I) {
-
- const MDNode *Node = *I;
- InlineInfoMap::iterator II = InlineInfo.find(Node);
- SmallVectorImpl<InlineInfoLabels> &Labels = II->second;
- DISubprogram SP(Node);
- StringRef LName = SP.getLinkageName();
- StringRef Name = SP.getName();
-
- Asm->OutStreamer.AddComment("MIPS linkage name");
- if (LName.empty())
- Asm->EmitSectionOffset(InfoHolder.getStringPoolEntry(Name),
- DwarfStrSectionSym);
- else
- Asm->EmitSectionOffset(
- InfoHolder.getStringPoolEntry(Function::getRealLinkageName(LName)),
- DwarfStrSectionSym);
-
- Asm->OutStreamer.AddComment("Function name");
- Asm->EmitSectionOffset(InfoHolder.getStringPoolEntry(Name),
- DwarfStrSectionSym);
- Asm->EmitULEB128(Labels.size(), "Inline count");
-
- for (SmallVectorImpl<InlineInfoLabels>::iterator LI = Labels.begin(),
- LE = Labels.end(); LI != LE; ++LI) {
- if (Asm->isVerbose()) Asm->OutStreamer.AddComment("DIE offset");
- Asm->EmitInt32(LI->second->getOffset());
-
- if (Asm->isVerbose()) Asm->OutStreamer.AddComment("low_pc");
- Asm->OutStreamer.EmitSymbolValue(LI->first,
- Asm->getDataLayout().getPointerSize());
- }
- }
-
- Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("debug_inlined_end", 1));
-}
-
// DWARF5 Experimental Separate Dwarf emitters.
// This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list,
// DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id,
-// DW_AT_ranges_base, DW_AT_addr_base. If DW_AT_ranges is present,
-// DW_AT_low_pc and DW_AT_high_pc are not used, and vice versa.
-CompileUnit *DwarfDebug::constructSkeletonCU(const MDNode *N) {
- DICompileUnit DIUnit(N);
- CompilationDir = DIUnit.getDirectory();
+// DW_AT_ranges_base, DW_AT_addr_base.
+CompileUnit *DwarfDebug::constructSkeletonCU(const CompileUnit *CU) {
DIE *Die = new DIE(dwarf::DW_TAG_compile_unit);
- CompileUnit *NewCU = new CompileUnit(GlobalCUIndexCount++,
- DIUnit.getLanguage(), Die, N, Asm,
- this, &SkeletonHolder);
+ CompileUnit *NewCU = new CompileUnit(CU->getUniqueID(), Die, CU->getNode(),
+ Asm, this, &SkeletonHolder);
NewCU->addLocalString(Die, dwarf::DW_AT_GNU_dwo_name,
- DIUnit.getSplitDebugFilename());
-
- // This should be a unique identifier when we want to build .dwp files.
- NewCU->addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 0);
+ CU->getNode().getSplitDebugFilename());
// Relocate to the beginning of the addr_base section, else 0 for the
// beginning of the one for this compile unit.
@@ -2804,6 +2978,35 @@ CompileUnit *DwarfDebug::constructSkeletonCU(const MDNode *N) {
if (!CompilationDir.empty())
NewCU->addLocalString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
+ // Flags to let the linker know we have emitted new style pubnames.
+ if (GenerateGnuPubSections) {
+ if (Asm->MAI->doesDwarfUseRelocationsAcrossSections())
+ NewCU->addLabel(Die, dwarf::DW_AT_GNU_pubnames, dwarf::DW_FORM_sec_offset,
+ Asm->GetTempSymbol("gnu_pubnames", NewCU->getUniqueID()));
+ else
+ NewCU->addDelta(Die, dwarf::DW_AT_GNU_pubnames, dwarf::DW_FORM_data4,
+ Asm->GetTempSymbol("gnu_pubnames", NewCU->getUniqueID()),
+ DwarfGnuPubNamesSectionSym);
+
+ if (Asm->MAI->doesDwarfUseRelocationsAcrossSections())
+ NewCU->addLabel(Die, dwarf::DW_AT_GNU_pubtypes, dwarf::DW_FORM_sec_offset,
+ Asm->GetTempSymbol("gnu_pubtypes", NewCU->getUniqueID()));
+ else
+ NewCU->addDelta(Die, dwarf::DW_AT_GNU_pubtypes, dwarf::DW_FORM_data4,
+ Asm->GetTempSymbol("gnu_pubtypes", NewCU->getUniqueID()),
+ DwarfGnuPubTypesSectionSym);
+ }
+
+ // Flag if we've emitted any ranges and their location for the compile unit.
+ if (DebugRangeSymbols.size()) {
+ if (Asm->MAI->doesDwarfUseRelocationsAcrossSections())
+ NewCU->addLabel(Die, dwarf::DW_AT_GNU_ranges_base,
+ dwarf::DW_FORM_sec_offset, DwarfDebugRangeSectionSym);
+ else
+ NewCU->addUInt(Die, dwarf::DW_AT_GNU_ranges_base, dwarf::DW_FORM_data4,
+ 0);
+ }
+
SkeletonHolder.addUnit(NewCU);
SkeletonCUs.push_back(NewCU);
diff --git a/lib/CodeGen/AsmPrinter/DwarfDebug.h b/lib/CodeGen/AsmPrinter/DwarfDebug.h
index e14f9b1..cebac39 100644
--- a/lib/CodeGen/AsmPrinter/DwarfDebug.h
+++ b/lib/CodeGen/AsmPrinter/DwarfDebug.h
@@ -150,11 +150,12 @@ class DbgVariable {
DbgVariable *AbsVar; // Corresponding Abstract variable, if any.
const MachineInstr *MInsn; // DBG_VALUE instruction of the variable.
int FrameIndex;
+ DwarfDebug *DD;
public:
// AbsVar may be NULL.
- DbgVariable(DIVariable V, DbgVariable *AV)
+ DbgVariable(DIVariable V, DbgVariable *AV, DwarfDebug *DD)
: Var(V), TheDIE(0), DotDebugLocOffset(~0U), AbsVar(AV), MInsn(0),
- FrameIndex(~0) {}
+ FrameIndex(~0), DD(DD) {}
// Accessors.
DIVariable getVariable() const { return Var; }
@@ -169,7 +170,7 @@ public:
int getFrameIndex() const { return FrameIndex; }
void setFrameIndex(int FI) { FrameIndex = FI; }
// Translate tag to proper Dwarf tag.
- unsigned getTag() const {
+ uint16_t getTag() const {
if (Var.getTag() == dwarf::DW_TAG_arg_variable)
return dwarf::DW_TAG_formal_parameter;
@@ -208,6 +209,11 @@ public:
return Var.getAddrElement(i);
}
DIType getType() const;
+
+private:
+ /// resolve - Look in the DwarfDebug map for the MDNode that
+ /// corresponds to the reference.
+ template <typename T> T resolve(DIRef<T> Ref) const;
};
/// \brief Collects and handles information specific to a particular
@@ -220,7 +226,7 @@ class DwarfUnits {
FoldingSet<DIEAbbrev> *AbbreviationsSet;
// A list of all the unique abbreviations in use.
- std::vector<DIEAbbrev *> *Abbreviations;
+ std::vector<DIEAbbrev *> &Abbreviations;
// A pointer to all units in the section.
SmallVector<CompileUnit *, 1> CUs;
@@ -243,7 +249,7 @@ class DwarfUnits {
public:
DwarfUnits(AsmPrinter *AP, FoldingSet<DIEAbbrev> *AS,
- std::vector<DIEAbbrev *> *A, const char *Pref,
+ std::vector<DIEAbbrev *> &A, const char *Pref,
BumpPtrAllocator &DA)
: Asm(AP), AbbreviationsSet(AS), Abbreviations(A), StringPool(DA),
NextStringPoolNumber(0), StringPref(Pref), AddressPool(),
@@ -294,10 +300,13 @@ public:
/// \brief Returns the address pool.
AddrPool *getAddrPool() { return &AddressPool; }
+};
- /// \brief for a given compile unit DIE, returns offset from beginning of
- /// debug info.
- unsigned getCUOffset(DIE *Die);
+/// \brief Helper used to pair up a symbol and its DWARF compile unit.
+struct SymbolCU {
+ SymbolCU(CompileUnit *CU, const MCSymbol *Sym) : Sym(Sym), CU(CU) {}
+ const MCSymbol *Sym;
+ CompileUnit *CU;
};
/// \brief Collects and handles dwarf debug information.
@@ -320,6 +329,14 @@ class DwarfDebug {
// Maps subprogram MDNode with its corresponding CompileUnit.
DenseMap <const MDNode *, CompileUnit *> SPMap;
+ // Maps a CU DIE with its corresponding CompileUnit.
+ DenseMap <const DIE *, CompileUnit *> CUDieMap;
+
+ /// Maps MDNodes for type sysstem with the corresponding DIEs. These DIEs can
+ /// be shared across CUs, that is why we keep the map here instead
+ /// of in CompileUnit.
+ DenseMap<const MDNode *, DIE *> MDTypeNodeToDieMap;
+
// Used to uniquely define abbreviations.
FoldingSet<DIEAbbrev> AbbreviationsSet;
@@ -332,8 +349,15 @@ class DwarfDebug {
// separated by a zero byte, mapped to a unique id.
StringMap<unsigned, BumpPtrAllocator&> SourceIdMap;
+ // List of all labels used in aranges generation.
+ std::vector<SymbolCU> ArangeLabels;
+
+ // Size of each symbol emitted (for those symbols that have a specific size).
+ DenseMap <const MCSymbol *, uint64_t> SymSize;
+
// Provides a unique id per text section.
- SetVector<const MCSection*> SectionMap;
+ typedef DenseMap<const MCSection *, SmallVector<SymbolCU, 8> > SectionMapType;
+ SectionMapType SectionMap;
// List of arguments for current function.
SmallVector<DbgVariable *, 8> CurrentFnArguments;
@@ -358,14 +382,6 @@ class DwarfDebug {
// as DW_AT_inline.
SmallPtrSet<DIE *, 4> InlinedSubprogramDIEs;
- // Keep track of inlined functions and their location. This
- // information is used to populate the debug_inlined section.
- typedef std::pair<const MCSymbol *, DIE *> InlineInfoLabels;
- typedef DenseMap<const MDNode *,
- SmallVector<InlineInfoLabels, 4> > InlineInfoMap;
- InlineInfoMap InlineInfo;
- SmallVector<const MDNode *, 4> InlinedSPNodes;
-
// This is a collection of subprogram MDNodes that are processed to
// create DIEs.
SmallPtrSet<const MDNode *, 16> ProcessedSPNodes;
@@ -406,6 +422,7 @@ class DwarfDebug {
MCSymbol *DwarfDebugLocSectionSym, *DwarfLineSectionSym, *DwarfAddrSectionSym;
MCSymbol *FunctionBeginSym, *FunctionEndSym;
MCSymbol *DwarfAbbrevDWOSectionSym, *DwarfStrDWOSectionSym;
+ MCSymbol *DwarfGnuPubNamesSectionSym, *DwarfGnuPubTypesSectionSym;
// As an optimization, there is no need to emit an entry in the directory
// table for the same directory as DW_AT_comp_dir.
@@ -420,9 +437,6 @@ class DwarfDebug {
// Holders for the various debug information flags that we might need to
// have exposed. See accessor functions below for description.
- // Whether or not we're emitting info for older versions of gdb on darwin.
- bool IsDarwinGDBCompat;
-
// Holder for imported entities.
typedef SmallVector<std::pair<const MDNode *, const MDNode *>, 32>
ImportedEntityMap;
@@ -431,12 +445,16 @@ class DwarfDebug {
// Holder for types that are going to be extracted out into a type unit.
std::vector<DIE *> TypeUnits;
+ // Whether to emit the pubnames/pubtypes sections.
+ bool HasDwarfPubSections;
+
+ // Version of dwarf we're emitting.
+ unsigned DwarfVersion;
+
// DWARF5 Experimental Options
bool HasDwarfAccelTables;
bool HasSplitDwarf;
- unsigned DwarfVersion;
-
// Separated Dwarf Variables
// In general these will all be for bits that are left in the
// original object file, rather than things that are meant
@@ -454,6 +472,9 @@ class DwarfDebug {
// Holder for the skeleton information.
DwarfUnits SkeletonHolder;
+ // Maps from a type identifier to the actual MDNode.
+ DITypeIdentifierMap TypeIdentifierMap;
+
private:
void addScopeVariable(LexicalScope *LS, DbgVariable *Var);
@@ -465,11 +486,14 @@ private:
/// DW_AT_low_pc and DW_AT_high_pc attributes. If there are global
/// variables in this scope then create and insert DIEs for these
/// variables.
- DIE *updateSubprogramScopeDIE(CompileUnit *SPCU, const MDNode *SPNode);
+ DIE *updateSubprogramScopeDIE(CompileUnit *SPCU, DISubprogram SP);
/// \brief Construct new DW_TAG_lexical_block for this scope and
/// attach DW_AT_low_pc/DW_AT_high_pc labels.
DIE *constructLexicalScopeDIE(CompileUnit *TheCU, LexicalScope *Scope);
+ /// A helper function to check whether the DIE for a given Scope is going
+ /// to be null.
+ bool isLexicalScopeDIENull(LexicalScope *Scope);
/// \brief This scope represents inlined body of a function. Construct
/// DIE to represent this concrete inlined copy of the function.
@@ -477,6 +501,9 @@ private:
/// \brief Construct a DIE for this scope.
DIE *constructScopeDIE(CompileUnit *TheCU, LexicalScope *Scope);
+ /// A helper function to create children of a Scope DIE.
+ DIE *createScopeChildrenDIE(CompileUnit *TheCU, LexicalScope *Scope,
+ SmallVectorImpl<DIE*> &Children);
/// \brief Emit initial Dwarf sections with a label at the start of each one.
void emitSectionLabels();
@@ -528,10 +555,16 @@ private:
void emitAccelTypes();
/// \brief Emit visible names into a debug pubnames section.
- void emitDebugPubnames();
+ /// \param GnuStyle determines whether or not we want to emit
+ /// additional information into the table ala newer gcc for gdb
+ /// index.
+ void emitDebugPubNames(bool GnuStyle = false);
/// \brief Emit visible types into a debug pubtypes section.
- void emitDebugPubTypes();
+ /// \param GnuStyle determines whether or not we want to emit
+ /// additional information into the table ala newer gcc for gdb
+ /// index.
+ void emitDebugPubTypes(bool GnuStyle = false);
/// \brief Emit visible names into a debug str section.
void emitDebugStr();
@@ -555,7 +588,7 @@ private:
/// \brief Construct the split debug info compile unit for the debug info
/// section.
- CompileUnit *constructSkeletonCU(const MDNode *);
+ CompileUnit *constructSkeletonCU(const CompileUnit *CU);
/// \brief Emit the local split abbreviations.
void emitSkeletonAbbrevs(const MCSection *);
@@ -571,7 +604,7 @@ private:
/// \brief Create new CompileUnit for the given metadata node with tag
/// DW_TAG_compile_unit.
- CompileUnit *constructCompileUnit(const MDNode *N);
+ CompileUnit *constructCompileUnit(DICompileUnit DIUnit);
/// \brief Construct subprogram DIE.
void constructSubprogramDIE(CompileUnit *TheCU, const MDNode *N);
@@ -633,7 +666,13 @@ public:
// Main entry points.
//
DwarfDebug(AsmPrinter *A, Module *M);
- ~DwarfDebug();
+
+ void insertDIE(const MDNode *TypeMD, DIE *Die) {
+ MDTypeNodeToDieMap.insert(std::make_pair(TypeMD, Die));
+ }
+ DIE *getDIE(const MDNode *TypeMD) {
+ return MDTypeNodeToDieMap.lookup(TypeMD);
+ }
/// \brief Emit all Dwarf sections that should come prior to the
/// content.
@@ -658,6 +697,13 @@ public:
/// type units.
void addTypeUnitType(DIE *Die) { TypeUnits.push_back(Die); }
+ /// \brief Add a label so that arange data can be generated for it.
+ void addArangeLabel(SymbolCU SCU) { ArangeLabels.push_back(SCU); }
+
+ /// \brief For symbols that have a size designated (e.g. common symbols),
+ /// this tracks that size.
+ void setSymbolSize(const MCSymbol *Sym, uint64_t Size) { SymSize[Sym] = Size;}
+
/// \brief Look up the source id with the given directory and source file
/// names. If none currently exists, create a new id and insert it in the
/// SourceIds map.
@@ -665,11 +711,7 @@ public:
unsigned CUID);
/// \brief Recursively Emits a debug information entry.
- void emitDIE(DIE *Die, std::vector<DIEAbbrev *> *Abbrevs);
-
- /// \brief Returns whether or not to limit some of our debug
- /// output to the limitations of darwin gdb.
- bool useDarwinGDBCompat() { return IsDarwinGDBCompat; }
+ void emitDIE(DIE *Die, ArrayRef<DIEAbbrev *> Abbrevs);
// Experimental DWARF5 features.
@@ -683,6 +725,16 @@ public:
/// Returns the Dwarf Version.
unsigned getDwarfVersion() const { return DwarfVersion; }
+
+ /// Find the MDNode for the given reference.
+ template <typename T> T resolve(DIRef<T> Ref) const {
+ return Ref.resolve(TypeIdentifierMap);
+ }
+
+ /// isSubprogramContext - Return true if Context is either a subprogram
+ /// or another context nested inside a subprogram.
+ bool isSubprogramContext(const MDNode *Context);
+
};
} // End of namespace llvm
diff --git a/lib/CodeGen/AsmPrinter/DwarfException.h b/lib/CodeGen/AsmPrinter/DwarfException.h
index 49a85d8..1575161 100644
--- a/lib/CodeGen/AsmPrinter/DwarfException.h
+++ b/lib/CodeGen/AsmPrinter/DwarfException.h
@@ -29,6 +29,7 @@ class MCAsmInfo;
class MCExpr;
class MCSymbol;
class Function;
+class ARMTargetStreamer;
class AsmPrinter;
//===----------------------------------------------------------------------===//
@@ -177,6 +178,8 @@ public:
class ARMException : public DwarfException {
void EmitTypeInfos(unsigned TTypeEncoding);
+ ARMTargetStreamer &getTargetStreamer();
+
public:
//===--------------------------------------------------------------------===//
// Main entry points.
diff --git a/lib/CodeGen/BasicTargetTransformInfo.cpp b/lib/CodeGen/BasicTargetTransformInfo.cpp
index b48b817..24aa1ab 100644
--- a/lib/CodeGen/BasicTargetTransformInfo.cpp
+++ b/lib/CodeGen/BasicTargetTransformInfo.cpp
@@ -83,6 +83,8 @@ public:
virtual unsigned getJumpBufAlignment() const;
virtual unsigned getJumpBufSize() const;
virtual bool shouldBuildLookupTables() const;
+ virtual bool haveFastSqrt(Type *Ty) const;
+ virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const;
/// @}
@@ -111,6 +113,7 @@ public:
ArrayRef<Type*> Tys) const;
virtual unsigned getNumberOfParts(Type *Tp) const;
virtual unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const;
+ virtual unsigned getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwise) const;
/// @}
};
@@ -182,6 +185,14 @@ bool BasicTTI::shouldBuildLookupTables() const {
TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
}
+bool BasicTTI::haveFastSqrt(Type *Ty) const {
+ const TargetLoweringBase *TLI = getTLI();
+ EVT VT = TLI->getValueType(Ty);
+ return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
+}
+
+void BasicTTI::getUnrollingPreferences(Loop *, UnrollingPreferences &) const { }
+
//===----------------------------------------------------------------------===//
//
// Calls used by the vectorizers.
@@ -443,12 +454,14 @@ unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
case Intrinsic::log10: ISD = ISD::FLOG10; break;
case Intrinsic::log2: ISD = ISD::FLOG2; break;
case Intrinsic::fabs: ISD = ISD::FABS; break;
+ case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break;
case Intrinsic::floor: ISD = ISD::FFLOOR; break;
case Intrinsic::ceil: ISD = ISD::FCEIL; break;
case Intrinsic::trunc: ISD = ISD::FTRUNC; break;
case Intrinsic::nearbyint:
ISD = ISD::FNEARBYINT; break;
case Intrinsic::rint: ISD = ISD::FRINT; break;
+ case Intrinsic::round: ISD = ISD::FROUND; break;
case Intrinsic::pow: ISD = ISD::FPOW; break;
case Intrinsic::fma: ISD = ISD::FMA; break;
case Intrinsic::fmuladd: ISD = ISD::FMA; break; // FIXME: mul + add?
@@ -498,3 +511,17 @@ unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
return 0;
}
+
+unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty,
+ bool IsPairwise) const {
+ assert(Ty->isVectorTy() && "Expect a vector type");
+ unsigned NumVecElts = Ty->getVectorNumElements();
+ unsigned NumReduxLevels = Log2_32(NumVecElts);
+ unsigned ArithCost = NumReduxLevels *
+ TopTTI->getArithmeticInstrCost(Opcode, Ty);
+ // Assume the pairwise shuffles add a cost.
+ unsigned ShuffleCost =
+ NumReduxLevels * (IsPairwise + 1) *
+ TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
+ return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
+}
diff --git a/lib/CodeGen/BranchFolding.h b/lib/CodeGen/BranchFolding.h
index 26bdca9..0d15ed7 100644
--- a/lib/CodeGen/BranchFolding.h
+++ b/lib/CodeGen/BranchFolding.h
@@ -1,4 +1,4 @@
-//===-- BranchFolding.h - Fold machine code branch instructions --*- C++ -*===//
+//===-- BranchFolding.h - Fold machine code branch instructions -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/lib/CodeGen/CMakeLists.txt b/lib/CodeGen/CMakeLists.txt
index 56aa330..10cc9ff 100644
--- a/lib/CodeGen/CMakeLists.txt
+++ b/lib/CodeGen/CMakeLists.txt
@@ -35,6 +35,7 @@ add_llvm_library(LLVMCodeGen
LiveRangeCalc.cpp
LiveRangeEdit.cpp
LiveRegMatrix.cpp
+ LiveRegUnits.cpp
LiveStackAnalysis.cpp
LiveVariables.cpp
LocalStackSlotAllocation.cpp
@@ -88,7 +89,6 @@ add_llvm_library(LLVMCodeGen
ScheduleDAGPrinter.cpp
ScoreboardHazardRecognizer.cpp
ShadowStackGC.cpp
- ShrinkWrapping.cpp
SjLjEHPrepare.cpp
SlotIndexes.cpp
SpillPlacement.cpp
@@ -97,7 +97,7 @@ add_llvm_library(LLVMCodeGen
StackColoring.cpp
StackProtector.cpp
StackSlotColoring.cpp
- StrongPHIElimination.cpp
+ StackMaps.cpp
TailDuplication.cpp
TargetFrameLoweringImpl.cpp
TargetInstrInfo.cpp
diff --git a/lib/CodeGen/CalcSpillWeights.cpp b/lib/CodeGen/CalcSpillWeights.cpp
index b03c325..4925c4d 100644
--- a/lib/CodeGen/CalcSpillWeights.cpp
+++ b/lib/CodeGen/CalcSpillWeights.cpp
@@ -9,14 +9,12 @@
#define DEBUG_TYPE "calcspillweights"
-#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
@@ -24,38 +22,22 @@
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
-char CalculateSpillWeights::ID = 0;
-INITIALIZE_PASS_BEGIN(CalculateSpillWeights, "calcspillweights",
- "Calculate spill weights", false, false)
-INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
-INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
-INITIALIZE_PASS_END(CalculateSpillWeights, "calcspillweights",
- "Calculate spill weights", false, false)
-
-void CalculateSpillWeights::getAnalysisUsage(AnalysisUsage &au) const {
- au.addRequired<LiveIntervals>();
- au.addRequired<MachineBlockFrequencyInfo>();
- au.addRequired<MachineLoopInfo>();
- au.setPreservesAll();
- MachineFunctionPass::getAnalysisUsage(au);
-}
-
-bool CalculateSpillWeights::runOnMachineFunction(MachineFunction &MF) {
-
+void llvm::calculateSpillWeightsAndHints(LiveIntervals &LIS,
+ MachineFunction &MF,
+ const MachineLoopInfo &MLI,
+ const MachineBlockFrequencyInfo &MBFI,
+ VirtRegAuxInfo::NormalizingFn norm) {
DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
<< "********** Function: " << MF.getName() << '\n');
- LiveIntervals &LIS = getAnalysis<LiveIntervals>();
MachineRegisterInfo &MRI = MF.getRegInfo();
- VirtRegAuxInfo VRAI(MF, LIS, getAnalysis<MachineLoopInfo>(),
- getAnalysis<MachineBlockFrequencyInfo>());
+ VirtRegAuxInfo VRAI(MF, LIS, MLI, MBFI, norm);
for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (MRI.reg_nodbg_empty(Reg))
continue;
- VRAI.CalculateWeightAndHint(LIS.getInterval(Reg));
+ VRAI.calculateSpillWeightAndHint(LIS.getInterval(Reg));
}
- return false;
}
// Return the preferred allocation register for reg, given a COPY instruction.
@@ -111,7 +93,7 @@ static bool isRematerializable(const LiveInterval &LI,
}
void
-VirtRegAuxInfo::CalculateWeightAndHint(LiveInterval &li) {
+VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &li) {
MachineRegisterInfo &mri = MF.getRegInfo();
const TargetRegisterInfo &tri = *MF.getTarget().getRegisterInfo();
MachineBasicBlock *mbb = 0;
@@ -201,5 +183,5 @@ VirtRegAuxInfo::CalculateWeightAndHint(LiveInterval &li) {
if (isRematerializable(li, LIS, *MF.getTarget().getInstrInfo()))
totalWeight *= 0.5F;
- li.weight = normalizeSpillWeight(totalWeight, li.getSize());
+ li.weight = normalize(totalWeight, li.getSize());
}
diff --git a/lib/CodeGen/CodeGen.cpp b/lib/CodeGen/CodeGen.cpp
index c641991..7430c53 100644
--- a/lib/CodeGen/CodeGen.cpp
+++ b/lib/CodeGen/CodeGen.cpp
@@ -22,7 +22,6 @@ using namespace llvm;
void llvm::initializeCodeGen(PassRegistry &Registry) {
initializeBasicTTIPass(Registry);
initializeBranchFolderPassPass(Registry);
- initializeCalculateSpillWeightsPass(Registry);
initializeDeadMachineInstructionElimPass(Registry);
initializeEarlyIfConverterPass(Registry);
initializeExpandPostRAPass(Registry);
@@ -60,7 +59,6 @@ void llvm::initializeCodeGen(PassRegistry &Registry) {
initializeStackProtectorPass(Registry);
initializeStackColoringPass(Registry);
initializeStackSlotColoringPass(Registry);
- initializeStrongPHIEliminationPass(Registry);
initializeTailDuplicatePassPass(Registry);
initializeTargetPassConfigPass(Registry);
initializeTwoAddressInstructionPassPass(Registry);
diff --git a/lib/CodeGen/DFAPacketizer.cpp b/lib/CodeGen/DFAPacketizer.cpp
index 840a101..6619bcf 100644
--- a/lib/CodeGen/DFAPacketizer.cpp
+++ b/lib/CodeGen/DFAPacketizer.cpp
@@ -160,7 +160,8 @@ void VLIWPacketizerList::PacketizeMIs(MachineBasicBlock *MBB,
MachineBasicBlock::iterator EndItr) {
assert(VLIWScheduler && "VLIW Scheduler is not initialized!");
VLIWScheduler->startBlock(MBB);
- VLIWScheduler->enterRegion(MBB, BeginItr, EndItr, MBB->size());
+ VLIWScheduler->enterRegion(MBB, BeginItr, EndItr,
+ std::distance(BeginItr, EndItr));
VLIWScheduler->schedule();
// Generate MI -> SU map.
diff --git a/lib/CodeGen/ExecutionDepsFix.cpp b/lib/CodeGen/ExecutionDepsFix.cpp
index e277f5c..031f19c 100644
--- a/lib/CodeGen/ExecutionDepsFix.cpp
+++ b/lib/CodeGen/ExecutionDepsFix.cpp
@@ -23,6 +23,7 @@
#define DEBUG_TYPE "execution-fix"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Allocator.h"
@@ -136,6 +137,12 @@ class ExeDepsFix : public MachineFunctionPass {
typedef DenseMap<MachineBasicBlock*, LiveReg*> LiveOutMap;
LiveOutMap LiveOuts;
+ /// List of undefined register reads in this block in forward order.
+ std::vector<std::pair<MachineInstr*, unsigned> > UndefReads;
+
+ /// Storage for register unit liveness.
+ LiveRegUnits LiveUnits;
+
/// Current instruction number.
/// The first instruction in each basic block is 0.
int CurInstr;
@@ -185,6 +192,8 @@ private:
void processDefs(MachineInstr*, bool Kill);
void visitSoftInstr(MachineInstr*, unsigned mask);
void visitHardInstr(MachineInstr*, unsigned domain);
+ bool shouldBreakDependence(MachineInstr*, unsigned OpIdx, unsigned Pref);
+ void processUndefReads(MachineBasicBlock*);
};
}
@@ -341,6 +350,10 @@ void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
// Reset instruction counter in each basic block.
CurInstr = 0;
+ // Set up UndefReads to track undefined register reads.
+ UndefReads.clear();
+ LiveUnits.clear();
+
// Set up LiveRegs to represent registers entering MBB.
if (!LiveRegs)
LiveRegs = new LiveReg[NumRegs];
@@ -448,10 +461,46 @@ void ExeDepsFix::visitInstr(MachineInstr *MI) {
processDefs(MI, !DomP.first);
}
+/// \brief Return true to if it makes sense to break dependence on a partial def
+/// or undef use.
+bool ExeDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
+ unsigned Pref) {
+ int rx = regIndex(MI->getOperand(OpIdx).getReg());
+ if (rx < 0)
+ return false;
+
+ unsigned Clearance = CurInstr - LiveRegs[rx].Def;
+ DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
+
+ if (Pref > Clearance) {
+ DEBUG(dbgs() << ": Break dependency.\n");
+ return true;
+ }
+ // The current clearance seems OK, but we may be ignoring a def from a
+ // back-edge.
+ if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) {
+ DEBUG(dbgs() << ": OK .\n");
+ return false;
+ }
+ // A def from an unprocessed back-edge may make us break this dependency.
+ DEBUG(dbgs() << ": Wait for back-edge to resolve.\n");
+ return false;
+}
+
// Update def-ages for registers defined by MI.
// If Kill is set, also kill off DomainValues clobbered by the defs.
+//
+// Also break dependencies on partial defs and undef uses.
void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
assert(!MI->isDebugValue() && "Won't process debug values");
+
+ // Break dependence on undef uses. Do this before updating LiveRegs below.
+ unsigned OpNum;
+ unsigned Pref = TII->getUndefRegClearance(MI, OpNum, TRI);
+ if (Pref) {
+ if (shouldBreakDependence(MI, OpNum, Pref))
+ UndefReads.push_back(std::make_pair(MI, OpNum));
+ }
const MCInstrDesc &MCID = MI->getDesc();
for (unsigned i = 0,
e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
@@ -471,37 +520,58 @@ void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
<< '\t' << *MI);
+ // Check clearance before partial register updates.
+ // Call breakDependence before setting LiveRegs[rx].Def.
+ unsigned Pref = TII->getPartialRegUpdateClearance(MI, i, TRI);
+ if (Pref && shouldBreakDependence(MI, i, Pref))
+ TII->breakPartialRegDependency(MI, i, TRI);
+
// How many instructions since rx was last written?
- unsigned Clearance = CurInstr - LiveRegs[rx].Def;
LiveRegs[rx].Def = CurInstr;
// Kill off domains redefined by generic instructions.
if (Kill)
kill(rx);
+ }
+ ++CurInstr;
+}
- // Verify clearance before partial register updates.
- unsigned Pref = TII->getPartialRegUpdateClearance(MI, i, TRI);
- if (!Pref)
- continue;
- DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
- if (Pref > Clearance) {
- DEBUG(dbgs() << ": Break dependency.\n");
- TII->breakPartialRegDependency(MI, i, TRI);
- continue;
- }
-
- // The current clearance seems OK, but we may be ignoring a def from a
- // back-edge.
- if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) {
- DEBUG(dbgs() << ": OK.\n");
- continue;
- }
+/// \break Break false dependencies on undefined register reads.
+///
+/// Walk the block backward computing precise liveness. This is expensive, so we
+/// only do it on demand. Note that the occurrence of undefined register reads
+/// that should be broken is very rare, but when they occur we may have many in
+/// a single block.
+void ExeDepsFix::processUndefReads(MachineBasicBlock *MBB) {
+ if (UndefReads.empty())
+ return;
- // A def from an unprocessed back-edge may make us break this dependency.
- DEBUG(dbgs() << ": Wait for back-edge to resolve.\n");
+ // Collect this block's live out register units.
+ LiveUnits.init(TRI);
+ for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI) {
+ LiveUnits.addLiveIns(*SI, *TRI);
}
+ MachineInstr *UndefMI = UndefReads.back().first;
+ unsigned OpIdx = UndefReads.back().second;
- ++CurInstr;
+ for (MachineBasicBlock::reverse_iterator I = MBB->rbegin(), E = MBB->rend();
+ I != E; ++I) {
+ // Update liveness, including the current instrucion's defs.
+ LiveUnits.stepBackward(*I, *TRI);
+
+ if (UndefMI == &*I) {
+ if (!LiveUnits.contains(UndefMI->getOperand(OpIdx).getReg(), *TRI))
+ TII->breakPartialRegDependency(UndefMI, OpIdx, TRI);
+
+ UndefReads.pop_back();
+ if (UndefReads.empty())
+ return;
+
+ UndefMI = UndefReads.back().first;
+ OpIdx = UndefReads.back().second;
+ }
+ }
}
// A hard instruction only works in one domain. All input registers will be
@@ -549,7 +619,7 @@ void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
// Is it possible to use this collapsed register for free?
if (dv->isCollapsed()) {
// Restrict available domains to the ones in common with the operand.
- // If there are no common domains, we must pay the cross-domain
+ // If there are no common domains, we must pay the cross-domain
// penalty for this operand.
if (common) available = common;
} else if (common)
@@ -686,6 +756,7 @@ bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
++I)
visitInstr(I);
+ processUndefReads(MBB);
leaveBasicBlock(MBB);
}
@@ -698,6 +769,7 @@ bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
++I)
if (!I->isDebugValue())
processDefs(I, false);
+ processUndefReads(MBB);
leaveBasicBlock(MBB);
}
@@ -713,6 +785,7 @@ bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
delete[] FI->second;
}
LiveOuts.clear();
+ UndefReads.clear();
Avail.clear();
Allocator.DestroyAll();
diff --git a/lib/CodeGen/ExpandPostRAPseudos.cpp b/lib/CodeGen/ExpandPostRAPseudos.cpp
index 1611db8..6c73fff 100644
--- a/lib/CodeGen/ExpandPostRAPseudos.cpp
+++ b/lib/CodeGen/ExpandPostRAPseudos.cpp
@@ -104,7 +104,7 @@ bool ExpandPostRA::LowerSubregToReg(MachineInstr *MI) {
}
if (DstSubReg == InsReg) {
- // No need to insert an identify copy instruction.
+ // No need to insert an identity copy instruction.
// Watch out for case like this:
// %RAX<def> = SUBREG_TO_REG 0, %EAX<kill>, 3
// We must leave %RAX live.
diff --git a/lib/CodeGen/IfConversion.cpp b/lib/CodeGen/IfConversion.cpp
index 1ae7e3b..e2d0eb4 100644
--- a/lib/CodeGen/IfConversion.cpp
+++ b/lib/CodeGen/IfConversion.cpp
@@ -22,6 +22,8 @@
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -31,6 +33,8 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
using namespace llvm;
// Hidden options for help debugging.
@@ -150,14 +154,17 @@ namespace {
/// BBAnalysis - Results of if-conversion feasibility analysis indexed by
/// basic block number.
std::vector<BBInfo> BBAnalysis;
+ TargetSchedModel SchedModel;
const TargetLoweringBase *TLI;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
- const InstrItineraryData *InstrItins;
const MachineBranchProbabilityInfo *MBPI;
MachineRegisterInfo *MRI;
+ LiveRegUnits Redefs;
+ LiveRegUnits DontKill;
+
bool PreRegAlloc;
bool MadeChange;
int FnNum;
@@ -198,11 +205,9 @@ namespace {
void PredicateBlock(BBInfo &BBI,
MachineBasicBlock::iterator E,
SmallVectorImpl<MachineOperand> &Cond,
- SmallSet<unsigned, 4> &Redefs,
SmallSet<unsigned, 4> *LaterRedefs = 0);
void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
SmallVectorImpl<MachineOperand> &Cond,
- SmallSet<unsigned, 4> &Redefs,
bool IgnoreBr = false);
void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
@@ -267,7 +272,11 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
TRI = MF.getTarget().getRegisterInfo();
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
MRI = &MF.getRegInfo();
- InstrItins = MF.getTarget().getInstrItineraryData();
+
+ const TargetSubtargetInfo &ST =
+ MF.getTarget().getSubtarget<TargetSubtargetInfo>();
+ SchedModel.init(*ST.getSchedModel(), &ST, TII);
+
if (!TII) return false;
PreRegAlloc = MRI->isSSA();
@@ -666,32 +675,28 @@ void IfConverter::ScanInstructions(BBInfo &BBI) {
bool isPredicated = TII->isPredicated(I);
bool isCondBr = BBI.IsBrAnalyzable && I->isConditionalBranch();
- if (!isCondBr) {
- if (!isPredicated) {
- BBI.NonPredSize++;
- unsigned ExtraPredCost = 0;
- unsigned NumCycles = TII->getInstrLatency(InstrItins, &*I,
- &ExtraPredCost);
- if (NumCycles > 1)
- BBI.ExtraCost += NumCycles-1;
- BBI.ExtraCost2 += ExtraPredCost;
- } else if (!AlreadyPredicated) {
- // FIXME: This instruction is already predicated before the
- // if-conversion pass. It's probably something like a conditional move.
- // Mark this block unpredicable for now.
- BBI.IsUnpredicable = true;
- return;
- }
+ // A conditional branch is not predicable, but it may be eliminated.
+ if (isCondBr)
+ continue;
+
+ if (!isPredicated) {
+ BBI.NonPredSize++;
+ unsigned ExtraPredCost = TII->getPredicationCost(&*I);
+ unsigned NumCycles = SchedModel.computeInstrLatency(&*I, false);
+ if (NumCycles > 1)
+ BBI.ExtraCost += NumCycles-1;
+ BBI.ExtraCost2 += ExtraPredCost;
+ } else if (!AlreadyPredicated) {
+ // FIXME: This instruction is already predicated before the
+ // if-conversion pass. It's probably something like a conditional move.
+ // Mark this block unpredicable for now.
+ BBI.IsUnpredicable = true;
+ return;
}
if (BBI.ClobbersPred && !isPredicated) {
// Predicate modification instruction should end the block (except for
// already predicated instructions and end of block branches).
- if (isCondBr) {
- // A conditional branch is not predicable, but it may be eliminated.
- continue;
- }
-
// Predicate may have been modified, the subsequent (currently)
// unpredicated instructions cannot be correctly predicated.
BBI.IsUnpredicable = true;
@@ -961,64 +966,58 @@ void IfConverter::RemoveExtraEdges(BBInfo &BBI) {
BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
}
-/// InitPredRedefs / UpdatePredRedefs - Defs by predicated instructions are
-/// modeled as read + write (sort like two-address instructions). These
-/// routines track register liveness and add implicit uses to if-converted
-/// instructions to conform to the model.
-static void InitPredRedefs(MachineBasicBlock *BB, SmallSet<unsigned,4> &Redefs,
- const TargetRegisterInfo *TRI) {
- for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
- E = BB->livein_end(); I != E; ++I) {
- unsigned Reg = *I;
- for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
- SubRegs.isValid(); ++SubRegs)
- Redefs.insert(*SubRegs);
- }
-}
-
-static void UpdatePredRedefs(MachineInstr *MI, SmallSet<unsigned,4> &Redefs,
- const TargetRegisterInfo *TRI,
- bool AddImpUse = false) {
- SmallVector<unsigned, 4> Defs;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg())
+/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
+/// values defined in MI which are not live/used by MI.
+static void UpdatePredRedefs(MachineInstr *MI, LiveRegUnits &Redefs,
+ const TargetRegisterInfo *TRI) {
+ for (ConstMIBundleOperands Ops(MI); Ops.isValid(); ++Ops) {
+ if (!Ops->isReg() || !Ops->isKill())
continue;
- unsigned Reg = MO.getReg();
- if (!Reg)
+ unsigned Reg = Ops->getReg();
+ if (Reg == 0)
continue;
- if (MO.isDef())
- Defs.push_back(Reg);
- else if (MO.isKill()) {
- for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
- SubRegs.isValid(); ++SubRegs)
- Redefs.erase(*SubRegs);
- }
+ Redefs.removeReg(Reg, *TRI);
}
- MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
- for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
- unsigned Reg = Defs[i];
- if (!Redefs.insert(Reg)) {
- if (AddImpUse)
- // Treat predicated update as read + write.
- MIB.addReg(Reg, RegState::Implicit | RegState::Undef);
- } else {
- for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
- Redefs.insert(*SubRegs);
- }
+ for (MIBundleOperands Ops(MI); Ops.isValid(); ++Ops) {
+ if (!Ops->isReg() || !Ops->isDef())
+ continue;
+ unsigned Reg = Ops->getReg();
+ if (Reg == 0 || Redefs.contains(Reg, *TRI))
+ continue;
+ Redefs.addReg(Reg, *TRI);
+
+ MachineOperand &Op = *Ops;
+ MachineInstr *MI = Op.getParent();
+ MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
+ MIB.addReg(Reg, RegState::Implicit | RegState::Undef);
}
}
-static void UpdatePredRedefs(MachineBasicBlock::iterator I,
- MachineBasicBlock::iterator E,
- SmallSet<unsigned,4> &Redefs,
- const TargetRegisterInfo *TRI) {
- while (I != E) {
- UpdatePredRedefs(I, Redefs, TRI);
- ++I;
+/**
+ * Remove kill flags from operands with a registers in the @p DontKill set.
+ */
+static void RemoveKills(MachineInstr &MI, const LiveRegUnits &DontKill,
+ const MCRegisterInfo &MCRI) {
+ for (MIBundleOperands O(&MI); O.isValid(); ++O) {
+ if (!O->isReg() || !O->isKill())
+ continue;
+ if (DontKill.contains(O->getReg(), MCRI))
+ O->setIsKill(false);
}
}
+/**
+ * Walks a range of machine instructions and removes kill flags for registers
+ * in the @p DontKill set.
+ */
+static void RemoveKills(MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator E,
+ const LiveRegUnits &DontKill,
+ const MCRegisterInfo &MCRI) {
+ for ( ; I != E; ++I)
+ RemoveKills(*I, DontKill, MCRI);
+}
+
/// IfConvertSimple - If convert a simple (split, no rejoin) sub-CFG.
///
bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
@@ -1049,21 +1048,27 @@ bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
// Initialize liveins to the first BB. These are potentiall redefined by
// predicated instructions.
- SmallSet<unsigned, 4> Redefs;
- InitPredRedefs(CvtBBI->BB, Redefs, TRI);
- InitPredRedefs(NextBBI->BB, Redefs, TRI);
+ Redefs.init(TRI);
+ Redefs.addLiveIns(CvtBBI->BB, *TRI);
+ Redefs.addLiveIns(NextBBI->BB, *TRI);
+
+ // Compute a set of registers which must not be killed by instructions in
+ // BB1: This is everything live-in to BB2.
+ DontKill.init(TRI);
+ DontKill.addLiveIns(NextBBI->BB, *TRI);
if (CvtBBI->BB->pred_size() > 1) {
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
// Copy instructions in the true block, predicate them, and add them to
// the entry block.
- CopyAndPredicateBlock(BBI, *CvtBBI, Cond, Redefs);
+ CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
// RemoveExtraEdges won't work if the block has an unanalyzable branch, so
// explicitly remove CvtBBI as a successor.
BBI.BB->removeSuccessor(CvtBBI->BB);
} else {
- PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond, Redefs);
+ RemoveKills(CvtBBI->BB->begin(), CvtBBI->BB->end(), DontKill, *TRI);
+ PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
// Merge converted block into entry block.
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
@@ -1148,16 +1153,18 @@ bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
// Initialize liveins to the first BB. These are potentially redefined by
// predicated instructions.
- SmallSet<unsigned, 4> Redefs;
- InitPredRedefs(CvtBBI->BB, Redefs, TRI);
- InitPredRedefs(NextBBI->BB, Redefs, TRI);
+ Redefs.init(TRI);
+ Redefs.addLiveIns(CvtBBI->BB, *TRI);
+ Redefs.addLiveIns(NextBBI->BB, *TRI);
+
+ DontKill.clear();
bool HasEarlyExit = CvtBBI->FalseBB != NULL;
if (CvtBBI->BB->pred_size() > 1) {
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
// Copy instructions in the true block, predicate them, and add them to
// the entry block.
- CopyAndPredicateBlock(BBI, *CvtBBI, Cond, Redefs, true);
+ CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
// RemoveExtraEdges won't work if the block has an unanalyzable branch, so
// explicitly remove CvtBBI as a successor.
@@ -1165,7 +1172,7 @@ bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
} else {
// Predicate the 'true' block after removing its branch.
CvtBBI->NonPredSize -= TII->RemoveBranch(*CvtBBI->BB);
- PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond, Redefs);
+ PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
// Now merge the entry of the triangle with the true block.
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
@@ -1276,8 +1283,8 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
// Initialize liveins to the first BB. These are potentially redefined by
// predicated instructions.
- SmallSet<unsigned, 4> Redefs;
- InitPredRedefs(BBI1->BB, Redefs, TRI);
+ Redefs.init(TRI);
+ Redefs.addLiveIns(BBI1->BB, *TRI);
// Remove the duplicated instructions at the beginnings of both paths.
MachineBasicBlock::iterator DI1 = BBI1->BB->begin();
@@ -1304,7 +1311,19 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
--NumDups1;
}
- UpdatePredRedefs(BBI1->BB->begin(), DI1, Redefs, TRI);
+ // Compute a set of registers which must not be killed by instructions in BB1:
+ // This is everything used+live in BB2 after the duplicated instructions. We
+ // can compute this set by simulating liveness backwards from the end of BB2.
+ DontKill.init(TRI);
+ for (MachineBasicBlock::reverse_iterator I = BBI2->BB->rbegin(),
+ E = MachineBasicBlock::reverse_iterator(DI2); I != E; ++I) {
+ DontKill.stepBackward(*I, *TRI);
+ }
+
+ for (MachineBasicBlock::const_iterator I = BBI1->BB->begin(), E = DI1; I != E;
+ ++I) {
+ Redefs.stepForward(*I, *TRI);
+ }
BBI.BB->splice(BBI.BB->end(), BBI1->BB, BBI1->BB->begin(), DI1);
BBI2->BB->erase(BBI2->BB->begin(), DI2);
@@ -1322,6 +1341,10 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
}
BBI1->BB->erase(DI1, BBI1->BB->end());
+ // Kill flags in the true block for registers living into the false block
+ // must be removed.
+ RemoveKills(BBI1->BB->begin(), BBI1->BB->end(), DontKill, *TRI);
+
// Remove 'false' block branch and find the last instruction to predicate.
BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB);
DI2 = BBI2->BB->end();
@@ -1380,10 +1403,10 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
}
// Predicate the 'true' block.
- PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1, Redefs, &RedefsByFalse);
+ PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1, &RedefsByFalse);
// Predicate the 'false' block.
- PredicateBlock(*BBI2, DI2, *Cond2, Redefs);
+ PredicateBlock(*BBI2, DI2, *Cond2);
// Merge the true block into the entry of the diamond.
MergeBlocks(BBI, *BBI1, TailBB == 0);
@@ -1458,7 +1481,6 @@ static bool MaySpeculate(const MachineInstr *MI,
void IfConverter::PredicateBlock(BBInfo &BBI,
MachineBasicBlock::iterator E,
SmallVectorImpl<MachineOperand> &Cond,
- SmallSet<unsigned, 4> &Redefs,
SmallSet<unsigned, 4> *LaterRedefs) {
bool AnyUnpred = false;
bool MaySpec = LaterRedefs != 0;
@@ -1484,7 +1506,7 @@ void IfConverter::PredicateBlock(BBInfo &BBI,
// If the predicated instruction now redefines a register as the result of
// if-conversion, add an implicit kill.
- UpdatePredRedefs(I, Redefs, TRI, true);
+ UpdatePredRedefs(I, Redefs, TRI);
}
std::copy(Cond.begin(), Cond.end(), std::back_inserter(BBI.Predicate));
@@ -1501,7 +1523,6 @@ void IfConverter::PredicateBlock(BBInfo &BBI,
/// the destination block. Skip end of block branches if IgnoreBr is true.
void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
SmallVectorImpl<MachineOperand> &Cond,
- SmallSet<unsigned, 4> &Redefs,
bool IgnoreBr) {
MachineFunction &MF = *ToBBI.BB->getParent();
@@ -1514,8 +1535,8 @@ void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
MachineInstr *MI = MF.CloneMachineInstr(I);
ToBBI.BB->insert(ToBBI.BB->end(), MI);
ToBBI.NonPredSize++;
- unsigned ExtraPredCost = 0;
- unsigned NumCycles = TII->getInstrLatency(InstrItins, &*I, &ExtraPredCost);
+ unsigned ExtraPredCost = TII->getPredicationCost(&*I);
+ unsigned NumCycles = SchedModel.computeInstrLatency(&*I, false);
if (NumCycles > 1)
ToBBI.ExtraCost += NumCycles-1;
ToBBI.ExtraCost2 += ExtraPredCost;
@@ -1531,7 +1552,11 @@ void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
// If the predicated instruction now redefines a register as the result of
// if-conversion, add an implicit kill.
- UpdatePredRedefs(MI, Redefs, TRI, true);
+ UpdatePredRedefs(MI, Redefs, TRI);
+
+ // Some kill flags may not be correct anymore.
+ if (!DontKill.empty())
+ RemoveKills(*MI, DontKill, *TRI);
}
if (!IgnoreBr) {
diff --git a/lib/CodeGen/InlineSpiller.cpp b/lib/CodeGen/InlineSpiller.cpp
index 8910652..bb0e642 100644
--- a/lib/CodeGen/InlineSpiller.cpp
+++ b/lib/CodeGen/InlineSpiller.cpp
@@ -179,10 +179,8 @@ private:
bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
MachineInstr *LoadMI = 0);
- void insertReload(LiveInterval &NewLI, SlotIndex,
- MachineBasicBlock::iterator MI);
- void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
- SlotIndex, MachineBasicBlock::iterator MI);
+ void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
+ void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
void spillAroundUses(unsigned Reg);
void spillAll();
@@ -580,7 +578,7 @@ MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
if (isSibling(SrcReg)) {
LiveInterval &SrcLI = LIS.getInterval(SrcReg);
- LiveRangeQuery SrcQ(SrcLI, VNI->def);
+ LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
assert(SrcQ.valueIn() && "Copy from non-existing value");
// Check if this COPY kills its source.
SVI->second.KillsSource = SrcQ.isKill();
@@ -885,12 +883,12 @@ bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
}
// Alocate a new register for the remat.
- LiveInterval &NewLI = Edit->createFrom(Original);
- NewLI.markNotSpillable();
+ unsigned NewVReg = Edit->createFrom(Original);
// Finally we can rematerialize OrigMI before MI.
- SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
+ SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewVReg, RM,
TRI);
+ (void)DefIdx;
DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
<< *LIS.getInstructionFromIndex(DefIdx));
@@ -898,15 +896,12 @@ bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(Ops[i].second);
if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
- MO.setReg(NewLI.reg);
+ MO.setReg(NewVReg);
MO.setIsKill();
}
}
- DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI);
+ DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI << '\n');
- VNInfo *DefVNI = NewLI.getNextValue(DefIdx, LIS.getVNInfoAllocator());
- NewLI.addRange(LiveRange(DefIdx, UseIdx.getRegSlot(), DefVNI));
- DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
++NumRemats;
return true;
}
@@ -1009,6 +1004,40 @@ bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
return true;
}
+#if !defined(NDEBUG)
+// Dump the range of instructions from B to E with their slot indexes.
+static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
+ MachineBasicBlock::iterator E,
+ LiveIntervals const &LIS,
+ const char *const header,
+ unsigned VReg =0) {
+ char NextLine = '\n';
+ char SlotIndent = '\t';
+
+ if (llvm::next(B) == E) {
+ NextLine = ' ';
+ SlotIndent = ' ';
+ }
+
+ dbgs() << '\t' << header << ": " << NextLine;
+
+ for (MachineBasicBlock::iterator I = B; I != E; ++I) {
+ SlotIndex Idx = LIS.getInstructionIndex(I).getRegSlot();
+
+ // If a register was passed in and this instruction has it as a
+ // destination that is marked as an early clobber, print the
+ // early-clobber slot index.
+ if (VReg) {
+ MachineOperand *MO = I->findRegisterDefOperand(VReg);
+ if (MO && MO->isEarlyClobber())
+ Idx = Idx.getRegSlot(true);
+ }
+
+ dbgs() << SlotIndent << Idx << '\t' << *I;
+ }
+}
+#endif
+
/// foldMemoryOperand - Try folding stack slot references in Ops into their
/// instructions.
///
@@ -1028,6 +1057,9 @@ foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
bool WasCopy = MI->isCopy();
unsigned ImpReg = 0;
+ bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::PATCHPOINT ||
+ MI->getOpcode() == TargetOpcode::STACKMAP);
+
// TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
// operands.
SmallVector<unsigned, 8> FoldOps;
@@ -1039,7 +1071,7 @@ foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
continue;
}
// FIXME: Teach targets to deal with subregs.
- if (MO.getSubReg())
+ if (!SpillSubRegs && MO.getSubReg())
return false;
// We cannot fold a load instruction into a def.
if (LoadMI && MO.isDef())
@@ -1049,6 +1081,8 @@ foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
FoldOps.push_back(Idx);
}
+ MachineInstrSpan MIS(MI);
+
MachineInstr *FoldMI =
LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
: TII.foldMemoryOperand(MI, FoldOps, StackSlot);
@@ -1075,16 +1109,24 @@ foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
// FoldMI does not define this physreg. Remove the LI segment.
assert(MO->isDead() && "Cannot fold physreg def");
for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) {
- if (LiveInterval *LI = LIS.getCachedRegUnit(*Units)) {
+ if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) {
SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
- if (VNInfo *VNI = LI->getVNInfoAt(Idx))
- LI->removeValNo(VNI);
+ if (VNInfo *VNI = LR->getVNInfoAt(Idx))
+ LR->removeValNo(VNI);
}
}
}
+
LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
MI->eraseFromParent();
+ // Insert any new instructions other than FoldMI into the LIS maps.
+ assert(!MIS.empty() && "Unexpected empty span of instructions!");
+ for (MachineBasicBlock::iterator MII = MIS.begin(), End = MIS.end();
+ MII != End; ++MII)
+ if (&*MII != FoldMI)
+ LIS.InsertMachineInstrInMaps(&*MII);
+
// TII.foldMemoryOperand may have left some implicit operands on the
// instruction. Strip them.
if (ImpReg)
@@ -1096,8 +1138,9 @@ foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
FoldMI->RemoveOperand(i - 1);
}
- DEBUG(dbgs() << "\tfolded: " << LIS.getInstructionIndex(FoldMI) << '\t'
- << *FoldMI);
+ DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
+ "folded"));
+
if (!WasCopy)
++NumFolded;
else if (Ops.front().second == 0)
@@ -1107,36 +1150,35 @@ foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
return true;
}
-/// insertReload - Insert a reload of NewLI.reg before MI.
-void InlineSpiller::insertReload(LiveInterval &NewLI,
+void InlineSpiller::insertReload(unsigned NewVReg,
SlotIndex Idx,
MachineBasicBlock::iterator MI) {
MachineBasicBlock &MBB = *MI->getParent();
- TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot,
- MRI.getRegClass(NewLI.reg), &TRI);
- --MI; // Point to load instruction.
- SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
- // Some (out-of-tree) targets have EC reload instructions.
- if (MachineOperand *MO = MI->findRegisterDefOperand(NewLI.reg))
- if (MO->isEarlyClobber())
- LoadIdx = LoadIdx.getRegSlot(true);
- DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI);
- VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, LIS.getVNInfoAllocator());
- NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
+
+ MachineInstrSpan MIS(MI);
+ TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
+ MRI.getRegClass(NewVReg), &TRI);
+
+ LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
+
+ DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
+ NewVReg));
++NumReloads;
}
-/// insertSpill - Insert a spill of NewLI.reg after MI.
-void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
- SlotIndex Idx, MachineBasicBlock::iterator MI) {
+/// insertSpill - Insert a spill of NewVReg after MI.
+void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
+ MachineBasicBlock::iterator MI) {
MachineBasicBlock &MBB = *MI->getParent();
- TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot,
- MRI.getRegClass(NewLI.reg), &TRI);
- --MI; // Point to store instruction.
- SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
- DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
- VNInfo *StoreVNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
- NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
+
+ MachineInstrSpan MIS(MI);
+ TII.storeRegToStackSlot(MBB, llvm::next(MI), NewVReg, isKill, StackSlot,
+ MRI.getRegClass(NewVReg), &TRI);
+
+ LIS.InsertMachineInstrRangeInMaps(llvm::next(MI), MIS.end());
+
+ DEBUG(dumpMachineInstrRangeWithSlotIndex(llvm::next(MI), MIS.end(), LIS,
+ "spill"));
++NumSpills;
}
@@ -1152,7 +1194,7 @@ void InlineSpiller::spillAroundUses(unsigned Reg) {
// Debug values are not allowed to affect codegen.
if (MI->isDebugValue()) {
// Modify DBG_VALUE now that the value is in a spill slot.
- bool IsIndirect = MI->getOperand(1).isImm();
+ bool IsIndirect = MI->isIndirectDebugValue();
uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
const MDNode *MDPtr = MI->getOperand(2).getMetadata();
DebugLoc DL = MI->getDebugLoc();
@@ -1212,19 +1254,18 @@ void InlineSpiller::spillAroundUses(unsigned Reg) {
if (foldMemoryOperand(Ops))
continue;
- // Allocate interval around instruction.
+ // Create a new virtual register for spill/fill.
// FIXME: Infer regclass from instruction alone.
- LiveInterval &NewLI = Edit->createFrom(Reg);
- NewLI.markNotSpillable();
+ unsigned NewVReg = Edit->createFrom(Reg);
if (RI.Reads)
- insertReload(NewLI, Idx, MI);
+ insertReload(NewVReg, Idx, MI);
// Rewrite instruction operands.
bool hasLiveDef = false;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
- MO.setReg(NewLI.reg);
+ MO.setReg(NewVReg);
if (MO.isUse()) {
if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
MO.setIsKill();
@@ -1233,21 +1274,12 @@ void InlineSpiller::spillAroundUses(unsigned Reg) {
hasLiveDef = true;
}
}
- DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI);
+ DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
// FIXME: Use a second vreg if instruction has no tied ops.
- if (RI.Writes) {
+ if (RI.Writes)
if (hasLiveDef)
- insertSpill(NewLI, OldLI, Idx, MI);
- else {
- // This instruction defines a dead value. We don't need to spill it,
- // but do create a live range for the dead value.
- VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
- NewLI.addRange(LiveRange(Idx, Idx.getDeadSlot(), VNI));
- }
- }
-
- DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
+ insertSpill(NewVReg, true, MI);
}
}
@@ -1266,8 +1298,8 @@ void InlineSpiller::spillAll() {
assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
- StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
- StackInt->getValNumInfo(0));
+ StackInt->MergeSegmentsInAsValue(LIS.getInterval(RegsToSpill[i]),
+ StackInt->getValNumInfo(0));
DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
// Spill around uses of all RegsToSpill.
@@ -1308,8 +1340,8 @@ void InlineSpiller::spill(LiveRangeEdit &edit) {
DEBUG(dbgs() << "Inline spilling "
<< MRI.getRegClass(edit.getReg())->getName()
- << ':' << PrintReg(edit.getReg()) << ' ' << edit.getParent()
- << "\nFrom original " << LIS.getInterval(Original) << '\n');
+ << ':' << edit.getParent()
+ << "\nFrom original " << PrintReg(Original) << '\n');
assert(edit.getParent().isSpillable() &&
"Attempting to spill already spilled value.");
assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
diff --git a/lib/CodeGen/InterferenceCache.cpp b/lib/CodeGen/InterferenceCache.cpp
index a8e711e..427225d 100644
--- a/lib/CodeGen/InterferenceCache.cpp
+++ b/lib/CodeGen/InterferenceCache.cpp
@@ -204,11 +204,11 @@ void InterferenceCache::Entry::update(unsigned MBBNum) {
// Fixed interference.
for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
LiveInterval::iterator &I = RegUnits[i].FixedI;
- LiveInterval *LI = RegUnits[i].Fixed;
- if (I == LI->end() || I->start >= Stop)
+ LiveRange *LR = RegUnits[i].Fixed;
+ if (I == LR->end() || I->start >= Stop)
continue;
- I = LI->advanceTo(I, Stop);
- bool Backup = I == LI->end() || I->start >= Stop;
+ I = LR->advanceTo(I, Stop);
+ bool Backup = I == LR->end() || I->start >= Stop;
if (Backup)
--I;
SlotIndex StopI = I->end;
diff --git a/lib/CodeGen/InterferenceCache.h b/lib/CodeGen/InterferenceCache.h
index c02fb9a..800f705 100644
--- a/lib/CodeGen/InterferenceCache.h
+++ b/lib/CodeGen/InterferenceCache.h
@@ -72,7 +72,7 @@ class InterferenceCache {
unsigned VirtTag;
/// Fixed interference in RegUnit.
- LiveInterval *Fixed;
+ LiveRange *Fixed;
/// Iterator pointing into the fixed RegUnit interference.
LiveInterval::iterator FixedI;
diff --git a/lib/CodeGen/IntrinsicLowering.cpp b/lib/CodeGen/IntrinsicLowering.cpp
index d894f66..c38d4fb 100644
--- a/lib/CodeGen/IntrinsicLowering.cpp
+++ b/lib/CodeGen/IntrinsicLowering.cpp
@@ -485,11 +485,12 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
break;
}
case Intrinsic::memset: {
- Type *IntPtr = TD.getIntPtrType(Context);
+ Value *Op0 = CI->getArgOperand(0);
+ Type *IntPtr = TD.getIntPtrType(Op0->getType());
Value *Size = Builder.CreateIntCast(CI->getArgOperand(2), IntPtr,
/* isSigned */ false);
Value *Ops[3];
- Ops[0] = CI->getArgOperand(0);
+ Ops[0] = Op0;
// Extend the amount to i32.
Ops[1] = Builder.CreateIntCast(CI->getArgOperand(1),
Type::getInt32Ty(Context),
diff --git a/lib/CodeGen/LLVMTargetMachine.cpp b/lib/CodeGen/LLVMTargetMachine.cpp
index 6c9b2e5..ad2c553 100644
--- a/lib/CodeGen/LLVMTargetMachine.cpp
+++ b/lib/CodeGen/LLVMTargetMachine.cpp
@@ -175,12 +175,11 @@ bool LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
// Create a code emitter if asked to show the encoding.
MCCodeEmitter *MCE = 0;
- MCAsmBackend *MAB = 0;
- if (ShowMCEncoding) {
+ if (ShowMCEncoding)
MCE = getTarget().createMCCodeEmitter(MII, MRI, STI, *Context);
- MAB = getTarget().createMCAsmBackend(getTargetTriple(), TargetCPU);
- }
+ MCAsmBackend *MAB = getTarget().createMCAsmBackend(MRI, getTargetTriple(),
+ TargetCPU);
MCStreamer *S = getTarget().createAsmStreamer(*Context, Out,
getVerboseAsm(),
hasMCUseLoc(),
@@ -197,7 +196,7 @@ bool LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
// emission fails.
MCCodeEmitter *MCE = getTarget().createMCCodeEmitter(MII, MRI, STI,
*Context);
- MCAsmBackend *MAB = getTarget().createMCAsmBackend(getTargetTriple(),
+ MCAsmBackend *MAB = getTarget().createMCAsmBackend(MRI, getTargetTriple(),
TargetCPU);
if (MCE == 0 || MAB == 0)
return true;
@@ -232,7 +231,7 @@ bool LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
/// addPassesToEmitMachineCode - Add passes to the specified pass manager to
/// get machine code emitted. This uses a JITCodeEmitter object to handle
/// actually outputting the machine code and resolving things like the address
-/// of functions. This method should returns true if machine code emission is
+/// of functions. This method should return true if machine code emission is
/// not supported.
///
bool LLVMTargetMachine::addPassesToEmitMachineCode(PassManagerBase &PM,
@@ -271,7 +270,8 @@ bool LLVMTargetMachine::addPassesToEmitMC(PassManagerBase &PM,
const MCSubtargetInfo &STI = getSubtarget<MCSubtargetInfo>();
MCCodeEmitter *MCE = getTarget().createMCCodeEmitter(*getInstrInfo(), MRI,
STI, *Ctx);
- MCAsmBackend *MAB = getTarget().createMCAsmBackend(getTargetTriple(), TargetCPU);
+ MCAsmBackend *MAB = getTarget().createMCAsmBackend(MRI, getTargetTriple(),
+ TargetCPU);
if (MCE == 0 || MAB == 0)
return true;
diff --git a/lib/CodeGen/LiveDebugVariables.cpp b/lib/CodeGen/LiveDebugVariables.cpp
index 85bed46..25645e0 100644
--- a/lib/CodeGen/LiveDebugVariables.cpp
+++ b/lib/CodeGen/LiveDebugVariables.cpp
@@ -131,7 +131,8 @@ class UserValue {
/// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs
/// is live. Returns true if any changes were made.
- bool splitLocation(unsigned OldLocNo, ArrayRef<LiveInterval*> NewRegs);
+ bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
+ LiveIntervals &LIS);
public:
/// UserValue - Create a new UserValue.
@@ -219,13 +220,13 @@ public:
/// End points where VNI is no longer live are added to Kills.
/// @param Idx Starting point for the definition.
/// @param LocNo Location number to propagate.
- /// @param LI Restrict liveness to where LI has the value VNI. May be null.
- /// @param VNI When LI is not null, this is the value to restrict to.
+ /// @param LR Restrict liveness to where LR has the value VNI. May be null.
+ /// @param VNI When LR is not null, this is the value to restrict to.
/// @param Kills Append end points of VNI's live range to Kills.
/// @param LIS Live intervals analysis.
/// @param MDT Dominator tree.
void extendDef(SlotIndex Idx, unsigned LocNo,
- LiveInterval *LI, const VNInfo *VNI,
+ LiveRange *LR, const VNInfo *VNI,
SmallVectorImpl<SlotIndex> *Kills,
LiveIntervals &LIS, MachineDominatorTree &MDT,
UserValueScopes &UVS);
@@ -251,7 +252,8 @@ public:
/// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
/// live. Returns true if any changes were made.
- bool splitRegister(unsigned OldLocNo, ArrayRef<LiveInterval*> NewRegs);
+ bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
+ LiveIntervals &LIS);
/// rewriteLocations - Rewrite virtual register locations according to the
/// provided virtual register map.
@@ -345,7 +347,7 @@ public:
void mapVirtReg(unsigned VirtReg, UserValue *EC);
/// splitRegister - Replace all references to OldReg with NewRegs.
- void splitRegister(unsigned OldReg, ArrayRef<LiveInterval*> NewRegs);
+ void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
/// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
void emitDebugValues(VirtRegMap *VRM);
@@ -455,9 +457,10 @@ bool LDVImpl::handleDebugValue(MachineInstr *MI, SlotIndex Idx) {
}
// Get or create the UserValue for (variable,offset).
- bool IsIndirect = MI->getOperand(1).isImm();
+ bool IsIndirect = MI->isIndirectDebugValue();
unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
const MDNode *Var = MI->getOperand(2).getMetadata();
+ //here.
UserValue *UV = getUserValue(Var, Offset, IsIndirect, MI->getDebugLoc());
UV->addDef(Idx, MI->getOperand(0));
return true;
@@ -492,7 +495,7 @@ bool LDVImpl::collectDebugValues(MachineFunction &mf) {
}
void UserValue::extendDef(SlotIndex Idx, unsigned LocNo,
- LiveInterval *LI, const VNInfo *VNI,
+ LiveRange *LR, const VNInfo *VNI,
SmallVectorImpl<SlotIndex> *Kills,
LiveIntervals &LIS, MachineDominatorTree &MDT,
UserValueScopes &UVS) {
@@ -506,15 +509,15 @@ void UserValue::extendDef(SlotIndex Idx, unsigned LocNo,
// Limit to VNI's live range.
bool ToEnd = true;
- if (LI && VNI) {
- LiveRange *Range = LI->getLiveRangeContaining(Start);
- if (!Range || Range->valno != VNI) {
+ if (LR && VNI) {
+ LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
+ if (!Segment || Segment->valno != VNI) {
if (Kills)
Kills->push_back(Start);
continue;
}
- if (Range->end < Stop)
- Stop = Range->end, ToEnd = false;
+ if (Segment->end < Stop)
+ Stop = Segment->end, ToEnd = false;
}
// There could already be a short def at Start.
@@ -666,10 +669,10 @@ UserValue::computeIntervals(MachineRegisterInfo &MRI,
// For physregs, use the live range of the first regunit as a guide.
unsigned Unit = *MCRegUnitIterator(Loc.getReg(), &TRI);
- LiveInterval *LI = &LIS.getRegUnit(Unit);
- const VNInfo *VNI = LI->getVNInfoAt(Idx);
+ LiveRange *LR = &LIS.getRegUnit(Unit);
+ const VNInfo *VNI = LR->getVNInfoAt(Idx);
// Don't track copies from physregs, it is too expensive.
- extendDef(Idx, LocNo, LI, VNI, 0, LIS, MDT, UVS);
+ extendDef(Idx, LocNo, LR, VNI, 0, LIS, MDT, UVS);
}
// Finally, erase all the undefs.
@@ -729,7 +732,8 @@ LiveDebugVariables::~LiveDebugVariables() {
//===----------------------------------------------------------------------===//
bool
-UserValue::splitLocation(unsigned OldLocNo, ArrayRef<LiveInterval*> NewRegs) {
+UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
+ LiveIntervals& LIS) {
DEBUG({
dbgs() << "Splitting Loc" << OldLocNo << '\t';
print(dbgs(), 0);
@@ -738,7 +742,7 @@ UserValue::splitLocation(unsigned OldLocNo, ArrayRef<LiveInterval*> NewRegs) {
LocMap::iterator LocMapI;
LocMapI.setMap(locInts);
for (unsigned i = 0; i != NewRegs.size(); ++i) {
- LiveInterval *LI = NewRegs[i];
+ LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
if (LI->empty())
continue;
@@ -827,7 +831,8 @@ UserValue::splitLocation(unsigned OldLocNo, ArrayRef<LiveInterval*> NewRegs) {
}
bool
-UserValue::splitRegister(unsigned OldReg, ArrayRef<LiveInterval*> NewRegs) {
+UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
+ LiveIntervals &LIS) {
bool DidChange = false;
// Split locations referring to OldReg. Iterate backwards so splitLocation can
// safely erase unused locations.
@@ -836,15 +841,15 @@ UserValue::splitRegister(unsigned OldReg, ArrayRef<LiveInterval*> NewRegs) {
const MachineOperand *Loc = &locations[LocNo];
if (!Loc->isReg() || Loc->getReg() != OldReg)
continue;
- DidChange |= splitLocation(LocNo, NewRegs);
+ DidChange |= splitLocation(LocNo, NewRegs, LIS);
}
return DidChange;
}
-void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<LiveInterval*> NewRegs) {
+void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
bool DidChange = false;
for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
- DidChange |= UV->splitRegister(OldReg, NewRegs);
+ DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
if (!DidChange)
return;
@@ -852,11 +857,11 @@ void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<LiveInterval*> NewRegs) {
// Map all of the new virtual registers.
UserValue *UV = lookupVirtReg(OldReg);
for (unsigned i = 0; i != NewRegs.size(); ++i)
- mapVirtReg(NewRegs[i]->reg, UV);
+ mapVirtReg(NewRegs[i], UV);
}
void LiveDebugVariables::
-splitRegister(unsigned OldReg, ArrayRef<LiveInterval*> NewRegs) {
+splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
if (pImpl)
static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
}
diff --git a/lib/CodeGen/LiveDebugVariables.h b/lib/CodeGen/LiveDebugVariables.h
index 3ce3c39..58a3f0f 100644
--- a/lib/CodeGen/LiveDebugVariables.h
+++ b/lib/CodeGen/LiveDebugVariables.h
@@ -27,6 +27,7 @@
namespace llvm {
class LiveInterval;
+class LiveIntervals;
class VirtRegMap;
class LiveDebugVariables : public MachineFunctionPass {
@@ -47,7 +48,8 @@ public:
/// splitRegister - Move any user variables in OldReg to the live ranges in
/// NewRegs where they are live. Mark the values as unavailable where no new
/// register is live.
- void splitRegister(unsigned OldReg, ArrayRef<LiveInterval*> NewRegs);
+ void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
+ LiveIntervals &LIS);
/// emitDebugValues - Emit new DBG_VALUE instructions reflecting the changes
/// that happened during register allocation.
diff --git a/lib/CodeGen/LiveInterval.cpp b/lib/CodeGen/LiveInterval.cpp
index 6be6bf3..2b8feb8 100644
--- a/lib/CodeGen/LiveInterval.cpp
+++ b/lib/CodeGen/LiveInterval.cpp
@@ -9,12 +9,12 @@
//
// This file implements the LiveRange and LiveInterval classes. Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
-// live interval for register v if there is no instruction with number j' > j
+// live range for register v if there is no instruction with number j' >= j
// such that v is live at j' and there is no instruction with number i' < i such
-// that v is live at i'. In this implementation intervals can have holes,
-// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each
-// individual range is represented as an instance of LiveRange, and the whole
-// interval is represented as an instance of LiveInterval.
+// that v is live at i'. In this implementation ranges can have holes,
+// i.e. a range might look like [1,20), [50,65), [1000,1001). Each
+// individual segment is represented as an instance of LiveRange::Segment,
+// and the whole range is represented as an instance of LiveRange.
//
//===----------------------------------------------------------------------===//
@@ -31,14 +31,14 @@
#include <algorithm>
using namespace llvm;
-LiveInterval::iterator LiveInterval::find(SlotIndex Pos) {
+LiveRange::iterator LiveRange::find(SlotIndex Pos) {
// This algorithm is basically std::upper_bound.
// Unfortunately, std::upper_bound cannot be used with mixed types until we
// adopt C++0x. Many libraries can do it, but not all.
if (empty() || Pos >= endIndex())
return end();
iterator I = begin();
- size_t Len = ranges.size();
+ size_t Len = size();
do {
size_t Mid = Len >> 1;
if (Pos < I[Mid].end)
@@ -49,13 +49,13 @@ LiveInterval::iterator LiveInterval::find(SlotIndex Pos) {
return I;
}
-VNInfo *LiveInterval::createDeadDef(SlotIndex Def,
- VNInfo::Allocator &VNInfoAllocator) {
+VNInfo *LiveRange::createDeadDef(SlotIndex Def,
+ VNInfo::Allocator &VNInfoAllocator) {
assert(!Def.isDead() && "Cannot define a value at the dead slot");
iterator I = find(Def);
if (I == end()) {
VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
- ranges.push_back(LiveRange(Def, Def.getDeadSlot(), VNI));
+ segments.push_back(Segment(Def, Def.getDeadSlot(), VNI));
return VNI;
}
if (SlotIndex::isSameInstr(Def, I->start)) {
@@ -73,11 +73,11 @@ VNInfo *LiveInterval::createDeadDef(SlotIndex Def,
}
assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def");
VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
- ranges.insert(I, LiveRange(Def, Def.getDeadSlot(), VNI));
+ segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI));
return VNI;
}
-// overlaps - Return true if the intersection of the two live intervals is
+// overlaps - Return true if the intersection of the two live ranges is
// not empty.
//
// An example for overlaps():
@@ -86,7 +86,7 @@ VNInfo *LiveInterval::createDeadDef(SlotIndex Def,
// 4: B = ...
// 8: C = A + B ;; last use of A
//
-// The live intervals should look like:
+// The live ranges should look like:
//
// A = [3, 11)
// B = [7, x)
@@ -95,9 +95,9 @@ VNInfo *LiveInterval::createDeadDef(SlotIndex Def,
// A->overlaps(C) should return false since we want to be able to join
// A and C.
//
-bool LiveInterval::overlapsFrom(const LiveInterval& other,
- const_iterator StartPos) const {
- assert(!empty() && "empty interval");
+bool LiveRange::overlapsFrom(const LiveRange& other,
+ const_iterator StartPos) const {
+ assert(!empty() && "empty range");
const_iterator i = begin();
const_iterator ie = end();
const_iterator j = StartPos;
@@ -108,13 +108,13 @@ bool LiveInterval::overlapsFrom(const LiveInterval& other,
if (i->start < j->start) {
i = std::upper_bound(i, ie, j->start);
- if (i != ranges.begin()) --i;
+ if (i != begin()) --i;
} else if (j->start < i->start) {
++StartPos;
if (StartPos != other.end() && StartPos->start <= i->start) {
assert(StartPos < other.end() && i < end());
j = std::upper_bound(j, je, i->start);
- if (j != other.ranges.begin()) --j;
+ if (j != other.begin()) --j;
}
} else {
return true;
@@ -136,10 +136,9 @@ bool LiveInterval::overlapsFrom(const LiveInterval& other,
return false;
}
-bool LiveInterval::overlaps(const LiveInterval &Other,
- const CoalescerPair &CP,
- const SlotIndexes &Indexes) const {
- assert(!empty() && "empty interval");
+bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
+ const SlotIndexes &Indexes) const {
+ assert(!empty() && "empty range");
if (Other.empty())
return false;
@@ -178,9 +177,9 @@ bool LiveInterval::overlaps(const LiveInterval &Other,
}
}
-/// overlaps - Return true if the live interval overlaps a range specified
+/// overlaps - Return true if the live range overlaps an interval specified
/// by [Start, End).
-bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const {
+bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
assert(Start < End && "Invalid range");
const_iterator I = std::lower_bound(begin(), end(), End);
return I != begin() && (--I)->end > Start;
@@ -190,7 +189,7 @@ bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const {
/// ValNo is dead, remove it. If it is the largest value number, just nuke it
/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
/// it can be nuked later.
-void LiveInterval::markValNoForDeletion(VNInfo *ValNo) {
+void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
if (ValNo->id == getNumValNums()-1) {
do {
valnos.pop_back();
@@ -202,137 +201,135 @@ void LiveInterval::markValNoForDeletion(VNInfo *ValNo) {
/// RenumberValues - Renumber all values in order of appearance and delete the
/// remaining unused values.
-void LiveInterval::RenumberValues(LiveIntervals &lis) {
+void LiveRange::RenumberValues() {
SmallPtrSet<VNInfo*, 8> Seen;
valnos.clear();
for (const_iterator I = begin(), E = end(); I != E; ++I) {
VNInfo *VNI = I->valno;
if (!Seen.insert(VNI))
continue;
- assert(!VNI->isUnused() && "Unused valno used by live range");
+ assert(!VNI->isUnused() && "Unused valno used by live segment");
VNI->id = (unsigned)valnos.size();
valnos.push_back(VNI);
}
}
-/// extendIntervalEndTo - This method is used when we want to extend the range
-/// specified by I to end at the specified endpoint. To do this, we should
-/// merge and eliminate all ranges that this will overlap with. The iterator is
-/// not invalidated.
-void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) {
- assert(I != ranges.end() && "Not a valid interval!");
+/// This method is used when we want to extend the segment specified by I to end
+/// at the specified endpoint. To do this, we should merge and eliminate all
+/// segments that this will overlap with. The iterator is not invalidated.
+void LiveRange::extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
+ assert(I != end() && "Not a valid segment!");
VNInfo *ValNo = I->valno;
- // Search for the first interval that we can't merge with.
- Ranges::iterator MergeTo = llvm::next(I);
- for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) {
+ // Search for the first segment that we can't merge with.
+ iterator MergeTo = llvm::next(I);
+ for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) {
assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
}
- // If NewEnd was in the middle of an interval, make sure to get its endpoint.
+ // If NewEnd was in the middle of a segment, make sure to get its endpoint.
I->end = std::max(NewEnd, prior(MergeTo)->end);
- // If the newly formed range now touches the range after it and if they have
- // the same value number, merge the two ranges into one range.
- if (MergeTo != ranges.end() && MergeTo->start <= I->end &&
+ // If the newly formed segment now touches the segment after it and if they
+ // have the same value number, merge the two segments into one segment.
+ if (MergeTo != end() && MergeTo->start <= I->end &&
MergeTo->valno == ValNo) {
I->end = MergeTo->end;
++MergeTo;
}
- // Erase any dead ranges.
- ranges.erase(llvm::next(I), MergeTo);
+ // Erase any dead segments.
+ segments.erase(llvm::next(I), MergeTo);
}
-/// extendIntervalStartTo - This method is used when we want to extend the range
-/// specified by I to start at the specified endpoint. To do this, we should
-/// merge and eliminate all ranges that this will overlap with.
-LiveInterval::Ranges::iterator
-LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) {
- assert(I != ranges.end() && "Not a valid interval!");
+/// This method is used when we want to extend the segment specified by I to
+/// start at the specified endpoint. To do this, we should merge and eliminate
+/// all segments that this will overlap with.
+LiveRange::iterator
+LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) {
+ assert(I != end() && "Not a valid segment!");
VNInfo *ValNo = I->valno;
- // Search for the first interval that we can't merge with.
- Ranges::iterator MergeTo = I;
+ // Search for the first segment that we can't merge with.
+ iterator MergeTo = I;
do {
- if (MergeTo == ranges.begin()) {
+ if (MergeTo == begin()) {
I->start = NewStart;
- ranges.erase(MergeTo, I);
+ segments.erase(MergeTo, I);
return I;
}
assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
--MergeTo;
} while (NewStart <= MergeTo->start);
- // If we start in the middle of another interval, just delete a range and
- // extend that interval.
+ // If we start in the middle of another segment, just delete a range and
+ // extend that segment.
if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
MergeTo->end = I->end;
} else {
- // Otherwise, extend the interval right after.
+ // Otherwise, extend the segment right after.
++MergeTo;
MergeTo->start = NewStart;
MergeTo->end = I->end;
}
- ranges.erase(llvm::next(MergeTo), llvm::next(I));
+ segments.erase(llvm::next(MergeTo), llvm::next(I));
return MergeTo;
}
-LiveInterval::iterator
-LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
- SlotIndex Start = LR.start, End = LR.end;
- iterator it = std::upper_bound(From, ranges.end(), Start);
+LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) {
+ SlotIndex Start = S.start, End = S.end;
+ iterator it = std::upper_bound(From, end(), Start);
- // If the inserted interval starts in the middle or right at the end of
- // another interval, just extend that interval to contain the range of LR.
- if (it != ranges.begin()) {
+ // If the inserted segment starts in the middle or right at the end of
+ // another segment, just extend that segment to contain the segment of S.
+ if (it != begin()) {
iterator B = prior(it);
- if (LR.valno == B->valno) {
+ if (S.valno == B->valno) {
if (B->start <= Start && B->end >= Start) {
- extendIntervalEndTo(B, End);
+ extendSegmentEndTo(B, End);
return B;
}
} else {
- // Check to make sure that we are not overlapping two live ranges with
+ // Check to make sure that we are not overlapping two live segments with
// different valno's.
assert(B->end <= Start &&
- "Cannot overlap two LiveRanges with differing ValID's"
+ "Cannot overlap two segments with differing ValID's"
" (did you def the same reg twice in a MachineInstr?)");
}
}
- // Otherwise, if this range ends in the middle of, or right next to, another
- // interval, merge it into that interval.
- if (it != ranges.end()) {
- if (LR.valno == it->valno) {
+ // Otherwise, if this segment ends in the middle of, or right next to, another
+ // segment, merge it into that segment.
+ if (it != end()) {
+ if (S.valno == it->valno) {
if (it->start <= End) {
- it = extendIntervalStartTo(it, Start);
+ it = extendSegmentStartTo(it, Start);
- // If LR is a complete superset of an interval, we may need to grow its
+ // If S is a complete superset of a segment, we may need to grow its
// endpoint as well.
if (End > it->end)
- extendIntervalEndTo(it, End);
+ extendSegmentEndTo(it, End);
return it;
}
} else {
- // Check to make sure that we are not overlapping two live ranges with
+ // Check to make sure that we are not overlapping two live segments with
// different valno's.
assert(it->start >= End &&
- "Cannot overlap two LiveRanges with differing ValID's");
+ "Cannot overlap two segments with differing ValID's");
}
}
- // Otherwise, this is just a new range that doesn't interact with anything.
+ // Otherwise, this is just a new segment that doesn't interact with anything.
// Insert it.
- return ranges.insert(it, LR);
+ return segments.insert(it, S);
}
-/// extendInBlock - If this interval is live before Kill in the basic
+/// extendInBlock - If this range is live before Kill in the basic
/// block that starts at StartIdx, extend it to be live up to Kill and return
/// the value. If there is no live range before Kill, return NULL.
-VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
+VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
if (empty())
return 0;
iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
@@ -342,20 +339,21 @@ VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
if (I->end <= StartIdx)
return 0;
if (I->end < Kill)
- extendIntervalEndTo(I, Kill);
+ extendSegmentEndTo(I, Kill);
return I->valno;
}
-/// removeRange - Remove the specified range from this interval. Note that
-/// the range must be in a single LiveRange in its entirety.
-void LiveInterval::removeRange(SlotIndex Start, SlotIndex End,
- bool RemoveDeadValNo) {
- // Find the LiveRange containing this span.
- Ranges::iterator I = find(Start);
- assert(I != ranges.end() && "Range is not in interval!");
- assert(I->containsRange(Start, End) && "Range is not entirely in interval!");
+/// Remove the specified segment from this range. Note that the segment must
+/// be in a single Segment in its entirety.
+void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
+ bool RemoveDeadValNo) {
+ // Find the Segment containing this span.
+ iterator I = find(Start);
+ assert(I != end() && "Segment is not in range!");
+ assert(I->containsInterval(Start, End)
+ && "Segment is not entirely in range!");
- // If the span we are removing is at the start of the LiveRange, adjust it.
+ // If the span we are removing is at the start of the Segment, adjust it.
VNInfo *ValNo = I->valno;
if (I->start == Start) {
if (I->end == End) {
@@ -373,54 +371,50 @@ void LiveInterval::removeRange(SlotIndex Start, SlotIndex End,
}
}
- ranges.erase(I); // Removed the whole LiveRange.
+ segments.erase(I); // Removed the whole Segment.
} else
I->start = End;
return;
}
- // Otherwise if the span we are removing is at the end of the LiveRange,
+ // Otherwise if the span we are removing is at the end of the Segment,
// adjust the other way.
if (I->end == End) {
I->end = Start;
return;
}
- // Otherwise, we are splitting the LiveRange into two pieces.
+ // Otherwise, we are splitting the Segment into two pieces.
SlotIndex OldEnd = I->end;
- I->end = Start; // Trim the old interval.
+ I->end = Start; // Trim the old segment.
// Insert the new one.
- ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo));
+ segments.insert(llvm::next(I), Segment(End, OldEnd, ValNo));
}
-/// removeValNo - Remove all the ranges defined by the specified value#.
+/// removeValNo - Remove all the segments defined by the specified value#.
/// Also remove the value# from value# list.
-void LiveInterval::removeValNo(VNInfo *ValNo) {
+void LiveRange::removeValNo(VNInfo *ValNo) {
if (empty()) return;
- Ranges::iterator I = ranges.end();
- Ranges::iterator E = ranges.begin();
+ iterator I = end();
+ iterator E = begin();
do {
--I;
if (I->valno == ValNo)
- ranges.erase(I);
+ segments.erase(I);
} while (I != E);
// Now that ValNo is dead, remove it.
markValNoForDeletion(ValNo);
}
-/// join - Join two live intervals (this, and other) together. This applies
-/// mappings to the value numbers in the LHS/RHS intervals as specified. If
-/// the intervals are not joinable, this aborts.
-void LiveInterval::join(LiveInterval &Other,
- const int *LHSValNoAssignments,
- const int *RHSValNoAssignments,
- SmallVectorImpl<VNInfo *> &NewVNInfo,
- MachineRegisterInfo *MRI) {
+void LiveRange::join(LiveRange &Other,
+ const int *LHSValNoAssignments,
+ const int *RHSValNoAssignments,
+ SmallVectorImpl<VNInfo *> &NewVNInfo) {
verify();
- // Determine if any of our live range values are mapped. This is uncommon, so
- // we want to avoid the interval scan if not.
+ // Determine if any of our values are mapped. This is uncommon, so we want
+ // to avoid the range scan if not.
bool MustMapCurValNos = false;
unsigned NumVals = getNumValNums();
unsigned NumNewVals = NewVNInfo.size();
@@ -433,8 +427,7 @@ void LiveInterval::join(LiveInterval &Other,
}
}
- // If we have to apply a mapping to our base interval assignment, rewrite it
- // now.
+ // If we have to apply a mapping to our base range assignment, rewrite it now.
if (MustMapCurValNos && !empty()) {
// Map the first live range.
@@ -445,12 +438,12 @@ void LiveInterval::join(LiveInterval &Other,
assert(nextValNo != 0 && "Huh?");
// If this live range has the same value # as its immediate predecessor,
- // and if they are neighbors, remove one LiveRange. This happens when we
+ // and if they are neighbors, remove one Segment. This happens when we
// have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
if (OutIt->valno == nextValNo && OutIt->end == I->start) {
OutIt->end = I->end;
} else {
- // Didn't merge. Move OutIt to the next interval,
+ // Didn't merge. Move OutIt to the next segment,
++OutIt;
OutIt->valno = nextValNo;
if (OutIt != I) {
@@ -459,9 +452,9 @@ void LiveInterval::join(LiveInterval &Other,
}
}
}
- // If we merge some live ranges, chop off the end.
+ // If we merge some segments, chop off the end.
++OutIt;
- ranges.erase(OutIt, end());
+ segments.erase(OutIt, end());
}
// Rewrite Other values before changing the VNInfo ids.
@@ -472,7 +465,7 @@ void LiveInterval::join(LiveInterval &Other,
I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]];
// Update val# info. Renumber them and make sure they all belong to this
- // LiveInterval now. Also remove dead val#'s.
+ // LiveRange now. Also remove dead val#'s.
unsigned NumValNos = 0;
for (unsigned i = 0; i < NumNewVals; ++i) {
VNInfo *VNI = NewVNInfo[i];
@@ -487,31 +480,31 @@ void LiveInterval::join(LiveInterval &Other,
if (NumNewVals < NumVals)
valnos.resize(NumNewVals); // shrinkify
- // Okay, now insert the RHS live ranges into the LHS.
+ // Okay, now insert the RHS live segments into the LHS.
LiveRangeUpdater Updater(this);
for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
Updater.add(*I);
}
-/// MergeRangesInAsValue - Merge all of the intervals in RHS into this live
-/// interval as the specified value number. The LiveRanges in RHS are
-/// allowed to overlap with LiveRanges in the current interval, but only if
-/// the overlapping LiveRanges have the specified value number.
-void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS,
- VNInfo *LHSValNo) {
+/// Merge all of the segments in RHS into this live range as the specified
+/// value number. The segments in RHS are allowed to overlap with segments in
+/// the current range, but only if the overlapping segments have the
+/// specified value number.
+void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
+ VNInfo *LHSValNo) {
LiveRangeUpdater Updater(this);
for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
Updater.add(I->start, I->end, LHSValNo);
}
-/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
-/// in RHS into this live interval as the specified value number.
-/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
-/// current interval, it will replace the value numbers of the overlaped
-/// live ranges with the specified value number.
-void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS,
- const VNInfo *RHSValNo,
- VNInfo *LHSValNo) {
+/// MergeValueInAsValue - Merge all of the live segments of a specific val#
+/// in RHS into this live range as the specified value number.
+/// The segments in RHS are allowed to overlap with segments in the
+/// current range, it will replace the value numbers of the overlaped
+/// segments with the specified value number.
+void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
+ const VNInfo *RHSValNo,
+ VNInfo *LHSValNo) {
LiveRangeUpdater Updater(this);
for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
if (I->valno == RHSValNo)
@@ -520,9 +513,9 @@ void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS,
/// MergeValueNumberInto - This method is called when two value nubmers
/// are found to be equivalent. This eliminates V1, replacing all
-/// LiveRanges with the V1 value number with the V2 value number. This can
+/// segments with the V1 value number with the V2 value number. This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
-VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
+VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
assert(V1 != V2 && "Identical value#'s are always equivalent!");
// This code actually merges the (numerically) larger value number into the
@@ -536,37 +529,37 @@ VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
std::swap(V1, V2);
}
- // Merge V1 live ranges into V2.
+ // Merge V1 segments into V2.
for (iterator I = begin(); I != end(); ) {
- iterator LR = I++;
- if (LR->valno != V1) continue; // Not a V1 LiveRange.
+ iterator S = I++;
+ if (S->valno != V1) continue; // Not a V1 Segment.
// Okay, we found a V1 live range. If it had a previous, touching, V2 live
// range, extend it.
- if (LR != begin()) {
- iterator Prev = LR-1;
- if (Prev->valno == V2 && Prev->end == LR->start) {
- Prev->end = LR->end;
+ if (S != begin()) {
+ iterator Prev = S-1;
+ if (Prev->valno == V2 && Prev->end == S->start) {
+ Prev->end = S->end;
// Erase this live-range.
- ranges.erase(LR);
+ segments.erase(S);
I = Prev+1;
- LR = Prev;
+ S = Prev;
}
}
// Okay, now we have a V1 or V2 live range that is maximally merged forward.
// Ensure that it is a V2 live-range.
- LR->valno = V2;
+ S->valno = V2;
- // If we can merge it into later V2 live ranges, do so now. We ignore any
- // following V1 live ranges, as they will be merged in subsequent iterations
+ // If we can merge it into later V2 segments, do so now. We ignore any
+ // following V1 segments, as they will be merged in subsequent iterations
// of the loop.
if (I != end()) {
- if (I->start == LR->end && I->valno == V2) {
- LR->end = I->end;
- ranges.erase(I);
- I = LR+1;
+ if (I->start == S->end && I->valno == V2) {
+ S->end = I->end;
+ segments.erase(I);
+ I = S+1;
}
}
}
@@ -584,22 +577,21 @@ unsigned LiveInterval::getSize() const {
return Sum;
}
-raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) {
- return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")";
+raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
+ return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void LiveRange::dump() const {
+void LiveRange::Segment::dump() const {
dbgs() << *this << "\n";
}
#endif
-void LiveInterval::print(raw_ostream &OS) const {
+void LiveRange::print(raw_ostream &OS) const {
if (empty())
OS << "EMPTY";
else {
- for (LiveInterval::Ranges::const_iterator I = ranges.begin(),
- E = ranges.end(); I != E; ++I) {
+ for (const_iterator I = begin(), E = end(); I != E; ++I) {
OS << *I;
assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
}
@@ -625,19 +617,29 @@ void LiveInterval::print(raw_ostream &OS) const {
}
}
+void LiveInterval::print(raw_ostream &OS) const {
+ OS << PrintReg(reg) << ' ';
+ super::print(OS);
+}
+
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void LiveRange::dump() const {
+ dbgs() << *this << "\n";
+}
+
void LiveInterval::dump() const {
dbgs() << *this << "\n";
}
#endif
#ifndef NDEBUG
-void LiveInterval::verify() const {
+void LiveRange::verify() const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
assert(I->start.isValid());
assert(I->end.isValid());
assert(I->start < I->end);
assert(I->valno != 0);
+ assert(I->valno->id < valnos.size());
assert(I->valno == valnos[I->valno->id]);
if (llvm::next(I) != E) {
assert(I->end <= llvm::next(I)->start);
@@ -649,10 +651,6 @@ void LiveInterval::verify() const {
#endif
-void LiveRange::print(raw_ostream &os) const {
- os << *this;
-}
-
//===----------------------------------------------------------------------===//
// LiveRangeUpdater class
//===----------------------------------------------------------------------===//
@@ -665,11 +663,11 @@ void LiveRange::print(raw_ostream &os) const {
//
// Otherwise, segments are kept in three separate areas:
//
-// 1. [begin; WriteI) at the front of LI.
-// 2. [ReadI; end) at the back of LI.
+// 1. [begin; WriteI) at the front of LR.
+// 2. [ReadI; end) at the back of LR.
// 3. Spills.
//
-// - LI.begin() <= WriteI <= ReadI <= LI.end().
+// - LR.begin() <= WriteI <= ReadI <= LR.end().
// - Segments in all three areas are fully ordered and coalesced.
// - Segments in area 1 precede and can't coalesce with segments in area 2.
// - Segments in Spills precede and can't coalesce with segments in area 2.
@@ -684,23 +682,23 @@ void LiveRange::print(raw_ostream &os) const {
void LiveRangeUpdater::print(raw_ostream &OS) const {
if (!isDirty()) {
- if (LI)
- OS << "Clean " << PrintReg(LI->reg) << " updater: " << *LI << '\n';
+ if (LR)
+ OS << "Clean updater: " << *LR << '\n';
else
OS << "Null updater.\n";
return;
}
- assert(LI && "Can't have null LI in dirty updater.");
- OS << PrintReg(LI->reg) << " updater with gap = " << (ReadI - WriteI)
+ assert(LR && "Can't have null LR in dirty updater.");
+ OS << " updater with gap = " << (ReadI - WriteI)
<< ", last start = " << LastStart
<< ":\n Area 1:";
- for (LiveInterval::const_iterator I = LI->begin(); I != WriteI; ++I)
+ for (LiveRange::const_iterator I = LR->begin(); I != WriteI; ++I)
OS << ' ' << *I;
OS << "\n Spills:";
for (unsigned I = 0, E = Spills.size(); I != E; ++I)
OS << ' ' << Spills[I];
OS << "\n Area 2:";
- for (LiveInterval::const_iterator I = ReadI, E = LI->end(); I != E; ++I)
+ for (LiveRange::const_iterator I = ReadI, E = LR->end(); I != E; ++I)
OS << ' ' << *I;
OS << '\n';
}
@@ -711,8 +709,9 @@ void LiveRangeUpdater::dump() const
}
// Determine if A and B should be coalesced.
-static inline bool coalescable(const LiveRange &A, const LiveRange &B) {
- assert(A.start <= B.start && "Unordered live ranges.");
+static inline bool coalescable(const LiveRange::Segment &A,
+ const LiveRange::Segment &B) {
+ assert(A.start <= B.start && "Unordered live segments.");
if (A.end == B.start)
return A.valno == B.valno;
if (A.end < B.start)
@@ -721,8 +720,8 @@ static inline bool coalescable(const LiveRange &A, const LiveRange &B) {
return true;
}
-void LiveRangeUpdater::add(LiveRange Seg) {
- assert(LI && "Cannot add to a null destination");
+void LiveRangeUpdater::add(LiveRange::Segment Seg) {
+ assert(LR && "Cannot add to a null destination");
// Flush the state if Start moves backwards.
if (!LastStart.isValid() || LastStart > Seg.start) {
@@ -730,21 +729,21 @@ void LiveRangeUpdater::add(LiveRange Seg) {
flush();
// This brings us to an uninitialized state. Reinitialize.
assert(Spills.empty() && "Leftover spilled segments");
- WriteI = ReadI = LI->begin();
+ WriteI = ReadI = LR->begin();
}
// Remember start for next time.
LastStart = Seg.start;
// Advance ReadI until it ends after Seg.start.
- LiveInterval::iterator E = LI->end();
+ LiveRange::iterator E = LR->end();
if (ReadI != E && ReadI->end <= Seg.start) {
// First try to close the gap between WriteI and ReadI with spills.
if (ReadI != WriteI)
mergeSpills();
// Then advance ReadI.
if (ReadI == WriteI)
- ReadI = WriteI = LI->find(Seg.start);
+ ReadI = WriteI = LR->find(Seg.start);
else
while (ReadI != E && ReadI->end <= Seg.start)
*WriteI++ = *ReadI++;
@@ -777,7 +776,7 @@ void LiveRangeUpdater::add(LiveRange Seg) {
}
// Try coalescing Seg into WriteI[-1].
- if (WriteI != LI->begin() && coalescable(WriteI[-1], Seg)) {
+ if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
return;
}
@@ -788,10 +787,10 @@ void LiveRangeUpdater::add(LiveRange Seg) {
return;
}
- // Finally, append to LI or Spills.
+ // Finally, append to LR or Spills.
if (WriteI == E) {
- LI->ranges.push_back(Seg);
- WriteI = ReadI = LI->ranges.end();
+ LR->segments.push_back(Seg);
+ WriteI = ReadI = LR->end();
} else
Spills.push_back(Seg);
}
@@ -802,10 +801,10 @@ void LiveRangeUpdater::mergeSpills() {
// Perform a backwards merge of Spills and [SpillI;WriteI).
size_t GapSize = ReadI - WriteI;
size_t NumMoved = std::min(Spills.size(), GapSize);
- LiveInterval::iterator Src = WriteI;
- LiveInterval::iterator Dst = Src + NumMoved;
- LiveInterval::iterator SpillSrc = Spills.end();
- LiveInterval::iterator B = LI->begin();
+ LiveRange::iterator Src = WriteI;
+ LiveRange::iterator Dst = Src + NumMoved;
+ LiveRange::iterator SpillSrc = Spills.end();
+ LiveRange::iterator B = LR->begin();
// This is the new WriteI position after merging spills.
WriteI = Dst;
@@ -827,12 +826,12 @@ void LiveRangeUpdater::flush() {
// Clear the dirty state.
LastStart = SlotIndex();
- assert(LI && "Cannot add to a null destination");
+ assert(LR && "Cannot add to a null destination");
// Nothing to merge?
if (Spills.empty()) {
- LI->ranges.erase(WriteI, ReadI);
- LI->verify();
+ LR->segments.erase(WriteI, ReadI);
+ LR->verify();
return;
}
@@ -840,17 +839,17 @@ void LiveRangeUpdater::flush() {
size_t GapSize = ReadI - WriteI;
if (GapSize < Spills.size()) {
// The gap is too small. Make some room.
- size_t WritePos = WriteI - LI->begin();
- LI->ranges.insert(ReadI, Spills.size() - GapSize, LiveRange());
+ size_t WritePos = WriteI - LR->begin();
+ LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
// This also invalidated ReadI, but it is recomputed below.
- WriteI = LI->ranges.begin() + WritePos;
+ WriteI = LR->begin() + WritePos;
} else {
// Shrink the gap if necessary.
- LI->ranges.erase(WriteI + Spills.size(), ReadI);
+ LR->segments.erase(WriteI + Spills.size(), ReadI);
}
ReadI = WriteI + Spills.size();
mergeSpills();
- LI->verify();
+ LR->verify();
}
unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
@@ -918,7 +917,7 @@ void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
else
Idx = LIS.getInstructionIndex(MI);
- LiveRangeQuery LRQ(LI, Idx);
+ LiveQueryResult LRQ = LI.Query(Idx);
const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
// In the case of an <undef> use that isn't tied to any def, VNI will be
// NULL. If the use is tied to a def, VNI will be the defined value.
@@ -935,11 +934,11 @@ void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
if (unsigned eq = EqClass[I->valno->id]) {
assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
"New intervals should be empty");
- LIV[eq]->ranges.push_back(*I);
+ LIV[eq]->segments.push_back(*I);
} else
*J++ = *I;
}
- LI.ranges.erase(J, E);
+ LI.segments.erase(J, E);
// Transfer VNInfos to their new owners and renumber them.
unsigned j = 0, e = LI.getNumValNums();
diff --git a/lib/CodeGen/LiveIntervalAnalysis.cpp b/lib/CodeGen/LiveIntervalAnalysis.cpp
index 3680943..e1c3217 100644
--- a/lib/CodeGen/LiveIntervalAnalysis.cpp
+++ b/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -95,15 +95,15 @@ void LiveIntervals::releaseMemory() {
RegMaskBits.clear();
RegMaskBlocks.clear();
- for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
- delete RegUnitIntervals[i];
- RegUnitIntervals.clear();
+ for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
+ delete RegUnitRanges[i];
+ RegUnitRanges.clear();
// Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
VNInfoAllocator.Reset();
}
-/// runOnMachineFunction - Register allocate the whole function
+/// runOnMachineFunction - calculates LiveIntervals
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
MF = &fn;
@@ -139,15 +139,15 @@ void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
OS << "********** INTERVALS **********\n";
// Dump the regunits.
- for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
- if (LiveInterval *LI = RegUnitIntervals[i])
- OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
+ for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
+ if (LiveRange *LR = RegUnitRanges[i])
+ OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
// Dump the virtregs.
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (hasInterval(Reg))
- OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
+ OS << getInterval(Reg) << '\n';
}
OS << "RegMasks:";
@@ -170,16 +170,17 @@ void LiveIntervals::dumpInstrs() const {
#endif
LiveInterval* LiveIntervals::createInterval(unsigned reg) {
- float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
+ float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
+ llvm::huge_valf : 0.0F;
return new LiveInterval(reg, Weight);
}
/// computeVirtRegInterval - Compute the live interval of a virtual register,
/// based on defs and uses.
-void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) {
+void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
assert(LRCalc && "LRCalc not initialized.");
- assert(LI->empty() && "Should only compute empty intervals.");
+ assert(LI.empty() && "Should only compute empty intervals.");
LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
LRCalc->createDeadDefs(LI);
LRCalc->extendToUses(LI);
@@ -190,9 +191,7 @@ void LiveIntervals::computeVirtRegs() {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (MRI->reg_nodbg_empty(Reg))
continue;
- LiveInterval *LI = createInterval(Reg);
- VirtRegIntervals[Reg] = LI;
- computeVirtRegInterval(LI);
+ createAndComputeVirtRegInterval(Reg);
}
}
@@ -229,12 +228,10 @@ void LiveIntervals::computeRegMasks() {
// interference.
//
-/// computeRegUnitInterval - Compute the live interval of a register unit, based
-/// on the uses and defs of aliasing registers. The interval should be empty,
+/// computeRegUnitInterval - Compute the live range of a register unit, based
+/// on the uses and defs of aliasing registers. The range should be empty,
/// or contain only dead phi-defs from ABI blocks.
-void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
- unsigned Unit = LI->reg;
-
+void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
assert(LRCalc && "LRCalc not initialized.");
LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
@@ -247,18 +244,18 @@ void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
Supers.isValid(); ++Supers) {
if (!MRI->reg_empty(*Supers))
- LRCalc->createDeadDefs(LI, *Supers);
+ LRCalc->createDeadDefs(LR, *Supers);
}
}
- // Now extend LI to reach all uses.
+ // Now extend LR to reach all uses.
// Ignore uses of reserved registers. We only track defs of those.
for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
Supers.isValid(); ++Supers) {
unsigned Reg = *Supers;
if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
- LRCalc->extendToUses(LI, Reg);
+ LRCalc->extendToUses(LR, Reg);
}
}
}
@@ -269,11 +266,11 @@ void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
/// without a corresponding def when entering the entry block or a landing pad.
///
void LiveIntervals::computeLiveInRegUnits() {
- RegUnitIntervals.resize(TRI->getNumRegUnits());
+ RegUnitRanges.resize(TRI->getNumRegUnits());
DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
- // Keep track of the intervals allocated.
- SmallVector<LiveInterval*, 8> NewIntvs;
+ // Keep track of the live range sets allocated.
+ SmallVector<unsigned, 8> NewRanges;
// Check all basic blocks for live-ins.
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
@@ -291,23 +288,25 @@ void LiveIntervals::computeLiveInRegUnits() {
LIE = MBB->livein_end(); LII != LIE; ++LII) {
for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
unsigned Unit = *Units;
- LiveInterval *Intv = RegUnitIntervals[Unit];
- if (!Intv) {
- Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
- NewIntvs.push_back(Intv);
+ LiveRange *LR = RegUnitRanges[Unit];
+ if (!LR) {
+ LR = RegUnitRanges[Unit] = new LiveRange();
+ NewRanges.push_back(Unit);
}
- VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
+ VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
(void)VNI;
DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
}
}
DEBUG(dbgs() << '\n');
}
- DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
+ DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
- // Compute the 'normal' part of the intervals.
- for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
- computeRegUnitInterval(NewIntvs[i]);
+ // Compute the 'normal' part of the ranges.
+ for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
+ unsigned Unit = NewRanges[i];
+ computeRegUnitRange(*RegUnitRanges[Unit], Unit);
+ }
}
@@ -331,7 +330,7 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
continue;
SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
- LiveRangeQuery LRQ(*li, Idx);
+ LiveQueryResult LRQ = li->Query(Idx);
VNInfo *VNI = LRQ.valueIn();
if (!VNI) {
// This shouldn't happen: readsVirtualRegister returns true, but there is
@@ -350,14 +349,14 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
WorkList.push_back(std::make_pair(Idx, VNI));
}
- // Create a new live interval with only minimal live segments per def.
- LiveInterval NewLI(li->reg, 0);
+ // Create new live ranges with only minimal live segments per def.
+ LiveRange NewLR;
for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
I != E; ++I) {
VNInfo *VNI = *I;
if (VNI->isUnused())
continue;
- NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
+ NewLR.addSegment(LiveRange::Segment(VNI->def, VNI->def.getDeadSlot(), VNI));
}
// Keep track of the PHIs that are in use.
@@ -372,7 +371,7 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
SlotIndex BlockStart = getMBBStartIdx(MBB);
// Extend the live range for VNI to be live at Idx.
- if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
+ if (VNInfo *ExtVNI = NewLR.extendInBlock(BlockStart, Idx)) {
(void)ExtVNI;
assert(ExtVNI == VNI && "Unexpected existing value number");
// Is this a PHIDef we haven't seen before?
@@ -393,7 +392,7 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
// VNI is live-in to MBB.
DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
- NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
+ NewLR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
// Make sure VNI is live-out from the predecessors.
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
@@ -414,14 +413,14 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
VNInfo *VNI = *I;
if (VNI->isUnused())
continue;
- LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
- assert(LII != NewLI.end() && "Missing live range for PHI");
- if (LII->end != VNI->def.getDeadSlot())
+ LiveRange::iterator LRI = NewLR.FindSegmentContaining(VNI->def);
+ assert(LRI != NewLR.end() && "Missing segment for PHI");
+ if (LRI->end != VNI->def.getDeadSlot())
continue;
if (VNI->isPHIDef()) {
// This is a dead PHI. Remove it.
VNI->markUnused();
- NewLI.removeRange(*LII);
+ NewLR.removeSegment(LRI->start, LRI->end);
DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
CanSeparate = true;
} else {
@@ -436,23 +435,23 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
}
}
- // Move the trimmed ranges back.
- li->ranges.swap(NewLI.ranges);
+ // Move the trimmed segments back.
+ li->segments.swap(NewLR.segments);
DEBUG(dbgs() << "Shrunk: " << *li << '\n');
return CanSeparate;
}
-void LiveIntervals::extendToIndices(LiveInterval *LI,
+void LiveIntervals::extendToIndices(LiveRange &LR,
ArrayRef<SlotIndex> Indices) {
assert(LRCalc && "LRCalc not initialized.");
LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
- LRCalc->extend(LI, Indices[i]);
+ LRCalc->extend(LR, Indices[i]);
}
void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
SmallVectorImpl<SlotIndex> *EndPoints) {
- LiveRangeQuery LRQ(*LI, Kill);
+ LiveQueryResult LRQ = LI->Query(Kill);
VNInfo *VNI = LRQ.valueOut();
if (!VNI)
return;
@@ -463,13 +462,13 @@ void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
// If VNI isn't live out from KillMBB, the value is trivially pruned.
if (LRQ.endPoint() < MBBEnd) {
- LI->removeRange(Kill, LRQ.endPoint());
+ LI->removeSegment(Kill, LRQ.endPoint());
if (EndPoints) EndPoints->push_back(LRQ.endPoint());
return;
}
// VNI is live out of KillMBB.
- LI->removeRange(Kill, MBBEnd);
+ LI->removeSegment(Kill, MBBEnd);
if (EndPoints) EndPoints->push_back(MBBEnd);
// Find all blocks that are reachable from KillMBB without leaving VNI's live
@@ -487,23 +486,23 @@ void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
// Check if VNI is live in to MBB.
tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
- LiveRangeQuery LRQ(*LI, MBBStart);
+ LiveQueryResult LRQ = LI->Query(MBBStart);
if (LRQ.valueIn() != VNI) {
- // This block isn't part of the VNI live range. Prune the search.
+ // This block isn't part of the VNI segment. Prune the search.
I.skipChildren();
continue;
}
// Prune the search if VNI is killed in MBB.
if (LRQ.endPoint() < MBBEnd) {
- LI->removeRange(MBBStart, LRQ.endPoint());
+ LI->removeSegment(MBBStart, LRQ.endPoint());
if (EndPoints) EndPoints->push_back(LRQ.endPoint());
I.skipChildren();
continue;
}
// VNI is live through MBB.
- LI->removeRange(MBBStart, MBBEnd);
+ LI->removeSegment(MBBStart, MBBEnd);
if (EndPoints) EndPoints->push_back(MBBEnd);
++I;
}
@@ -516,7 +515,7 @@ void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
// Keep track of regunit ranges.
- SmallVector<std::pair<LiveInterval*, LiveInterval::iterator>, 8> RU;
+ SmallVector<std::pair<LiveRange*, LiveRange::iterator>, 8> RU;
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
@@ -531,13 +530,14 @@ void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
RU.clear();
for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
++Units) {
- LiveInterval *RUInt = &getRegUnit(*Units);
- if (RUInt->empty())
+ LiveRange &RURanges = getRegUnit(*Units);
+ if (RURanges.empty())
continue;
- RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end)));
+ RU.push_back(std::make_pair(&RURanges, RURanges.find(LI->begin()->end)));
}
- // Every instruction that kills Reg corresponds to a live range end point.
+ // Every instruction that kills Reg corresponds to a segment range end
+ // point.
for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
++RI) {
// A block index indicates an MBB edge.
@@ -547,7 +547,7 @@ void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
if (!MI)
continue;
- // Check if any of the reguints are live beyond the end of RI. That could
+ // Check if any of the regunits are live beyond the end of RI. That could
// happen when a physreg is defined as a copy of a virtreg:
//
// %EAX = COPY %vreg5
@@ -557,12 +557,12 @@ void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
// There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
bool CancelKill = false;
for (unsigned u = 0, e = RU.size(); u != e; ++u) {
- LiveInterval *RInt = RU[u].first;
- LiveInterval::iterator &I = RU[u].second;
- if (I == RInt->end())
+ LiveRange &RRanges = *RU[u].first;
+ LiveRange::iterator &I = RU[u].second;
+ if (I == RRanges.end())
continue;
- I = RInt->advanceTo(I, RI->end);
- if (I == RInt->end() || I->start >= RI->end)
+ I = RRanges.advanceTo(I, RI->end);
+ if (I == RRanges.end() || I->start >= RI->end)
continue;
// I is overlapping RI.
CancelKill = true;
@@ -625,18 +625,18 @@ LiveIntervals::getSpillWeight(bool isDef, bool isUse, BlockFrequency freq) {
return (isDef + isUse) * (freq.getFrequency() * Scale);
}
-LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
- MachineInstr* startInst) {
- LiveInterval& Interval = getOrCreateInterval(reg);
+LiveRange::Segment
+LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
+ LiveInterval& Interval = createEmptyInterval(reg);
VNInfo* VN = Interval.getNextValue(
SlotIndex(getInstructionIndex(startInst).getRegSlot()),
getVNInfoAllocator());
- LiveRange LR(
+ LiveRange::Segment S(
SlotIndex(getInstructionIndex(startInst).getRegSlot()),
getMBBEndIdx(startInst->getParent()), VN);
- Interval.addRange(LR);
+ Interval.addSegment(S);
- return LR;
+ return S;
}
@@ -711,7 +711,7 @@ private:
const TargetRegisterInfo& TRI;
SlotIndex OldIdx;
SlotIndex NewIdx;
- SmallPtrSet<LiveInterval*, 8> Updated;
+ SmallPtrSet<LiveRange*, 8> Updated;
bool UpdateFlags;
public:
@@ -725,7 +725,7 @@ public:
// physregs, even those that aren't needed for regalloc, in order to update
// kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
// flags, and postRA passes will use a live register utility instead.
- LiveInterval *getRegUnitLI(unsigned Unit) {
+ LiveRange *getRegUnitLI(unsigned Unit) {
if (UpdateFlags)
return &LIS.getRegUnit(Unit);
return LIS.getCachedRegUnit(Unit);
@@ -750,15 +750,16 @@ public:
if (!Reg)
continue;
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
- updateRange(LIS.getInterval(Reg));
+ LiveInterval &LI = LIS.getInterval(Reg);
+ updateRange(LI, Reg);
continue;
}
// For physregs, only update the regunits that actually have a
// precomputed live range.
for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
- if (LiveInterval *LI = getRegUnitLI(*Units))
- updateRange(*LI);
+ if (LiveRange *LR = getRegUnitLI(*Units))
+ updateRange(*LR, *Units);
}
if (hasRegMask)
updateRegMaskSlots();
@@ -767,26 +768,26 @@ public:
private:
/// Update a single live range, assuming an instruction has been moved from
/// OldIdx to NewIdx.
- void updateRange(LiveInterval &LI) {
- if (!Updated.insert(&LI))
+ void updateRange(LiveRange &LR, unsigned Reg) {
+ if (!Updated.insert(&LR))
return;
DEBUG({
dbgs() << " ";
- if (TargetRegisterInfo::isVirtualRegister(LI.reg))
- dbgs() << PrintReg(LI.reg);
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ dbgs() << PrintReg(Reg);
else
- dbgs() << PrintRegUnit(LI.reg, &TRI);
- dbgs() << ":\t" << LI << '\n';
+ dbgs() << PrintRegUnit(Reg, &TRI);
+ dbgs() << ":\t" << LR << '\n';
});
if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
- handleMoveDown(LI);
+ handleMoveDown(LR);
else
- handleMoveUp(LI);
- DEBUG(dbgs() << " -->\t" << LI << '\n');
- LI.verify();
+ handleMoveUp(LR, Reg);
+ DEBUG(dbgs() << " -->\t" << LR << '\n');
+ LR.verify();
}
- /// Update LI to reflect an instruction has been moved downwards from OldIdx
+ /// Update LR to reflect an instruction has been moved downwards from OldIdx
/// to NewIdx.
///
/// 1. Live def at OldIdx:
@@ -800,17 +801,17 @@ private:
/// Move def to NewIdx, possibly across another live value.
///
/// 4. Def at OldIdx AND at NewIdx:
- /// Remove live range [OldIdx;NewIdx) and value defined at OldIdx.
+ /// Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
/// (Happens when bundling multiple defs together).
///
/// 5. Value read at OldIdx, killed before NewIdx:
/// Extend kill to NewIdx.
///
- void handleMoveDown(LiveInterval &LI) {
+ void handleMoveDown(LiveRange &LR) {
// First look for a kill at OldIdx.
- LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
- LiveInterval::iterator E = LI.end();
- // Is LI even live at OldIdx?
+ LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
+ LiveRange::iterator E = LR.end();
+ // Is LR even live at OldIdx?
if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
return;
@@ -827,7 +828,7 @@ private:
for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
if (MO->isReg() && MO->isUse())
MO->setIsKill(false);
- // Adjust I->end to reach NewIdx. This may temporarily make LI invalid by
+ // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
// overlapping ranges. Case 5 above.
I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
// If this was a kill, there may also be a def. Otherwise we're done.
@@ -856,24 +857,25 @@ private:
assert((I->end == OldIdx.getDeadSlot() ||
SlotIndex::isSameInstr(I->end, NewIdx)) &&
"Cannot move def below kill");
- LiveInterval::iterator NewI = LI.advanceTo(I, NewIdx.getRegSlot());
+ LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
// There is an existing def at NewIdx, case 4 above. The def at OldIdx is
// coalesced into that value.
assert(NewI->valno != DefVNI && "Multiple defs of value?");
- LI.removeValNo(DefVNI);
+ LR.removeValNo(DefVNI);
return;
}
// There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
- // If the def at OldIdx was dead, we allow it to be moved across other LI
+ // If the def at OldIdx was dead, we allow it to be moved across other LR
// values. The new range should be placed immediately before NewI, move any
// intermediate ranges up.
assert(NewI != I && "Inconsistent iterators");
std::copy(llvm::next(I), NewI, I);
- *llvm::prior(NewI) = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
+ *llvm::prior(NewI)
+ = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
}
- /// Update LI to reflect an instruction has been moved upwards from OldIdx
+ /// Update LR to reflect an instruction has been moved upwards from OldIdx
/// to NewIdx.
///
/// 1. Live def at OldIdx:
@@ -893,11 +895,11 @@ private:
/// Hoist kill to NewIdx, then scan for last kill between NewIdx and
/// OldIdx.
///
- void handleMoveUp(LiveInterval &LI) {
+ void handleMoveUp(LiveRange &LR, unsigned Reg) {
// First look for a kill at OldIdx.
- LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
- LiveInterval::iterator E = LI.end();
- // Is LI even live at OldIdx?
+ LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
+ LiveRange::iterator E = LR.end();
+ // Is LR even live at OldIdx?
if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
return;
@@ -914,7 +916,7 @@ private:
if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
// No def, search for the new kill.
// This can never be an early clobber kill since there is no def.
- llvm::prior(I)->end = findLastUseBefore(LI.reg).getRegSlot();
+ llvm::prior(I)->end = findLastUseBefore(Reg).getRegSlot();
return;
}
}
@@ -926,18 +928,18 @@ private:
DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
// Check for an existing def at NewIdx.
- LiveInterval::iterator NewI = LI.find(NewIdx.getRegSlot());
+ LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
assert(NewI->valno != DefVNI && "Same value defined more than once?");
// There is an existing def at NewIdx.
if (I->end.isDead()) {
// Case 3: Remove the dead def at OldIdx.
- LI.removeValNo(DefVNI);
+ LR.removeValNo(DefVNI);
return;
}
// Case 4: Replace def at NewIdx with live def at OldIdx.
I->start = DefVNI->def;
- LI.removeValNo(NewI->valno);
+ LR.removeValNo(NewI->valno);
return;
}
@@ -948,10 +950,10 @@ private:
return;
}
- // DefVNI is a dead def. It may have been moved across other values in LI,
+ // DefVNI is a dead def. It may have been moved across other values in LR,
// so move I up to NewI. Slide [NewI;I) down one position.
std::copy_backward(NewI, I, llvm::next(I));
- *NewI = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
+ *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
}
void updateRegMaskSlots() {
@@ -1074,8 +1076,7 @@ LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
if (MOI->isReg() &&
TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
!hasInterval(MOI->getReg())) {
- LiveInterval &LI = getOrCreateInterval(MOI->getReg());
- computeVirtRegInterval(&LI);
+ createAndComputeVirtRegInterval(MOI->getReg());
}
}
}
@@ -1122,9 +1123,9 @@ LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
if (LII != LI.begin())
prevStart = llvm::prior(LII)->start;
- // FIXME: This could be more efficient if there was a removeRange
- // method that returned an iterator.
- LI.removeRange(*LII, true);
+ // FIXME: This could be more efficient if there was a
+ // removeSegment method that returned an iterator.
+ LI.removeSegment(*LII, true);
if (prevStart.isValid())
LII = LI.find(prevStart);
else
@@ -1143,13 +1144,14 @@ LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
if (!lastUseIdx.isValid()) {
VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
VNInfoAllocator);
- LiveRange LR(instrIdx.getRegSlot(), instrIdx.getDeadSlot(), VNI);
- LII = LI.addRange(LR);
+ LiveRange::Segment S(instrIdx.getRegSlot(),
+ instrIdx.getDeadSlot(), VNI);
+ LII = LI.addSegment(S);
} else if (LII->start != instrIdx.getRegSlot()) {
VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
VNInfoAllocator);
- LiveRange LR(instrIdx.getRegSlot(), lastUseIdx, VNI);
- LII = LI.addRange(LR);
+ LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
+ LII = LI.addSegment(S);
}
if (MO.getSubReg() && !MO.isUndef())
diff --git a/lib/CodeGen/LiveRangeCalc.cpp b/lib/CodeGen/LiveRangeCalc.cpp
index dede490..ae086bc 100644
--- a/lib/CodeGen/LiveRangeCalc.cpp
+++ b/lib/CodeGen/LiveRangeCalc.cpp
@@ -36,11 +36,11 @@ void LiveRangeCalc::reset(const MachineFunction *mf,
}
-void LiveRangeCalc::createDeadDefs(LiveInterval *LI, unsigned Reg) {
+void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
assert(MRI && Indexes && "call reset() first");
// Visit all def operands. If the same instruction has multiple defs of Reg,
- // LI->createDeadDef() will deduplicate.
+ // LR.createDeadDef() will deduplicate.
for (MachineRegisterInfo::def_iterator
I = MRI->def_begin(Reg), E = MRI->def_end(); I != E; ++I) {
const MachineInstr *MI = &*I;
@@ -54,13 +54,13 @@ void LiveRangeCalc::createDeadDefs(LiveInterval *LI, unsigned Reg) {
Idx = Indexes->getInstructionIndex(MI)
.getRegSlot(I.getOperand().isEarlyClobber());
- // Create the def in LI. This may find an existing def.
- LI->createDeadDef(Idx, *Alloc);
+ // Create the def in LR. This may find an existing def.
+ LR.createDeadDef(Idx, *Alloc);
}
}
-void LiveRangeCalc::extendToUses(LiveInterval *LI, unsigned Reg) {
+void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg) {
assert(MRI && Indexes && "call reset() first");
// Visit all operands that read Reg. This may include partial defs.
@@ -99,7 +99,7 @@ void LiveRangeCalc::extendToUses(LiveInterval *LI, unsigned Reg) {
Idx = Idx.getRegSlot(true);
}
}
- extend(LI, Idx, Reg);
+ extend(LR, Idx, Reg);
}
}
@@ -125,17 +125,14 @@ void LiveRangeCalc::updateLiveIns() {
assert(Seen.test(MBB->getNumber()));
LiveOut[MBB] = LiveOutPair(I->Value, (MachineDomTreeNode *)0);
}
- Updater.setDest(I->LI);
+ Updater.setDest(&I->LR);
Updater.add(Start, End, I->Value);
}
LiveIn.clear();
}
-void LiveRangeCalc::extend(LiveInterval *LI,
- SlotIndex Kill,
- unsigned PhysReg) {
- assert(LI && "Missing live range");
+void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg) {
assert(Kill.isValid() && "Invalid SlotIndex");
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
@@ -144,14 +141,14 @@ void LiveRangeCalc::extend(LiveInterval *LI,
assert(KillMBB && "No MBB at Kill");
// Is there a def in the same MBB we can extend?
- if (LI->extendInBlock(Indexes->getMBBStartIdx(KillMBB), Kill))
+ if (LR.extendInBlock(Indexes->getMBBStartIdx(KillMBB), Kill))
return;
// Find the single reaching def, or determine if Kill is jointly dominated by
// multiple values, and we may need to create even more phi-defs to preserve
// VNInfo SSA form. Perform a search for all predecessor blocks where we
// know the dominating VNInfo.
- if (findReachingDefs(LI, KillMBB, Kill, PhysReg))
+ if (findReachingDefs(LR, *KillMBB, Kill, PhysReg))
return;
// When there were multiple different values, we may need new PHIs.
@@ -170,13 +167,11 @@ void LiveRangeCalc::calculateValues() {
}
-bool LiveRangeCalc::findReachingDefs(LiveInterval *LI,
- MachineBasicBlock *KillMBB,
- SlotIndex Kill,
- unsigned PhysReg) {
- unsigned KillMBBNum = KillMBB->getNumber();
+bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
+ SlotIndex Kill, unsigned PhysReg) {
+ unsigned KillMBBNum = KillMBB.getNumber();
- // Block numbers where LI should be live-in.
+ // Block numbers where LR should be live-in.
SmallVector<unsigned, 16> WorkList(1, KillMBBNum);
// Remember if we have seen more than one value.
@@ -203,7 +198,7 @@ bool LiveRangeCalc::findReachingDefs(LiveInterval *LI,
#endif
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
- PE = MBB->pred_end(); PI != PE; ++PI) {
+ PE = MBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
// Is this a known live-out block?
@@ -221,7 +216,7 @@ bool LiveRangeCalc::findReachingDefs(LiveInterval *LI,
// First time we see Pred. Try to determine the live-out value, but set
// it as null if Pred is live-through with an unknown value.
- VNInfo *VNI = LI->extendInBlock(Start, End);
+ VNInfo *VNI = LR.extendInBlock(Start, End);
setLiveOutValue(Pred, VNI);
if (VNI) {
if (TheVNI && TheVNI != VNI)
@@ -231,7 +226,7 @@ bool LiveRangeCalc::findReachingDefs(LiveInterval *LI,
}
// No, we need a live-in value for Pred as well
- if (Pred != KillMBB)
+ if (Pred != &KillMBB)
WorkList.push_back(Pred->getNumber());
else
// Loopback to KillMBB, so value is really live through.
@@ -248,9 +243,9 @@ bool LiveRangeCalc::findReachingDefs(LiveInterval *LI,
// If a unique reaching def was found, blit in the live ranges immediately.
if (UniqueVNI) {
- LiveRangeUpdater Updater(LI);
- for (SmallVectorImpl<unsigned>::const_iterator
- I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
+ LiveRangeUpdater Updater(&LR);
+ for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(),
+ E = WorkList.end(); I != E; ++I) {
SlotIndex Start, End;
tie(Start, End) = Indexes->getMBBRange(*I);
// Trim the live range in KillMBB.
@@ -270,8 +265,8 @@ bool LiveRangeCalc::findReachingDefs(LiveInterval *LI,
for (SmallVectorImpl<unsigned>::const_iterator
I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
MachineBasicBlock *MBB = MF->getBlockNumbered(*I);
- addLiveInBlock(LI, DomTree->getNode(MBB));
- if (MBB == KillMBB)
+ addLiveInBlock(LR, DomTree->getNode(MBB));
+ if (MBB == &KillMBB)
LiveIn.back().Kill = Kill;
}
@@ -348,16 +343,17 @@ void LiveRangeCalc::updateSSA() {
assert(Alloc && "Need VNInfo allocator to create PHI-defs");
SlotIndex Start, End;
tie(Start, End) = Indexes->getMBBRange(MBB);
- VNInfo *VNI = I->LI->getNextValue(Start, *Alloc);
+ LiveRange &LR = I->LR;
+ VNInfo *VNI = LR.getNextValue(Start, *Alloc);
I->Value = VNI;
// This block is done, we know the final value.
I->DomNode = 0;
// Add liveness since updateLiveIns now skips this node.
if (I->Kill.isValid())
- I->LI->addRange(LiveRange(Start, I->Kill, VNI));
+ LR.addSegment(LiveInterval::Segment(Start, I->Kill, VNI));
else {
- I->LI->addRange(LiveRange(Start, End, VNI));
+ LR.addSegment(LiveInterval::Segment(Start, End, VNI));
LOP = LiveOutPair(VNI, Node);
}
} else if (IDomValue.first) {
diff --git a/lib/CodeGen/LiveRangeCalc.h b/lib/CodeGen/LiveRangeCalc.h
index 57cab7b..a3a3fbb 100644
--- a/lib/CodeGen/LiveRangeCalc.h
+++ b/lib/CodeGen/LiveRangeCalc.h
@@ -75,9 +75,9 @@ class LiveRangeCalc {
/// LiveInBlock - Information about a basic block where a live range is known
/// to be live-in, but the value has not yet been determined.
struct LiveInBlock {
- // LI - The live range that is live-in to this block. The algorithms can
+ // The live range set that is live-in to this block. The algorithms can
// handle multiple non-overlapping live ranges simultaneously.
- LiveInterval *LI;
+ LiveRange &LR;
// DomNode - Dominator tree node for the block.
// Cleared when the final value has been determined and LI has been updated.
@@ -91,8 +91,8 @@ class LiveRangeCalc {
// Live-in value filled in by updateSSA once it is known.
VNInfo *Value;
- LiveInBlock(LiveInterval *li, MachineDomTreeNode *node, SlotIndex kill)
- : LI(li), DomNode(node), Kill(kill), Value(0) {}
+ LiveInBlock(LiveRange &LR, MachineDomTreeNode *node, SlotIndex kill)
+ : LR(LR), DomNode(node), Kill(kill), Value(0) {}
};
/// LiveIn - Work list of blocks where the live-in value has yet to be
@@ -111,10 +111,8 @@ class LiveRangeCalc {
/// are added to the LiveIn array, and the function returns false.
///
/// PhysReg, when set, is used to verify live-in lists on basic blocks.
- bool findReachingDefs(LiveInterval *LI,
- MachineBasicBlock *KillMBB,
- SlotIndex Kill,
- unsigned PhysReg);
+ bool findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
+ SlotIndex Kill, unsigned PhysReg);
/// updateSSA - Compute the values that will be live in to all requested
/// blocks in LiveIn. Create PHI-def values as required to preserve SSA form.
@@ -146,10 +144,6 @@ public:
MachineDominatorTree*,
VNInfo::Allocator*);
- /// calculate - Calculate the live range of a virtual register from its defs
- /// and uses. LI must be empty with no values.
- void calculate(LiveInterval *LI);
-
//===--------------------------------------------------------------------===//
// Mid-level interface.
//===--------------------------------------------------------------------===//
@@ -165,27 +159,27 @@ public:
/// single existing value, Alloc may be null.
///
/// PhysReg, when set, is used to verify live-in lists on basic blocks.
- void extend(LiveInterval *LI, SlotIndex Kill, unsigned PhysReg = 0);
+ void extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg = 0);
/// createDeadDefs - Create a dead def in LI for every def operand of Reg.
/// Each instruction defining Reg gets a new VNInfo with a corresponding
/// minimal live range.
- void createDeadDefs(LiveInterval *LI, unsigned Reg);
+ void createDeadDefs(LiveRange &LR, unsigned Reg);
/// createDeadDefs - Create a dead def in LI for every def of LI->reg.
- void createDeadDefs(LiveInterval *LI) {
- createDeadDefs(LI, LI->reg);
+ void createDeadDefs(LiveInterval &LI) {
+ createDeadDefs(LI, LI.reg);
}
/// extendToUses - Extend the live range of LI to reach all uses of Reg.
///
/// All uses must be jointly dominated by existing liveness. PHI-defs are
/// inserted as needed to preserve SSA form.
- void extendToUses(LiveInterval *LI, unsigned Reg);
+ void extendToUses(LiveRange &LR, unsigned Reg);
/// extendToUses - Extend the live range of LI to reach all uses of LI->reg.
- void extendToUses(LiveInterval *LI) {
- extendToUses(LI, LI->reg);
+ void extendToUses(LiveInterval &LI) {
+ extendToUses(LI, LI.reg);
}
//===--------------------------------------------------------------------===//
@@ -216,15 +210,15 @@ public:
/// function can only be called once per basic block. Once the live-in value
/// has been determined, calculateValues() will add liveness to LI.
///
- /// @param LI The live range that is live-in to the block.
+ /// @param LR The live range that is live-in to the block.
/// @param DomNode The domtree node for the block.
/// @param Kill Index in block where LI is killed. If the value is
/// live-through, set Kill = SLotIndex() and also call
/// setLiveOutValue(MBB, 0).
- void addLiveInBlock(LiveInterval *LI,
+ void addLiveInBlock(LiveRange &LR,
MachineDomTreeNode *DomNode,
SlotIndex Kill = SlotIndex()) {
- LiveIn.push_back(LiveInBlock(LI, DomNode, Kill));
+ LiveIn.push_back(LiveInBlock(LR, DomNode, Kill));
}
/// calculateValues - Calculate the value that will be live-in to each block
diff --git a/lib/CodeGen/LiveRangeEdit.cpp b/lib/CodeGen/LiveRangeEdit.cpp
index 792ef54..cb70c43 100644
--- a/lib/CodeGen/LiveRangeEdit.cpp
+++ b/lib/CodeGen/LiveRangeEdit.cpp
@@ -30,17 +30,23 @@ STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE");
void LiveRangeEdit::Delegate::anchor() { }
-LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg) {
+LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) {
unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
if (VRM) {
- VRM->grow();
VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
}
- LiveInterval &LI = LIS.getOrCreateInterval(VReg);
- NewRegs.push_back(&LI);
+ LiveInterval &LI = LIS.createEmptyInterval(VReg);
return LI;
}
+unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
+ unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
+ if (VRM) {
+ VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
+ }
+ return VReg;
+}
+
bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
const MachineInstr *DefMI,
AliasAnalysis *aa) {
@@ -256,9 +262,9 @@ void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
else if (MOI->isDef()) {
for (MCRegUnitIterator Units(Reg, MRI.getTargetRegisterInfo());
Units.isValid(); ++Units) {
- if (LiveInterval *LI = LIS.getCachedRegUnit(*Units)) {
- if (VNInfo *VNI = LI->getVNInfoAt(Idx))
- LI->removeValNo(VNI);
+ if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) {
+ if (VNInfo *VNI = LR->getVNInfoAt(Idx))
+ LR->removeValNo(VNI);
}
}
}
@@ -272,7 +278,7 @@ void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
// Always shrink COPY uses that probably come from live range splitting.
if (MI->readsVirtualRegister(Reg) &&
(MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
- LI.killedAt(Idx)))
+ LI.Query(Idx).isKill()))
ToShrink.insert(&LI);
// Remove defined value.
@@ -360,7 +366,7 @@ void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
if (BeingSpilled) continue;
// LI may have been separated, create new intervals.
- LI->RenumberValues(LIS);
+ LI->RenumberValues();
ConnectedVNInfoEqClasses ConEQ(LIS);
unsigned NumComp = ConEQ.Classify(LI);
if (NumComp <= 1)
@@ -370,7 +376,7 @@ void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
SmallVector<LiveInterval*, 8> Dups(1, LI);
for (unsigned i = 1; i != NumComp; ++i) {
- Dups.push_back(&createFrom(LI->reg));
+ Dups.push_back(&createEmptyIntervalFrom(LI->reg));
// If LI is an original interval that hasn't been split yet, make the new
// intervals their own originals instead of referring to LI. The original
// interval must contain all the split products, and LI doesn't.
@@ -387,16 +393,27 @@ void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
}
}
+// Keep track of new virtual registers created via
+// MachineRegisterInfo::createVirtualRegister.
+void
+LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
+{
+ if (VRM)
+ VRM->grow();
+
+ NewRegs.push_back(VReg);
+}
+
void
LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
const MachineLoopInfo &Loops,
const MachineBlockFrequencyInfo &MBFI) {
VirtRegAuxInfo VRAI(MF, LIS, Loops, MBFI);
- for (iterator I = begin(), E = end(); I != E; ++I) {
- LiveInterval &LI = **I;
+ for (unsigned I = 0, Size = size(); I < Size; ++I) {
+ LiveInterval &LI = LIS.getInterval(get(I));
if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
<< MRI.getRegClass(LI.reg)->getName() << '\n');
- VRAI.CalculateWeightAndHint(LI);
+ VRAI.calculateSpillWeightAndHint(LI);
}
}
diff --git a/lib/CodeGen/LiveRegMatrix.cpp b/lib/CodeGen/LiveRegMatrix.cpp
index 0ef069f..1d801ac 100644
--- a/lib/CodeGen/LiveRegMatrix.cpp
+++ b/lib/CodeGen/LiveRegMatrix.cpp
@@ -119,9 +119,11 @@ bool LiveRegMatrix::checkRegUnitInterference(LiveInterval &VirtReg,
if (VirtReg.empty())
return false;
CoalescerPair CP(VirtReg.reg, PhysReg, *TRI);
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
- if (VirtReg.overlaps(LIS->getRegUnit(*Units), CP, *LIS->getSlotIndexes()))
+ for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
+ const LiveRange &UnitRange = LIS->getRegUnit(*Units);
+ if (VirtReg.overlaps(UnitRange, CP, *LIS->getSlotIndexes()))
return true;
+ }
return false;
}
diff --git a/lib/CodeGen/LiveRegUnits.cpp b/lib/CodeGen/LiveRegUnits.cpp
new file mode 100644
index 0000000..6221ca2
--- /dev/null
+++ b/lib/CodeGen/LiveRegUnits.cpp
@@ -0,0 +1,111 @@
+//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveRegUnits utility for tracking liveness of
+// physical register units across machine instructions in forward or backward
+// order.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/LiveRegUnits.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
+using namespace llvm;
+
+/// Return true if the given MachineOperand clobbers the given register unit.
+/// A register unit is only clobbered if all its super-registers are clobbered.
+static bool operClobbersUnit(const MachineOperand *MO, unsigned Unit,
+ const MCRegisterInfo *MCRI) {
+ for (MCRegUnitRootIterator RI(Unit, MCRI); RI.isValid(); ++RI) {
+ for (MCSuperRegIterator SI(*RI, MCRI, true); SI.isValid(); ++SI) {
+ if (!MO->clobbersPhysReg(*SI))
+ return false;
+ }
+ }
+ return true;
+}
+
+/// We assume the high bits of a physical super register are not preserved
+/// unless the instruction has an implicit-use operand reading the
+/// super-register or a register unit for the upper bits is available.
+void LiveRegUnits::removeRegsInMask(const MachineOperand &Op,
+ const MCRegisterInfo &MCRI) {
+ SparseSet<unsigned>::iterator LUI = LiveUnits.begin();
+ while (LUI != LiveUnits.end()) {
+ if (operClobbersUnit(&Op, *LUI, &MCRI))
+ LUI = LiveUnits.erase(LUI);
+ else
+ ++LUI;
+ }
+}
+
+void LiveRegUnits::stepBackward(const MachineInstr &MI,
+ const MCRegisterInfo &MCRI) {
+ // Remove defined registers and regmask kills from the set.
+ for (ConstMIBundleOperands O(&MI); O.isValid(); ++O) {
+ if (O->isReg()) {
+ if (!O->isDef())
+ continue;
+ unsigned Reg = O->getReg();
+ if (Reg == 0)
+ continue;
+ removeReg(Reg, MCRI);
+ } else if (O->isRegMask()) {
+ removeRegsInMask(*O, MCRI);
+ }
+ }
+ // Add uses to the set.
+ for (ConstMIBundleOperands O(&MI); O.isValid(); ++O) {
+ if (!O->isReg() || !O->readsReg() || O->isUndef())
+ continue;
+ unsigned Reg = O->getReg();
+ if (Reg == 0)
+ continue;
+ addReg(Reg, MCRI);
+ }
+}
+
+/// Uses with kill flag get removed from the set, defs added. If possible
+/// use StepBackward() instead of this function because some kill flags may
+/// be missing.
+void LiveRegUnits::stepForward(const MachineInstr &MI,
+ const MCRegisterInfo &MCRI) {
+ SmallVector<unsigned, 4> Defs;
+ // Remove killed registers from the set.
+ for (ConstMIBundleOperands O(&MI); O.isValid(); ++O) {
+ if (O->isReg()) {
+ unsigned Reg = O->getReg();
+ if (Reg == 0)
+ continue;
+ if (O->isDef()) {
+ if (!O->isDead())
+ Defs.push_back(Reg);
+ } else {
+ if (!O->isKill())
+ continue;
+ assert(O->isUse());
+ removeReg(Reg, MCRI);
+ }
+ } else if (O->isRegMask()) {
+ removeRegsInMask(*O, MCRI);
+ }
+ }
+ // Add defs to the set.
+ for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
+ addReg(Defs[i], MCRI);
+ }
+}
+
+/// Adds all registers in the live-in list of block @p BB.
+void LiveRegUnits::addLiveIns(const MachineBasicBlock *MBB,
+ const MCRegisterInfo &MCRI) {
+ for (MachineBasicBlock::livein_iterator L = MBB->livein_begin(),
+ LE = MBB->livein_end(); L != LE; ++L) {
+ addReg(*L, MCRI);
+ }
+}
diff --git a/lib/CodeGen/MachineBasicBlock.cpp b/lib/CodeGen/MachineBasicBlock.cpp
index 5633271..ca71e3b 100644
--- a/lib/CodeGen/MachineBasicBlock.cpp
+++ b/lib/CodeGen/MachineBasicBlock.cpp
@@ -861,7 +861,7 @@ MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
LiveInterval &LI = LIS->getInterval(Reg);
VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
assert(VNI && "PHI sources should be live out of their predecessors.");
- LI.addRange(LiveRange(StartIndex, EndIndex, VNI));
+ LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
}
}
}
@@ -880,9 +880,9 @@ MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
if (isLiveOut && isLastMBB) {
VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
assert(VNI && "LiveInterval should have VNInfo where it is live.");
- LI.addRange(LiveRange(StartIndex, EndIndex, VNI));
+ LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
} else if (!isLiveOut && !isLastMBB) {
- LI.removeRange(StartIndex, EndIndex);
+ LI.removeSegment(StartIndex, EndIndex);
}
}
diff --git a/lib/CodeGen/MachineInstr.cpp b/lib/CodeGen/MachineInstr.cpp
index 06bb80a..295b450 100644
--- a/lib/CodeGen/MachineInstr.cpp
+++ b/lib/CodeGen/MachineInstr.cpp
@@ -647,12 +647,15 @@ void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
}
}
+#ifndef NDEBUG
+ bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
// OpNo now points as the desired insertion point. Unless this is a variadic
// instruction, only implicit regs are allowed beyond MCID->getNumOperands().
// RegMask operands go between the explicit and implicit operands.
assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
- OpNo < MCID->getNumOperands()) &&
+ OpNo < MCID->getNumOperands() || isMetaDataOp) &&
"Trying to add an operand to a machine instr that is already done!");
+#endif
MachineRegisterInfo *MRI = getRegInfo();
@@ -1702,31 +1705,31 @@ void MachineInstr::clearRegisterKills(unsigned Reg,
}
}
-bool MachineInstr::addRegisterDead(unsigned IncomingReg,
+bool MachineInstr::addRegisterDead(unsigned Reg,
const TargetRegisterInfo *RegInfo,
bool AddIfNotFound) {
- bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
+ bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
bool hasAliases = isPhysReg &&
- MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
+ MCRegAliasIterator(Reg, RegInfo, false).isValid();
bool Found = false;
SmallVector<unsigned,4> DeadOps;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
MachineOperand &MO = getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
- unsigned Reg = MO.getReg();
- if (!Reg)
+ unsigned MOReg = MO.getReg();
+ if (!MOReg)
continue;
- if (Reg == IncomingReg) {
+ if (MOReg == Reg) {
MO.setIsDead();
Found = true;
} else if (hasAliases && MO.isDead() &&
- TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ TargetRegisterInfo::isPhysicalRegister(MOReg)) {
// There exists a super-register that's marked dead.
- if (RegInfo->isSuperRegister(IncomingReg, Reg))
+ if (RegInfo->isSuperRegister(Reg, MOReg))
return true;
- if (RegInfo->isSubRegister(IncomingReg, Reg))
+ if (RegInfo->isSubRegister(Reg, MOReg))
DeadOps.push_back(i);
}
}
@@ -1746,7 +1749,7 @@ bool MachineInstr::addRegisterDead(unsigned IncomingReg,
if (Found || !AddIfNotFound)
return Found;
- addOperand(MachineOperand::CreateReg(IncomingReg,
+ addOperand(MachineOperand::CreateReg(Reg,
true /*IsDef*/,
true /*IsImp*/,
false /*IsKill*/,
@@ -1754,21 +1757,21 @@ bool MachineInstr::addRegisterDead(unsigned IncomingReg,
return true;
}
-void MachineInstr::addRegisterDefined(unsigned IncomingReg,
+void MachineInstr::addRegisterDefined(unsigned Reg,
const TargetRegisterInfo *RegInfo) {
- if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
- MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
if (MO)
return;
} else {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
- if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
+ if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
MO.getSubReg() == 0)
return;
}
}
- addOperand(MachineOperand::CreateReg(IncomingReg,
+ addOperand(MachineOperand::CreateReg(Reg,
true /*IsDef*/,
true /*IsImp*/));
}
diff --git a/lib/CodeGen/MachineLICM.cpp b/lib/CodeGen/MachineLICM.cpp
index 6ad4e39..104eacd 100644
--- a/lib/CodeGen/MachineLICM.cpp
+++ b/lib/CodeGen/MachineLICM.cpp
@@ -468,12 +468,12 @@ void MachineLICM::ProcessMI(MachineInstr *MI,
for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
if (PhysRegDefs.test(*AS))
PhysRegClobbers.set(*AS);
- if (PhysRegClobbers.test(*AS))
- // MI defined register is seen defined by another instruction in
- // the loop, it cannot be a LICM candidate.
- RuledOut = true;
PhysRegDefs.set(*AS);
}
+ if (PhysRegClobbers.test(Reg))
+ // MI defined register is seen defined by another instruction in
+ // the loop, it cannot be a LICM candidate.
+ RuledOut = true;
}
// Only consider reloads for now and remats which do not have register
@@ -502,7 +502,7 @@ void MachineLICM::HoistRegionPostRA() {
// Walk the entire region, count number of defs for each register, and
// collect potential LICM candidates.
- const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
+ const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
MachineBasicBlock *BB = Blocks[i];
@@ -584,7 +584,7 @@ void MachineLICM::HoistRegionPostRA() {
/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
/// loop, and make sure it is not killed by any instructions in the loop.
void MachineLICM::AddToLiveIns(unsigned Reg) {
- const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
+ const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
MachineBasicBlock *BB = Blocks[i];
if (!BB->isLiveIn(Reg))
diff --git a/lib/CodeGen/MachineRegisterInfo.cpp b/lib/CodeGen/MachineRegisterInfo.cpp
index 7f2c0ca..f8b8796 100644
--- a/lib/CodeGen/MachineRegisterInfo.cpp
+++ b/lib/CodeGen/MachineRegisterInfo.cpp
@@ -19,8 +19,11 @@
using namespace llvm;
+// Pin the vtable to this file.
+void MachineRegisterInfo::Delegate::anchor() {}
+
MachineRegisterInfo::MachineRegisterInfo(const TargetMachine &TM)
- : TM(TM), IsSSA(true), TracksLiveness(true) {
+ : TM(TM), TheDelegate(0), IsSSA(true), TracksLiveness(true) {
VRegInfo.reserve(256);
RegAllocHints.reserve(256);
UsedRegUnits.resize(getTargetRegisterInfo()->getNumRegUnits());
@@ -108,6 +111,8 @@ MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){
VRegInfo.grow(Reg);
VRegInfo[Reg].first = RegClass;
RegAllocHints.grow(Reg);
+ if (TheDelegate)
+ TheDelegate->MRI_NoteNewVirtualRegister(Reg);
return Reg;
}
diff --git a/lib/CodeGen/MachineScheduler.cpp b/lib/CodeGen/MachineScheduler.cpp
index a6c5a9f..e71c4df 100644
--- a/lib/CodeGen/MachineScheduler.cpp
+++ b/lib/CodeGen/MachineScheduler.cpp
@@ -53,6 +53,12 @@ static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
static bool ViewMISchedDAGs = false;
#endif // NDEBUG
+static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
+ cl::desc("Enable register pressure scheduling."), cl::init(true));
+
+static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
+ cl::desc("Enable cyclic critical path analysis."), cl::init(true));
+
static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
cl::desc("Enable load clustering."), cl::init(true));
@@ -66,6 +72,10 @@ static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
// DAG subtrees must have at least this many nodes.
static const unsigned MinSubtreeSize = 8;
+// Pin the vtables to this file.
+void MachineSchedStrategy::anchor() {}
+void ScheduleDAGMutation::anchor() {}
+
//===----------------------------------------------------------------------===//
// Machine Instruction Scheduling Pass and Registry
//===----------------------------------------------------------------------===//
@@ -95,6 +105,9 @@ public:
virtual void print(raw_ostream &O, const Module* = 0) const;
static char ID; // Class identification, replacement for typeinfo
+
+protected:
+ ScheduleDAGInstrs *createMachineScheduler();
};
} // namespace
@@ -149,12 +162,13 @@ DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
/// Forward declare the standard machine scheduler. This will be used as the
/// default scheduler if the target does not set a default.
-static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
+static ScheduleDAGInstrs *createGenericSched(MachineSchedContext *C);
/// Decrement this iterator until reaching the top or a non-debug instr.
-static MachineBasicBlock::iterator
-priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
+static MachineBasicBlock::const_iterator
+priorNonDebug(MachineBasicBlock::const_iterator I,
+ MachineBasicBlock::const_iterator Beg) {
assert(I != Beg && "reached the top of the region, cannot decrement");
while (--I != Beg) {
if (!I->isDebugValue())
@@ -163,10 +177,19 @@ priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
return I;
}
+/// Non-const version.
+static MachineBasicBlock::iterator
+priorNonDebug(MachineBasicBlock::iterator I,
+ MachineBasicBlock::const_iterator Beg) {
+ return const_cast<MachineInstr*>(
+ &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
+}
+
/// If this iterator is a debug value, increment until reaching the End or a
/// non-debug instruction.
-static MachineBasicBlock::iterator
-nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
+static MachineBasicBlock::const_iterator
+nextIfDebug(MachineBasicBlock::const_iterator I,
+ MachineBasicBlock::const_iterator End) {
for(; I != End; ++I) {
if (!I->isDebugValue())
break;
@@ -174,6 +197,34 @@ nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
return I;
}
+/// Non-const version.
+static MachineBasicBlock::iterator
+nextIfDebug(MachineBasicBlock::iterator I,
+ MachineBasicBlock::const_iterator End) {
+ // Cast the return value to nonconst MachineInstr, then cast to an
+ // instr_iterator, which does not check for null, finally return a
+ // bundle_iterator.
+ return MachineBasicBlock::instr_iterator(
+ const_cast<MachineInstr*>(
+ &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
+}
+
+/// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
+ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
+ // Select the scheduler, or set the default.
+ MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
+ if (Ctor != useDefaultMachineSched)
+ return Ctor(this);
+
+ // Get the default scheduler set by the target for this function.
+ ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
+ if (Scheduler)
+ return Scheduler;
+
+ // Default to GenericScheduler.
+ return createGenericSched(this);
+}
+
/// Top-level MachineScheduler pass driver.
///
/// Visit blocks in function order. Divide each block into scheduling regions
@@ -209,18 +260,9 @@ bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
}
RegClassInfo->runOnMachineFunction(*MF);
- // Select the scheduler, or set the default.
- MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
- if (Ctor == useDefaultMachineSched) {
- // Get the default scheduler set by the target.
- Ctor = MachineSchedRegistry::getDefault();
- if (!Ctor) {
- Ctor = createConvergingSched;
- MachineSchedRegistry::setDefault(Ctor);
- }
- }
- // Instantiate the selected scheduler.
- OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
+ // Instantiate the selected scheduler for this target, function, and
+ // optimization level.
+ OwningPtr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
// Visit all machine basic blocks.
//
@@ -255,14 +297,15 @@ bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
// The next region starts above the previous region. Look backward in the
// instruction stream until we find the nearest boundary.
+ unsigned NumRegionInstrs = 0;
MachineBasicBlock::iterator I = RegionEnd;
- for(;I != MBB->begin(); --I, --RemainingInstrs) {
+ for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) {
if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
break;
}
// Notify the scheduler of the region, even if we may skip scheduling
// it. Perhaps it still needs to be bundled.
- Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
+ Scheduler->enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
// Skip empty scheduling regions (0 or 1 schedulable instructions).
if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
@@ -277,7 +320,8 @@ bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
<< "\n From: " << *I << " To: ";
if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
else dbgs() << "End";
- dbgs() << " Remaining: " << RemainingInstrs << "\n");
+ dbgs() << " RegionInstrs: " << NumRegionInstrs
+ << " Remaining: " << RemainingInstrs << "\n");
// Schedule a region: possibly reorder instructions.
// This invalidates 'RegionEnd' and 'I'.
@@ -446,13 +490,19 @@ bool ScheduleDAGMI::checkSchedLimit() {
void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
- unsigned endcount)
+ unsigned regioninstrs)
{
- ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
+ ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
// For convenience remember the end of the liveness region.
LiveRegionEnd =
(RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
+
+ SUPressureDiffs.clear();
+
+ SchedImpl->initPolicy(begin, end, regioninstrs);
+
+ ShouldTrackPressure = SchedImpl->shouldTrackPressure();
}
// Setup the register pressure trackers for the top scheduled top and bottom
@@ -483,9 +533,16 @@ void ScheduleDAGMI::initRegPressure() {
dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
};
+ // For each live out vreg reduce the pressure change associated with other
+ // uses of the same vreg below the live-out reaching def.
+ updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
+
// Account for liveness generated by the region boundary.
- if (LiveRegionEnd != RegionEnd)
- BotRPTracker.recede();
+ if (LiveRegionEnd != RegionEnd) {
+ SmallVector<unsigned, 8> LiveUses;
+ BotRPTracker.recede(&LiveUses);
+ updatePressureDiffs(LiveUses);
+ }
assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
@@ -500,34 +557,83 @@ void ScheduleDAGMI::initRegPressure() {
DEBUG(dbgs() << TRI->getRegPressureSetName(i)
<< " Limit " << Limit
<< " Actual " << RegionPressure[i] << "\n");
- RegionCriticalPSets.push_back(PressureElement(i, 0));
+ RegionCriticalPSets.push_back(PressureChange(i));
}
}
DEBUG(dbgs() << "Excess PSets: ";
for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
dbgs() << TRI->getRegPressureSetName(
- RegionCriticalPSets[i].PSetID) << " ";
+ RegionCriticalPSets[i].getPSet()) << " ";
dbgs() << "\n");
}
-// FIXME: When the pressure tracker deals in pressure differences then we won't
-// iterate over all RegionCriticalPSets[i].
void ScheduleDAGMI::
-updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
- for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
- unsigned ID = RegionCriticalPSets[i].PSetID;
- int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
- if ((int)NewMaxPressure[ID] > MaxUnits)
- MaxUnits = NewMaxPressure[ID];
+updateScheduledPressure(const SUnit *SU,
+ const std::vector<unsigned> &NewMaxPressure) {
+ const PressureDiff &PDiff = getPressureDiff(SU);
+ unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
+ for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
+ I != E; ++I) {
+ if (!I->isValid())
+ break;
+ unsigned ID = I->getPSet();
+ while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
+ ++CritIdx;
+ if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
+ if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
+ && NewMaxPressure[ID] <= INT16_MAX)
+ RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
+ }
+ unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
+ if (NewMaxPressure[ID] >= Limit - 2) {
+ DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
+ << NewMaxPressure[ID] << " > " << Limit << "(+ "
+ << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
+ }
}
- DEBUG(
- for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) {
- unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
- if (NewMaxPressure[i] > Limit ) {
- dbgs() << " " << TRI->getRegPressureSetName(i) << ": "
- << NewMaxPressure[i] << " > " << Limit << "\n";
+}
+
+/// Update the PressureDiff array for liveness after scheduling this
+/// instruction.
+void ScheduleDAGMI::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
+ for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
+ /// FIXME: Currently assuming single-use physregs.
+ unsigned Reg = LiveUses[LUIdx];
+ DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
+ if (!TRI->isVirtualRegister(Reg))
+ continue;
+
+ // This may be called before CurrentBottom has been initialized. However,
+ // BotRPTracker must have a valid position. We want the value live into the
+ // instruction or live out of the block, so ask for the previous
+ // instruction's live-out.
+ const LiveInterval &LI = LIS->getInterval(Reg);
+ VNInfo *VNI;
+ MachineBasicBlock::const_iterator I =
+ nextIfDebug(BotRPTracker.getPos(), BB->end());
+ if (I == BB->end())
+ VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
+ else {
+ LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
+ VNI = LRQ.valueIn();
+ }
+ // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
+ assert(VNI && "No live value at use.");
+ for (VReg2UseMap::iterator
+ UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
+ SUnit *SU = UI->SU;
+ DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
+ << *SU->getInstr());
+ // If this use comes before the reaching def, it cannot be a last use, so
+ // descrease its pressure change.
+ if (!SU->isScheduled && SU != &ExitSU) {
+ LiveQueryResult LRQ
+ = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
+ if (LRQ.valueIn() == VNI)
+ getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
}
- });
+ }
+ }
}
/// schedule - Called back from MachineScheduler::runOnMachineFunction
@@ -585,6 +691,13 @@ void ScheduleDAGMI::schedule() {
/// Build the DAG and setup three register pressure trackers.
void ScheduleDAGMI::buildDAGWithRegPressure() {
+ if (!ShouldTrackPressure) {
+ RPTracker.reset();
+ RegionCriticalPSets.clear();
+ buildSchedGraph(AA);
+ return;
+ }
+
// Initialize the register pressure tracker used by buildSchedGraph.
RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
/*TrackUntiedDefs=*/true);
@@ -594,7 +707,7 @@ void ScheduleDAGMI::buildDAGWithRegPressure() {
RPTracker.recede();
// Build the DAG, and compute current register pressure.
- buildSchedGraph(AA, &RPTracker);
+ buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
// Initialize top/bottom trackers after computing region pressure.
initRegPressure();
@@ -637,6 +750,91 @@ void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
ExitSU.biasCriticalPath();
}
+/// Compute the max cyclic critical path through the DAG. The scheduling DAG
+/// only provides the critical path for single block loops. To handle loops that
+/// span blocks, we could use the vreg path latencies provided by
+/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
+/// available for use in the scheduler.
+///
+/// The cyclic path estimation identifies a def-use pair that crosses the back
+/// edge and considers the depth and height of the nodes. For example, consider
+/// the following instruction sequence where each instruction has unit latency
+/// and defines an epomymous virtual register:
+///
+/// a->b(a,c)->c(b)->d(c)->exit
+///
+/// The cyclic critical path is a two cycles: b->c->b
+/// The acyclic critical path is four cycles: a->b->c->d->exit
+/// LiveOutHeight = height(c) = len(c->d->exit) = 2
+/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
+/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
+/// LiveInDepth = depth(b) = len(a->b) = 1
+///
+/// LiveOutDepth - LiveInDepth = 3 - 1 = 2
+/// LiveInHeight - LiveOutHeight = 4 - 2 = 2
+/// CyclicCriticalPath = min(2, 2) = 2
+unsigned ScheduleDAGMI::computeCyclicCriticalPath() {
+ // This only applies to single block loop.
+ if (!BB->isSuccessor(BB))
+ return 0;
+
+ unsigned MaxCyclicLatency = 0;
+ // Visit each live out vreg def to find def/use pairs that cross iterations.
+ ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
+ for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
+ RI != RE; ++RI) {
+ unsigned Reg = *RI;
+ if (!TRI->isVirtualRegister(Reg))
+ continue;
+ const LiveInterval &LI = LIS->getInterval(Reg);
+ const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
+ if (!DefVNI)
+ continue;
+
+ MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
+ const SUnit *DefSU = getSUnit(DefMI);
+ if (!DefSU)
+ continue;
+
+ unsigned LiveOutHeight = DefSU->getHeight();
+ unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
+ // Visit all local users of the vreg def.
+ for (VReg2UseMap::iterator
+ UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
+ if (UI->SU == &ExitSU)
+ continue;
+
+ // Only consider uses of the phi.
+ LiveQueryResult LRQ =
+ LI.Query(LIS->getInstructionIndex(UI->SU->getInstr()));
+ if (!LRQ.valueIn()->isPHIDef())
+ continue;
+
+ // Assume that a path spanning two iterations is a cycle, which could
+ // overestimate in strange cases. This allows cyclic latency to be
+ // estimated as the minimum slack of the vreg's depth or height.
+ unsigned CyclicLatency = 0;
+ if (LiveOutDepth > UI->SU->getDepth())
+ CyclicLatency = LiveOutDepth - UI->SU->getDepth();
+
+ unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
+ if (LiveInHeight > LiveOutHeight) {
+ if (LiveInHeight - LiveOutHeight < CyclicLatency)
+ CyclicLatency = LiveInHeight - LiveOutHeight;
+ }
+ else
+ CyclicLatency = 0;
+
+ DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
+ << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
+ if (CyclicLatency > MaxCyclicLatency)
+ MaxCyclicLatency = CyclicLatency;
+ }
+ }
+ DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
+ return MaxCyclicLatency;
+}
+
/// Identify DAG roots and setup scheduler queues.
void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
ArrayRef<SUnit*> BotRoots) {
@@ -664,11 +862,13 @@ void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
SchedImpl->registerRoots();
// Advance past initial DebugValues.
- assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
- TopRPTracker.setPos(CurrentTop);
-
CurrentBottom = RegionEnd;
+
+ if (ShouldTrackPressure) {
+ assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
+ TopRPTracker.setPos(CurrentTop);
+ }
}
/// Move an instruction and update register pressure.
@@ -685,10 +885,12 @@ void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
TopRPTracker.setPos(MI);
}
- // Update top scheduled pressure.
- TopRPTracker.advance();
- assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
- updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
+ if (ShouldTrackPressure) {
+ // Update top scheduled pressure.
+ TopRPTracker.advance();
+ assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
+ updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
+ }
}
else {
assert(SU->isBottomReady() && "node still has unscheduled dependencies");
@@ -704,10 +906,14 @@ void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
moveInstruction(MI, CurrentBottom);
CurrentBottom = MI;
}
- // Update bottom scheduled pressure.
- BotRPTracker.recede();
- assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
- updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
+ if (ShouldTrackPressure) {
+ // Update bottom scheduled pressure.
+ SmallVector<unsigned, 8> LiveUses;
+ BotRPTracker.recede(&LiveUses);
+ assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
+ updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
+ updatePressureDiffs(LiveUses);
+ }
}
}
@@ -1113,13 +1319,13 @@ void CopyConstrain::apply(ScheduleDAGMI *DAG) {
}
//===----------------------------------------------------------------------===//
-// ConvergingScheduler - Implementation of the generic MachineSchedStrategy.
+// GenericScheduler - Implementation of the generic MachineSchedStrategy.
//===----------------------------------------------------------------------===//
namespace {
-/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
+/// GenericScheduler shrinks the unscheduled zone using heuristics to balance
/// the schedule.
-class ConvergingScheduler : public MachineSchedStrategy {
+class GenericScheduler : public MachineSchedStrategy {
public:
/// Represent the type of SchedCandidate found within a single queue.
/// pickNodeBidirectional depends on these listed by decreasing priority.
@@ -1129,7 +1335,7 @@ public:
TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
#ifndef NDEBUG
- static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
+ static const char *getReasonStr(GenericScheduler::CandReason Reason);
#endif
/// Policy for scheduling the next instruction in the candidate's zone.
@@ -1160,7 +1366,7 @@ public:
}
};
- /// Store the state used by ConvergingScheduler heuristics, required for the
+ /// Store the state used by GenericScheduler heuristics, required for the
/// lifetime of one invocation of pickNode().
struct SchedCandidate {
CandPolicy Policy;
@@ -1205,16 +1411,21 @@ public:
struct SchedRemainder {
// Critical path through the DAG in expected latency.
unsigned CriticalPath;
+ unsigned CyclicCritPath;
// Scaled count of micro-ops left to schedule.
unsigned RemIssueCount;
+ bool IsAcyclicLatencyLimited;
+
// Unscheduled resources
SmallVector<unsigned, 16> RemainingCounts;
void reset() {
CriticalPath = 0;
+ CyclicCritPath = 0;
RemIssueCount = 0;
+ IsAcyclicLatencyLimited = false;
RemainingCounts.clear();
}
@@ -1288,13 +1499,16 @@ public:
void reset() {
// A new HazardRec is created for each DAG and owned by SchedBoundary.
- delete HazardRec;
-
+ // Destroying and reconstructing it is very expensive though. So keep
+ // invalid, placeholder HazardRecs.
+ if (HazardRec && HazardRec->isEnabled()) {
+ delete HazardRec;
+ HazardRec = 0;
+ }
Available.clear();
Pending.clear();
CheckPending = false;
NextSUs.clear();
- HazardRec = 0;
CurrCycle = 0;
CurrMOps = 0;
MinReadyCycle = UINT_MAX;
@@ -1316,7 +1530,7 @@ public:
/// PendingFlag set.
SchedBoundary(unsigned ID, const Twine &Name):
DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
- Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
+ Pending(ID << GenericScheduler::LogMaxQID, Name+".P"),
HazardRec(0) {
reset();
}
@@ -1327,7 +1541,7 @@ public:
SchedRemainder *rem);
bool isTop() const {
- return Available.getID() == ConvergingScheduler::TopQID;
+ return Available.getID() == GenericScheduler::TopQID;
}
#ifndef NDEBUG
@@ -1399,6 +1613,7 @@ public:
};
private:
+ const MachineSchedContext *Context;
ScheduleDAGMI *DAG;
const TargetSchedModel *SchedModel;
const TargetRegisterInfo *TRI;
@@ -1408,6 +1623,7 @@ private:
SchedBoundary Top;
SchedBoundary Bot;
+ MachineSchedPolicy RegionPolicy;
public:
/// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
enum {
@@ -1416,8 +1632,15 @@ public:
LogMaxQID = 2
};
- ConvergingScheduler():
- DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
+ GenericScheduler(const MachineSchedContext *C):
+ Context(C), DAG(0), SchedModel(0), TRI(0),
+ Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
+
+ virtual void initPolicy(MachineBasicBlock::iterator Begin,
+ MachineBasicBlock::iterator End,
+ unsigned NumRegionInstrs);
+
+ bool shouldTrackPressure() const { return RegionPolicy.ShouldTrackPressure; }
virtual void initialize(ScheduleDAGMI *dag);
@@ -1432,6 +1655,8 @@ public:
virtual void registerRoots();
protected:
+ void checkAcyclicLatency();
+
void tryCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand,
SchedBoundary &Zone,
@@ -1452,7 +1677,7 @@ protected:
};
} // namespace
-void ConvergingScheduler::SchedRemainder::
+void GenericScheduler::SchedRemainder::
init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
reset();
if (!SchedModel->hasInstrSchedModel())
@@ -1473,7 +1698,7 @@ init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
}
}
-void ConvergingScheduler::SchedBoundary::
+void GenericScheduler::SchedBoundary::
init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
reset();
DAG = dag;
@@ -1483,7 +1708,49 @@ init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
}
-void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
+/// Initialize the per-region scheduling policy.
+void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
+ MachineBasicBlock::iterator End,
+ unsigned NumRegionInstrs) {
+ const TargetMachine &TM = Context->MF->getTarget();
+
+ // Avoid setting up the register pressure tracker for small regions to save
+ // compile time. As a rough heuristic, only track pressure when the number of
+ // schedulable instructions exceeds half the integer register file.
+ unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
+ TM.getTargetLowering()->getRegClassFor(MVT::i32));
+
+ RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
+
+ // For generic targets, we default to bottom-up, because it's simpler and more
+ // compile-time optimizations have been implemented in that direction.
+ RegionPolicy.OnlyBottomUp = true;
+
+ // Allow the subtarget to override default policy.
+ const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
+ ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs);
+
+ // After subtarget overrides, apply command line options.
+ if (!EnableRegPressure)
+ RegionPolicy.ShouldTrackPressure = false;
+
+ // Check -misched-topdown/bottomup can force or unforce scheduling direction.
+ // e.g. -misched-bottomup=false allows scheduling in both directions.
+ assert((!ForceTopDown || !ForceBottomUp) &&
+ "-misched-topdown incompatible with -misched-bottomup");
+ if (ForceBottomUp.getNumOccurrences() > 0) {
+ RegionPolicy.OnlyBottomUp = ForceBottomUp;
+ if (RegionPolicy.OnlyBottomUp)
+ RegionPolicy.OnlyTopDown = false;
+ }
+ if (ForceTopDown.getNumOccurrences() > 0) {
+ RegionPolicy.OnlyTopDown = ForceTopDown;
+ if (RegionPolicy.OnlyTopDown)
+ RegionPolicy.OnlyBottomUp = false;
+ }
+}
+
+void GenericScheduler::initialize(ScheduleDAGMI *dag) {
DAG = dag;
SchedModel = DAG->getSchedModel();
TRI = DAG->TRI;
@@ -1498,14 +1765,17 @@ void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
// are disabled, then these HazardRecs will be disabled.
const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
const TargetMachine &TM = DAG->MF.getTarget();
- Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
- Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
-
- assert((!ForceTopDown || !ForceBottomUp) &&
- "-misched-topdown incompatible with -misched-bottomup");
+ if (!Top.HazardRec) {
+ Top.HazardRec =
+ TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ }
+ if (!Bot.HazardRec) {
+ Bot.HazardRec =
+ TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ }
}
-void ConvergingScheduler::releaseTopNode(SUnit *SU) {
+void GenericScheduler::releaseTopNode(SUnit *SU) {
if (SU->isScheduled)
return;
@@ -1524,7 +1794,7 @@ void ConvergingScheduler::releaseTopNode(SUnit *SU) {
Top.releaseNode(SU, SU->TopReadyCycle);
}
-void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
+void GenericScheduler::releaseBottomNode(SUnit *SU) {
if (SU->isScheduled)
return;
@@ -1545,8 +1815,46 @@ void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
Bot.releaseNode(SU, SU->BotReadyCycle);
}
-void ConvergingScheduler::registerRoots() {
+/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
+/// critical path by more cycles than it takes to drain the instruction buffer.
+/// We estimate an upper bounds on in-flight instructions as:
+///
+/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
+/// InFlightIterations = AcyclicPath / CyclesPerIteration
+/// InFlightResources = InFlightIterations * LoopResources
+///
+/// TODO: Check execution resources in addition to IssueCount.
+void GenericScheduler::checkAcyclicLatency() {
+ if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
+ return;
+
+ // Scaled number of cycles per loop iteration.
+ unsigned IterCount =
+ std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
+ Rem.RemIssueCount);
+ // Scaled acyclic critical path.
+ unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
+ // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
+ unsigned InFlightCount =
+ (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
+ unsigned BufferLimit =
+ SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
+
+ Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
+
+ DEBUG(dbgs() << "IssueCycles="
+ << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
+ << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
+ << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
+ << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
+ << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
+ if (Rem.IsAcyclicLatencyLimited)
+ dbgs() << " ACYCLIC LATENCY LIMIT\n");
+}
+
+void GenericScheduler::registerRoots() {
Rem.CriticalPath = DAG->ExitSU.getDepth();
+
// Some roots may not feed into ExitSU. Check all of them in case.
for (std::vector<SUnit*>::const_iterator
I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
@@ -1554,6 +1862,11 @@ void ConvergingScheduler::registerRoots() {
Rem.CriticalPath = (*I)->getDepth();
}
DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
+
+ if (EnableCyclicPath) {
+ Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
+ checkAcyclicLatency();
+ }
}
/// Does this SU have a hazard within the current instruction group.
@@ -1569,7 +1882,7 @@ void ConvergingScheduler::registerRoots() {
/// can dispatch per cycle.
///
/// TODO: Also check whether the SU must start a new group.
-bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
+bool GenericScheduler::SchedBoundary::checkHazard(SUnit *SU) {
if (HazardRec->isEnabled())
return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
@@ -1583,7 +1896,7 @@ bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
}
// Find the unscheduled node in ReadySUs with the highest latency.
-unsigned ConvergingScheduler::SchedBoundary::
+unsigned GenericScheduler::SchedBoundary::
findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
SUnit *LateSU = 0;
unsigned RemLatency = 0;
@@ -1605,7 +1918,7 @@ findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
// Count resources in this zone and the remaining unscheduled
// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
// resource index, or zero if the zone is issue limited.
-unsigned ConvergingScheduler::SchedBoundary::
+unsigned GenericScheduler::SchedBoundary::
getOtherResourceCount(unsigned &OtherCritIdx) {
OtherCritIdx = 0;
if (!SchedModel->hasInstrSchedModel())
@@ -1633,7 +1946,7 @@ getOtherResourceCount(unsigned &OtherCritIdx) {
/// Set the CandPolicy for this zone given the current resources and latencies
/// inside and outside the zone.
-void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
+void GenericScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
SchedBoundary &OtherZone) {
// Now that potential stalls have been considered, apply preemptive heuristics
// based on the the total latency and resources inside and outside this
@@ -1692,7 +2005,7 @@ void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
Policy.DemandResIdx = OtherCritIdx;
}
-void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
+void GenericScheduler::SchedBoundary::releaseNode(SUnit *SU,
unsigned ReadyCycle) {
if (ReadyCycle < MinReadyCycle)
MinReadyCycle = ReadyCycle;
@@ -1710,7 +2023,7 @@ void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
}
/// Move the boundary of scheduled code by one cycle.
-void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
+void GenericScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
if (SchedModel->getMicroOpBufferSize() == 0) {
assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
if (MinReadyCycle > NextCycle)
@@ -1748,7 +2061,7 @@ void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
}
-void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
+void GenericScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
unsigned Count) {
ExecutedResCounts[PIdx] += Count;
if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
@@ -1762,7 +2075,7 @@ void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
///
/// \return the next cycle at which the instruction may execute without
/// oversubscribing resources.
-unsigned ConvergingScheduler::SchedBoundary::
+unsigned GenericScheduler::SchedBoundary::
countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
unsigned Factor = SchedModel->getResourceFactor(PIdx);
unsigned Count = Factor * Cycles;
@@ -1787,7 +2100,7 @@ countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
}
/// Move the boundary of scheduled code by one SUnit.
-void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
+void GenericScheduler::SchedBoundary::bumpNode(SUnit *SU) {
// Update the reservation table.
if (HazardRec->isEnabled()) {
if (!isTop() && SU->isCall) {
@@ -1891,7 +2204,7 @@ void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
/// Release pending ready nodes in to the available queue. This makes them
/// visible to heuristics.
-void ConvergingScheduler::SchedBoundary::releasePending() {
+void GenericScheduler::SchedBoundary::releasePending() {
// If the available queue is empty, it is safe to reset MinReadyCycle.
if (Available.empty())
MinReadyCycle = UINT_MAX;
@@ -1921,7 +2234,7 @@ void ConvergingScheduler::SchedBoundary::releasePending() {
}
/// Remove SU from the ready set for this boundary.
-void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
+void GenericScheduler::SchedBoundary::removeReady(SUnit *SU) {
if (Available.isInQueue(SU))
Available.remove(Available.find(SU));
else {
@@ -1933,7 +2246,7 @@ void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
/// If this queue only has one ready candidate, return it. As a side effect,
/// defer any nodes that now hit a hazard, and advance the cycle until at least
/// one node is ready. If multiple instructions are ready, return NULL.
-SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
+SUnit *GenericScheduler::SchedBoundary::pickOnlyChoice() {
if (CheckPending)
releasePending();
@@ -1962,7 +2275,7 @@ SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
#ifndef NDEBUG
// This is useful information to dump after bumpNode.
// Note that the Queue contents are more useful before pickNodeFromQueue.
-void ConvergingScheduler::SchedBoundary::dumpScheduledState() {
+void GenericScheduler::SchedBoundary::dumpScheduledState() {
unsigned ResFactor;
unsigned ResCount;
if (ZoneCritResIdx) {
@@ -1985,7 +2298,7 @@ void ConvergingScheduler::SchedBoundary::dumpScheduledState() {
}
#endif
-void ConvergingScheduler::SchedCandidate::
+void GenericScheduler::SchedCandidate::
initResourceDelta(const ScheduleDAGMI *DAG,
const TargetSchedModel *SchedModel) {
if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
@@ -2005,9 +2318,9 @@ initResourceDelta(const ScheduleDAGMI *DAG,
/// Return true if this heuristic determines order.
static bool tryLess(int TryVal, int CandVal,
- ConvergingScheduler::SchedCandidate &TryCand,
- ConvergingScheduler::SchedCandidate &Cand,
- ConvergingScheduler::CandReason Reason) {
+ GenericScheduler::SchedCandidate &TryCand,
+ GenericScheduler::SchedCandidate &Cand,
+ GenericScheduler::CandReason Reason) {
if (TryVal < CandVal) {
TryCand.Reason = Reason;
return true;
@@ -2022,9 +2335,9 @@ static bool tryLess(int TryVal, int CandVal,
}
static bool tryGreater(int TryVal, int CandVal,
- ConvergingScheduler::SchedCandidate &TryCand,
- ConvergingScheduler::SchedCandidate &Cand,
- ConvergingScheduler::CandReason Reason) {
+ GenericScheduler::SchedCandidate &TryCand,
+ GenericScheduler::SchedCandidate &Cand,
+ GenericScheduler::CandReason Reason) {
if (TryVal > CandVal) {
TryCand.Reason = Reason;
return true;
@@ -2038,26 +2351,26 @@ static bool tryGreater(int TryVal, int CandVal,
return false;
}
-static bool tryPressure(const PressureElement &TryP,
- const PressureElement &CandP,
- ConvergingScheduler::SchedCandidate &TryCand,
- ConvergingScheduler::SchedCandidate &Cand,
- ConvergingScheduler::CandReason Reason) {
+static bool tryPressure(const PressureChange &TryP,
+ const PressureChange &CandP,
+ GenericScheduler::SchedCandidate &TryCand,
+ GenericScheduler::SchedCandidate &Cand,
+ GenericScheduler::CandReason Reason) {
+ int TryRank = TryP.getPSetOrMax();
+ int CandRank = CandP.getPSetOrMax();
// If both candidates affect the same set, go with the smallest increase.
- if (TryP.PSetID == CandP.PSetID) {
- return tryLess(TryP.UnitIncrease, CandP.UnitIncrease, TryCand, Cand,
+ if (TryRank == CandRank) {
+ return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
Reason);
}
// If one candidate decreases and the other increases, go with it.
- if (tryLess(TryP.UnitIncrease < 0, CandP.UnitIncrease < 0, TryCand, Cand,
+ // Invalid candidates have UnitInc==0.
+ if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
Reason)) {
return true;
}
- // If TryP has lower Rank, it has a higher priority.
- int TryRank = TryP.PSetRank();
- int CandRank = CandP.PSetRank();
// If the candidates are decreasing pressure, reverse priority.
- if (TryP.UnitIncrease < 0)
+ if (TryP.getUnitInc() < 0)
std::swap(TryRank, CandRank);
return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
}
@@ -2094,6 +2407,32 @@ static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
return 0;
}
+static bool tryLatency(GenericScheduler::SchedCandidate &TryCand,
+ GenericScheduler::SchedCandidate &Cand,
+ GenericScheduler::SchedBoundary &Zone) {
+ if (Zone.isTop()) {
+ if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
+ if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, GenericScheduler::TopDepthReduce))
+ return true;
+ }
+ if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, GenericScheduler::TopPathReduce))
+ return true;
+ }
+ else {
+ if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
+ if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, GenericScheduler::BotHeightReduce))
+ return true;
+ }
+ if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, GenericScheduler::BotPathReduce))
+ return true;
+ }
+ return false;
+}
+
/// Apply a set of heursitics to a new candidate. Heuristics are currently
/// hierarchical. This may be more efficient than a graduated cost model because
/// we don't need to evaluate all aspects of the model for each node in the
@@ -2105,16 +2444,44 @@ static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
/// \param Zone describes the scheduled zone that we are extending.
/// \param RPTracker describes reg pressure within the scheduled zone.
/// \param TempTracker is a scratch pressure tracker to reuse in queries.
-void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
+void GenericScheduler::tryCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand,
SchedBoundary &Zone,
const RegPressureTracker &RPTracker,
RegPressureTracker &TempTracker) {
- // Always initialize TryCand's RPDelta.
- TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
- DAG->getRegionCriticalPSets(),
- DAG->getRegPressure().MaxSetPressure);
+ if (DAG->isTrackingPressure()) {
+ // Always initialize TryCand's RPDelta.
+ if (Zone.isTop()) {
+ TempTracker.getMaxDownwardPressureDelta(
+ TryCand.SU->getInstr(),
+ TryCand.RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+ }
+ else {
+ if (VerifyScheduling) {
+ TempTracker.getMaxUpwardPressureDelta(
+ TryCand.SU->getInstr(),
+ &DAG->getPressureDiff(TryCand.SU),
+ TryCand.RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+ }
+ else {
+ RPTracker.getUpwardPressureDelta(
+ TryCand.SU->getInstr(),
+ DAG->getPressureDiff(TryCand.SU),
+ TryCand.RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+ }
+ }
+ }
+ DEBUG(if (TryCand.RPDelta.Excess.isValid())
+ dbgs() << " SU(" << TryCand.SU->NodeNum << ") "
+ << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
+ << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
// Initialize the candidate if needed.
if (!Cand.isValid()) {
@@ -2129,13 +2496,22 @@ void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
// Avoid exceeding the target's limit. If signed PSetID is negative, it is
// invalid; convert it to INT_MAX to give it lowest priority.
- if (tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand,
- RegExcess))
+ if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
+ Cand.RPDelta.Excess,
+ TryCand, Cand, RegExcess))
return;
// Avoid increasing the max critical pressure in the scheduled region.
- if (tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
- TryCand, Cand, RegCritical))
+ if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
+ Cand.RPDelta.CriticalMax,
+ TryCand, Cand, RegCritical))
+ return;
+
+ // For loops that are acyclic path limited, aggressively schedule for latency.
+ // This can result in very long dependence chains scheduled in sequence, so
+ // once every cycle (when CurrMOps == 0), switch to normal heuristics.
+ if (Rem.IsAcyclicLatencyLimited && !Zone.CurrMOps
+ && tryLatency(TryCand, Cand, Zone))
return;
// Keep clustered nodes together to encourage downstream peephole
@@ -2157,8 +2533,9 @@ void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
return;
}
// Avoid increasing the max pressure of the entire region.
- if (tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax,
- TryCand, Cand, RegMax))
+ if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
+ Cand.RPDelta.CurrentMax,
+ TryCand, Cand, RegMax))
return;
// Avoid critical resource consumption and balance the schedule.
@@ -2172,27 +2549,10 @@ void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
return;
// Avoid serializing long latency dependence chains.
- if (Cand.Policy.ReduceLatency) {
- if (Zone.isTop()) {
- if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
- if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
- TryCand, Cand, TopDepthReduce))
- return;
- }
- if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
- TryCand, Cand, TopPathReduce))
- return;
- }
- else {
- if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
- if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
- TryCand, Cand, BotHeightReduce))
- return;
- }
- if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
- TryCand, Cand, BotPathReduce))
- return;
- }
+ // For acyclic path limited loops, latency was already checked above.
+ if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
+ && tryLatency(TryCand, Cand, Zone)) {
+ return;
}
// Prefer immediate defs/users of the last scheduled instruction. This is a
@@ -2210,8 +2570,8 @@ void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
}
#ifndef NDEBUG
-const char *ConvergingScheduler::getReasonStr(
- ConvergingScheduler::CandReason Reason) {
+const char *GenericScheduler::getReasonStr(
+ GenericScheduler::CandReason Reason) {
switch (Reason) {
case NoCand: return "NOCAND ";
case PhysRegCopy: return "PREG-COPY";
@@ -2232,8 +2592,8 @@ const char *ConvergingScheduler::getReasonStr(
llvm_unreachable("Unknown reason!");
}
-void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
- PressureElement P;
+void GenericScheduler::traceCandidate(const SchedCandidate &Cand) {
+ PressureChange P;
unsigned ResIdx = 0;
unsigned Latency = 0;
switch (Cand.Reason) {
@@ -2269,8 +2629,8 @@ void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
}
dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
if (P.isValid())
- dbgs() << " " << TRI->getRegPressureSetName(P.PSetID)
- << ":" << P.UnitIncrease << " ";
+ dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
+ << ":" << P.getUnitInc() << " ";
else
dbgs() << " ";
if (ResIdx)
@@ -2285,12 +2645,12 @@ void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
}
#endif
-/// Pick the best candidate from the top queue.
+/// Pick the best candidate from the queue.
///
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
/// DAG building. To adjust for the current scheduling location we need to
/// maintain the number of vreg uses remaining to be top-scheduled.
-void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
+void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
const RegPressureTracker &RPTracker,
SchedCandidate &Cand) {
ReadyQueue &Q = Zone.Available;
@@ -2315,14 +2675,14 @@ void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
}
}
-static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
+static void tracePick(const GenericScheduler::SchedCandidate &Cand,
bool IsTop) {
DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
- << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
+ << GenericScheduler::getReasonStr(Cand.Reason) << '\n');
}
/// Pick the best candidate node from either the top or bottom queue.
-SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
+SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
// Schedule as far as possible in the direction of no choice. This is most
// efficient, but also provides the best heuristics for CriticalPSets.
if (SUnit *SU = Bot.pickOnlyChoice()) {
@@ -2377,7 +2737,7 @@ SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
}
/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
-SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
+SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
if (DAG->top() == DAG->bottom()) {
assert(Top.Available.empty() && Top.Pending.empty() &&
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
@@ -2385,24 +2745,26 @@ SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
}
SUnit *SU;
do {
- if (ForceTopDown) {
+ if (RegionPolicy.OnlyTopDown) {
SU = Top.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
SchedCandidate TopCand(NoPolicy);
pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
- assert(TopCand.Reason != NoCand && "failed to find the first candidate");
+ assert(TopCand.Reason != NoCand && "failed to find a candidate");
+ tracePick(TopCand, true);
SU = TopCand.SU;
}
IsTopNode = true;
}
- else if (ForceBottomUp) {
+ else if (RegionPolicy.OnlyBottomUp) {
SU = Bot.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
SchedCandidate BotCand(NoPolicy);
pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
- assert(BotCand.Reason != NoCand && "failed to find the first candidate");
+ assert(BotCand.Reason != NoCand && "failed to find a candidate");
+ tracePick(BotCand, false);
SU = BotCand.SU;
}
IsTopNode = false;
@@ -2421,7 +2783,7 @@ SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
return SU;
}
-void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
+void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
MachineBasicBlock::iterator InsertPos = SU->getInstr();
if (!isTop)
@@ -2452,7 +2814,7 @@ void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
///
/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
/// them here. See comments in biasPhysRegCopy.
-void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
+void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
if (IsTopNode) {
SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle);
Top.bumpNode(SU);
@@ -2469,25 +2831,23 @@ void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
/// Create the standard converging machine scheduler. This will be used as the
/// default scheduler if the target does not set a default.
-static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
- assert((!ForceTopDown || !ForceBottomUp) &&
- "-misched-topdown incompatible with -misched-bottomup");
- ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
+static ScheduleDAGInstrs *createGenericSched(MachineSchedContext *C) {
+ ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new GenericScheduler(C));
// Register DAG post-processors.
//
// FIXME: extend the mutation API to allow earlier mutations to instantiate
// data and pass it to later mutations. Have a single mutation that gathers
// the interesting nodes in one pass.
DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
- if (EnableLoadCluster)
+ if (EnableLoadCluster && DAG->TII->enableClusterLoads())
DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
if (EnableMacroFusion)
DAG->addMutation(new MacroFusion(DAG->TII));
return DAG;
}
static MachineSchedRegistry
-ConvergingSchedRegistry("converge", "Standard converging scheduler.",
- createConvergingSched);
+GenericSchedRegistry("converge", "Standard converging scheduler.",
+ createGenericSched);
//===----------------------------------------------------------------------===//
// ILP Scheduler. Currently for experimental analysis of heuristics.
@@ -2529,15 +2889,6 @@ struct ILPOrder {
/// \brief Schedule based on the ILP metric.
class ILPScheduler : public MachineSchedStrategy {
- /// In case all subtrees are eventually connected to a common root through
- /// data dependence (e.g. reduction), place an upper limit on their size.
- ///
- /// FIXME: A subtree limit is generally good, but in the situation commented
- /// above, where multiple similar subtrees feed a common root, we should
- /// only split at a point where the resulting subtrees will be balanced.
- /// (a motivating test case must be found).
- static const unsigned SubtreeLimit = 16;
-
ScheduleDAGMI *DAG;
ILPOrder Cmp;
@@ -2721,7 +3072,7 @@ struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
}
static bool isNodeHidden(const SUnit *Node) {
- return (Node->NumPreds > 10 || Node->NumSuccs > 10);
+ return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
}
static bool hasNodeAddressLabel(const SUnit *Node,
@@ -2744,7 +3095,11 @@ struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
std::string Str;
raw_string_ostream SS(Str);
- SS << "SU(" << SU->NodeNum << ')';
+ const SchedDFSResult *DFS =
+ static_cast<const ScheduleDAGMI*>(G)->getDFSResult();
+ SS << "SU:" << SU->NodeNum;
+ if (DFS)
+ SS << " I:" << DFS->getNumInstrs(SU);
return SS.str();
}
static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
diff --git a/lib/CodeGen/MachineSink.cpp b/lib/CodeGen/MachineSink.cpp
index dacdbdd..105d7c2 100644
--- a/lib/CodeGen/MachineSink.cpp
+++ b/lib/CodeGen/MachineSink.cpp
@@ -308,12 +308,29 @@ bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
// to be sunk then it's probably worth it.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg()) continue;
+ if (!MO.isReg() || !MO.isUse())
+ continue;
unsigned Reg = MO.getReg();
- if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg))
+ if (Reg == 0)
continue;
- if (MRI->hasOneNonDBGUse(Reg))
- return true;
+
+ // We don't move live definitions of physical registers,
+ // so sinking their uses won't enable any opportunities.
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ continue;
+
+ // If this instruction is the only user of a virtual register,
+ // check if breaking the edge will enable sinking
+ // both this instruction and the defining instruction.
+ if (MRI->hasOneNonDBGUse(Reg)) {
+ // If the definition resides in same MBB,
+ // claim it's likely we can sink these together.
+ // If definition resides elsewhere, we aren't
+ // blocking it from being sunk so don't break the edge.
+ MachineInstr *DefMI = MRI->getVRegDef(Reg);
+ if (DefMI->getParent() == MI->getParent())
+ return true;
+ }
}
return false;
@@ -615,9 +632,8 @@ bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
- // If the block has multiple predecessors, this would introduce computation on
- // a path that it doesn't already exist. We could split the critical edge,
- // but for now we just punt.
+ // If the block has multiple predecessors, this is a critical edge.
+ // Decide if we can sink along it or need to break the edge.
if (SuccToSinkTo->pred_size() > 1) {
// We cannot sink a load across a critical edge - there may be stores in
// other code paths.
diff --git a/lib/CodeGen/MachineVerifier.cpp b/lib/CodeGen/MachineVerifier.cpp
index e74bfc8..d61470c 100644
--- a/lib/CodeGen/MachineVerifier.cpp
+++ b/lib/CodeGen/MachineVerifier.cpp
@@ -213,6 +213,10 @@ namespace {
const LiveInterval &LI);
void report(const char *msg, const MachineBasicBlock *MBB,
const LiveInterval &LI);
+ void report(const char *msg, const MachineFunction *MF,
+ const LiveRange &LR);
+ void report(const char *msg, const MachineBasicBlock *MBB,
+ const LiveRange &LR);
void verifyInlineAsm(const MachineInstr *MI);
@@ -225,9 +229,10 @@ namespace {
void verifyLiveVariables();
void verifyLiveIntervals();
void verifyLiveInterval(const LiveInterval&);
- void verifyLiveIntervalValue(const LiveInterval&, VNInfo*);
- void verifyLiveIntervalSegment(const LiveInterval&,
- LiveInterval::const_iterator);
+ void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned);
+ void verifyLiveRangeSegment(const LiveRange&,
+ const LiveRange::const_iterator I, unsigned);
+ void verifyLiveRange(const LiveRange&, unsigned);
void verifyStackFrame();
};
@@ -414,23 +419,25 @@ void MachineVerifier::report(const char *msg,
void MachineVerifier::report(const char *msg, const MachineFunction *MF,
const LiveInterval &LI) {
report(msg, MF);
- *OS << "- interval: ";
- if (TargetRegisterInfo::isVirtualRegister(LI.reg))
- *OS << PrintReg(LI.reg, TRI);
- else
- *OS << PrintRegUnit(LI.reg, TRI);
- *OS << ' ' << LI << '\n';
+ *OS << "- interval: " << LI << '\n';
}
void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
const LiveInterval &LI) {
report(msg, MBB);
- *OS << "- interval: ";
- if (TargetRegisterInfo::isVirtualRegister(LI.reg))
- *OS << PrintReg(LI.reg, TRI);
- else
- *OS << PrintRegUnit(LI.reg, TRI);
- *OS << ' ' << LI << '\n';
+ *OS << "- interval: " << LI << '\n';
+}
+
+void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
+ const LiveRange &LR) {
+ report(msg, MBB);
+ *OS << "- liverange: " << LR << "\n";
+}
+
+void MachineVerifier::report(const char *msg, const MachineFunction *MF,
+ const LiveRange &LR) {
+ report(msg, MF);
+ *OS << "- liverange: " << LR << "\n";
}
void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
@@ -768,7 +775,7 @@ void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
if (MI->getNumOperands() < MCID.getNumOperands()) {
report("Too few operands", MI);
*OS << MCID.getNumOperands() << " operands expected, but "
- << MI->getNumExplicitOperands() << " given.\n";
+ << MI->getNumOperands() << " given.\n";
}
// Check the tied operands.
@@ -826,7 +833,7 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
if (MO->isReg() &&
!(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
if (MO->isDef() && !MCOI.isOptionalDef())
- report("Explicit operand marked as def", MO, MONum);
+ report("Explicit operand marked as def", MO, MONum);
if (MO->isImplicit())
report("Explicit operand marked as implicit", MO, MONum);
}
@@ -1001,16 +1008,16 @@ void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
// Check the cached regunit intervals.
if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
- if (const LiveInterval *LI = LiveInts->getCachedRegUnit(*Units)) {
- LiveRangeQuery LRQ(*LI, UseIdx);
+ if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) {
+ LiveQueryResult LRQ = LR->Query(UseIdx);
if (!LRQ.valueIn()) {
- report("No live range at use", MO, MONum);
+ report("No live segment at use", MO, MONum);
*OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
- << ' ' << *LI << '\n';
+ << ' ' << *LR << '\n';
}
if (MO->isKill() && !LRQ.isKill()) {
report("Live range continues after kill flag", MO, MONum);
- *OS << PrintRegUnit(*Units, TRI) << ' ' << *LI << '\n';
+ *OS << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n';
}
}
}
@@ -1020,9 +1027,9 @@ void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
if (LiveInts->hasInterval(Reg)) {
// This is a virtual register interval.
const LiveInterval &LI = LiveInts->getInterval(Reg);
- LiveRangeQuery LRQ(LI, UseIdx);
+ LiveQueryResult LRQ = LI.Query(UseIdx);
if (!LRQ.valueIn()) {
- report("No live range at use", MO, MONum);
+ report("No live segment at use", MO, MONum);
*OS << UseIdx << " is not live in " << LI << '\n';
}
// Check for extra kill flags.
@@ -1071,7 +1078,7 @@ void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
report("Multiple virtual register defs in SSA form", MO, MONum);
- // Check LiveInts for a live range, but only for virtual registers.
+ // Check LiveInts for a live segment, but only for virtual registers.
if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
!LiveInts->isNotInMIMap(MI)) {
SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
@@ -1086,9 +1093,17 @@ void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
<< DefIdx << " in " << LI << '\n';
}
} else {
- report("No live range at def", MO, MONum);
+ report("No live segment at def", MO, MONum);
*OS << DefIdx << " is not live in " << LI << '\n';
}
+ // Check that, if the dead def flag is present, LiveInts agree.
+ if (MO->isDead()) {
+ LiveQueryResult LRQ = LI.Query(DefIdx);
+ if (!LRQ.isDeadDef()) {
+ report("Live range continues after dead def flag", MO, MONum);
+ *OS << "Live range: " << LI << '\n';
+ }
+ }
} else {
report("Virtual register has no Live interval", MO, MONum);
}
@@ -1335,25 +1350,26 @@ void MachineVerifier::verifyLiveIntervals() {
// Verify all the cached regunit intervals.
for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
- if (const LiveInterval *LI = LiveInts->getCachedRegUnit(i))
- verifyLiveInterval(*LI);
+ if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
+ verifyLiveRange(*LR, i);
}
-void MachineVerifier::verifyLiveIntervalValue(const LiveInterval &LI,
- VNInfo *VNI) {
+void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
+ const VNInfo *VNI,
+ unsigned Reg) {
if (VNI->isUnused())
return;
- const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);
+ const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
if (!DefVNI) {
- report("Valno not live at def and not marked unused", MF, LI);
+ report("Valno not live at def and not marked unused", MF, LR);
*OS << "Valno #" << VNI->id << '\n';
return;
}
if (DefVNI != VNI) {
- report("Live range at def has different valno", MF, LI);
+ report("Live segment at def has different valno", MF, LR);
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
<< " where valno #" << DefVNI->id << " is live\n";
return;
@@ -1361,15 +1377,15 @@ void MachineVerifier::verifyLiveIntervalValue(const LiveInterval &LI,
const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
if (!MBB) {
- report("Invalid definition index", MF, LI);
+ report("Invalid definition index", MF, LR);
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
- << " in " << LI << '\n';
+ << " in " << LR << '\n';
return;
}
if (VNI->isPHIDef()) {
if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
- report("PHIDef value is not defined at MBB start", MBB, LI);
+ report("PHIDef value is not defined at MBB start", MBB, LR);
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
<< ", not at the beginning of BB#" << MBB->getNumber() << '\n';
}
@@ -1379,161 +1395,154 @@ void MachineVerifier::verifyLiveIntervalValue(const LiveInterval &LI,
// Non-PHI def.
const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
if (!MI) {
- report("No instruction at def index", MBB, LI);
+ report("No instruction at def index", MBB, LR);
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
return;
}
- bool hasDef = false;
- bool isEarlyClobber = false;
- for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
- if (!MOI->isReg() || !MOI->isDef())
- continue;
- if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
- if (MOI->getReg() != LI.reg)
- continue;
- } else {
- if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
- !TRI->hasRegUnit(MOI->getReg(), LI.reg))
+ if (Reg != 0) {
+ bool hasDef = false;
+ bool isEarlyClobber = false;
+ for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
+ if (!MOI->isReg() || !MOI->isDef())
continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ if (MOI->getReg() != Reg)
+ continue;
+ } else {
+ if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
+ !TRI->hasRegUnit(MOI->getReg(), Reg))
+ continue;
+ }
+ hasDef = true;
+ if (MOI->isEarlyClobber())
+ isEarlyClobber = true;
}
- hasDef = true;
- if (MOI->isEarlyClobber())
- isEarlyClobber = true;
- }
- if (!hasDef) {
- report("Defining instruction does not modify register", MI);
- *OS << "Valno #" << VNI->id << " in " << LI << '\n';
- }
+ if (!hasDef) {
+ report("Defining instruction does not modify register", MI);
+ *OS << "Valno #" << VNI->id << " in " << LR << '\n';
+ }
- // Early clobber defs begin at USE slots, but other defs must begin at
- // DEF slots.
- if (isEarlyClobber) {
- if (!VNI->def.isEarlyClobber()) {
- report("Early clobber def must be at an early-clobber slot", MBB, LI);
+ // Early clobber defs begin at USE slots, but other defs must begin at
+ // DEF slots.
+ if (isEarlyClobber) {
+ if (!VNI->def.isEarlyClobber()) {
+ report("Early clobber def must be at an early-clobber slot", MBB, LR);
+ *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
+ }
+ } else if (!VNI->def.isRegister()) {
+ report("Non-PHI, non-early clobber def must be at a register slot",
+ MBB, LR);
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
}
- } else if (!VNI->def.isRegister()) {
- report("Non-PHI, non-early clobber def must be at a register slot",
- MBB, LI);
- *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
}
}
-void
-MachineVerifier::verifyLiveIntervalSegment(const LiveInterval &LI,
- LiveInterval::const_iterator I) {
- const VNInfo *VNI = I->valno;
- assert(VNI && "Live range has no valno");
-
- if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
- report("Foreign valno in live range", MF, LI);
- *OS << *I << " has a bad valno\n";
+void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
+ const LiveRange::const_iterator I,
+ unsigned Reg) {
+ const LiveRange::Segment &S = *I;
+ const VNInfo *VNI = S.valno;
+ assert(VNI && "Live segment has no valno");
+
+ if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
+ report("Foreign valno in live segment", MF, LR);
+ *OS << S << " has a bad valno\n";
}
if (VNI->isUnused()) {
- report("Live range valno is marked unused", MF, LI);
- *OS << *I << '\n';
+ report("Live segment valno is marked unused", MF, LR);
+ *OS << S << '\n';
}
- const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
+ const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
if (!MBB) {
- report("Bad start of live segment, no basic block", MF, LI);
- *OS << *I << '\n';
+ report("Bad start of live segment, no basic block", MF, LR);
+ *OS << S << '\n';
return;
}
SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
- if (I->start != MBBStartIdx && I->start != VNI->def) {
- report("Live segment must begin at MBB entry or valno def", MBB, LI);
- *OS << *I << '\n';
+ if (S.start != MBBStartIdx && S.start != VNI->def) {
+ report("Live segment must begin at MBB entry or valno def", MBB, LR);
+ *OS << S << '\n';
}
const MachineBasicBlock *EndMBB =
- LiveInts->getMBBFromIndex(I->end.getPrevSlot());
+ LiveInts->getMBBFromIndex(S.end.getPrevSlot());
if (!EndMBB) {
- report("Bad end of live segment, no basic block", MF, LI);
- *OS << *I << '\n';
+ report("Bad end of live segment, no basic block", MF, LR);
+ *OS << S << '\n';
return;
}
// No more checks for live-out segments.
- if (I->end == LiveInts->getMBBEndIdx(EndMBB))
+ if (S.end == LiveInts->getMBBEndIdx(EndMBB))
return;
// RegUnit intervals are allowed dead phis.
- if (!TargetRegisterInfo::isVirtualRegister(LI.reg) && VNI->isPHIDef() &&
- I->start == VNI->def && I->end == VNI->def.getDeadSlot())
+ if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
+ S.start == VNI->def && S.end == VNI->def.getDeadSlot())
return;
// The live segment is ending inside EndMBB
const MachineInstr *MI =
- LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
+ LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
if (!MI) {
- report("Live segment doesn't end at a valid instruction", EndMBB, LI);
- *OS << *I << '\n';
+ report("Live segment doesn't end at a valid instruction", EndMBB, LR);
+ *OS << S << '\n';
return;
}
// The block slot must refer to a basic block boundary.
- if (I->end.isBlock()) {
- report("Live segment ends at B slot of an instruction", EndMBB, LI);
- *OS << *I << '\n';
+ if (S.end.isBlock()) {
+ report("Live segment ends at B slot of an instruction", EndMBB, LR);
+ *OS << S << '\n';
}
- if (I->end.isDead()) {
+ if (S.end.isDead()) {
// Segment ends on the dead slot.
// That means there must be a dead def.
- if (!SlotIndex::isSameInstr(I->start, I->end)) {
- report("Live segment ending at dead slot spans instructions", EndMBB, LI);
- *OS << *I << '\n';
+ if (!SlotIndex::isSameInstr(S.start, S.end)) {
+ report("Live segment ending at dead slot spans instructions", EndMBB, LR);
+ *OS << S << '\n';
}
}
// A live segment can only end at an early-clobber slot if it is being
// redefined by an early-clobber def.
- if (I->end.isEarlyClobber()) {
- if (I+1 == LI.end() || (I+1)->start != I->end) {
+ if (S.end.isEarlyClobber()) {
+ if (I+1 == LR.end() || (I+1)->start != S.end) {
report("Live segment ending at early clobber slot must be "
- "redefined by an EC def in the same instruction", EndMBB, LI);
- *OS << *I << '\n';
+ "redefined by an EC def in the same instruction", EndMBB, LR);
+ *OS << S << '\n';
}
}
// The following checks only apply to virtual registers. Physreg liveness
// is too weird to check.
- if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
- // A live range can end with either a redefinition, a kill flag on a
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ // A live segment can end with either a redefinition, a kill flag on a
// use, or a dead flag on a def.
bool hasRead = false;
- bool hasDeadDef = false;
for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
- if (!MOI->isReg() || MOI->getReg() != LI.reg)
+ if (!MOI->isReg() || MOI->getReg() != Reg)
continue;
if (MOI->readsReg())
hasRead = true;
- if (MOI->isDef() && MOI->isDead())
- hasDeadDef = true;
}
-
- if (I->end.isDead()) {
- if (!hasDeadDef) {
- report("Instruction doesn't have a dead def operand", MI);
- I->print(*OS);
- *OS << " in " << LI << '\n';
- }
- } else {
+ if (!S.end.isDead()) {
if (!hasRead) {
- report("Instruction ending live range doesn't read the register", MI);
- *OS << *I << " in " << LI << '\n';
+ report("Instruction ending live segment doesn't read the register", MI);
+ *OS << S << " in " << LR << '\n';
}
}
}
// Now check all the basic blocks in this live segment.
MachineFunction::const_iterator MFI = MBB;
- // Is this live range the beginning of a non-PHIDef VN?
- if (I->start == VNI->def && !VNI->isPHIDef()) {
+ // Is this live segment the beginning of a non-PHIDef VN?
+ if (S.start == VNI->def && !VNI->isPHIDef()) {
// Not live-in to any blocks.
if (MBB == EndMBB)
return;
@@ -1541,9 +1550,9 @@ MachineVerifier::verifyLiveIntervalSegment(const LiveInterval &LI,
++MFI;
}
for (;;) {
- assert(LiveInts->isLiveInToMBB(LI, MFI));
+ assert(LiveInts->isLiveInToMBB(LR, MFI));
// We don't know how to track physregs into a landing pad.
- if (!TargetRegisterInfo::isVirtualRegister(LI.reg) &&
+ if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
MFI->isLandingPad()) {
if (&*MFI == EndMBB)
break;
@@ -1559,11 +1568,11 @@ MachineVerifier::verifyLiveIntervalSegment(const LiveInterval &LI,
for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
PE = MFI->pred_end(); PI != PE; ++PI) {
SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
- const VNInfo *PVNI = LI.getVNInfoBefore(PEnd);
+ const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
// All predecessors must have a live-out value.
if (!PVNI) {
- report("Register not marked live out of predecessor", *PI, LI);
+ report("Register not marked live out of predecessor", *PI, LR);
*OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
<< '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
<< PEnd << '\n';
@@ -1572,7 +1581,7 @@ MachineVerifier::verifyLiveIntervalSegment(const LiveInterval &LI,
// Only PHI-defs can take different predecessor values.
if (!IsPHI && PVNI != VNI) {
- report("Different value live out of predecessor", *PI, LI);
+ report("Different value live out of predecessor", *PI, LR);
*OS << "Valno #" << PVNI->id << " live out of BB#"
<< (*PI)->getNumber() << '@' << PEnd
<< "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
@@ -1585,13 +1594,17 @@ MachineVerifier::verifyLiveIntervalSegment(const LiveInterval &LI,
}
}
-void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
- for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
- I!=E; ++I)
- verifyLiveIntervalValue(LI, *I);
+void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg) {
+ for (LiveRange::const_vni_iterator I = LR.vni_begin(), E = LR.vni_end();
+ I != E; ++I)
+ verifyLiveRangeValue(LR, *I, Reg);
+
+ for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
+ verifyLiveRangeSegment(LR, I, Reg);
+}
- for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I)
- verifyLiveIntervalSegment(LI, I);
+void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
+ verifyLiveRange(LI, LI.reg);
// Check the LI only has one connected component.
if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
diff --git a/lib/CodeGen/PHIElimination.cpp b/lib/CodeGen/PHIElimination.cpp
index bf23eca..dcd9072 100644
--- a/lib/CodeGen/PHIElimination.cpp
+++ b/lib/CodeGen/PHIElimination.cpp
@@ -313,14 +313,14 @@ void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
if (IncomingReg) {
// Add the region from the beginning of MBB to the copy instruction to
// IncomingReg's live interval.
- LiveInterval &IncomingLI = LIS->getOrCreateInterval(IncomingReg);
+ LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
if (!IncomingVNI)
IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
LIS->getVNInfoAllocator());
- IncomingLI.addRange(LiveRange(MBBStartIndex,
- DestCopyIndex.getRegSlot(),
- IncomingVNI));
+ IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
+ DestCopyIndex.getRegSlot(),
+ IncomingVNI));
}
LiveInterval &DestLI = LIS->getInterval(DestReg);
@@ -332,14 +332,14 @@ void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
// the copy instruction.
VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
assert(OrigDestVNI && "PHI destination should be live at block entry.");
- DestLI.removeRange(MBBStartIndex, MBBStartIndex.getDeadSlot());
+ DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
LIS->getVNInfoAllocator());
DestLI.removeValNo(OrigDestVNI);
} else {
// Otherwise, remove the region from the beginning of MBB to the copy
// instruction from DestReg's live interval.
- DestLI.removeRange(MBBStartIndex, DestCopyIndex.getRegSlot());
+ DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
assert(DestVNI && "PHI destination should be live at its definition.");
DestVNI->def = DestCopyIndex.getRegSlot();
@@ -460,7 +460,7 @@ void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
if (LIS) {
if (NewSrcInstr) {
LIS->InsertMachineInstrInMaps(NewSrcInstr);
- LIS->addLiveRangeToEndOfBlock(IncomingReg, NewSrcInstr);
+ LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr);
}
if (!SrcUndef &&
@@ -511,8 +511,8 @@ void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
"Cannot find kill instruction");
SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
- SrcLI.removeRange(LastUseIndex.getRegSlot(),
- LIS->getMBBEndIdx(&opBlock));
+ SrcLI.removeSegment(LastUseIndex.getRegSlot(),
+ LIS->getMBBEndIdx(&opBlock));
}
}
}
diff --git a/lib/CodeGen/PHIEliminationUtils.h b/lib/CodeGen/PHIEliminationUtils.h
index 9ac47fb..48234ae 100644
--- a/lib/CodeGen/PHIEliminationUtils.h
+++ b/lib/CodeGen/PHIEliminationUtils.h
@@ -1,4 +1,4 @@
-//=- PHIEliminationUtils.h - Helper functions for PHI elimination *- C++ -*--=//
+//=- PHIEliminationUtils.h - Helper functions for PHI elimination -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
diff --git a/lib/CodeGen/Passes.cpp b/lib/CodeGen/Passes.cpp
index c0861c5..f4ffd03 100644
--- a/lib/CodeGen/Passes.cpp
+++ b/lib/CodeGen/Passes.cpp
@@ -58,8 +58,6 @@ OptimizeRegAlloc("optimize-regalloc", cl::Hidden,
static cl::opt<cl::boolOrDefault>
EnableMachineSched("enable-misched", cl::Hidden,
cl::desc("Enable the machine instruction scheduling pass."));
-static cl::opt<bool> EnableStrongPHIElim("strong-phi-elim", cl::Hidden,
- cl::desc("Use strong PHI elimination."));
static cl::opt<bool> DisablePostRAMachineLICM("disable-postra-machine-licm",
cl::Hidden,
cl::desc("Disable Machine LICM"));
@@ -236,7 +234,7 @@ TargetPassConfig::TargetPassConfig(TargetMachine *tm, PassManagerBase &pm)
// Temporarily disable experimental passes.
const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
- if (!ST.enableMachineScheduler())
+ if (!ST.useMachineScheduler())
disablePass(&MachineSchedulerID);
}
@@ -675,24 +673,15 @@ void TargetPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
// preferably fix the scavenger to not depend on them).
addPass(&LiveVariablesID);
- // Add passes that move from transformed SSA into conventional SSA. This is a
- // "copy coalescing" problem.
- //
- if (!EnableStrongPHIElim) {
- // Edge splitting is smarter with machine loop info.
- addPass(&MachineLoopInfoID);
- addPass(&PHIEliminationID);
- }
+ // Edge splitting is smarter with machine loop info.
+ addPass(&MachineLoopInfoID);
+ addPass(&PHIEliminationID);
// Eventually, we want to run LiveIntervals before PHI elimination.
if (EarlyLiveIntervals)
addPass(&LiveIntervalsID);
addPass(&TwoAddressInstructionPassID);
-
- if (EnableStrongPHIElim)
- addPass(&StrongPHIEliminationID);
-
addPass(&RegisterCoalescerID);
// PreRA instruction scheduling.
diff --git a/lib/CodeGen/PeepholeOptimizer.cpp b/lib/CodeGen/PeepholeOptimizer.cpp
index a7439b5..28f2d2f 100644
--- a/lib/CodeGen/PeepholeOptimizer.cpp
+++ b/lib/CodeGen/PeepholeOptimizer.cpp
@@ -40,20 +40,30 @@
// If the branch instruction can use flag from "sub", then we can replace
// "sub" with "subs" and eliminate the "cmp" instruction.
//
-// - Optimize Bitcast pairs:
-//
-// v1 = bitcast v0
-// v2 = bitcast v1
-// = v2
-// =>
-// v1 = bitcast v0
-// = v0
-//
// - Optimize Loads:
//
// Loads that can be folded into a later instruction. A load is foldable
// if it loads to virtual registers and the virtual register defined has
// a single use.
+//
+// - Optimize Copies and Bitcast:
+//
+// Rewrite copies and bitcasts to avoid cross register bank copies
+// when possible.
+// E.g., Consider the following example, where capital and lower
+// letters denote different register file:
+// b = copy A <-- cross-bank copy
+// C = copy b <-- cross-bank copy
+// =>
+// b = copy A <-- cross-bank copy
+// C = copy A <-- same-bank copy
+//
+// E.g., for bitcast:
+// b = bitcast A <-- cross-bank copy
+// C = bitcast b <-- cross-bank copy
+// =>
+// b = bitcast A <-- cross-bank copy
+// C = copy A <-- same-bank copy
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "peephole-opt"
@@ -81,11 +91,11 @@ DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
cl::desc("Disable the peephole optimizer"));
STATISTIC(NumReuse, "Number of extension results reused");
-STATISTIC(NumBitcasts, "Number of bitcasts eliminated");
STATISTIC(NumCmps, "Number of compares eliminated");
STATISTIC(NumImmFold, "Number of move immediate folded");
STATISTIC(NumLoadFold, "Number of loads folded");
STATISTIC(NumSelects, "Number of selects optimized");
+STATISTIC(NumCopiesBitcasts, "Number of copies/bitcasts optimized");
namespace {
class PeepholeOptimizer : public MachineFunctionPass {
@@ -112,11 +122,11 @@ namespace {
}
private:
- bool optimizeBitcastInstr(MachineInstr *MI, MachineBasicBlock *MBB);
bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
SmallPtrSet<MachineInstr*, 8> &LocalMIs);
bool optimizeSelect(MachineInstr *MI);
+ bool optimizeCopyOrBitcast(MachineInstr *MI);
bool isMoveImmediate(MachineInstr *MI,
SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
@@ -298,78 +308,6 @@ optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
return Changed;
}
-/// optimizeBitcastInstr - If the instruction is a bitcast instruction A that
-/// cannot be optimized away during isel (e.g. ARM::VMOVSR, which bitcast
-/// a value cross register classes), and the source is defined by another
-/// bitcast instruction B. And if the register class of source of B matches
-/// the register class of instruction A, then it is legal to replace all uses
-/// of the def of A with source of B. e.g.
-/// %vreg0<def> = VMOVSR %vreg1
-/// %vreg3<def> = VMOVRS %vreg0
-/// Replace all uses of vreg3 with vreg1.
-
-bool PeepholeOptimizer::optimizeBitcastInstr(MachineInstr *MI,
- MachineBasicBlock *MBB) {
- unsigned NumDefs = MI->getDesc().getNumDefs();
- unsigned NumSrcs = MI->getDesc().getNumOperands() - NumDefs;
- if (NumDefs != 1)
- return false;
-
- unsigned Def = 0;
- unsigned Src = 0;
- for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg())
- continue;
- unsigned Reg = MO.getReg();
- if (!Reg)
- continue;
- if (MO.isDef())
- Def = Reg;
- else if (Src)
- // Multiple sources?
- return false;
- else
- Src = Reg;
- }
-
- assert(Def && Src && "Malformed bitcast instruction!");
-
- MachineInstr *DefMI = MRI->getVRegDef(Src);
- if (!DefMI || !DefMI->isBitcast())
- return false;
-
- unsigned SrcSrc = 0;
- NumDefs = DefMI->getDesc().getNumDefs();
- NumSrcs = DefMI->getDesc().getNumOperands() - NumDefs;
- if (NumDefs != 1)
- return false;
- for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
- const MachineOperand &MO = DefMI->getOperand(i);
- if (!MO.isReg() || MO.isDef())
- continue;
- unsigned Reg = MO.getReg();
- if (!Reg)
- continue;
- if (!MO.isDef()) {
- if (SrcSrc)
- // Multiple sources?
- return false;
- else
- SrcSrc = Reg;
- }
- }
-
- if (MRI->getRegClass(SrcSrc) != MRI->getRegClass(Def))
- return false;
-
- MRI->replaceRegWith(Def, SrcSrc);
- MRI->clearKillFlags(SrcSrc);
- MI->eraseFromParent();
- ++NumBitcasts;
- return true;
-}
-
/// optimizeCmpInstr - If the instruction is a compare and the previous
/// instruction it's comparing against all ready sets (or could be modified to
/// set) the same flag as the compare, then we can remove the comparison and use
@@ -411,6 +349,150 @@ bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI) {
return true;
}
+/// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
+/// share the same register file.
+static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
+ const TargetRegisterClass *DefRC,
+ unsigned DefSubReg,
+ const TargetRegisterClass *SrcRC,
+ unsigned SrcSubReg) {
+ // Same register class.
+ if (DefRC == SrcRC)
+ return true;
+
+ // Both operands are sub registers. Check if they share a register class.
+ unsigned SrcIdx, DefIdx;
+ if (SrcSubReg && DefSubReg)
+ return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
+ SrcIdx, DefIdx) != NULL;
+ // At most one of the register is a sub register, make it Src to avoid
+ // duplicating the test.
+ if (!SrcSubReg) {
+ std::swap(DefSubReg, SrcSubReg);
+ std::swap(DefRC, SrcRC);
+ }
+
+ // One of the register is a sub register, check if we can get a superclass.
+ if (SrcSubReg)
+ return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != NULL;
+ // Plain copy.
+ return TRI.getCommonSubClass(DefRC, SrcRC) != NULL;
+}
+
+/// \brief Get the index of the definition and source for \p Copy
+/// instruction.
+/// \pre Copy.isCopy() or Copy.isBitcast().
+/// \return True if the Copy instruction has only one register source
+/// and one register definition. Otherwise, \p DefIdx and \p SrcIdx
+/// are invalid.
+static bool getCopyOrBitcastDefUseIdx(const MachineInstr &Copy,
+ unsigned &DefIdx, unsigned &SrcIdx) {
+ assert((Copy.isCopy() || Copy.isBitcast()) && "Wrong operation type.");
+ if (Copy.isCopy()) {
+ // Copy instruction are supposed to be: Def = Src.
+ if (Copy.getDesc().getNumOperands() != 2)
+ return false;
+ DefIdx = 0;
+ SrcIdx = 1;
+ assert(Copy.getOperand(DefIdx).isDef() && "Use comes before def!");
+ return true;
+ }
+ // Bitcast case.
+ // Bitcasts with more than one def are not supported.
+ if (Copy.getDesc().getNumDefs() != 1)
+ return false;
+ // Initialize SrcIdx to an undefined operand.
+ SrcIdx = Copy.getDesc().getNumOperands();
+ for (unsigned OpIdx = 0, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; ++OpIdx) {
+ const MachineOperand &MO = Copy.getOperand(OpIdx);
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ if (MO.isDef())
+ DefIdx = OpIdx;
+ else if (SrcIdx != EndOpIdx)
+ // Multiple sources?
+ return false;
+ SrcIdx = OpIdx;
+ }
+ return true;
+}
+
+/// \brief Optimize a copy or bitcast instruction to avoid cross
+/// register bank copy. The optimization looks through a chain of
+/// copies and try to find a source that has a compatible register
+/// class.
+/// Two register classes are considered to be compatible if they share
+/// the same register bank.
+/// New copies issued by this optimization are register allocator
+/// friendly. This optimization does not remove any copy as it may
+/// overconstraint the register allocator, but replaces some when
+/// possible.
+/// \pre \p MI is a Copy (MI->isCopy() is true)
+/// \return True, when \p MI has been optimized. In that case, \p MI has
+/// been removed from its parent.
+bool PeepholeOptimizer::optimizeCopyOrBitcast(MachineInstr *MI) {
+ unsigned DefIdx, SrcIdx;
+ if (!MI || !getCopyOrBitcastDefUseIdx(*MI, DefIdx, SrcIdx))
+ return false;
+
+ const MachineOperand &MODef = MI->getOperand(DefIdx);
+ assert(MODef.isReg() && "Copies must be between registers.");
+ unsigned Def = MODef.getReg();
+
+ if (TargetRegisterInfo::isPhysicalRegister(Def))
+ return false;
+
+ const TargetRegisterClass *DefRC = MRI->getRegClass(Def);
+ unsigned DefSubReg = MODef.getSubReg();
+
+ unsigned Src;
+ unsigned SrcSubReg;
+ bool ShouldRewrite = false;
+ MachineInstr *Copy = MI;
+ const TargetRegisterInfo &TRI = *TM->getRegisterInfo();
+
+ // Follow the chain of copies until we reach the top or find a
+ // more suitable source.
+ do {
+ unsigned CopyDefIdx, CopySrcIdx;
+ if (!getCopyOrBitcastDefUseIdx(*Copy, CopyDefIdx, CopySrcIdx))
+ break;
+ const MachineOperand &MO = Copy->getOperand(CopySrcIdx);
+ assert(MO.isReg() && "Copies must be between registers.");
+ Src = MO.getReg();
+
+ if (TargetRegisterInfo::isPhysicalRegister(Src))
+ break;
+
+ const TargetRegisterClass *SrcRC = MRI->getRegClass(Src);
+ SrcSubReg = MO.getSubReg();
+
+ // If this source does not incur a cross register bank copy, use it.
+ ShouldRewrite = shareSameRegisterFile(TRI, DefRC, DefSubReg, SrcRC,
+ SrcSubReg);
+ // Follow the chain of copies: get the definition of Src.
+ Copy = MRI->getVRegDef(Src);
+ } while (!ShouldRewrite && Copy && (Copy->isCopy() || Copy->isBitcast()));
+
+ // If we did not find a more suitable source, there is nothing to optimize.
+ if (!ShouldRewrite || Src == MI->getOperand(SrcIdx).getReg())
+ return false;
+
+ // Rewrite the copy to avoid a cross register bank penalty.
+ unsigned NewVR = TargetRegisterInfo::isPhysicalRegister(Def) ? Def :
+ MRI->createVirtualRegister(DefRC);
+ MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), NewVR)
+ .addReg(Src, 0, SrcSubReg);
+ NewCopy->getOperand(0).setSubReg(DefSubReg);
+
+ MRI->replaceRegWith(Def, NewVR);
+ MRI->clearKillFlags(NewVR);
+ MI->eraseFromParent();
+ ++NumCopiesBitcasts;
+ return true;
+}
+
/// isLoadFoldable - Check whether MI is a candidate for folding into a later
/// instruction. We only fold loads to virtual registers and the virtual
/// register defined has a single use.
@@ -523,7 +605,7 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
if (MI->mayStore() || MI->isCall())
FoldAsLoadDefReg = 0;
- if ((MI->isBitcast() && optimizeBitcastInstr(MI, MBB)) ||
+ if (((MI->isBitcast() || MI->isCopy()) && optimizeCopyOrBitcast(MI)) ||
(MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
(MI->isSelect() && optimizeSelect(MI))) {
// MI is deleted.
diff --git a/lib/CodeGen/PostRASchedulerList.cpp b/lib/CodeGen/PostRASchedulerList.cpp
index 27f5676..1afc1ec 100644
--- a/lib/CodeGen/PostRASchedulerList.cpp
+++ b/lib/CodeGen/PostRASchedulerList.cpp
@@ -127,6 +127,12 @@ namespace {
/// The schedule. Null SUnit*'s represent noop instructions.
std::vector<SUnit*> Sequence;
+ /// The index in BB of RegionEnd.
+ ///
+ /// This is the instruction number from the top of the current block, not
+ /// the SlotIndex. It is only used by the AntiDepBreaker.
+ unsigned EndIndex;
+
public:
SchedulePostRATDList(
MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
@@ -141,11 +147,14 @@ namespace {
///
void startBlock(MachineBasicBlock *BB);
+ // Set the index of RegionEnd within the current BB.
+ void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
+
/// Initialize the scheduler state for the next scheduling region.
virtual void enterRegion(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
- unsigned endcount);
+ unsigned regioninstrs);
/// Notify that the scheduler has finished scheduling the current region.
virtual void exitRegion();
@@ -197,7 +206,7 @@ SchedulePostRATDList::SchedulePostRATDList(
TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
: ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), AA(AA),
- LiveRegs(TRI->getNumRegs())
+ LiveRegs(TRI->getNumRegs()), EndIndex(0)
{
const TargetMachine &TM = MF.getTarget();
const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
@@ -223,8 +232,8 @@ SchedulePostRATDList::~SchedulePostRATDList() {
void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
- unsigned endcount) {
- ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
+ unsigned regioninstrs) {
+ ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
Sequence.clear();
}
@@ -312,20 +321,21 @@ bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
unsigned Count = MBB->size(), CurrentCount = Count;
for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
MachineInstr *MI = llvm::prior(I);
+ --Count;
// Calls are not scheduling boundaries before register allocation, but
// post-ra we don't gain anything by scheduling across calls since we
// don't need to worry about register pressure.
if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
- Scheduler.enterRegion(MBB, I, Current, CurrentCount);
+ Scheduler.enterRegion(MBB, I, Current, CurrentCount - Count);
+ Scheduler.setEndIndex(CurrentCount);
Scheduler.schedule();
Scheduler.exitRegion();
Scheduler.EmitSchedule();
Current = MI;
- CurrentCount = Count - 1;
+ CurrentCount = Count;
Scheduler.Observe(MI, CurrentCount);
}
I = MI;
- --Count;
if (MI->isBundle())
Count -= MI->getBundleSize();
}
@@ -333,6 +343,7 @@ bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
assert((MBB->begin() == Current || CurrentCount != 0) &&
"Instruction count mismatch!");
Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
+ Scheduler.setEndIndex(CurrentCount);
Scheduler.schedule();
Scheduler.exitRegion();
Scheduler.EmitSchedule();
@@ -504,11 +515,11 @@ void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
// Examine all used registers and set/clear kill flag. When a
// register is used multiple times we only set the kill flag on
- // the first use.
+ // the first use. Don't set kill flags on undef operands.
killedRegs.reset();
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || !MO.isUse()) continue;
+ if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
unsigned Reg = MO.getReg();
if ((Reg == 0) || MRI.isReserved(Reg)) continue;
diff --git a/lib/CodeGen/ProcessImplicitDefs.cpp b/lib/CodeGen/ProcessImplicitDefs.cpp
index e4e18c3..0c5173a 100644
--- a/lib/CodeGen/ProcessImplicitDefs.cpp
+++ b/lib/CodeGen/ProcessImplicitDefs.cpp
@@ -78,7 +78,7 @@ void ProcessImplicitDefs::processImplicitDef(MachineInstr *MI) {
unsigned Reg = MI->getOperand(0).getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
- // For virtual regiusters, mark all uses as <undef>, and convert users to
+ // For virtual registers, mark all uses as <undef>, and convert users to
// implicit-def when possible.
for (MachineRegisterInfo::use_nodbg_iterator UI =
MRI->use_nodbg_begin(Reg),
diff --git a/lib/CodeGen/PrologEpilogInserter.cpp b/lib/CodeGen/PrologEpilogInserter.cpp
index 1965188..b0e494f 100644
--- a/lib/CodeGen/PrologEpilogInserter.cpp
+++ b/lib/CodeGen/PrologEpilogInserter.cpp
@@ -14,9 +14,6 @@
// This pass must be run after register allocation. After this pass is
// executed, it is illegal to construct MO_FrameIndex operands.
//
-// This pass provides an optional shrink wrapping variant of prolog/epilog
-// insertion, enabled via --shrink-wrap. See ShrinkWrapping.cpp.
-//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pei"
@@ -66,6 +63,38 @@ STATISTIC(NumScavengedRegs, "Number of frame index regs scavenged");
STATISTIC(NumBytesStackSpace,
"Number of bytes used for stack in all functions");
+void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addRequired<TargetPassConfig>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool PEI::isReturnBlock(MachineBasicBlock* MBB) {
+ return (MBB && !MBB->empty() && MBB->back().isReturn());
+}
+
+/// Compute the set of return blocks
+void PEI::calculateSets(MachineFunction &Fn) {
+ // Sets used to compute spill, restore placement sets.
+ const std::vector<CalleeSavedInfo> &CSI =
+ Fn.getFrameInfo()->getCalleeSavedInfo();
+
+ // If no CSRs used, we are done.
+ if (CSI.empty())
+ return;
+
+ // Save refs to entry and return blocks.
+ EntryBlock = Fn.begin();
+ for (MachineFunction::iterator MBB = Fn.begin(), E = Fn.end();
+ MBB != E; ++MBB)
+ if (isReturnBlock(MBB))
+ ReturnBlocks.push_back(MBB);
+
+ return;
+}
+
/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
///
@@ -93,16 +122,11 @@ bool PEI::runOnMachineFunction(MachineFunction &Fn) {
calculateCalleeSavedRegisters(Fn);
// Determine placement of CSR spill/restore code:
- // - With shrink wrapping, place spills and restores to tightly
- // enclose regions in the Machine CFG of the function where
- // they are used.
- // - Without shink wrapping (default), place all spills in the
- // entry block, all restores in return blocks.
- placeCSRSpillsAndRestores(Fn);
+ // place all spills in the entry block, all restores in return blocks.
+ calculateSets(Fn);
// Add the code to save and restore the callee saved registers
- if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::Naked))
+ if (!F->hasFnAttribute(Attribute::Naked))
insertCSRSpillsAndRestores(Fn);
// Allow the target machine to make final modifications to the function
@@ -117,8 +141,7 @@ bool PEI::runOnMachineFunction(MachineFunction &Fn) {
// called functions. Because of this, calculateCalleeSavedRegisters()
// must be called before this function in order to set the AdjustsStack
// and MaxCallFrameSize variables.
- if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::Naked))
+ if (!F->hasFnAttribute(Attribute::Naked))
insertPrologEpilogCode(Fn);
// Replace all MO_FrameIndex operands with physical register references
@@ -143,7 +166,7 @@ bool PEI::runOnMachineFunction(MachineFunction &Fn) {
<< ") in " << Fn.getName() << ".\n";
delete RS;
- clearAllSets();
+ ReturnBlocks.clear();
return true;
}
@@ -221,8 +244,7 @@ void PEI::calculateCalleeSavedRegisters(MachineFunction &F) {
return;
// In Naked functions we aren't going to save any registers.
- if (F.getFunction()->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::Naked))
+ if (F.getFunction()->hasFnAttribute(Attribute::Naked))
return;
std::vector<CalleeSavedInfo> CSI;
@@ -286,7 +308,7 @@ void PEI::calculateCalleeSavedRegisters(MachineFunction &F) {
}
/// insertCSRSpillsAndRestores - Insert spill and restore code for
-/// callee saved registers used in the function, handling shrink wrapping.
+/// callee saved registers used in the function.
///
void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) {
// Get callee saved register information.
@@ -304,133 +326,33 @@ void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) {
const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
MachineBasicBlock::iterator I;
- if (!ShrinkWrapThisFunction) {
- // Spill using target interface.
- I = EntryBlock->begin();
- if (!TFI->spillCalleeSavedRegisters(*EntryBlock, I, CSI, TRI)) {
- for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
- // Add the callee-saved register as live-in.
- // It's killed at the spill.
- EntryBlock->addLiveIn(CSI[i].getReg());
-
- // Insert the spill to the stack frame.
- unsigned Reg = CSI[i].getReg();
- const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
- TII.storeRegToStackSlot(*EntryBlock, I, Reg, true,
- CSI[i].getFrameIdx(), RC, TRI);
- }
- }
-
- // Restore using target interface.
- for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri) {
- MachineBasicBlock* MBB = ReturnBlocks[ri];
- I = MBB->end(); --I;
-
- // Skip over all terminator instructions, which are part of the return
- // sequence.
- MachineBasicBlock::iterator I2 = I;
- while (I2 != MBB->begin() && (--I2)->isTerminator())
- I = I2;
-
- bool AtStart = I == MBB->begin();
- MachineBasicBlock::iterator BeforeI = I;
- if (!AtStart)
- --BeforeI;
-
- // Restore all registers immediately before the return and any
- // terminators that precede it.
- if (!TFI->restoreCalleeSavedRegisters(*MBB, I, CSI, TRI)) {
- for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
- unsigned Reg = CSI[i].getReg();
- const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
- TII.loadRegFromStackSlot(*MBB, I, Reg,
- CSI[i].getFrameIdx(),
- RC, TRI);
- assert(I != MBB->begin() &&
- "loadRegFromStackSlot didn't insert any code!");
- // Insert in reverse order. loadRegFromStackSlot can insert
- // multiple instructions.
- if (AtStart)
- I = MBB->begin();
- else {
- I = BeforeI;
- ++I;
- }
- }
- }
- }
- return;
- }
-
- // Insert spills.
- std::vector<CalleeSavedInfo> blockCSI;
- for (CSRegBlockMap::iterator BI = CSRSave.begin(),
- BE = CSRSave.end(); BI != BE; ++BI) {
- MachineBasicBlock* MBB = BI->first;
- CSRegSet save = BI->second;
-
- if (save.empty())
- continue;
-
- blockCSI.clear();
- for (CSRegSet::iterator RI = save.begin(),
- RE = save.end(); RI != RE; ++RI) {
- blockCSI.push_back(CSI[*RI]);
- }
- assert(blockCSI.size() > 0 &&
- "Could not collect callee saved register info");
-
- I = MBB->begin();
-
- // When shrink wrapping, use stack slot stores/loads.
- for (unsigned i = 0, e = blockCSI.size(); i != e; ++i) {
+ // Spill using target interface.
+ I = EntryBlock->begin();
+ if (!TFI->spillCalleeSavedRegisters(*EntryBlock, I, CSI, TRI)) {
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
// Add the callee-saved register as live-in.
// It's killed at the spill.
- MBB->addLiveIn(blockCSI[i].getReg());
+ EntryBlock->addLiveIn(CSI[i].getReg());
// Insert the spill to the stack frame.
- unsigned Reg = blockCSI[i].getReg();
+ unsigned Reg = CSI[i].getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
- TII.storeRegToStackSlot(*MBB, I, Reg,
- true,
- blockCSI[i].getFrameIdx(),
+ TII.storeRegToStackSlot(*EntryBlock, I, Reg, true, CSI[i].getFrameIdx(),
RC, TRI);
}
}
- for (CSRegBlockMap::iterator BI = CSRRestore.begin(),
- BE = CSRRestore.end(); BI != BE; ++BI) {
- MachineBasicBlock* MBB = BI->first;
- CSRegSet restore = BI->second;
-
- if (restore.empty())
- continue;
+ // Restore using target interface.
+ for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri) {
+ MachineBasicBlock *MBB = ReturnBlocks[ri];
+ I = MBB->end();
+ --I;
- blockCSI.clear();
- for (CSRegSet::iterator RI = restore.begin(),
- RE = restore.end(); RI != RE; ++RI) {
- blockCSI.push_back(CSI[*RI]);
- }
- assert(blockCSI.size() > 0 &&
- "Could not find callee saved register info");
-
- // If MBB is empty and needs restores, insert at the _beginning_.
- if (MBB->empty()) {
- I = MBB->begin();
- } else {
- I = MBB->end();
- --I;
-
- // Skip over all terminator instructions, which are part of the
- // return sequence.
- if (! I->isTerminator()) {
- ++I;
- } else {
- MachineBasicBlock::iterator I2 = I;
- while (I2 != MBB->begin() && (--I2)->isTerminator())
- I = I2;
- }
- }
+ // Skip over all terminator instructions, which are part of the return
+ // sequence.
+ MachineBasicBlock::iterator I2 = I;
+ while (I2 != MBB->begin() && (--I2)->isTerminator())
+ I = I2;
bool AtStart = I == MBB->begin();
MachineBasicBlock::iterator BeforeI = I;
@@ -439,21 +361,21 @@ void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) {
// Restore all registers immediately before the return and any
// terminators that precede it.
- for (unsigned i = 0, e = blockCSI.size(); i != e; ++i) {
- unsigned Reg = blockCSI[i].getReg();
- const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
- TII.loadRegFromStackSlot(*MBB, I, Reg,
- blockCSI[i].getFrameIdx(),
- RC, TRI);
- assert(I != MBB->begin() &&
- "loadRegFromStackSlot didn't insert any code!");
- // Insert in reverse order. loadRegFromStackSlot can insert
- // multiple instructions.
- if (AtStart)
- I = MBB->begin();
- else {
- I = BeforeI;
- ++I;
+ if (!TFI->restoreCalleeSavedRegisters(*MBB, I, CSI, TRI)) {
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+ TII.loadRegFromStackSlot(*MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI);
+ assert(I != MBB->begin() &&
+ "loadRegFromStackSlot didn't insert any code!");
+ // Insert in reverse order. loadRegFromStackSlot can insert
+ // multiple instructions.
+ if (AtStart)
+ I = MBB->begin();
+ else {
+ I = BeforeI;
+ ++I;
+ }
}
}
}
diff --git a/lib/CodeGen/PrologEpilogInserter.h b/lib/CodeGen/PrologEpilogInserter.h
index 50f4daf..77cfa2b 100644
--- a/lib/CodeGen/PrologEpilogInserter.h
+++ b/lib/CodeGen/PrologEpilogInserter.h
@@ -14,9 +14,6 @@
// This pass must be run after register allocation. After this pass is
// executed, it is illegal to construct MO_FrameIndex operands.
//
-// This pass also implements a shrink wrapping variant of prolog/epilog
-// insertion.
-//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PEI_H
@@ -54,74 +51,16 @@ namespace llvm {
// stack frame indexes.
unsigned MinCSFrameIndex, MaxCSFrameIndex;
- // Analysis info for spill/restore placement.
- // "CSR": "callee saved register".
-
- // CSRegSet contains indices into the Callee Saved Register Info
- // vector built by calculateCalleeSavedRegisters() and accessed
- // via MF.getFrameInfo()->getCalleeSavedInfo().
- typedef SparseBitVector<> CSRegSet;
-
- // CSRegBlockMap maps MachineBasicBlocks to sets of callee
- // saved register indices.
- typedef DenseMap<MachineBasicBlock*, CSRegSet> CSRegBlockMap;
-
- // Set and maps for computing CSR spill/restore placement:
- // used in function (UsedCSRegs)
- // used in a basic block (CSRUsed)
- // anticipatable in a basic block (Antic{In,Out})
- // available in a basic block (Avail{In,Out})
- // to be spilled at the entry to a basic block (CSRSave)
- // to be restored at the end of a basic block (CSRRestore)
- CSRegSet UsedCSRegs;
- CSRegBlockMap CSRUsed;
- CSRegBlockMap AnticIn, AnticOut;
- CSRegBlockMap AvailIn, AvailOut;
- CSRegBlockMap CSRSave;
- CSRegBlockMap CSRRestore;
-
// Entry and return blocks of the current function.
MachineBasicBlock* EntryBlock;
SmallVector<MachineBasicBlock*, 4> ReturnBlocks;
- // Map of MBBs to top level MachineLoops.
- DenseMap<MachineBasicBlock*, MachineLoop*> TLLoops;
-
- // Flag to control shrink wrapping per-function:
- // may choose to skip shrink wrapping for certain
- // functions.
- bool ShrinkWrapThisFunction;
-
// Flag to control whether to use the register scavenger to resolve
// frame index materialization registers. Set according to
// TRI->requiresFrameIndexScavenging() for the curren function.
bool FrameIndexVirtualScavenging;
-#ifndef NDEBUG
- // Machine function handle.
- MachineFunction* MF;
-
- // Flag indicating that the current function
- // has at least one "short" path in the machine
- // CFG from the entry block to an exit block.
- bool HasFastExitPath;
-#endif
-
- bool calculateSets(MachineFunction &Fn);
- bool calcAnticInOut(MachineBasicBlock* MBB);
- bool calcAvailInOut(MachineBasicBlock* MBB);
- void calculateAnticAvail(MachineFunction &Fn);
- bool addUsesForMEMERegion(MachineBasicBlock* MBB,
- SmallVectorImpl<MachineBasicBlock *> &blks);
- bool addUsesForTopLevelLoops(SmallVectorImpl<MachineBasicBlock *> &blks);
- bool calcSpillPlacements(MachineBasicBlock* MBB,
- SmallVectorImpl<MachineBasicBlock *> &blks,
- CSRegBlockMap &prevSpills);
- bool calcRestorePlacements(MachineBasicBlock* MBB,
- SmallVectorImpl<MachineBasicBlock *> &blks,
- CSRegBlockMap &prevRestores);
- void placeSpillsAndRestores(MachineFunction &Fn);
- void placeCSRSpillsAndRestores(MachineFunction &Fn);
+ void calculateSets(MachineFunction &Fn);
void calculateCallsInformation(MachineFunction &Fn);
void calculateCalleeSavedRegisters(MachineFunction &Fn);
void insertCSRSpillsAndRestores(MachineFunction &Fn);
@@ -132,44 +71,8 @@ namespace llvm {
void scavengeFrameVirtualRegs(MachineFunction &Fn);
void insertPrologEpilogCode(MachineFunction &Fn);
- // Initialize DFA sets, called before iterations.
- void clearAnticAvailSets();
- // Clear all sets constructed by shrink wrapping.
- void clearAllSets();
-
- // Initialize all shrink wrapping data.
- void initShrinkWrappingInfo();
-
- // Convienences for dealing with machine loops.
- MachineBasicBlock* getTopLevelLoopPreheader(MachineLoop* LP);
- MachineLoop* getTopLevelLoopParent(MachineLoop *LP);
-
- // Propgate CSRs used in MBB to all MBBs of loop LP.
- void propagateUsesAroundLoop(MachineBasicBlock* MBB, MachineLoop* LP);
-
// Convenience for recognizing return blocks.
bool isReturnBlock(MachineBasicBlock* MBB);
-
-#ifndef NDEBUG
- // Debugging methods.
-
- // Mark this function as having fast exit paths.
- void findFastExitPath();
-
- // Verify placement of spills/restores.
- void verifySpillRestorePlacement();
-
- std::string getBasicBlockName(const MachineBasicBlock* MBB);
- std::string stringifyCSRegSet(const CSRegSet& s);
- void dumpSet(const CSRegSet& s);
- void dumpUsed(MachineBasicBlock* MBB);
- void dumpAllUsed();
- void dumpSets(MachineBasicBlock* MBB);
- void dumpSets1(MachineBasicBlock* MBB);
- void dumpAllSets();
- void dumpSRSets();
-#endif
-
};
} // End llvm namespace
#endif
diff --git a/lib/CodeGen/RegAllocBase.cpp b/lib/CodeGen/RegAllocBase.cpp
index df3e12a..293e306 100644
--- a/lib/CodeGen/RegAllocBase.cpp
+++ b/lib/CodeGen/RegAllocBase.cpp
@@ -50,6 +50,9 @@ bool RegAllocBase::VerifyEnabled = false;
// RegAllocBase Implementation
//===----------------------------------------------------------------------===//
+// Pin the vtable to this file.
+void RegAllocBase::anchor() {}
+
void RegAllocBase::init(VirtRegMap &vrm,
LiveIntervals &lis,
LiveRegMatrix &mat) {
@@ -99,14 +102,13 @@ void RegAllocBase::allocatePhysRegs() {
// result from splitting.
DEBUG(dbgs() << "\nselectOrSplit "
<< MRI->getRegClass(VirtReg->reg)->getName()
- << ':' << PrintReg(VirtReg->reg) << ' ' << *VirtReg << '\n');
- typedef SmallVector<LiveInterval*, 4> VirtRegVec;
+ << ':' << *VirtReg << '\n');
+ typedef SmallVector<unsigned, 4> VirtRegVec;
VirtRegVec SplitVRegs;
unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs);
if (AvailablePhysReg == ~0u) {
// selectOrSplit failed to find a register!
- const char *Msg = "ran out of registers during register allocation";
// Probably caused by an inline asm.
MachineInstr *MI;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg);
@@ -114,9 +116,9 @@ void RegAllocBase::allocatePhysRegs() {
if (MI->isInlineAsm())
break;
if (MI)
- MI->emitError(Msg);
+ MI->emitError("inline assembly requires more registers than available");
else
- report_fatal_error(Msg);
+ report_fatal_error("ran out of registers during register allocation");
// Keep going after reporting the error.
VRM->assignVirt2Phys(VirtReg->reg,
RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front());
@@ -128,7 +130,7 @@ void RegAllocBase::allocatePhysRegs() {
for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
I != E; ++I) {
- LiveInterval *SplitVirtReg = *I;
+ LiveInterval *SplitVirtReg = &LIS->getInterval(*I);
assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned");
if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) {
DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg << '\n');
diff --git a/lib/CodeGen/RegAllocBase.h b/lib/CodeGen/RegAllocBase.h
index ccaabba..c17a8d9 100644
--- a/lib/CodeGen/RegAllocBase.h
+++ b/lib/CodeGen/RegAllocBase.h
@@ -38,7 +38,7 @@
#define LLVM_CODEGEN_REGALLOCBASE
#include "llvm/ADT/OwningPtr.h"
-#include "llvm/CodeGen/LiveIntervalUnion.h"
+#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
namespace llvm {
@@ -57,6 +57,7 @@ class Spiller;
/// live range splitting. They must also override enqueue/dequeue to provide an
/// assignment order.
class RegAllocBase {
+ virtual void anchor();
protected:
const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI;
@@ -90,7 +91,7 @@ protected:
// or new set of split live virtual registers. It is up to the splitter to
// converge quickly toward fully spilled live ranges.
virtual unsigned selectOrSplit(LiveInterval &VirtReg,
- SmallVectorImpl<LiveInterval*> &splitLVRs) = 0;
+ SmallVectorImpl<unsigned> &splitLVRs) = 0;
// Use this group name for NamedRegionTimer.
static const char TimerGroupName[];
diff --git a/lib/CodeGen/RegAllocBasic.cpp b/lib/CodeGen/RegAllocBasic.cpp
index d6a7d6f..6768e45 100644
--- a/lib/CodeGen/RegAllocBasic.cpp
+++ b/lib/CodeGen/RegAllocBasic.cpp
@@ -102,7 +102,7 @@ public:
}
virtual unsigned selectOrSplit(LiveInterval &VirtReg,
- SmallVectorImpl<LiveInterval*> &SplitVRegs);
+ SmallVectorImpl<unsigned> &SplitVRegs);
/// Perform register allocation.
virtual bool runOnMachineFunction(MachineFunction &mf);
@@ -111,7 +111,7 @@ public:
// that interfere with the most recently queried lvr. Return true if spilling
// was successful, and append any new spilled/split intervals to splitLVRs.
bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
- SmallVectorImpl<LiveInterval*> &SplitVRegs);
+ SmallVectorImpl<unsigned> &SplitVRegs);
static char ID;
};
@@ -126,7 +126,6 @@ RABasic::RABasic(): MachineFunctionPass(ID) {
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
- initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
@@ -143,7 +142,6 @@ void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveDebugVariables>();
AU.addPreserved<LiveDebugVariables>();
- AU.addRequired<CalculateSpillWeights>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequired<MachineBlockFrequencyInfo>();
@@ -168,7 +166,7 @@ void RABasic::releaseMemory() {
// that interfere with VirtReg. The newly spilled or split live intervals are
// returned by appending them to SplitVRegs.
bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
- SmallVectorImpl<LiveInterval*> &SplitVRegs) {
+ SmallVectorImpl<unsigned> &SplitVRegs) {
// Record each interference and determine if all are spillable before mutating
// either the union or live intervals.
SmallVector<LiveInterval*, 8> Intfs;
@@ -222,7 +220,7 @@ bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
// minimal, there is no value in caching them outside the scope of
// selectOrSplit().
unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
- SmallVectorImpl<LiveInterval*> &SplitVRegs) {
+ SmallVectorImpl<unsigned> &SplitVRegs) {
// Populate a list of physical register spill candidates.
SmallVector<unsigned, 8> PhysRegSpillCands;
@@ -279,6 +277,11 @@ bool RABasic::runOnMachineFunction(MachineFunction &mf) {
RegAllocBase::init(getAnalysis<VirtRegMap>(),
getAnalysis<LiveIntervals>(),
getAnalysis<LiveRegMatrix>());
+
+ calculateSpillWeightsAndHints(*LIS, *MF,
+ getAnalysis<MachineLoopInfo>(),
+ getAnalysis<MachineBlockFrequencyInfo>());
+
SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
allocatePhysRegs();
diff --git a/lib/CodeGen/RegAllocFast.cpp b/lib/CodeGen/RegAllocFast.cpp
index 6617e50..e92dbd2 100644
--- a/lib/CodeGen/RegAllocFast.cpp
+++ b/lib/CodeGen/RegAllocFast.cpp
@@ -144,7 +144,7 @@ namespace {
// not be erased.
bool isBulkSpilling;
- enum {
+ enum LLVM_ENUM_INT_TYPE(unsigned) {
spillClean = 1,
spillDirty = 100,
spillImpossible = ~0u
@@ -298,7 +298,7 @@ void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
MachineInstr *DBG = LRIDbgValues[li];
const MDNode *MDPtr = DBG->getOperand(2).getMetadata();
- bool IsIndirect = DBG->getOperand(1).isImm(); // Register-indirect value?
+ bool IsIndirect = DBG->isIndirectDebugValue();
uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0;
DebugLoc DL;
if (MI == MBB->end()) {
@@ -569,7 +569,10 @@ RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
}
// Nothing we can do. Report an error and keep going with a bad allocation.
- MI->emitError("ran out of registers during register allocation");
+ if (MI->isInlineAsm())
+ MI->emitError("inline assembly requires more registers than available");
+ else
+ MI->emitError("ran out of registers during register allocation");
definePhysReg(MI, *AO.begin(), regFree);
return assignVirtToPhysReg(VirtReg, *AO.begin());
}
@@ -856,7 +859,7 @@ void RAFast::AllocateBasicBlock() {
}
else {
// Modify DBG_VALUE now that the value is in a spill slot.
- bool IsIndirect = MI->getOperand(1).isImm();
+ bool IsIndirect = MI->isIndirectDebugValue();
uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
const MDNode *MDPtr =
MI->getOperand(MI->getNumOperands()-1).getMetadata();
diff --git a/lib/CodeGen/RegAllocGreedy.cpp b/lib/CodeGen/RegAllocGreedy.cpp
index f9e363b..c08d955 100644
--- a/lib/CodeGen/RegAllocGreedy.cpp
+++ b/lib/CodeGen/RegAllocGreedy.cpp
@@ -120,7 +120,9 @@ class RAGreedy : public MachineFunctionPass,
RS_Done
};
+#ifndef NDEBUG
static const char *const StageName[];
+#endif
// RegInfo - Keep additional information about each live range.
struct RegInfo {
@@ -147,7 +149,7 @@ class RAGreedy : public MachineFunctionPass,
void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
ExtraRegInfo.resize(MRI->getNumVirtRegs());
for (;Begin != End; ++Begin) {
- unsigned Reg = (*Begin)->reg;
+ unsigned Reg = *Begin;
if (ExtraRegInfo[Reg].Stage == RS_New)
ExtraRegInfo[Reg].Stage = NewStage;
}
@@ -220,7 +222,7 @@ class RAGreedy : public MachineFunctionPass,
/// class.
SmallVector<GlobalSplitCandidate, 32> GlobalCand;
- enum { NoCand = ~0u };
+ enum LLVM_ENUM_INT_TYPE(unsigned) { NoCand = ~0u };
/// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
/// NoCand which indicates the stack interval.
@@ -241,7 +243,7 @@ public:
virtual void enqueue(LiveInterval *LI);
virtual LiveInterval *dequeue();
virtual unsigned selectOrSplit(LiveInterval&,
- SmallVectorImpl<LiveInterval*>&);
+ SmallVectorImpl<unsigned>&);
/// Perform register allocation.
virtual bool runOnMachineFunction(MachineFunction &mf);
@@ -265,22 +267,22 @@ private:
bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
void evictInterference(LiveInterval&, unsigned,
- SmallVectorImpl<LiveInterval*>&);
+ SmallVectorImpl<unsigned>&);
unsigned tryAssign(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<LiveInterval*>&);
+ SmallVectorImpl<unsigned>&);
unsigned tryEvict(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
+ SmallVectorImpl<unsigned>&, unsigned = ~0u);
unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<LiveInterval*>&);
+ SmallVectorImpl<unsigned>&);
unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<LiveInterval*>&);
+ SmallVectorImpl<unsigned>&);
unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<LiveInterval*>&);
+ SmallVectorImpl<unsigned>&);
unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<LiveInterval*>&);
+ SmallVectorImpl<unsigned>&);
unsigned trySplit(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<LiveInterval*>&);
+ SmallVectorImpl<unsigned>&);
};
} // end anonymous namespace
@@ -313,7 +315,6 @@ RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
- initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
@@ -337,7 +338,6 @@ void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<LiveDebugVariables>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
- AU.addRequired<CalculateSpillWeights>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
@@ -455,7 +455,7 @@ LiveInterval *RAGreedy::dequeue() {
/// tryAssign - Try to assign VirtReg to an available register.
unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
AllocationOrder &Order,
- SmallVectorImpl<LiveInterval*> &NewVRegs) {
+ SmallVectorImpl<unsigned> &NewVRegs) {
Order.rewind();
unsigned PhysReg;
while ((PhysReg = Order.next()))
@@ -638,7 +638,7 @@ bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
/// from being assigned to Physreg. This assumes that canEvictInterference
/// returned true.
void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
- SmallVectorImpl<LiveInterval*> &NewVRegs) {
+ SmallVectorImpl<unsigned> &NewVRegs) {
// Make sure that VirtReg has a cascade number, and assign that cascade
// number to every evicted register. These live ranges than then only be
// evicted by a newer cascade, preventing infinite loops.
@@ -670,7 +670,7 @@ void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
"Cannot decrease cascade number, illegal eviction");
ExtraRegInfo[Intf->reg].Cascade = Cascade;
++NumEvicted;
- NewVRegs.push_back(Intf);
+ NewVRegs.push_back(Intf->reg);
}
}
@@ -680,7 +680,7 @@ void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
/// @return Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
AllocationOrder &Order,
- SmallVectorImpl<LiveInterval*> &NewVRegs,
+ SmallVectorImpl<unsigned> &NewVRegs,
unsigned CostPerUseLimit) {
NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
@@ -1125,7 +1125,7 @@ void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
- DebugVars->splitRegister(Reg, LREdit.regs());
+ DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
ExtraRegInfo.resize(MRI->getNumVirtRegs());
unsigned OrigBlocks = SA->getNumLiveBlocks();
@@ -1136,7 +1136,7 @@ void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
// - Block-local splits are candidates for local splitting.
// - DCE leftovers should go back on the queue.
for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
- LiveInterval &Reg = *LREdit.get(i);
+ LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
// Ignore old intervals from DCE.
if (getStage(Reg) != RS_New)
@@ -1170,7 +1170,7 @@ void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
}
unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<LiveInterval*> &NewVRegs) {
+ SmallVectorImpl<unsigned> &NewVRegs) {
unsigned NumCands = 0;
unsigned BestCand = NoCand;
BlockFrequency BestCost;
@@ -1305,7 +1305,7 @@ unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
/// creates a lot of local live ranges, that will be split by tryLocalSplit if
/// they don't allocate.
unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<LiveInterval*> &NewVRegs) {
+ SmallVectorImpl<unsigned> &NewVRegs) {
assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
unsigned Reg = VirtReg.reg;
bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
@@ -1326,14 +1326,14 @@ unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SE->finish(&IntvMap);
// Tell LiveDebugVariables about the new ranges.
- DebugVars->splitRegister(Reg, LREdit.regs());
+ DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
ExtraRegInfo.resize(MRI->getNumVirtRegs());
// Sort out the new intervals created by splitting. The remainder interval
// goes straight to spilling, the new local ranges get to stay RS_New.
for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
- LiveInterval &LI = *LREdit.get(i);
+ LiveInterval &LI = LIS->getInterval(LREdit.get(i));
if (getStage(LI) == RS_New && IntvMap[i] == 0)
setStage(LI, RS_Spill);
}
@@ -1357,7 +1357,7 @@ unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
/// This is similar to spilling to a larger register class.
unsigned
RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<LiveInterval*> &NewVRegs) {
+ SmallVectorImpl<unsigned> &NewVRegs) {
// There is no point to this if there are no larger sub-classes.
if (!RegClassInfo.isProperSubClass(MRI->getRegClass(VirtReg.reg)))
return 0;
@@ -1393,7 +1393,7 @@ RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
- DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
+ DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
ExtraRegInfo.resize(MRI->getNumVirtRegs());
// Assign all new registers to RS_Spill. This was the last chance.
@@ -1464,9 +1464,9 @@ void RAGreedy::calcGapWeights(unsigned PhysReg,
// Add fixed interference.
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- const LiveInterval &LI = LIS->getRegUnit(*Units);
- LiveInterval::const_iterator I = LI.find(StartIdx);
- LiveInterval::const_iterator E = LI.end();
+ const LiveRange &LR = LIS->getRegUnit(*Units);
+ LiveRange::const_iterator I = LR.find(StartIdx);
+ LiveRange::const_iterator E = LR.end();
// Same loop as above. Mark any overlapped gaps as HUGE_VALF.
for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
@@ -1477,7 +1477,7 @@ void RAGreedy::calcGapWeights(unsigned PhysReg,
break;
for (; Gap != NumGaps; ++Gap) {
- GapWeight[Gap] = HUGE_VALF;
+ GapWeight[Gap] = llvm::huge_valf;
if (Uses[Gap+1].getBaseIndex() >= I->end)
break;
}
@@ -1491,7 +1491,7 @@ void RAGreedy::calcGapWeights(unsigned PhysReg,
/// basic block.
///
unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<LiveInterval*> &NewVRegs) {
+ SmallVectorImpl<unsigned> &NewVRegs) {
assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
@@ -1583,7 +1583,7 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
// Remove any gaps with regmask clobbers.
if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
- GapWeight[RegMaskGaps[i]] = HUGE_VALF;
+ GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
// Try to find the best sequence of gaps to close.
// The new spill weight must be larger than any gap interference.
@@ -1618,7 +1618,7 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
// Legally, without causing looping?
bool Legal = !ProgressRequired || NewGaps < NumGaps;
- if (Legal && MaxGap < HUGE_VALF) {
+ if (Legal && MaxGap < llvm::huge_valf) {
// Estimate the new spill weight. Each instruction reads or writes the
// register. Conservatively assume there are no read-modify-write
// instructions.
@@ -1685,7 +1685,7 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SE->useIntv(SegStart, SegStop);
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
- DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
+ DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
// If the new range has the same number of instructions as before, mark it as
// RS_Split2 so the next split will be forced to make progress. Otherwise,
@@ -1698,8 +1698,8 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
assert(!ProgressRequired && "Didn't make progress when it was required.");
for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
if (IntvMap[i] == 1) {
- setStage(*LREdit.get(i), RS_Split2);
- DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
+ setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
+ DEBUG(dbgs() << PrintReg(LREdit.get(i)));
}
DEBUG(dbgs() << '\n');
}
@@ -1716,7 +1716,7 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
/// assignable.
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<LiveInterval*>&NewVRegs) {
+ SmallVectorImpl<unsigned>&NewVRegs) {
// Ranges must be Split2 or less.
if (getStage(VirtReg) >= RS_Spill)
return 0;
@@ -1765,7 +1765,7 @@ unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
//===----------------------------------------------------------------------===//
unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
- SmallVectorImpl<LiveInterval*> &NewVRegs) {
+ SmallVectorImpl<unsigned> &NewVRegs) {
// First try assigning a free register.
AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
@@ -1790,7 +1790,7 @@ unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
if (Stage < RS_Split) {
setStage(VirtReg, RS_Split);
DEBUG(dbgs() << "wait for second round\n");
- NewVRegs.push_back(&VirtReg);
+ NewVRegs.push_back(VirtReg.reg);
return 0;
}
@@ -1838,6 +1838,8 @@ bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
SpillPlacer = &getAnalysis<SpillPlacement>();
DebugVars = &getAnalysis<LiveDebugVariables>();
+ calculateSpillWeightsAndHints(*LIS, mf, *Loops, *MBFI);
+
DEBUG(LIS->dump());
SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
diff --git a/lib/CodeGen/RegAllocPBQP.cpp b/lib/CodeGen/RegAllocPBQP.cpp
index 81ecca1..88c8201 100644
--- a/lib/CodeGen/RegAllocPBQP.cpp
+++ b/lib/CodeGen/RegAllocPBQP.cpp
@@ -95,7 +95,6 @@ public:
: MachineFunctionPass(ID), builder(b.take()), customPassID(cPassID) {
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
- initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
}
@@ -158,13 +157,13 @@ char RegAllocPBQP::ID = 0;
} // End anonymous namespace.
-unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const {
+unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::NodeId node) const {
Node2VReg::const_iterator vregItr = node2VReg.find(node);
assert(vregItr != node2VReg.end() && "No vreg for node.");
return vregItr->second;
}
-PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
+PBQP::Graph::NodeId PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
assert(nodeItr != vreg2Node.end() && "No node for vreg.");
return nodeItr->second;
@@ -247,7 +246,7 @@ PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
}
// Construct the node.
- PBQP::Graph::NodeItr node =
+ PBQP::Graph::NodeId node =
g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
// Record the mapping and allowed set in the problem.
@@ -273,7 +272,7 @@ PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
assert(!l2.empty() && "Empty interval in vreg set?");
if (l1.overlaps(l2)) {
- PBQP::Graph::EdgeItr edge =
+ PBQP::Graph::EdgeId edge =
g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
@@ -364,16 +363,16 @@ PBQPRAProblem *PBQPBuilderWithCoalescing::build(MachineFunction *mf,
}
if (pregOpt < allowed.size()) {
++pregOpt; // +1 to account for spill option.
- PBQP::Graph::NodeItr node = p->getNodeForVReg(src);
+ PBQP::Graph::NodeId node = p->getNodeForVReg(src);
addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
}
} else {
const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
- PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst);
- PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src);
- PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2);
- if (edge == g.edgesEnd()) {
+ PBQP::Graph::NodeId node1 = p->getNodeForVReg(dst);
+ PBQP::Graph::NodeId node2 = p->getNodeForVReg(src);
+ PBQP::Graph::EdgeId edge = g.findEdge(node1, node2);
+ if (edge == g.invalidEdgeId()) {
edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
allowed2->size() + 1,
0));
@@ -432,7 +431,6 @@ void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
//au.addRequiredID(SplitCriticalEdgesID);
if (customPassID)
au.addRequiredID(*customPassID);
- au.addRequired<CalculateSpillWeights>();
au.addRequired<LiveStacks>();
au.addPreserved<LiveStacks>();
au.addRequired<MachineBlockFrequencyInfo>();
@@ -477,11 +475,11 @@ bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
const PBQP::Graph &g = problem.getGraph();
// Iterate over the nodes mapping the PBQP solution to a register
// assignment.
- for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(),
- nodeEnd = g.nodesEnd();
- node != nodeEnd; ++node) {
- unsigned vreg = problem.getVRegForNode(node);
- unsigned alloc = solution.getSelection(node);
+ for (PBQP::Graph::NodeItr nodeItr = g.nodesBegin(),
+ nodeEnd = g.nodesEnd();
+ nodeItr != nodeEnd; ++nodeItr) {
+ unsigned vreg = problem.getVRegForNode(*nodeItr);
+ unsigned alloc = solution.getSelection(*nodeItr);
if (problem.isPRegOption(vreg, alloc)) {
unsigned preg = problem.getPRegForOption(vreg, alloc);
@@ -491,7 +489,7 @@ bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
vrm->assignVirt2Phys(vreg, preg);
} else if (problem.isSpillOption(vreg, alloc)) {
vregsToAlloc.erase(vreg);
- SmallVector<LiveInterval*, 8> newSpills;
+ SmallVector<unsigned, 8> newSpills;
LiveRangeEdit LRE(&lis->getInterval(vreg), newSpills, *mf, *lis, vrm);
spiller->spill(LRE);
@@ -502,9 +500,10 @@ bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
// allocate.
for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end();
itr != end; ++itr) {
- assert(!(*itr)->empty() && "Empty spill range.");
- DEBUG(dbgs() << PrintReg((*itr)->reg, tri) << " ");
- vregsToAlloc.insert((*itr)->reg);
+ LiveInterval &li = lis->getInterval(*itr);
+ assert(!li.empty() && "Empty spill range.");
+ DEBUG(dbgs() << PrintReg(li.reg, tri) << " ");
+ vregsToAlloc.insert(li.reg);
}
DEBUG(dbgs() << ")\n");
@@ -550,6 +549,9 @@ bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
lss = &getAnalysis<LiveStacks>();
mbfi = &getAnalysis<MachineBlockFrequencyInfo>();
+ calculateSpillWeightsAndHints(*lis, MF, getAnalysis<MachineLoopInfo>(),
+ *mbfi);
+
vrm = &getAnalysis<VirtRegMap>();
spiller.reset(createInlineSpiller(*this, MF, *vrm));
diff --git a/lib/CodeGen/RegisterCoalescer.cpp b/lib/CodeGen/RegisterCoalescer.cpp
index f99f1a3..dd86c1f 100644
--- a/lib/CodeGen/RegisterCoalescer.cpp
+++ b/lib/CodeGen/RegisterCoalescer.cpp
@@ -398,7 +398,7 @@ void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
}
void RegisterCoalescer::eliminateDeadDefs() {
- SmallVector<LiveInterval*, 8> NewRegs;
+ SmallVector<unsigned, 8> NewRegs;
LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
}
@@ -434,11 +434,11 @@ bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
- // BValNo is a value number in B that is defined by a copy from A. 'B3' in
+ // BValNo is a value number in B that is defined by a copy from A. 'B1' in
// the example above.
- LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
- if (BLR == IntB.end()) return false;
- VNInfo *BValNo = BLR->valno;
+ LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
+ if (BS == IntB.end()) return false;
+ VNInfo *BValNo = BS->valno;
// Get the location that B is defined at. Two options: either this value has
// an unknown definition point or it is defined at CopyIdx. If unknown, we
@@ -447,10 +447,10 @@ bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
// AValNo is the value number in A that defines the copy, A3 in the example.
SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
- LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
- // The live range might not exist after fun with physreg coalescing.
- if (ALR == IntA.end()) return false;
- VNInfo *AValNo = ALR->valno;
+ LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
+ // The live segment might not exist after fun with physreg coalescing.
+ if (AS == IntA.end()) return false;
+ VNInfo *AValNo = AS->valno;
// If AValNo is defined as a copy from IntB, we can potentially process this.
// Get the instruction that defines this value number.
@@ -459,54 +459,54 @@ bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
return false;
- // Get the LiveRange in IntB that this value number starts with.
- LiveInterval::iterator ValLR =
- IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
- if (ValLR == IntB.end())
+ // Get the Segment in IntB that this value number starts with.
+ LiveInterval::iterator ValS =
+ IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
+ if (ValS == IntB.end())
return false;
- // Make sure that the end of the live range is inside the same block as
+ // Make sure that the end of the live segment is inside the same block as
// CopyMI.
- MachineInstr *ValLREndInst =
- LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
- if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
+ MachineInstr *ValSEndInst =
+ LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
+ if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
return false;
- // Okay, we now know that ValLR ends in the same block that the CopyMI
- // live-range starts. If there are no intervening live ranges between them in
- // IntB, we can merge them.
- if (ValLR+1 != BLR) return false;
+ // Okay, we now know that ValS ends in the same block that the CopyMI
+ // live-range starts. If there are no intervening live segments between them
+ // in IntB, we can merge them.
+ if (ValS+1 != BS) return false;
DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
- SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
+ SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
// We are about to delete CopyMI, so need to remove it as the 'instruction
// that defines this value #'. Update the valnum with the new defining
// instruction #.
BValNo->def = FillerStart;
// Okay, we can merge them. We need to insert a new liverange:
- // [ValLR.end, BLR.begin) of either value number, then we merge the
+ // [ValS.end, BS.begin) of either value number, then we merge the
// two value numbers.
- IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
+ IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
// Okay, merge "B1" into the same value number as "B0".
- if (BValNo != ValLR->valno)
- IntB.MergeValueNumberInto(BValNo, ValLR->valno);
+ if (BValNo != ValS->valno)
+ IntB.MergeValueNumberInto(BValNo, ValS->valno);
DEBUG(dbgs() << " result = " << IntB << '\n');
// If the source instruction was killing the source register before the
// merge, unset the isKill marker given the live range has been extended.
- int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
+ int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
if (UIdx != -1) {
- ValLREndInst->getOperand(UIdx).setIsKill(false);
+ ValSEndInst->getOperand(UIdx).setIsKill(false);
}
// Rewrite the copy. If the copy instruction was killing the destination
// register before the merge, find the last use and trim the live range. That
// will also add the isKill marker.
CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
- if (ALR->end == CopyIdx)
+ if (AS->end == CopyIdx)
LIS->shrinkToUses(&IntA);
++numExtends;
@@ -527,11 +527,11 @@ bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
AI != AE; ++AI) {
if (AI->valno != AValNo) continue;
- LiveInterval::Ranges::iterator BI =
- std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
- if (BI != IntB.ranges.begin())
+ LiveInterval::iterator BI =
+ std::upper_bound(IntB.begin(), IntB.end(), AI->start);
+ if (BI != IntB.begin())
--BI;
- for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
+ for (; BI != IntB.end() && AI->end >= BI->start; ++BI) {
if (BI->valno == BValNo)
continue;
if (BI->start <= AI->start && BI->end > AI->start)
@@ -577,14 +577,12 @@ bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
LiveInterval &IntB =
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
- // BValNo is a value number in B that is defined by a copy from A. 'B3' in
+ // BValNo is a value number in B that is defined by a copy from A. 'B1' in
// the example above.
VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
if (!BValNo || BValNo->def != CopyIdx)
return false;
- assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
-
// AValNo is the value number in A that defines the copy, A3 in the example.
VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
assert(AValNo && "COPY source not live");
@@ -614,7 +612,7 @@ bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
unsigned NewReg = NewDstMO.getReg();
- if (NewReg != IntB.reg || !LiveRangeQuery(IntB, AValNo->def).isKill())
+ if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
return false;
// Make sure there are no other definitions of IntB that would reach the
@@ -629,8 +627,8 @@ bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
- LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
- if (ULR == IntA.end() || ULR->valno != AValNo)
+ LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
+ if (US == IntA.end() || US->valno != AValNo)
continue;
// If this use is tied to a def, we can't rewrite the register.
if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
@@ -681,8 +679,8 @@ bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
continue;
}
SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
- LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
- if (ULR == IntA.end() || ULR->valno != AValNo)
+ LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
+ if (US == IntA.end() || US->valno != AValNo)
continue;
// Kill flags are no longer accurate. They are recomputed after RA.
UseMO.setIsKill(false);
@@ -712,14 +710,14 @@ bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
UseMI->eraseFromParent();
}
- // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
+ // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
// is updated.
VNInfo *ValNo = BValNo;
ValNo->def = AValNo->def;
for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
AI != AE; ++AI) {
if (AI->valno != AValNo) continue;
- IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
+ IntB.addSegment(LiveInterval::Segment(AI->start, AI->end, ValNo));
}
DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
@@ -744,7 +742,7 @@ bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
LiveInterval &SrcInt = LIS->getInterval(SrcReg);
SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
- VNInfo *ValNo = LiveRangeQuery(SrcInt, CopyIdx).valueIn();
+ VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
assert(ValNo && "CopyMI input register not live");
if (ValNo->isPHIDef() || ValNo->isUnused())
return false;
@@ -876,8 +874,8 @@ bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
unsigned Reg = NewMIImplDefs[i];
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
- if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
- LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
+ if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
+ LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
}
DEBUG(dbgs() << "Remat: " << *NewMI);
@@ -1048,7 +1046,7 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
if (CP.getSrcReg() == CP.getDstReg()) {
LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
- LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI));
+ LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(CopyMI));
if (VNInfo *DefVNI = LRQ.valueDefined()) {
VNInfo *ReadVNI = LRQ.valueIn();
assert(ReadVNI && "No value before copy and no <undef> flag.");
@@ -1091,8 +1089,8 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
});
// When possible, let DstReg be the larger interval.
- if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
- LIS->getInterval(CP.getDstReg()).ranges.size())
+ if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
+ LIS->getInterval(CP.getDstReg()).size())
CP.flip();
}
@@ -1109,7 +1107,8 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
return true;
- // If we can eliminate the copy without merging the live ranges, do so now.
+ // If we can eliminate the copy without merging the live segments, do so
+ // now.
if (!CP.isPartial() && !CP.isPhys()) {
if (adjustCopiesBackFrom(CP, CopyMI) ||
removeCopyByCommutingDef(CP, CopyMI)) {
@@ -1157,10 +1156,12 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
DEBUG({
- dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
- if (!CP.isPhys())
+ dbgs() << "\tJoined. Result = ";
+ if (CP.isPhys())
+ dbgs() << PrintReg(CP.getDstReg(), TRI);
+ else
dbgs() << LIS->getInterval(CP.getDstReg());
- dbgs() << '\n';
+ dbgs() << '\n';
});
++numJoins;
@@ -1172,8 +1173,7 @@ bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
assert(CP.isPhys() && "Must be a physreg copy");
assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register");
LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
- DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
- << '\n');
+ DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
assert(CP.isFlipped() && RHS.containsOneValue() &&
"Invalid join with reserved register");
@@ -1442,7 +1442,7 @@ VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
unsigned Reg = MI->getOperand(1).getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
break;
- LiveRangeQuery LRQ(LIS->getInterval(Reg), VNI->def);
+ LiveQueryResult LRQ = LIS->getInterval(Reg).Query(VNI->def);
if (!LRQ.valueIn())
break;
VNI = LRQ.valueIn();
@@ -1493,7 +1493,7 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
// The <read-undef> flag on the def operand means that old lane values are
// not important.
if (Redef) {
- V.RedefVNI = LiveRangeQuery(LI, VNI->def).valueIn();
+ V.RedefVNI = LI.Query(VNI->def).valueIn();
assert(V.RedefVNI && "Instruction is reading nonexistent value");
computeAssignment(V.RedefVNI->id, Other);
V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
@@ -1510,7 +1510,7 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
}
// Find the value in Other that overlaps VNI->def, if any.
- LiveRangeQuery OtherLRQ(Other.LI, VNI->def);
+ LiveQueryResult OtherLRQ = Other.LI.Query(VNI->def);
// It is possible that both values are defined by the same instruction, or
// the values are PHIs defined in the same block. When that happens, the two
@@ -1969,8 +1969,8 @@ bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
- DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
- << "\n\t\tLHS = " << PrintReg(CP.getDstReg()) << ' ' << LHS
+ DEBUG(dbgs() << "\t\tRHS = " << RHS
+ << "\n\t\tLHS = " << LHS
<< '\n');
// First compute NewVNInfo and the simple value mappings.
@@ -2001,8 +2001,7 @@ bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
// Join RHS into LHS.
- LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo,
- MRI);
+ LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
// Kill flags are going to be wrong if the live ranges were overlapping.
// Eventually, we should simply clear all kill flags when computing live
@@ -2017,7 +2016,7 @@ bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
// CR_Replace conflicts.
DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
<< " points: " << LHS << '\n');
- LIS->extendToIndices(&LHS, EndPoints);
+ LIS->extendToIndices(LHS, EndPoints);
return true;
}
@@ -2043,9 +2042,8 @@ struct MBBPriorityInfo {
// block (the unsigned), and then on the MBB number.
//
// EnableGlobalCopies assumes that the primary sort key is loop depth.
-static int compareMBBPriority(const void *L, const void *R) {
- const MBBPriorityInfo *LHS = static_cast<const MBBPriorityInfo*>(L);
- const MBBPriorityInfo *RHS = static_cast<const MBBPriorityInfo*>(R);
+static int compareMBBPriority(const MBBPriorityInfo *LHS,
+ const MBBPriorityInfo *RHS) {
// Deeper loops first
if (LHS->Depth != RHS->Depth)
return LHS->Depth > RHS->Depth ? -1 : 1;
@@ -2203,7 +2201,7 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
if (EnableGlobalCopies == cl::BOU_UNSET)
- JoinGlobalCopies = ST.enableMachineScheduler();
+ JoinGlobalCopies = ST.useMachineScheduler();
else
JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
diff --git a/lib/CodeGen/RegisterPressure.cpp b/lib/CodeGen/RegisterPressure.cpp
index b7ab138..092ecdd 100644
--- a/lib/CodeGen/RegisterPressure.cpp
+++ b/lib/CodeGen/RegisterPressure.cpp
@@ -25,53 +25,19 @@ using namespace llvm;
/// Increase pressure for each pressure set provided by TargetRegisterInfo.
static void increaseSetPressure(std::vector<unsigned> &CurrSetPressure,
- std::vector<unsigned> &MaxSetPressure,
- const int *PSet, unsigned Weight) {
- for (; *PSet != -1; ++PSet) {
- CurrSetPressure[*PSet] += Weight;
- if (&CurrSetPressure != &MaxSetPressure
- && CurrSetPressure[*PSet] > MaxSetPressure[*PSet]) {
- MaxSetPressure[*PSet] = CurrSetPressure[*PSet];
- }
- }
+ PSetIterator PSetI) {
+ unsigned Weight = PSetI.getWeight();
+ for (; PSetI.isValid(); ++PSetI)
+ CurrSetPressure[*PSetI] += Weight;
}
/// Decrease pressure for each pressure set provided by TargetRegisterInfo.
static void decreaseSetPressure(std::vector<unsigned> &CurrSetPressure,
- const int *PSet, unsigned Weight) {
- for (; *PSet != -1; ++PSet) {
- assert(CurrSetPressure[*PSet] >= Weight && "register pressure underflow");
- CurrSetPressure[*PSet] -= Weight;
- }
-}
-
-/// Directly increase pressure only within this RegisterPressure result.
-void RegisterPressure::increase(unsigned Reg, const TargetRegisterInfo *TRI,
- const MachineRegisterInfo *MRI) {
- if (TargetRegisterInfo::isVirtualRegister(Reg)) {
- const TargetRegisterClass *RC = MRI->getRegClass(Reg);
- increaseSetPressure(MaxSetPressure, MaxSetPressure,
- TRI->getRegClassPressureSets(RC),
- TRI->getRegClassWeight(RC).RegWeight);
- }
- else {
- increaseSetPressure(MaxSetPressure, MaxSetPressure,
- TRI->getRegUnitPressureSets(Reg),
- TRI->getRegUnitWeight(Reg));
- }
-}
-
-/// Directly decrease pressure only within this RegisterPressure result.
-void RegisterPressure::decrease(unsigned Reg, const TargetRegisterInfo *TRI,
- const MachineRegisterInfo *MRI) {
- if (TargetRegisterInfo::isVirtualRegister(Reg)) {
- const TargetRegisterClass *RC = MRI->getRegClass(Reg);
- decreaseSetPressure(MaxSetPressure, TRI->getRegClassPressureSets(RC),
- TRI->getRegClassWeight(RC).RegWeight);
- }
- else {
- decreaseSetPressure(MaxSetPressure, TRI->getRegUnitPressureSets(Reg),
- TRI->getRegUnitWeight(Reg));
+ PSetIterator PSetI) {
+ unsigned Weight = PSetI.getWeight();
+ for (; PSetI.isValid(); ++PSetI) {
+ assert(CurrSetPressure[*PSetI] >= Weight && "register pressure underflow");
+ CurrSetPressure[*PSetI] -= Weight;
}
}
@@ -113,36 +79,23 @@ void RegPressureTracker::dump() const {
/// Increase the current pressure as impacted by these registers and bump
/// the high water mark if needed.
-void RegPressureTracker::increaseRegPressure(ArrayRef<unsigned> Regs) {
- for (unsigned I = 0, E = Regs.size(); I != E; ++I) {
- if (TargetRegisterInfo::isVirtualRegister(Regs[I])) {
- const TargetRegisterClass *RC = MRI->getRegClass(Regs[I]);
- increaseSetPressure(CurrSetPressure, P.MaxSetPressure,
- TRI->getRegClassPressureSets(RC),
- TRI->getRegClassWeight(RC).RegWeight);
- }
- else {
- increaseSetPressure(CurrSetPressure, P.MaxSetPressure,
- TRI->getRegUnitPressureSets(Regs[I]),
- TRI->getRegUnitWeight(Regs[I]));
+void RegPressureTracker::increaseRegPressure(ArrayRef<unsigned> RegUnits) {
+ for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
+ PSetIterator PSetI = MRI->getPressureSets(RegUnits[i]);
+ unsigned Weight = PSetI.getWeight();
+ for (; PSetI.isValid(); ++PSetI) {
+ CurrSetPressure[*PSetI] += Weight;
+ if (CurrSetPressure[*PSetI] > P.MaxSetPressure[*PSetI]) {
+ P.MaxSetPressure[*PSetI] = CurrSetPressure[*PSetI];
+ }
}
}
}
/// Simply decrease the current pressure as impacted by these registers.
-void RegPressureTracker::decreaseRegPressure(ArrayRef<unsigned> Regs) {
- for (unsigned I = 0, E = Regs.size(); I != E; ++I) {
- if (TargetRegisterInfo::isVirtualRegister(Regs[I])) {
- const TargetRegisterClass *RC = MRI->getRegClass(Regs[I]);
- decreaseSetPressure(CurrSetPressure,
- TRI->getRegClassPressureSets(RC),
- TRI->getRegClassWeight(RC).RegWeight);
- }
- else {
- decreaseSetPressure(CurrSetPressure, TRI->getRegUnitPressureSets(Regs[I]),
- TRI->getRegUnitWeight(Regs[I]));
- }
- }
+void RegPressureTracker::decreaseRegPressure(ArrayRef<unsigned> RegUnits) {
+ for (unsigned I = 0, E = RegUnits.size(); I != E; ++I)
+ decreaseSetPressure(CurrSetPressure, MRI->getPressureSets(RegUnits[I]));
}
/// Clear the result so it can be used for another round of pressure tracking.
@@ -194,12 +147,30 @@ void RegionPressure::openBottom(MachineBasicBlock::const_iterator PrevBottom) {
LiveInRegs.clear();
}
-const LiveInterval *RegPressureTracker::getInterval(unsigned Reg) const {
+const LiveRange *RegPressureTracker::getLiveRange(unsigned Reg) const {
if (TargetRegisterInfo::isVirtualRegister(Reg))
return &LIS->getInterval(Reg);
return LIS->getCachedRegUnit(Reg);
}
+void RegPressureTracker::reset() {
+ MBB = 0;
+ LIS = 0;
+
+ CurrSetPressure.clear();
+ LiveThruPressure.clear();
+ P.MaxSetPressure.clear();
+
+ if (RequireIntervals)
+ static_cast<IntervalPressure&>(P).reset();
+ else
+ static_cast<RegionPressure&>(P).reset();
+
+ LiveRegs.PhysRegs.clear();
+ LiveRegs.VirtRegs.clear();
+ UntiedDefs.clear();
+}
+
/// Setup the RegPressureTracker.
///
/// TODO: Add support for pressure without LiveIntervals.
@@ -210,6 +181,8 @@ void RegPressureTracker::init(const MachineFunction *mf,
MachineBasicBlock::const_iterator pos,
bool ShouldTrackUntiedDefs)
{
+ reset();
+
MF = mf;
TRI = MF->getTarget().getRegisterInfo();
RCI = rci;
@@ -224,19 +197,11 @@ void RegPressureTracker::init(const MachineFunction *mf,
CurrPos = pos;
CurrSetPressure.assign(TRI->getNumRegPressureSets(), 0);
- LiveThruPressure.clear();
- if (RequireIntervals)
- static_cast<IntervalPressure&>(P).reset();
- else
- static_cast<RegionPressure&>(P).reset();
P.MaxSetPressure = CurrSetPressure;
- LiveRegs.PhysRegs.clear();
LiveRegs.PhysRegs.setUniverse(TRI->getNumRegs());
- LiveRegs.VirtRegs.clear();
LiveRegs.VirtRegs.setUniverse(MRI->getNumVirtRegs());
- UntiedDefs.clear();
if (TrackUntiedDefs)
UntiedDefs.setUniverse(MRI->getNumVirtRegs());
}
@@ -328,24 +293,25 @@ void RegPressureTracker::initLiveThru(const RegPressureTracker &RPTracker) {
unsigned Reg = P.LiveOutRegs[i];
if (TargetRegisterInfo::isVirtualRegister(Reg)
&& !RPTracker.hasUntiedDef(Reg)) {
- const TargetRegisterClass *RC = MRI->getRegClass(Reg);
- increaseSetPressure(LiveThruPressure, LiveThruPressure,
- TRI->getRegClassPressureSets(RC),
- TRI->getRegClassWeight(RC).RegWeight);
+ increaseSetPressure(LiveThruPressure, MRI->getPressureSets(Reg));
}
}
}
/// \brief Convenient wrapper for checking membership in RegisterOperands.
-static bool containsReg(ArrayRef<unsigned> Regs, unsigned Reg) {
- return std::find(Regs.begin(), Regs.end(), Reg) != Regs.end();
+/// (std::count() doesn't have an early exit).
+static bool containsReg(ArrayRef<unsigned> RegUnits, unsigned RegUnit) {
+ return std::find(RegUnits.begin(), RegUnits.end(), RegUnit) != RegUnits.end();
}
/// Collect this instruction's unique uses and defs into SmallVectors for
/// processing defs and uses in order.
+///
+/// FIXME: always ignore tied opers
class RegisterOperands {
const TargetRegisterInfo *TRI;
const MachineRegisterInfo *MRI;
+ bool IgnoreDead;
public:
SmallVector<unsigned, 8> Uses;
@@ -353,7 +319,8 @@ public:
SmallVector<unsigned, 8> DeadDefs;
RegisterOperands(const TargetRegisterInfo *tri,
- const MachineRegisterInfo *mri): TRI(tri), MRI(mri) {}
+ const MachineRegisterInfo *mri, bool ID = false):
+ TRI(tri), MRI(mri), IgnoreDead(ID) {}
/// Push this operand's register onto the correct vector.
void collect(const MachineOperand &MO) {
@@ -362,25 +329,27 @@ public:
if (MO.readsReg())
pushRegUnits(MO.getReg(), Uses);
if (MO.isDef()) {
- if (MO.isDead())
- pushRegUnits(MO.getReg(), DeadDefs);
+ if (MO.isDead()) {
+ if (!IgnoreDead)
+ pushRegUnits(MO.getReg(), DeadDefs);
+ }
else
pushRegUnits(MO.getReg(), Defs);
}
}
protected:
- void pushRegUnits(unsigned Reg, SmallVectorImpl<unsigned> &Regs) {
+ void pushRegUnits(unsigned Reg, SmallVectorImpl<unsigned> &RegUnits) {
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
- if (containsReg(Regs, Reg))
+ if (containsReg(RegUnits, Reg))
return;
- Regs.push_back(Reg);
+ RegUnits.push_back(Reg);
}
else if (MRI->isAllocatable(Reg)) {
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
- if (containsReg(Regs, *Units))
+ if (containsReg(RegUnits, *Units))
continue;
- Regs.push_back(*Units);
+ RegUnits.push_back(*Units);
}
}
}
@@ -399,6 +368,56 @@ static void collectOperands(const MachineInstr *MI,
RegOpers.DeadDefs.erase(I, RegOpers.DeadDefs.end());
}
+/// Initialize an array of N PressureDiffs.
+void PressureDiffs::init(unsigned N) {
+ Size = N;
+ if (N <= Max) {
+ memset(PDiffArray, 0, N * sizeof(PressureDiff));
+ return;
+ }
+ Max = Size;
+ free(PDiffArray);
+ PDiffArray = reinterpret_cast<PressureDiff*>(calloc(N, sizeof(PressureDiff)));
+}
+
+/// Add a change in pressure to the pressure diff of a given instruction.
+void PressureDiff::addPressureChange(unsigned RegUnit, bool IsDec,
+ const MachineRegisterInfo *MRI) {
+ PSetIterator PSetI = MRI->getPressureSets(RegUnit);
+ int Weight = IsDec ? -PSetI.getWeight() : PSetI.getWeight();
+ for (; PSetI.isValid(); ++PSetI) {
+ // Find an existing entry in the pressure diff for this PSet.
+ PressureDiff::iterator I = begin(), E = end();
+ for (; I != E && I->isValid(); ++I) {
+ if (I->getPSet() >= *PSetI)
+ break;
+ }
+ // If all pressure sets are more constrained, skip the remaining PSets.
+ if (I == E)
+ break;
+ // Insert this PressureChange.
+ if (!I->isValid() || I->getPSet() != *PSetI) {
+ PressureChange PTmp = PressureChange(*PSetI);
+ for (PressureDiff::iterator J = I; J != E && PTmp.isValid(); ++J)
+ std::swap(*J,PTmp);
+ }
+ // Update the units for this pressure set.
+ I->setUnitInc(I->getUnitInc() + Weight);
+ }
+}
+
+/// Record the pressure difference induced by the given operand list.
+static void collectPDiff(PressureDiff &PDiff, RegisterOperands &RegOpers,
+ const MachineRegisterInfo *MRI) {
+ assert(!PDiff.begin()->isValid() && "stale PDiff");
+
+ for (unsigned i = 0, e = RegOpers.Defs.size(); i != e; ++i)
+ PDiff.addPressureChange(RegOpers.Defs[i], true, MRI);
+
+ for (unsigned i = 0, e = RegOpers.Uses.size(); i != e; ++i)
+ PDiff.addPressureChange(RegOpers.Uses[i], false, MRI);
+}
+
/// Force liveness of registers.
void RegPressureTracker::addLiveRegs(ArrayRef<unsigned> Regs) {
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
@@ -415,7 +434,7 @@ void RegPressureTracker::discoverLiveIn(unsigned Reg) {
// At live in discovery, unconditionally increase the high water mark.
P.LiveInRegs.push_back(Reg);
- P.increase(Reg, TRI, MRI);
+ increaseSetPressure(P.MaxSetPressure, MRI->getPressureSets(Reg));
}
/// Add Reg to the live out set and increase max pressure.
@@ -426,11 +445,16 @@ void RegPressureTracker::discoverLiveOut(unsigned Reg) {
// At live out discovery, unconditionally increase the high water mark.
P.LiveOutRegs.push_back(Reg);
- P.increase(Reg, TRI, MRI);
+ increaseSetPressure(P.MaxSetPressure, MRI->getPressureSets(Reg));
}
-/// Recede across the previous instruction.
-bool RegPressureTracker::recede() {
+/// Recede across the previous instruction. If LiveUses is provided, record any
+/// RegUnits that are made live by the current instruction's uses. This includes
+/// registers that are both defined and used by the instruction. If a pressure
+/// difference pointer is provided record the changes is pressure caused by this
+/// instruction independent of liveness.
+bool RegPressureTracker::recede(SmallVectorImpl<unsigned> *LiveUses,
+ PressureDiff *PDiff) {
// Check for the top of the analyzable region.
if (CurrPos == MBB->begin()) {
closeRegion();
@@ -463,6 +487,9 @@ bool RegPressureTracker::recede() {
RegisterOperands RegOpers(TRI, MRI);
collectOperands(CurrPos, RegOpers);
+ if (PDiff)
+ collectPDiff(*PDiff, RegOpers, MRI);
+
// Boost pressure for all dead defs together.
increaseRegPressure(RegOpers.DeadDefs);
decreaseRegPressure(RegOpers.DeadDefs);
@@ -471,10 +498,20 @@ bool RegPressureTracker::recede() {
// TODO: consider earlyclobbers?
for (unsigned i = 0, e = RegOpers.Defs.size(); i < e; ++i) {
unsigned Reg = RegOpers.Defs[i];
- if (LiveRegs.erase(Reg))
- decreaseRegPressure(Reg);
- else
- discoverLiveOut(Reg);
+ bool DeadDef = false;
+ if (RequireIntervals) {
+ const LiveRange *LR = getLiveRange(Reg);
+ if (LR) {
+ LiveQueryResult LRQ = LR->Query(SlotIdx);
+ DeadDef = LRQ.isDeadDef();
+ }
+ }
+ if (!DeadDef) {
+ if (LiveRegs.erase(Reg))
+ decreaseRegPressure(Reg);
+ else
+ discoverLiveOut(Reg);
+ }
}
// Generate liveness for uses.
@@ -483,12 +520,17 @@ bool RegPressureTracker::recede() {
if (!LiveRegs.contains(Reg)) {
// Adjust liveouts if LiveIntervals are available.
if (RequireIntervals) {
- const LiveInterval *LI = getInterval(Reg);
- if (LI && !LI->killedAt(SlotIdx))
- discoverLiveOut(Reg);
+ const LiveRange *LR = getLiveRange(Reg);
+ if (LR) {
+ LiveQueryResult LRQ = LR->Query(SlotIdx);
+ if (!LRQ.isKill() && !LRQ.valueDefined())
+ discoverLiveOut(Reg);
+ }
}
increaseRegPressure(Reg);
LiveRegs.insert(Reg);
+ if (LiveUses && !containsReg(*LiveUses, Reg))
+ LiveUses->push_back(Reg);
}
}
if (TrackUntiedDefs) {
@@ -537,8 +579,8 @@ bool RegPressureTracker::advance() {
// Kill liveness at last uses.
bool lastUse = false;
if (RequireIntervals) {
- const LiveInterval *LI = getInterval(Reg);
- lastUse = LI && LI->killedAt(SlotIdx);
+ const LiveRange *LR = getLiveRange(Reg);
+ lastUse = LR && LR->Query(SlotIdx).isKill();
}
else {
// Allocatable physregs are always single-use before register rewriting.
@@ -576,8 +618,7 @@ static void computeExcessPressureDelta(ArrayRef<unsigned> OldPressureVec,
RegPressureDelta &Delta,
const RegisterClassInfo *RCI,
ArrayRef<unsigned> LiveThruPressureVec) {
- int ExcessUnits = 0;
- unsigned PSetID = ~0U;
+ Delta.Excess = PressureChange();
for (unsigned i = 0, e = OldPressureVec.size(); i < e; ++i) {
unsigned POld = OldPressureVec[i];
unsigned PNew = NewPressureVec[i];
@@ -599,13 +640,11 @@ static void computeExcessPressureDelta(ArrayRef<unsigned> OldPressureVec,
PDiff = Limit - POld; // Just obeyed limit.
if (PDiff) {
- ExcessUnits = PDiff;
- PSetID = i;
+ Delta.Excess = PressureChange(i);
+ Delta.Excess.setUnitInc(PDiff);
break;
}
}
- Delta.Excess.PSetID = PSetID;
- Delta.Excess.UnitIncrease = ExcessUnits;
}
/// Find the max change in max pressure that either surpasses a critical PSet
@@ -616,11 +655,11 @@ static void computeExcessPressureDelta(ArrayRef<unsigned> OldPressureVec,
/// RegPressureTracker API change to work with pressure differences.
static void computeMaxPressureDelta(ArrayRef<unsigned> OldMaxPressureVec,
ArrayRef<unsigned> NewMaxPressureVec,
- ArrayRef<PressureElement> CriticalPSets,
+ ArrayRef<PressureChange> CriticalPSets,
ArrayRef<unsigned> MaxPressureLimit,
RegPressureDelta &Delta) {
- Delta.CriticalMax = PressureElement();
- Delta.CurrentMax = PressureElement();
+ Delta.CriticalMax = PressureChange();
+ Delta.CurrentMax = PressureChange();
unsigned CritIdx = 0, CritEnd = CriticalPSets.size();
for (unsigned i = 0, e = OldMaxPressureVec.size(); i < e; ++i) {
@@ -630,27 +669,24 @@ static void computeMaxPressureDelta(ArrayRef<unsigned> OldMaxPressureVec,
continue;
if (!Delta.CriticalMax.isValid()) {
- while (CritIdx != CritEnd && CriticalPSets[CritIdx].PSetID < i)
+ while (CritIdx != CritEnd && CriticalPSets[CritIdx].getPSet() < i)
++CritIdx;
- if (CritIdx != CritEnd && CriticalPSets[CritIdx].PSetID == i) {
- int PDiff = (int)PNew - (int)CriticalPSets[CritIdx].UnitIncrease;
+ if (CritIdx != CritEnd && CriticalPSets[CritIdx].getPSet() == i) {
+ int PDiff = (int)PNew - (int)CriticalPSets[CritIdx].getUnitInc();
if (PDiff > 0) {
- Delta.CriticalMax.PSetID = i;
- Delta.CriticalMax.UnitIncrease = PDiff;
+ Delta.CriticalMax = PressureChange(i);
+ Delta.CriticalMax.setUnitInc(PDiff);
}
}
}
// Find the first increase above MaxPressureLimit.
// (Ignores negative MDiff).
- if (!Delta.CurrentMax.isValid()) {
- int MDiff = (int)PNew - (int)MaxPressureLimit[i];
- if (MDiff > 0) {
- Delta.CurrentMax.PSetID = i;
- Delta.CurrentMax.UnitIncrease = MDiff;
- if (CritIdx == CritEnd || Delta.CriticalMax.isValid())
- break;
- }
+ if (!Delta.CurrentMax.isValid() && PNew > MaxPressureLimit[i]) {
+ Delta.CurrentMax = PressureChange(i);
+ Delta.CurrentMax.setUnitInc(PNew - POld);
+ if (CritIdx == CritEnd || Delta.CriticalMax.isValid())
+ break;
}
}
}
@@ -665,7 +701,7 @@ void RegPressureTracker::bumpUpwardPressure(const MachineInstr *MI) {
assert(!MI->isDebugValue() && "Expect a nondebug instruction.");
// Account for register pressure similar to RegPressureTracker::recede().
- RegisterOperands RegOpers(TRI, MRI);
+ RegisterOperands RegOpers(TRI, MRI, /*IgnoreDead=*/true);
collectOperands(MI, RegOpers);
// Boost max pressure for all dead defs together.
@@ -676,8 +712,19 @@ void RegPressureTracker::bumpUpwardPressure(const MachineInstr *MI) {
// Kill liveness at live defs.
for (unsigned i = 0, e = RegOpers.Defs.size(); i < e; ++i) {
unsigned Reg = RegOpers.Defs[i];
- if (!containsReg(RegOpers.Uses, Reg))
- decreaseRegPressure(Reg);
+ bool DeadDef = false;
+ if (RequireIntervals) {
+ const LiveRange *LR = getLiveRange(Reg);
+ if (LR) {
+ SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
+ LiveQueryResult LRQ = LR->Query(SlotIdx);
+ DeadDef = LRQ.isDeadDef();
+ }
+ }
+ if (!DeadDef) {
+ if (!containsReg(RegOpers.Uses, Reg))
+ decreaseRegPressure(Reg);
+ }
}
// Generate liveness for uses.
for (unsigned i = 0, e = RegOpers.Uses.size(); i < e; ++i) {
@@ -699,8 +746,9 @@ void RegPressureTracker::bumpUpwardPressure(const MachineInstr *MI) {
/// result per-SUnit with enough information to adjust for the current
/// scheduling position. But this works as a proof of concept.
void RegPressureTracker::
-getMaxUpwardPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta,
- ArrayRef<PressureElement> CriticalPSets,
+getMaxUpwardPressureDelta(const MachineInstr *MI, PressureDiff *PDiff,
+ RegPressureDelta &Delta,
+ ArrayRef<PressureChange> CriticalPSets,
ArrayRef<unsigned> MaxPressureLimit) {
// Snapshot Pressure.
// FIXME: The snapshot heap space should persist. But I'm planning to
@@ -714,12 +762,113 @@ getMaxUpwardPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta,
LiveThruPressure);
computeMaxPressureDelta(SavedMaxPressure, P.MaxSetPressure, CriticalPSets,
MaxPressureLimit, Delta);
- assert(Delta.CriticalMax.UnitIncrease >= 0 &&
- Delta.CurrentMax.UnitIncrease >= 0 && "cannot decrease max pressure");
+ assert(Delta.CriticalMax.getUnitInc() >= 0 &&
+ Delta.CurrentMax.getUnitInc() >= 0 && "cannot decrease max pressure");
// Restore the tracker's state.
P.MaxSetPressure.swap(SavedMaxPressure);
CurrSetPressure.swap(SavedPressure);
+
+#ifndef NDEBUG
+ if (!PDiff)
+ return;
+
+ // Check if the alternate algorithm yields the same result.
+ RegPressureDelta Delta2;
+ getUpwardPressureDelta(MI, *PDiff, Delta2, CriticalPSets, MaxPressureLimit);
+ if (Delta != Delta2) {
+ dbgs() << "DELTA: " << *MI;
+ if (Delta.Excess.isValid())
+ dbgs() << "Excess1 " << TRI->getRegPressureSetName(Delta.Excess.getPSet())
+ << " " << Delta.Excess.getUnitInc() << "\n";
+ if (Delta.CriticalMax.isValid())
+ dbgs() << "Critic1 " << TRI->getRegPressureSetName(Delta.CriticalMax.getPSet())
+ << " " << Delta.CriticalMax.getUnitInc() << "\n";
+ if (Delta.CurrentMax.isValid())
+ dbgs() << "CurrMx1 " << TRI->getRegPressureSetName(Delta.CurrentMax.getPSet())
+ << " " << Delta.CurrentMax.getUnitInc() << "\n";
+ if (Delta2.Excess.isValid())
+ dbgs() << "Excess2 " << TRI->getRegPressureSetName(Delta2.Excess.getPSet())
+ << " " << Delta2.Excess.getUnitInc() << "\n";
+ if (Delta2.CriticalMax.isValid())
+ dbgs() << "Critic2 " << TRI->getRegPressureSetName(Delta2.CriticalMax.getPSet())
+ << " " << Delta2.CriticalMax.getUnitInc() << "\n";
+ if (Delta2.CurrentMax.isValid())
+ dbgs() << "CurrMx2 " << TRI->getRegPressureSetName(Delta2.CurrentMax.getPSet())
+ << " " << Delta2.CurrentMax.getUnitInc() << "\n";
+ llvm_unreachable("RegP Delta Mismatch");
+ }
+#endif
+}
+
+/// This is a prototype of the fast version of querying register pressure that
+/// does not directly depend on current liveness. It's still slow because we
+/// recompute pressure change on-the-fly. This implementation only exists to
+/// prove correctness.
+///
+/// @param Delta captures information needed for heuristics.
+///
+/// @param CriticalPSets Are the pressure sets that are known to exceed some
+/// limit within the region, not necessarily at the current position.
+///
+/// @param MaxPressureLimit Is the max pressure within the region, not
+/// necessarily at the current position.
+void RegPressureTracker::
+getUpwardPressureDelta(const MachineInstr *MI, /*const*/ PressureDiff &PDiff,
+ RegPressureDelta &Delta,
+ ArrayRef<PressureChange> CriticalPSets,
+ ArrayRef<unsigned> MaxPressureLimit) const {
+ unsigned CritIdx = 0, CritEnd = CriticalPSets.size();
+ for (PressureDiff::const_iterator
+ PDiffI = PDiff.begin(), PDiffE = PDiff.end();
+ PDiffI != PDiffE && PDiffI->isValid(); ++PDiffI) {
+
+ unsigned PSetID = PDiffI->getPSet();
+ unsigned Limit = RCI->getRegPressureSetLimit(PSetID);
+ if (!LiveThruPressure.empty())
+ Limit += LiveThruPressure[PSetID];
+
+ unsigned POld = CurrSetPressure[PSetID];
+ unsigned MOld = P.MaxSetPressure[PSetID];
+ unsigned MNew = MOld;
+ // Ignore DeadDefs here because they aren't captured by PressureChange.
+ unsigned PNew = POld + PDiffI->getUnitInc();
+ assert((PDiffI->getUnitInc() >= 0) == (PNew >= POld) && "PSet overflow");
+ if (PNew > MOld)
+ MNew = PNew;
+ // Check if current pressure has exceeded the limit.
+ if (!Delta.Excess.isValid()) {
+ unsigned ExcessInc = 0;
+ if (PNew > Limit)
+ ExcessInc = POld > Limit ? PNew - POld : PNew - Limit;
+ else if (POld > Limit)
+ ExcessInc = Limit - POld;
+ if (ExcessInc) {
+ Delta.Excess = PressureChange(PSetID);
+ Delta.Excess.setUnitInc(ExcessInc);
+ }
+ }
+ // Check if max pressure has exceeded a critical pressure set max.
+ if (MNew == MOld)
+ continue;
+ if (!Delta.CriticalMax.isValid()) {
+ while (CritIdx != CritEnd && CriticalPSets[CritIdx].getPSet() < PSetID)
+ ++CritIdx;
+
+ if (CritIdx != CritEnd && CriticalPSets[CritIdx].getPSet() == PSetID) {
+ int CritInc = (int)MNew - (int)CriticalPSets[CritIdx].getUnitInc();
+ if (CritInc > 0 && CritInc <= INT16_MAX) {
+ Delta.CriticalMax = PressureChange(PSetID);
+ Delta.CriticalMax.setUnitInc(CritInc);
+ }
+ }
+ }
+ // Check if max pressure has exceeded the current max.
+ if (!Delta.CurrentMax.isValid() && MNew > MaxPressureLimit[PSetID]) {
+ Delta.CurrentMax = PressureChange(PSetID);
+ Delta.CurrentMax.setUnitInc(MNew - MOld);
+ }
+ }
}
/// Helper to find a vreg use between two indices [PriorUseIdx, NextUseIdx).
@@ -765,10 +914,12 @@ void RegPressureTracker::bumpDownwardPressure(const MachineInstr *MI) {
// FIXME: allow the caller to pass in the list of vreg uses that remain
// to be bottom-scheduled to avoid searching uses at each query.
SlotIndex CurrIdx = getCurrSlot();
- const LiveInterval *LI = getInterval(Reg);
- if (LI && LI->killedAt(SlotIdx)
- && !findUseBetween(Reg, CurrIdx, SlotIdx, MRI, LIS)) {
- decreaseRegPressure(Reg);
+ const LiveRange *LR = getLiveRange(Reg);
+ if (LR) {
+ LiveQueryResult LRQ = LR->Query(SlotIdx);
+ if (LRQ.isKill() && !findUseBetween(Reg, CurrIdx, SlotIdx, MRI, LIS)) {
+ decreaseRegPressure(Reg);
+ }
}
}
else if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
@@ -793,7 +944,7 @@ void RegPressureTracker::bumpDownwardPressure(const MachineInstr *MI) {
/// This assumes that the current LiveIn set is sufficient.
void RegPressureTracker::
getMaxDownwardPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta,
- ArrayRef<PressureElement> CriticalPSets,
+ ArrayRef<PressureChange> CriticalPSets,
ArrayRef<unsigned> MaxPressureLimit) {
// Snapshot Pressure.
std::vector<unsigned> SavedPressure = CurrSetPressure;
@@ -805,8 +956,8 @@ getMaxDownwardPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta,
LiveThruPressure);
computeMaxPressureDelta(SavedMaxPressure, P.MaxSetPressure, CriticalPSets,
MaxPressureLimit, Delta);
- assert(Delta.CriticalMax.UnitIncrease >= 0 &&
- Delta.CurrentMax.UnitIncrease >= 0 && "cannot decrease max pressure");
+ assert(Delta.CriticalMax.getUnitInc() >= 0 &&
+ Delta.CurrentMax.getUnitInc() >= 0 && "cannot decrease max pressure");
// Restore the tracker's state.
P.MaxSetPressure.swap(SavedMaxPressure);
diff --git a/lib/CodeGen/ScheduleDAGInstrs.cpp b/lib/CodeGen/ScheduleDAGInstrs.cpp
index 892903c..7f1f9c4 100644
--- a/lib/CodeGen/ScheduleDAGInstrs.cpp
+++ b/lib/CodeGen/ScheduleDAGInstrs.cpp
@@ -36,6 +36,8 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
+#include <queue>
+
using namespace llvm;
static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
@@ -178,14 +180,11 @@ void ScheduleDAGInstrs::finishBlock() {
void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
- unsigned endcount) {
+ unsigned regioninstrs) {
assert(bb == BB && "startBlock should set BB");
RegionBegin = begin;
RegionEnd = end;
- EndIndex = endcount;
- MISUnitMap.clear();
-
- ScheduleDAG::clearDAG();
+ NumRegionInstrs = regioninstrs;
}
/// Close the current scheduling region. Don't clear any state in case the
@@ -405,9 +404,19 @@ void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
MachineInstr *MI = SU->getInstr();
unsigned Reg = MI->getOperand(OperIdx).getReg();
+ // Record this local VReg use.
+ VReg2UseMap::iterator UI = VRegUses.find(Reg);
+ for (; UI != VRegUses.end(); ++UI) {
+ if (UI->SU == SU)
+ break;
+ }
+ if (UI == VRegUses.end())
+ VRegUses.insert(VReg2SUnit(Reg, SU));
+
// Lookup this operand's reaching definition.
assert(LIS && "vreg dependencies requires LiveIntervals");
- LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
+ LiveQueryResult LRQ
+ = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
VNInfo *VNI = LRQ.valueIn();
// VNI will be valid because MachineOperand::readsReg() is checked by caller.
@@ -635,8 +644,7 @@ void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
bool isNormalMemory = false) {
// If this is a false dependency,
// do not add the edge, but rememeber the rejected node.
- if (!EnableAASchedMI ||
- MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
+ if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
Dep.setLatency(TrueMemOrderLatency);
SUb->addPred(Dep);
@@ -664,7 +672,7 @@ void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
void ScheduleDAGInstrs::initSUnits() {
// We'll be allocating one SUnit for each real instruction in the region,
// which is contained within a basic block.
- SUnits.reserve(BB->size());
+ SUnits.reserve(NumRegionInstrs);
for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
MachineInstr *MI = I;
@@ -686,10 +694,22 @@ void ScheduleDAGInstrs::initSUnits() {
/// DAG builder is an efficient place to do it because it already visits
/// operands.
void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
- RegPressureTracker *RPTracker) {
+ RegPressureTracker *RPTracker,
+ PressureDiffs *PDiffs) {
+ const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
+ bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
+ : ST.useAA();
+ AliasAnalysis *AAForDep = UseAA ? AA : 0;
+
+ MISUnitMap.clear();
+ ScheduleDAG::clearDAG();
+
// Create an SUnit for each real instruction.
initSUnits();
+ if (PDiffs)
+ PDiffs->init(SUnits.size());
+
// We build scheduling units by walking a block's instruction list from bottom
// to top.
@@ -715,10 +735,9 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
Uses.setUniverse(TRI->getNumRegs());
assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
- // FIXME: Allow SparseSet to reserve space for the creation of virtual
- // registers during scheduling. Don't artificially inflate the Universe
- // because we want to assert that vregs are not created during DAG building.
+ VRegUses.clear();
VRegDefs.setUniverse(MRI.getNumVirtRegs());
+ VRegUses.setUniverse(MRI.getNumVirtRegs());
// Model data dependencies between instructions being scheduled and the
// ExitSU.
@@ -738,17 +757,18 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
DbgMI = MI;
continue;
}
+ SUnit *SU = MISUnitMap[MI];
+ assert(SU && "No SUnit mapped to this MI");
+
if (RPTracker) {
- RPTracker->recede();
+ PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : 0;
+ RPTracker->recede(/*LiveUses=*/0, PDiff);
assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
}
assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) &&
"Cannot schedule terminators or labels!");
- SUnit *SU = MISUnitMap[MI];
- assert(SU && "No SUnit mapped to this MI");
-
// Add register-based dependencies (data, anti, and output).
bool HasVRegDef = false;
for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
@@ -826,20 +846,20 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
unsigned ChainLatency = 0;
if (AliasChain->getInstr()->mayLoad())
ChainLatency = TrueMemOrderLatency;
- addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
+ addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes,
ChainLatency);
}
AliasChain = SU;
for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
- addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
+ addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
TrueMemOrderLatency);
for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
E = AliasMemDefs.end(); I != E; ++I)
- addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
+ addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes);
for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
for (unsigned i = 0, e = I->second.size(); i != e; ++i)
- addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
+ addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
TrueMemOrderLatency);
}
adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
@@ -872,7 +892,8 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
MapVector<const Value *, SUnit *>::iterator IE =
((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
if (I != IE) {
- addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
+ addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes,
+ 0, true);
I->second = SU;
} else {
if (ThisMayAlias)
@@ -887,7 +908,7 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
if (J != JE) {
for (unsigned i = 0, e = J->second.size(); i != e; ++i)
- addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
+ addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes,
TrueMemOrderLatency, true);
J->second.clear();
}
@@ -896,11 +917,11 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
// Add dependencies from all the PendingLoads, i.e. loads
// with no underlying object.
for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
- addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
+ addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
TrueMemOrderLatency);
// Add dependence on alias chain, if needed.
if (AliasChain)
- addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
+ addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
// But we also should check dependent instructions for the
// SU in question.
adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
@@ -930,7 +951,7 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
// potentially aliasing stores.
for (MapVector<const Value *, SUnit *>::iterator I =
AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
- addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
+ addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes);
PendingLoads.push_back(SU);
MayAlias = true;
@@ -952,7 +973,8 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
MapVector<const Value *, SUnit *>::iterator IE =
((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
if (I != IE)
- addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
+ addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes,
+ 0, true);
if (ThisMayAlias)
AliasMemUses[V].push_back(SU);
else
@@ -962,7 +984,7 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
// Add dependencies on alias and barrier chains, if needed.
if (MayAlias && AliasChain)
- addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
+ addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
if (BarrierChain)
BarrierChain->addPred(SDep(SU, SDep::Barrier));
}
diff --git a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
index cb88941..43f72c5 100644
--- a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
+++ b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
@@ -35,6 +35,8 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;
@@ -43,6 +45,7 @@ STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
+STATISTIC(SlicedLoads, "Number of load sliced");
namespace {
static cl::opt<bool>
@@ -53,6 +56,14 @@ namespace {
CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
cl::desc("Include global information in alias analysis"));
+ /// Hidden option to stress test load slicing, i.e., when this option
+ /// is enabled, load slicing bypasses most of its profitability guards.
+ static cl::opt<bool>
+ StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
+ cl::desc("Bypass the profitability model of load "
+ "slicing"),
+ cl::init(false));
+
//------------------------------ DAGCombiner ---------------------------------//
class DAGCombiner {
@@ -62,6 +73,7 @@ namespace {
CodeGenOpt::Level OptLevel;
bool LegalOperations;
bool LegalTypes;
+ bool ForCodeSize;
// Worklist of all of the nodes that need to be simplified.
//
@@ -144,6 +156,7 @@ namespace {
bool CombineToPreIndexedLoadStore(SDNode *N);
bool CombineToPostIndexedLoadStore(SDNode *N);
+ bool SliceUpLoad(SDNode *N);
void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
@@ -283,11 +296,11 @@ namespace {
/// isAlias - Return true if there is any possibility that the two addresses
/// overlap.
- bool isAlias(SDValue Ptr1, int64_t Size1,
+ bool isAlias(SDValue Ptr1, int64_t Size1, bool IsVolatile1,
const Value *SrcValue1, int SrcValueOffset1,
unsigned SrcValueAlign1,
const MDNode *TBAAInfo1,
- SDValue Ptr2, int64_t Size2,
+ SDValue Ptr2, int64_t Size2, bool IsVolatile2,
const Value *SrcValue2, int SrcValueOffset2,
unsigned SrcValueAlign2,
const MDNode *TBAAInfo2) const;
@@ -299,7 +312,7 @@ namespace {
/// FindAliasInfo - Extracts the relevant alias information from the memory
/// node. Returns true if the operand was a load.
bool FindAliasInfo(SDNode *N,
- SDValue &Ptr, int64_t &Size,
+ SDValue &Ptr, int64_t &Size, bool &IsVolatile,
const Value *&SrcValue, int &SrcValueOffset,
unsigned &SrcValueAlignment,
const MDNode *&TBAAInfo) const;
@@ -315,8 +328,15 @@ namespace {
public:
DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
- : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
- OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
+ : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
+ OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
+ AttributeSet FnAttrs =
+ DAG.getMachineFunction().getFunction()->getAttributes();
+ ForCodeSize =
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize) ||
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
+ }
/// Run - runs the dag combiner on all nodes in the work list
void Run(CombineLevel AtLevel);
@@ -329,7 +349,8 @@ namespace {
assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
if (LHSTy.isVector())
return LHSTy;
- return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy) : TLI.getPointerTy();
+ return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy)
+ : TLI.getPointerTy();
}
/// isTypeLegal - This method returns true if we are running before type
@@ -744,9 +765,7 @@ SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
Replace = true;
return DAG.getExtLoad(ExtType, dl, PVT,
LD->getChain(), LD->getBasePtr(),
- LD->getPointerInfo(),
- MemVT, LD->isVolatile(),
- LD->isNonTemporal(), LD->getAlignment());
+ MemVT, LD->getMemOperand());
}
unsigned Opc = Op.getOpcode();
@@ -967,9 +986,7 @@ bool DAGCombiner::PromoteLoad(SDValue Op) {
: LD->getExtensionType();
SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
LD->getChain(), LD->getBasePtr(),
- LD->getPointerInfo(),
- MemVT, LD->isVolatile(),
- LD->isNonTemporal(), LD->getAlignment());
+ MemVT, LD->getMemOperand());
SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
DEBUG(dbgs() << "\nPromoting ";
@@ -1017,7 +1034,8 @@ void DAGCombiner::Run(CombineLevel AtLevel) {
// try and combine it.
while (!WorkListContents.empty()) {
SDNode *N;
- // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
+ // The WorkListOrder holds the SDNodes in order, but it may contain
+ // duplicates.
// In order to avoid a linear scan, we use a set (O(log N)) to hold what the
// worklist *should* contain, and check the node we want to visit is should
// actually be visited.
@@ -1617,19 +1635,8 @@ static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
bool LegalOperations, bool LegalTypes) {
if (!VT.isVector())
return DAG.getConstant(0, VT);
- if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
- // Produce a vector of zeros.
- EVT ElemTy = VT.getVectorElementType();
- if (LegalTypes && TLI.getTypeAction(*DAG.getContext(), ElemTy) ==
- TargetLowering::TypePromoteInteger)
- ElemTy = TLI.getTypeToTransformTo(*DAG.getContext(), ElemTy);
- assert((!LegalTypes || TLI.isTypeLegal(ElemTy)) &&
- "Type for zero vector elements is not legal");
- SDValue El = DAG.getConstant(0, ElemTy);
- std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
- return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
- &Ops[0], Ops.size());
- }
+ if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
+ return DAG.getConstant(0, VT);
return SDValue();
}
@@ -1771,8 +1778,8 @@ SDValue DAGCombiner::visitSUBE(SDNode *N) {
return SDValue();
}
-/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
-/// all the same constant or undefined.
+/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose
+/// elements are all the same constant or undefined.
static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
if (!C)
@@ -1808,9 +1815,11 @@ SDValue DAGCombiner::visitMUL(SDNode *N) {
N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
} else {
N0IsConst = dyn_cast<ConstantSDNode>(N0) != 0;
- ConstValue0 = N0IsConst? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue() : APInt();
+ ConstValue0 = N0IsConst ? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue()
+ : APInt();
N1IsConst = dyn_cast<ConstantSDNode>(N1) != 0;
- ConstValue1 = N1IsConst? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue() : APInt();
+ ConstValue1 = N1IsConst ? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue()
+ : APInt();
}
// fold (mul c1, c2) -> c1*c2
@@ -1823,20 +1832,24 @@ SDValue DAGCombiner::visitMUL(SDNode *N) {
// fold (mul x, 0) -> 0
if (N1IsConst && ConstValue1 == 0)
return N1;
+ // We require a splat of the entire scalar bit width for non-contiguous
+ // bit patterns.
+ bool IsFullSplat =
+ ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
// fold (mul x, 1) -> x
- if (N1IsConst && ConstValue1 == 1)
+ if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
return N0;
// fold (mul x, -1) -> 0-x
if (N1IsConst && ConstValue1.isAllOnesValue())
return DAG.getNode(ISD::SUB, SDLoc(N), VT,
DAG.getConstant(0, VT), N0);
// fold (mul x, (1 << c)) -> x << c
- if (N1IsConst && ConstValue1.isPowerOf2())
+ if (N1IsConst && ConstValue1.isPowerOf2() && IsFullSplat)
return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
DAG.getConstant(ConstValue1.logBase2(),
getShiftAmountTy(N0.getValueType())));
// fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
- if (N1IsConst && (-ConstValue1).isPowerOf2()) {
+ if (N1IsConst && (-ConstValue1).isPowerOf2() && IsFullSplat) {
unsigned Log2Val = (-ConstValue1).logBase2();
// FIXME: If the input is something that is easily negated (e.g. a
// single-use add), we should put the negate there.
@@ -2675,6 +2688,19 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
}
}
+ // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
+ if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
+ Op0 == Op1 && LL.getValueType().isInteger() &&
+ Op0 == ISD::SETNE && ((cast<ConstantSDNode>(LR)->isNullValue() &&
+ cast<ConstantSDNode>(RR)->isAllOnesValue()) ||
+ (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
+ cast<ConstantSDNode>(RR)->isNullValue()))) {
+ SDValue ADDNode = DAG.getNode(ISD::ADD, SDLoc(N0), LL.getValueType(),
+ LL, DAG.getConstant(1, LL.getValueType()));
+ AddToWorkList(ADDNode.getNode());
+ return DAG.getSetCC(SDLoc(N), VT, ADDNode,
+ DAG.getConstant(2, LL.getValueType()), ISD::SETUGE);
+ }
// canonicalize equivalent to ll == rl
if (LL == RR && LR == RL) {
Op1 = ISD::getSetCCSwappedOperands(Op1);
@@ -2718,9 +2744,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
LN0->getChain(), LN0->getBasePtr(),
- LN0->getPointerInfo(), MemVT,
- LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->getAlignment());
+ MemVT, LN0->getMemOperand());
AddToWorkList(N);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
@@ -2739,11 +2763,8 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
- LN0->getChain(),
- LN0->getBasePtr(), LN0->getPointerInfo(),
- MemVT,
- LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->getAlignment());
+ LN0->getChain(), LN0->getBasePtr(),
+ MemVT, LN0->getMemOperand());
AddToWorkList(N);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
@@ -2773,10 +2794,8 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
SDValue NewLoad =
DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
- LN0->getChain(), LN0->getBasePtr(),
- LN0->getPointerInfo(),
- ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->getAlignment());
+ LN0->getChain(), LN0->getBasePtr(), ExtVT,
+ LN0->getMemOperand());
AddToWorkList(N);
CombineTo(LN0, NewLoad, NewLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
@@ -2812,7 +2831,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
LN0->getChain(), NewPtr,
LN0->getPointerInfo(),
ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
- Alignment);
+ Alignment, LN0->getTBAAInfo());
AddToWorkList(N);
CombineTo(LN0, Load, Load.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
@@ -2848,6 +2867,14 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
}
}
+ // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
+ if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
+ SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
+ N0.getOperand(1), false);
+ if (BSwap.getNode())
+ return BSwap;
+ }
+
return SDValue();
}
@@ -2932,13 +2959,23 @@ SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
if (N00 != N10)
return SDValue();
- // Make sure everything beyond the low halfword is zero since the SRL 16
- // will clear the top bits.
+ // Make sure everything beyond the low halfword gets set to zero since the SRL
+ // 16 will clear the top bits.
unsigned OpSizeInBits = VT.getSizeInBits();
- if (DemandHighBits && OpSizeInBits > 16 &&
- (!LookPassAnd0 || !LookPassAnd1) &&
- !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
- return SDValue();
+ if (DemandHighBits && OpSizeInBits > 16) {
+ // If the left-shift isn't masked out then the only way this is a bswap is
+ // if all bits beyond the low 8 are 0. In that case the entire pattern
+ // reduces to a left shift anyway: leave it for other parts of the combiner.
+ if (!LookPassAnd0)
+ return SDValue();
+
+ // However, if the right shift isn't masked out then it might be because
+ // it's not needed. See if we can spot that too.
+ if (!LookPassAnd1 &&
+ !DAG.MaskedValueIsZero(
+ N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
+ return SDValue();
+ }
SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
if (OpSizeInBits > 16)
@@ -3078,7 +3115,7 @@ SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
SDValue(Parts[0],0));
- // Result of the bswap should be rotated by 16. If it's not legal, than
+ // Result of the bswap should be rotated by 16. If it's not legal, then
// do (x << 16) | (x >> 16).
SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
@@ -3343,29 +3380,9 @@ SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
if (LHSMask.getNode() || RHSMask.getNode())
return 0;
- // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
- // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
- if (RHSShiftAmt.getOpcode() == ISD::SUB &&
- LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
- if (ConstantSDNode *SUBC =
- dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
- if (SUBC->getAPIntValue() == OpSizeInBits)
- return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
- HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
- }
- }
-
- // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
- // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
- if (LHSShiftAmt.getOpcode() == ISD::SUB &&
- RHSShiftAmt == LHSShiftAmt.getOperand(1))
- if (ConstantSDNode *SUBC =
- dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0)))
- if (SUBC->getAPIntValue() == OpSizeInBits)
- return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
- HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
-
- // Look for sign/zext/any-extended or truncate cases:
+ // If the shift amount is sign/zext/any-extended just peel it off.
+ SDValue LExtOp0 = LHSShiftAmt;
+ SDValue RExtOp0 = RHSShiftAmt;
if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
@@ -3374,33 +3391,31 @@ SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
- SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
- SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
- if (RExtOp0.getOpcode() == ISD::SUB &&
- RExtOp0.getOperand(1) == LExtOp0) {
- // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
- // (rotl x, y)
- // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
- // (rotr x, (sub 32, y))
- if (ConstantSDNode *SUBC =
+ LExtOp0 = LHSShiftAmt.getOperand(0);
+ RExtOp0 = RHSShiftAmt.getOperand(0);
+ }
+
+ if (RExtOp0.getOpcode() == ISD::SUB && RExtOp0.getOperand(1) == LExtOp0) {
+ // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
+ // (rotl x, y)
+ // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
+ // (rotr x, (sub 32, y))
+ if (ConstantSDNode *SUBC =
dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0)))
- if (SUBC->getAPIntValue() == OpSizeInBits)
- return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
- LHSShiftArg,
- HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
- } else if (LExtOp0.getOpcode() == ISD::SUB &&
- RExtOp0 == LExtOp0.getOperand(1)) {
- // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
- // (rotr x, y)
- // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
- // (rotl x, (sub 32, y))
- if (ConstantSDNode *SUBC =
+ if (SUBC->getAPIntValue() == OpSizeInBits)
+ return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
+ HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
+ } else if (LExtOp0.getOpcode() == ISD::SUB &&
+ RExtOp0 == LExtOp0.getOperand(1)) {
+ // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
+ // (rotr x, y)
+ // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
+ // (rotl x, (sub 32, y))
+ if (ConstantSDNode *SUBC =
dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0)))
- if (SUBC->getAPIntValue() == OpSizeInBits)
- return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
- LHSShiftArg,
- HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
- }
+ if (SUBC->getAPIntValue() == OpSizeInBits)
+ return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
+ HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
}
return 0;
@@ -3620,6 +3635,12 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
+ // fold vector ops
+ if (VT.isVector()) {
+ SDValue FoldedVOp = SimplifyVBinOp(N);
+ if (FoldedVOp.getNode()) return FoldedVOp;
+ }
+
// fold (shl c1, c2) -> c1<<c2
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
@@ -3697,6 +3718,27 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
}
}
+ // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
+ // Only fold this if the inner zext has no other uses to avoid increasing
+ // the total number of instructions.
+ if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
+ N0.getOperand(0).getOpcode() == ISD::SRL &&
+ isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
+ uint64_t c1 =
+ cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
+ if (c1 < VT.getSizeInBits()) {
+ uint64_t c2 = N1C->getZExtValue();
+ if (c1 == c2) {
+ SDValue NewOp0 = N0.getOperand(0);
+ EVT CountVT = NewOp0.getOperand(1).getValueType();
+ SDValue NewSHL = DAG.getNode(ISD::SHL, SDLoc(N), NewOp0.getValueType(),
+ NewOp0, DAG.getConstant(c2, CountVT));
+ AddToWorkList(NewSHL.getNode());
+ return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
+ }
+ }
+ }
+
// fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
// (and (srl x, (sub c1, c2), MASK)
// Only fold this if the inner shift has no other uses -- if it does, folding
@@ -3750,6 +3792,12 @@ SDValue DAGCombiner::visitSRA(SDNode *N) {
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
+ // fold vector ops
+ if (VT.isVector()) {
+ SDValue FoldedVOp = SimplifyVBinOp(N);
+ if (FoldedVOp.getNode()) return FoldedVOp;
+ }
+
// fold (sra c1, c2) -> (sra c1, c2)
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
@@ -3895,6 +3943,12 @@ SDValue DAGCombiner::visitSRL(SDNode *N) {
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
+ // fold vector ops
+ if (VT.isVector()) {
+ SDValue FoldedVOp = SimplifyVBinOp(N);
+ if (FoldedVOp.getNode()) return FoldedVOp;
+ }
+
// fold (srl c1, c2) -> c1 >>u c2
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
@@ -4217,6 +4271,23 @@ SDValue DAGCombiner::visitSELECT(SDNode *N) {
return SDValue();
}
+static
+std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
+ SDLoc DL(N);
+ EVT LoVT, HiVT;
+ llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
+
+ // Split the inputs.
+ SDValue Lo, Hi, LL, LH, RL, RH;
+ llvm::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
+ llvm::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
+
+ Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
+ Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
+
+ return std::make_pair(Lo, Hi);
+}
+
SDValue DAGCombiner::visitVSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
@@ -4254,6 +4325,34 @@ SDValue DAGCombiner::visitVSELECT(SDNode *N) {
}
}
+ // If the VSELECT result requires splitting and the mask is provided by a
+ // SETCC, then split both nodes and its operands before legalization. This
+ // prevents the type legalizer from unrolling SETCC into scalar comparisons
+ // and enables future optimizations (e.g. min/max pattern matching on X86).
+ if (N0.getOpcode() == ISD::SETCC) {
+ EVT VT = N->getValueType(0);
+
+ // Check if any splitting is required.
+ if (TLI.getTypeAction(*DAG.getContext(), VT) !=
+ TargetLowering::TypeSplitVector)
+ return SDValue();
+
+ SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH;
+ llvm::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG);
+ llvm::tie(LL, LH) = DAG.SplitVectorOperand(N, 1);
+ llvm::tie(RL, RH) = DAG.SplitVectorOperand(N, 2);
+
+ Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL);
+ Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH);
+
+ // Add the new VSELECT nodes to the work list in case they need to be split
+ // again.
+ AddToWorkList(Lo.getNode());
+ AddToWorkList(Hi.getNode());
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
+ }
+
return SDValue();
}
@@ -4469,10 +4568,8 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
- LN0->getBasePtr(), LN0->getPointerInfo(),
- N0.getValueType(),
- LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->getAlignment());
+ LN0->getBasePtr(), N0.getValueType(),
+ LN0->getMemOperand());
CombineTo(N, ExtLoad);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
N0.getValueType(), ExtLoad);
@@ -4493,10 +4590,8 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
- LN0->getBasePtr(), LN0->getPointerInfo(),
- MemVT,
- LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->getAlignment());
+ LN0->getBasePtr(), MemVT,
+ LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
@@ -4524,11 +4619,8 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
if (DoXform) {
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
LN0->getChain(), LN0->getBasePtr(),
- LN0->getPointerInfo(),
LN0->getMemoryVT(),
- LN0->isVolatile(),
- LN0->isNonTemporal(),
- LN0->getAlignment());
+ LN0->getMemOperand());
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.sext(VT.getSizeInBits());
SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
@@ -4593,9 +4685,9 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(VT)))) {
return DAG.getSelect(SDLoc(N), VT,
DAG.getSetCC(SDLoc(N),
- getSetCCResultType(VT),
- N0.getOperand(0), N0.getOperand(1),
- cast<CondCodeSDNode>(N0.getOperand(2))->get()),
+ getSetCCResultType(VT),
+ N0.getOperand(0), N0.getOperand(1),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get()),
NegOne, DAG.getConstant(0, VT));
}
}
@@ -4762,10 +4854,8 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
- LN0->getBasePtr(), LN0->getPointerInfo(),
- N0.getValueType(),
- LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->getAlignment());
+ LN0->getBasePtr(), N0.getValueType(),
+ LN0->getMemOperand());
CombineTo(N, ExtLoad);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
N0.getValueType(), ExtLoad);
@@ -4795,11 +4885,8 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
if (DoXform) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
LN0->getChain(), LN0->getBasePtr(),
- LN0->getPointerInfo(),
LN0->getMemoryVT(),
- LN0->isVolatile(),
- LN0->isNonTemporal(),
- LN0->getAlignment());
+ LN0->getMemOperand());
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
@@ -4826,10 +4913,8 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
- LN0->getBasePtr(), LN0->getPointerInfo(),
- MemVT,
- LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->getAlignment());
+ LN0->getBasePtr(), MemVT,
+ LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
@@ -4992,10 +5077,8 @@ SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
LN0->getChain(),
- LN0->getBasePtr(), LN0->getPointerInfo(),
- N0.getValueType(),
- LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->getAlignment());
+ LN0->getBasePtr(), N0.getValueType(),
+ LN0->getMemOperand());
CombineTo(N, ExtLoad);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
N0.getValueType(), ExtLoad);
@@ -5016,9 +5099,7 @@ SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
EVT MemVT = LN0->getMemoryVT();
SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(N),
VT, LN0->getChain(), LN0->getBasePtr(),
- LN0->getPointerInfo(), MemVT,
- LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->getAlignment());
+ MemVT, LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
@@ -5250,12 +5331,12 @@ SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
LN0->getPointerInfo().getWithOffset(PtrOff),
LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->isInvariant(), NewAlign);
+ LN0->isInvariant(), NewAlign, LN0->getTBAAInfo());
else
Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
LN0->getPointerInfo().getWithOffset(PtrOff),
ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
- NewAlign);
+ NewAlign, LN0->getTBAAInfo());
// Replace the old load's chain with the new load's chain.
WorkListRemover DeadNodes(*this);
@@ -5353,10 +5434,8 @@ SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
- LN0->getBasePtr(), LN0->getPointerInfo(),
- EVT,
- LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->getAlignment());
+ LN0->getBasePtr(), EVT,
+ LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
AddToWorkList(ExtLoad.getNode());
@@ -5371,10 +5450,8 @@ SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
- LN0->getBasePtr(), LN0->getPointerInfo(),
- EVT,
- LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->getAlignment());
+ LN0->getBasePtr(), EVT,
+ LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
@@ -5657,7 +5734,8 @@ SDValue DAGCombiner::visitBITCAST(SDNode *N) {
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
// Do not change the width of a volatile load.
!cast<LoadSDNode>(N0)->isVolatile() &&
- (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
+ (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
+ TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
unsigned Align = TLI.getDataLayout()->
getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
@@ -5667,7 +5745,8 @@ SDValue DAGCombiner::visitBITCAST(SDNode *N) {
SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
LN0->getBasePtr(), LN0->getPointerInfo(),
LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->isInvariant(), OrigAlign);
+ LN0->isInvariant(), OrigAlign,
+ LN0->getTBAAInfo());
AddToWorkList(N);
CombineTo(N0.getNode(),
DAG.getNode(ISD::BITCAST, SDLoc(N0),
@@ -6652,16 +6731,14 @@ SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
}
// fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
- if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
+ if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
LN0->getChain(),
- LN0->getBasePtr(), LN0->getPointerInfo(),
- N0.getValueType(),
- LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->getAlignment());
+ LN0->getBasePtr(), N0.getValueType(),
+ LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
@@ -7451,13 +7528,16 @@ SDValue DAGCombiner::visitLOAD(SDNode *N) {
LD->getValueType(0),
Chain, Ptr, LD->getPointerInfo(),
LD->getMemoryVT(),
- LD->isVolatile(), LD->isNonTemporal(), Align);
+ LD->isVolatile(), LD->isNonTemporal(), Align,
+ LD->getTBAAInfo());
return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
}
}
}
- if (CombinerAA) {
+ bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
+ TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
+ if (UseAA) {
// Walk up chain skipping non-aliasing memory nodes.
SDValue BetterChain = FindBetterChain(N, Chain);
@@ -7468,17 +7548,12 @@ SDValue DAGCombiner::visitLOAD(SDNode *N) {
// Replace the chain to void dependency.
if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
- BetterChain, Ptr, LD->getPointerInfo(),
- LD->isVolatile(), LD->isNonTemporal(),
- LD->isInvariant(), LD->getAlignment());
+ BetterChain, Ptr, LD->getMemOperand());
} else {
ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
LD->getValueType(0),
- BetterChain, Ptr, LD->getPointerInfo(),
- LD->getMemoryVT(),
- LD->isVolatile(),
- LD->isNonTemporal(),
- LD->getAlignment());
+ BetterChain, Ptr, LD->getMemoryVT(),
+ LD->getMemOperand());
}
// Create token factor to keep old chain connected.
@@ -7498,9 +7573,562 @@ SDValue DAGCombiner::visitLOAD(SDNode *N) {
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
return SDValue(N, 0);
+ // Try to slice up N to more direct loads if the slices are mapped to
+ // different register banks or pairing can take place.
+ if (SliceUpLoad(N))
+ return SDValue(N, 0);
+
return SDValue();
}
+namespace {
+/// \brief Helper structure used to slice a load in smaller loads.
+/// Basically a slice is obtained from the following sequence:
+/// Origin = load Ty1, Base
+/// Shift = srl Ty1 Origin, CstTy Amount
+/// Inst = trunc Shift to Ty2
+///
+/// Then, it will be rewriten into:
+/// Slice = load SliceTy, Base + SliceOffset
+/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
+///
+/// SliceTy is deduced from the number of bits that are actually used to
+/// build Inst.
+struct LoadedSlice {
+ /// \brief Helper structure used to compute the cost of a slice.
+ struct Cost {
+ /// Are we optimizing for code size.
+ bool ForCodeSize;
+ /// Various cost.
+ unsigned Loads;
+ unsigned Truncates;
+ unsigned CrossRegisterBanksCopies;
+ unsigned ZExts;
+ unsigned Shift;
+
+ Cost(bool ForCodeSize = false)
+ : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
+ CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
+
+ /// \brief Get the cost of one isolated slice.
+ Cost(const LoadedSlice &LS, bool ForCodeSize = false)
+ : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
+ CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
+ EVT TruncType = LS.Inst->getValueType(0);
+ EVT LoadedType = LS.getLoadedType();
+ if (TruncType != LoadedType &&
+ !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
+ ZExts = 1;
+ }
+
+ /// \brief Account for slicing gain in the current cost.
+ /// Slicing provide a few gains like removing a shift or a
+ /// truncate. This method allows to grow the cost of the original
+ /// load with the gain from this slice.
+ void addSliceGain(const LoadedSlice &LS) {
+ // Each slice saves a truncate.
+ const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
+ if (!TLI.isTruncateFree(LS.Inst->getValueType(0),
+ LS.Inst->getOperand(0).getValueType()))
+ ++Truncates;
+ // If there is a shift amount, this slice gets rid of it.
+ if (LS.Shift)
+ ++Shift;
+ // If this slice can merge a cross register bank copy, account for it.
+ if (LS.canMergeExpensiveCrossRegisterBankCopy())
+ ++CrossRegisterBanksCopies;
+ }
+
+ Cost &operator+=(const Cost &RHS) {
+ Loads += RHS.Loads;
+ Truncates += RHS.Truncates;
+ CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
+ ZExts += RHS.ZExts;
+ Shift += RHS.Shift;
+ return *this;
+ }
+
+ bool operator==(const Cost &RHS) const {
+ return Loads == RHS.Loads && Truncates == RHS.Truncates &&
+ CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
+ ZExts == RHS.ZExts && Shift == RHS.Shift;
+ }
+
+ bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
+
+ bool operator<(const Cost &RHS) const {
+ // Assume cross register banks copies are as expensive as loads.
+ // FIXME: Do we want some more target hooks?
+ unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
+ unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
+ // Unless we are optimizing for code size, consider the
+ // expensive operation first.
+ if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
+ return ExpensiveOpsLHS < ExpensiveOpsRHS;
+ return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
+ (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
+ }
+
+ bool operator>(const Cost &RHS) const { return RHS < *this; }
+
+ bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
+
+ bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
+ };
+ // The last instruction that represent the slice. This should be a
+ // truncate instruction.
+ SDNode *Inst;
+ // The original load instruction.
+ LoadSDNode *Origin;
+ // The right shift amount in bits from the original load.
+ unsigned Shift;
+ // The DAG from which Origin came from.
+ // This is used to get some contextual information about legal types, etc.
+ SelectionDAG *DAG;
+
+ LoadedSlice(SDNode *Inst = NULL, LoadSDNode *Origin = NULL,
+ unsigned Shift = 0, SelectionDAG *DAG = NULL)
+ : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
+
+ LoadedSlice(const LoadedSlice &LS)
+ : Inst(LS.Inst), Origin(LS.Origin), Shift(LS.Shift), DAG(LS.DAG) {}
+
+ /// \brief Get the bits used in a chunk of bits \p BitWidth large.
+ /// \return Result is \p BitWidth and has used bits set to 1 and
+ /// not used bits set to 0.
+ APInt getUsedBits() const {
+ // Reproduce the trunc(lshr) sequence:
+ // - Start from the truncated value.
+ // - Zero extend to the desired bit width.
+ // - Shift left.
+ assert(Origin && "No original load to compare against.");
+ unsigned BitWidth = Origin->getValueSizeInBits(0);
+ assert(Inst && "This slice is not bound to an instruction");
+ assert(Inst->getValueSizeInBits(0) <= BitWidth &&
+ "Extracted slice is bigger than the whole type!");
+ APInt UsedBits(Inst->getValueSizeInBits(0), 0);
+ UsedBits.setAllBits();
+ UsedBits = UsedBits.zext(BitWidth);
+ UsedBits <<= Shift;
+ return UsedBits;
+ }
+
+ /// \brief Get the size of the slice to be loaded in bytes.
+ unsigned getLoadedSize() const {
+ unsigned SliceSize = getUsedBits().countPopulation();
+ assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
+ return SliceSize / 8;
+ }
+
+ /// \brief Get the type that will be loaded for this slice.
+ /// Note: This may not be the final type for the slice.
+ EVT getLoadedType() const {
+ assert(DAG && "Missing context");
+ LLVMContext &Ctxt = *DAG->getContext();
+ return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
+ }
+
+ /// \brief Get the alignment of the load used for this slice.
+ unsigned getAlignment() const {
+ unsigned Alignment = Origin->getAlignment();
+ unsigned Offset = getOffsetFromBase();
+ if (Offset != 0)
+ Alignment = MinAlign(Alignment, Alignment + Offset);
+ return Alignment;
+ }
+
+ /// \brief Check if this slice can be rewritten with legal operations.
+ bool isLegal() const {
+ // An invalid slice is not legal.
+ if (!Origin || !Inst || !DAG)
+ return false;
+
+ // Offsets are for indexed load only, we do not handle that.
+ if (Origin->getOffset().getOpcode() != ISD::UNDEF)
+ return false;
+
+ const TargetLowering &TLI = DAG->getTargetLoweringInfo();
+
+ // Check that the type is legal.
+ EVT SliceType = getLoadedType();
+ if (!TLI.isTypeLegal(SliceType))
+ return false;
+
+ // Check that the load is legal for this type.
+ if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
+ return false;
+
+ // Check that the offset can be computed.
+ // 1. Check its type.
+ EVT PtrType = Origin->getBasePtr().getValueType();
+ if (PtrType == MVT::Untyped || PtrType.isExtended())
+ return false;
+
+ // 2. Check that it fits in the immediate.
+ if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
+ return false;
+
+ // 3. Check that the computation is legal.
+ if (!TLI.isOperationLegal(ISD::ADD, PtrType))
+ return false;
+
+ // Check that the zext is legal if it needs one.
+ EVT TruncateType = Inst->getValueType(0);
+ if (TruncateType != SliceType &&
+ !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
+ return false;
+
+ return true;
+ }
+
+ /// \brief Get the offset in bytes of this slice in the original chunk of
+ /// bits.
+ /// \pre DAG != NULL.
+ uint64_t getOffsetFromBase() const {
+ assert(DAG && "Missing context.");
+ bool IsBigEndian =
+ DAG->getTargetLoweringInfo().getDataLayout()->isBigEndian();
+ assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
+ uint64_t Offset = Shift / 8;
+ unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
+ assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
+ "The size of the original loaded type is not a multiple of a"
+ " byte.");
+ // If Offset is bigger than TySizeInBytes, it means we are loading all
+ // zeros. This should have been optimized before in the process.
+ assert(TySizeInBytes > Offset &&
+ "Invalid shift amount for given loaded size");
+ if (IsBigEndian)
+ Offset = TySizeInBytes - Offset - getLoadedSize();
+ return Offset;
+ }
+
+ /// \brief Generate the sequence of instructions to load the slice
+ /// represented by this object and redirect the uses of this slice to
+ /// this new sequence of instructions.
+ /// \pre this->Inst && this->Origin are valid Instructions and this
+ /// object passed the legal check: LoadedSlice::isLegal returned true.
+ /// \return The last instruction of the sequence used to load the slice.
+ SDValue loadSlice() const {
+ assert(Inst && Origin && "Unable to replace a non-existing slice.");
+ const SDValue &OldBaseAddr = Origin->getBasePtr();
+ SDValue BaseAddr = OldBaseAddr;
+ // Get the offset in that chunk of bytes w.r.t. the endianess.
+ int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
+ assert(Offset >= 0 && "Offset too big to fit in int64_t!");
+ if (Offset) {
+ // BaseAddr = BaseAddr + Offset.
+ EVT ArithType = BaseAddr.getValueType();
+ BaseAddr = DAG->getNode(ISD::ADD, SDLoc(Origin), ArithType, BaseAddr,
+ DAG->getConstant(Offset, ArithType));
+ }
+
+ // Create the type of the loaded slice according to its size.
+ EVT SliceType = getLoadedType();
+
+ // Create the load for the slice.
+ SDValue LastInst = DAG->getLoad(
+ SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
+ Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
+ Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
+ // If the final type is not the same as the loaded type, this means that
+ // we have to pad with zero. Create a zero extend for that.
+ EVT FinalType = Inst->getValueType(0);
+ if (SliceType != FinalType)
+ LastInst =
+ DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
+ return LastInst;
+ }
+
+ /// \brief Check if this slice can be merged with an expensive cross register
+ /// bank copy. E.g.,
+ /// i = load i32
+ /// f = bitcast i32 i to float
+ bool canMergeExpensiveCrossRegisterBankCopy() const {
+ if (!Inst || !Inst->hasOneUse())
+ return false;
+ SDNode *Use = *Inst->use_begin();
+ if (Use->getOpcode() != ISD::BITCAST)
+ return false;
+ assert(DAG && "Missing context");
+ const TargetLowering &TLI = DAG->getTargetLoweringInfo();
+ EVT ResVT = Use->getValueType(0);
+ const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
+ const TargetRegisterClass *ArgRC =
+ TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
+ if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
+ return false;
+
+ // At this point, we know that we perform a cross-register-bank copy.
+ // Check if it is expensive.
+ const TargetRegisterInfo *TRI = TLI.getTargetMachine().getRegisterInfo();
+ // Assume bitcasts are cheap, unless both register classes do not
+ // explicitly share a common sub class.
+ if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
+ return false;
+
+ // Check if it will be merged with the load.
+ // 1. Check the alignment constraint.
+ unsigned RequiredAlignment = TLI.getDataLayout()->getABITypeAlignment(
+ ResVT.getTypeForEVT(*DAG->getContext()));
+
+ if (RequiredAlignment > getAlignment())
+ return false;
+
+ // 2. Check that the load is a legal operation for that type.
+ if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
+ return false;
+
+ // 3. Check that we do not have a zext in the way.
+ if (Inst->getValueType(0) != getLoadedType())
+ return false;
+
+ return true;
+ }
+};
+}
+
+/// \brief Sorts LoadedSlice according to their offset.
+struct LoadedSliceSorter {
+ bool operator()(const LoadedSlice &LHS, const LoadedSlice &RHS) {
+ assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
+ return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
+ }
+};
+
+/// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
+/// \p UsedBits looks like 0..0 1..1 0..0.
+static bool areUsedBitsDense(const APInt &UsedBits) {
+ // If all the bits are one, this is dense!
+ if (UsedBits.isAllOnesValue())
+ return true;
+
+ // Get rid of the unused bits on the right.
+ APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
+ // Get rid of the unused bits on the left.
+ if (NarrowedUsedBits.countLeadingZeros())
+ NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
+ // Check that the chunk of bits is completely used.
+ return NarrowedUsedBits.isAllOnesValue();
+}
+
+/// \brief Check whether or not \p First and \p Second are next to each other
+/// in memory. This means that there is no hole between the bits loaded
+/// by \p First and the bits loaded by \p Second.
+static bool areSlicesNextToEachOther(const LoadedSlice &First,
+ const LoadedSlice &Second) {
+ assert(First.Origin == Second.Origin && First.Origin &&
+ "Unable to match different memory origins.");
+ APInt UsedBits = First.getUsedBits();
+ assert((UsedBits & Second.getUsedBits()) == 0 &&
+ "Slices are not supposed to overlap.");
+ UsedBits |= Second.getUsedBits();
+ return areUsedBitsDense(UsedBits);
+}
+
+/// \brief Adjust the \p GlobalLSCost according to the target
+/// paring capabilities and the layout of the slices.
+/// \pre \p GlobalLSCost should account for at least as many loads as
+/// there is in the slices in \p LoadedSlices.
+static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
+ LoadedSlice::Cost &GlobalLSCost) {
+ unsigned NumberOfSlices = LoadedSlices.size();
+ // If there is less than 2 elements, no pairing is possible.
+ if (NumberOfSlices < 2)
+ return;
+
+ // Sort the slices so that elements that are likely to be next to each
+ // other in memory are next to each other in the list.
+ std::sort(LoadedSlices.begin(), LoadedSlices.end(), LoadedSliceSorter());
+ const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
+ // First (resp. Second) is the first (resp. Second) potentially candidate
+ // to be placed in a paired load.
+ const LoadedSlice *First = NULL;
+ const LoadedSlice *Second = NULL;
+ for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
+ // Set the beginning of the pair.
+ First = Second) {
+
+ Second = &LoadedSlices[CurrSlice];
+
+ // If First is NULL, it means we start a new pair.
+ // Get to the next slice.
+ if (!First)
+ continue;
+
+ EVT LoadedType = First->getLoadedType();
+
+ // If the types of the slices are different, we cannot pair them.
+ if (LoadedType != Second->getLoadedType())
+ continue;
+
+ // Check if the target supplies paired loads for this type.
+ unsigned RequiredAlignment = 0;
+ if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
+ // move to the next pair, this type is hopeless.
+ Second = NULL;
+ continue;
+ }
+ // Check if we meet the alignment requirement.
+ if (RequiredAlignment > First->getAlignment())
+ continue;
+
+ // Check that both loads are next to each other in memory.
+ if (!areSlicesNextToEachOther(*First, *Second))
+ continue;
+
+ assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
+ --GlobalLSCost.Loads;
+ // Move to the next pair.
+ Second = NULL;
+ }
+}
+
+/// \brief Check the profitability of all involved LoadedSlice.
+/// Currently, it is considered profitable if there is exactly two
+/// involved slices (1) which are (2) next to each other in memory, and
+/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
+///
+/// Note: The order of the elements in \p LoadedSlices may be modified, but not
+/// the elements themselves.
+///
+/// FIXME: When the cost model will be mature enough, we can relax
+/// constraints (1) and (2).
+static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
+ const APInt &UsedBits, bool ForCodeSize) {
+ unsigned NumberOfSlices = LoadedSlices.size();
+ if (StressLoadSlicing)
+ return NumberOfSlices > 1;
+
+ // Check (1).
+ if (NumberOfSlices != 2)
+ return false;
+
+ // Check (2).
+ if (!areUsedBitsDense(UsedBits))
+ return false;
+
+ // Check (3).
+ LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
+ // The original code has one big load.
+ OrigCost.Loads = 1;
+ for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
+ const LoadedSlice &LS = LoadedSlices[CurrSlice];
+ // Accumulate the cost of all the slices.
+ LoadedSlice::Cost SliceCost(LS, ForCodeSize);
+ GlobalSlicingCost += SliceCost;
+
+ // Account as cost in the original configuration the gain obtained
+ // with the current slices.
+ OrigCost.addSliceGain(LS);
+ }
+
+ // If the target supports paired load, adjust the cost accordingly.
+ adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
+ return OrigCost > GlobalSlicingCost;
+}
+
+/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
+/// operations, split it in the various pieces being extracted.
+///
+/// This sort of thing is introduced by SROA.
+/// This slicing takes care not to insert overlapping loads.
+/// \pre LI is a simple load (i.e., not an atomic or volatile load).
+bool DAGCombiner::SliceUpLoad(SDNode *N) {
+ if (Level < AfterLegalizeDAG)
+ return false;
+
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
+ !LD->getValueType(0).isInteger())
+ return false;
+
+ // Keep track of already used bits to detect overlapping values.
+ // In that case, we will just abort the transformation.
+ APInt UsedBits(LD->getValueSizeInBits(0), 0);
+
+ SmallVector<LoadedSlice, 4> LoadedSlices;
+
+ // Check if this load is used as several smaller chunks of bits.
+ // Basically, look for uses in trunc or trunc(lshr) and record a new chain
+ // of computation for each trunc.
+ for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
+ UI != UIEnd; ++UI) {
+ // Skip the uses of the chain.
+ if (UI.getUse().getResNo() != 0)
+ continue;
+
+ SDNode *User = *UI;
+ unsigned Shift = 0;
+
+ // Check if this is a trunc(lshr).
+ if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
+ isa<ConstantSDNode>(User->getOperand(1))) {
+ Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
+ User = *User->use_begin();
+ }
+
+ // At this point, User is a Truncate, iff we encountered, trunc or
+ // trunc(lshr).
+ if (User->getOpcode() != ISD::TRUNCATE)
+ return false;
+
+ // The width of the type must be a power of 2 and greater than 8-bits.
+ // Otherwise the load cannot be represented in LLVM IR.
+ // Moreover, if we shifted with a non 8-bits multiple, the slice
+ // will be accross several bytes. We do not support that.
+ unsigned Width = User->getValueSizeInBits(0);
+ if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
+ return 0;
+
+ // Build the slice for this chain of computations.
+ LoadedSlice LS(User, LD, Shift, &DAG);
+ APInt CurrentUsedBits = LS.getUsedBits();
+
+ // Check if this slice overlaps with another.
+ if ((CurrentUsedBits & UsedBits) != 0)
+ return false;
+ // Update the bits used globally.
+ UsedBits |= CurrentUsedBits;
+
+ // Check if the new slice would be legal.
+ if (!LS.isLegal())
+ return false;
+
+ // Record the slice.
+ LoadedSlices.push_back(LS);
+ }
+
+ // Abort slicing if it does not seem to be profitable.
+ if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
+ return false;
+
+ ++SlicedLoads;
+
+ // Rewrite each chain to use an independent load.
+ // By construction, each chain can be represented by a unique load.
+
+ // Prepare the argument for the new token factor for all the slices.
+ SmallVector<SDValue, 8> ArgChains;
+ for (SmallVectorImpl<LoadedSlice>::const_iterator
+ LSIt = LoadedSlices.begin(),
+ LSItEnd = LoadedSlices.end();
+ LSIt != LSItEnd; ++LSIt) {
+ SDValue SliceInst = LSIt->loadSlice();
+ CombineTo(LSIt->Inst, SliceInst, true);
+ if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
+ SliceInst = SliceInst.getOperand(0);
+ assert(SliceInst->getOpcode() == ISD::LOAD &&
+ "It takes more than a zext to get to the loaded slice!!");
+ ArgChains.push_back(SliceInst.getValue(1));
+ }
+
+ SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
+ &ArgChains[0], ArgChains.size());
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
+ return true;
+}
+
/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
/// load is having specific bytes cleared out. If so, return the byte size
/// being masked out and the shift amount.
@@ -7735,7 +8363,8 @@ SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
LD->getChain(), NewPtr,
LD->getPointerInfo().getWithOffset(PtrOff),
LD->isVolatile(), LD->isNonTemporal(),
- LD->isInvariant(), NewAlign);
+ LD->isInvariant(), NewAlign,
+ LD->getTBAAInfo());
SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
DAG.getConstant(NewImm, NewVT));
SDValue NewST = DAG.getStore(Chain, SDLoc(N),
@@ -7846,17 +8475,28 @@ struct BaseIndexOffset {
static BaseIndexOffset match(SDValue Ptr) {
bool IsIndexSignExt = false;
- // Just Base or possibly anything else.
+ // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
+ // instruction, then it could be just the BASE or everything else we don't
+ // know how to handle. Just use Ptr as BASE and give up.
if (Ptr->getOpcode() != ISD::ADD)
return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
- // Base + offset.
+ // We know that we have at least an ADD instruction. Try to pattern match
+ // the simple case of BASE + OFFSET.
if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
IsIndexSignExt);
}
+ // Inside a loop the current BASE pointer is calculated using an ADD and a
+ // MUL instruction. In this case Ptr is the actual BASE pointer.
+ // (i64 add (i64 %array_ptr)
+ // (i64 mul (i64 %induction_var)
+ // (i64 %element_size)))
+ if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
+ return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
+
// Look at Base + Index + Offset cases.
SDValue Base = Ptr->getOperand(0);
SDValue IndexOffset = Ptr->getOperand(1);
@@ -8007,6 +8647,11 @@ bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
Index = STn;
break;
} else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
+ if (Ldn->isVolatile()) {
+ Index = NULL;
+ break;
+ }
+
// Save the load node for later. Continue the scan.
AliasLoadNodes.push_back(Ldn);
NextInChain = Ldn->getChain().getNode();
@@ -8384,7 +9029,8 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
Ptr, ST->getPointerInfo(), ST->isVolatile(),
- ST->isNonTemporal(), OrigAlign);
+ ST->isNonTemporal(), OrigAlign,
+ ST->getTBAAInfo());
}
// Turn 'store undef, Ptr' -> nothing.
@@ -8399,7 +9045,7 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
// transform should not be done in this case.
if (Value.getOpcode() != ISD::TargetConstantFP) {
SDValue Tmp;
- switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
+ switch (CFP->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unknown FP type");
case MVT::f16: // We don't do this for these yet.
case MVT::f80:
@@ -8412,8 +9058,7 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
bitcastToAPInt().getZExtValue(), MVT::i32);
return DAG.getStore(Chain, SDLoc(N), Tmp,
- Ptr, ST->getPointerInfo(), ST->isVolatile(),
- ST->isNonTemporal(), ST->getAlignment());
+ Ptr, ST->getMemOperand());
}
break;
case MVT::f64:
@@ -8423,8 +9068,7 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
getZExtValue(), MVT::i64);
return DAG.getStore(Chain, SDLoc(N), Tmp,
- Ptr, ST->getPointerInfo(), ST->isVolatile(),
- ST->isNonTemporal(), ST->getAlignment());
+ Ptr, ST->getMemOperand());
}
if (!ST->isVolatile() &&
@@ -8440,18 +9084,19 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
+ const MDNode *TBAAInfo = ST->getTBAAInfo();
SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
Ptr, ST->getPointerInfo(),
isVolatile, isNonTemporal,
- ST->getAlignment());
+ ST->getAlignment(), TBAAInfo);
Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
DAG.getConstant(4, Ptr.getValueType()));
Alignment = MinAlign(Alignment, 4U);
SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
Ptr, ST->getPointerInfo().getWithOffset(4),
isVolatile, isNonTemporal,
- Alignment);
+ Alignment, TBAAInfo);
return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
St0, St1);
}
@@ -8467,7 +9112,8 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
if (Align > ST->getAlignment())
return DAG.getTruncStore(Chain, SDLoc(N), Value,
Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
- ST->isVolatile(), ST->isNonTemporal(), Align);
+ ST->isVolatile(), ST->isNonTemporal(), Align,
+ ST->getTBAAInfo());
}
}
@@ -8477,7 +9123,9 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
if (NewST.getNode())
return NewST;
- if (CombinerAA) {
+ bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
+ TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
+ if (UseAA) {
// Walk up chain skipping non-aliasing memory nodes.
SDValue BetterChain = FindBetterChain(N, Chain);
@@ -8488,14 +9136,10 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
// Replace the chain to avoid dependency.
if (ST->isTruncatingStore()) {
ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
- ST->getPointerInfo(),
- ST->getMemoryVT(), ST->isVolatile(),
- ST->isNonTemporal(), ST->getAlignment());
+ ST->getMemoryVT(), ST->getMemOperand());
} else {
ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
- ST->getPointerInfo(),
- ST->isVolatile(), ST->isNonTemporal(),
- ST->getAlignment());
+ ST->getMemOperand());
}
// Create token to keep both nodes around.
@@ -8528,9 +9172,7 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
AddToWorkList(Value.getNode());
if (Shorter.getNode())
return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
- Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
- ST->isVolatile(), ST->isNonTemporal(),
- ST->getAlignment());
+ Ptr, ST->getMemoryVT(), ST->getMemOperand());
// Otherwise, see if we can simplify the operation with
// SimplifyDemandedBits, which only works if the value has a single use.
@@ -8561,9 +9203,7 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
ST->getMemoryVT())) {
return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
- Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
- ST->isVolatile(), ST->isNonTemporal(),
- ST->getAlignment());
+ Ptr, ST->getMemoryVT(), ST->getMemOperand());
}
// Only perform this optimization before the types are legal, because we
@@ -8821,13 +9461,14 @@ SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
? ISD::ZEXTLOAD : ISD::EXTLOAD;
Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
- LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
+ LVT, LN0->isVolatile(), LN0->isNonTemporal(),
+ Align, LN0->getTBAAInfo());
Chain = Load.getValue(1);
} else {
Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
LN0->getPointerInfo().getWithOffset(PtrOff),
LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->isInvariant(), Align);
+ LN0->isInvariant(), Align, LN0->getTBAAInfo());
Chain = Load.getValue(1);
if (NVT.bitsLT(LVT))
Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
@@ -9165,8 +9806,35 @@ SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
return N->getOperand(0);
// Check if all of the operands are undefs.
+ EVT VT = N->getValueType(0);
if (ISD::allOperandsUndef(N))
- return DAG.getUNDEF(N->getValueType(0));
+ return DAG.getUNDEF(VT);
+
+ // Optimize concat_vectors where one of the vectors is undef.
+ if (N->getNumOperands() == 2 &&
+ N->getOperand(1)->getOpcode() == ISD::UNDEF) {
+ SDValue In = N->getOperand(0);
+ assert(In.getValueType().isVector() && "Must concat vectors");
+
+ // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
+ if (In->getOpcode() == ISD::BITCAST &&
+ !In->getOperand(0)->getValueType(0).isVector()) {
+ SDValue Scalar = In->getOperand(0);
+ EVT SclTy = Scalar->getValueType(0);
+
+ if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
+ return SDValue();
+
+ EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy,
+ VT.getSizeInBits() / SclTy.getSizeInBits());
+ if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
+ return SDValue();
+
+ SDLoc dl = SDLoc(N);
+ SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Res);
+ }
+ }
// Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
// nodes often generate nop CONCAT_VECTOR nodes.
@@ -9225,7 +9893,8 @@ SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
// (extract_subvec (concat V1, V2, ...), i)
// Into:
// Vi if possible
- // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
+ // Only operand 0 is checked as 'concat' assumes all inputs of the same
+ // type.
if (V->getOperand(0).getValueType() != NVT)
return SDValue();
unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
@@ -9358,10 +10027,10 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = SVN->getMaskElt(i);
if (Idx >= 0) {
- if (Idx < (int)NumElts)
- Idx += NumElts;
- else
+ if (Idx >= (int)NumElts)
Idx -= NumElts;
+ else
+ Idx = -1; // remove reference to lhs
}
NewMask.push_back(Idx);
}
@@ -9738,7 +10407,7 @@ bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
Load = DAG.getLoad(TheSelect->getValueType(0),
SDLoc(TheSelect),
- // FIXME: Discards pointer info.
+ // FIXME: Discards pointer and TBAA info.
LLD->getChain(), Addr, MachinePointerInfo(),
LLD->isVolatile(), LLD->isNonTemporal(),
LLD->isInvariant(), LLD->getAlignment());
@@ -9747,7 +10416,7 @@ bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
RLD->getExtensionType() : LLD->getExtensionType(),
SDLoc(TheSelect),
TheSelect->getValueType(0),
- // FIXME: Discards pointer info.
+ // FIXME: Discards pointer and TBAA info.
LLD->getChain(), Addr, MachinePointerInfo(),
LLD->getMemoryVT(), LLD->isVolatile(),
LLD->isNonTemporal(), LLD->getAlignment());
@@ -9852,7 +10521,7 @@ SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
Cond, One, Zero);
AddToWorkList(CstOffset.getNode());
- CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
+ CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
CstOffset);
AddToWorkList(CPIdx.getNode());
return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
@@ -9974,9 +10643,10 @@ SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
return Temp;
// shl setcc result by log2 n2c
- return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
- DAG.getConstant(N2C->getAPIntValue().logBase2(),
- getShiftAmountTy(Temp.getValueType())));
+ return DAG.getNode(
+ ISD::SHL, DL, N2.getValueType(), Temp,
+ DAG.getConstant(N2C->getAPIntValue().logBase2(),
+ getShiftAmountTy(Temp.getValueType())));
}
}
@@ -10132,17 +10802,20 @@ static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
/// isAlias - Return true if there is any possibility that the two addresses
/// overlap.
-bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
+bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1, bool IsVolatile1,
const Value *SrcValue1, int SrcValueOffset1,
unsigned SrcValueAlign1,
const MDNode *TBAAInfo1,
- SDValue Ptr2, int64_t Size2,
+ SDValue Ptr2, int64_t Size2, bool IsVolatile2,
const Value *SrcValue2, int SrcValueOffset2,
unsigned SrcValueAlign2,
const MDNode *TBAAInfo2) const {
// If they are the same then they must be aliases.
if (Ptr1 == Ptr2) return true;
+ // If they are both volatile then they cannot be reordered.
+ if (IsVolatile1 && IsVolatile2) return true;
+
// Gather base node and offset information.
SDValue Base1, Base2;
int64_t Offset1, Offset2;
@@ -10187,7 +10860,9 @@ bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
return false;
}
- if (CombinerGlobalAA) {
+ bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 ? CombinerGlobalAA :
+ TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
+ if (UseAA && SrcValue1 && SrcValue2) {
// Use alias analysis information.
int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
@@ -10206,24 +10881,25 @@ bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
SDValue Ptr0, Ptr1;
int64_t Size0, Size1;
+ bool IsVolatile0, IsVolatile1;
const Value *SrcValue0, *SrcValue1;
int SrcValueOffset0, SrcValueOffset1;
unsigned SrcValueAlign0, SrcValueAlign1;
const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
- FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
+ FindAliasInfo(Op0, Ptr0, Size0, IsVolatile0, SrcValue0, SrcValueOffset0,
SrcValueAlign0, SrcTBAAInfo0);
- FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
+ FindAliasInfo(Op1, Ptr1, Size1, IsVolatile1, SrcValue1, SrcValueOffset1,
SrcValueAlign1, SrcTBAAInfo1);
- return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
+ return isAlias(Ptr0, Size0, IsVolatile0, SrcValue0, SrcValueOffset0,
SrcValueAlign0, SrcTBAAInfo0,
- Ptr1, Size1, SrcValue1, SrcValueOffset1,
+ Ptr1, Size1, IsVolatile1, SrcValue1, SrcValueOffset1,
SrcValueAlign1, SrcTBAAInfo1);
}
/// FindAliasInfo - Extracts the relevant alias information from the memory
-/// node. Returns true if the operand was a load.
+/// node. Returns true if the operand was a nonvolatile load.
bool DAGCombiner::FindAliasInfo(SDNode *N,
- SDValue &Ptr, int64_t &Size,
+ SDValue &Ptr, int64_t &Size, bool &IsVolatile,
const Value *&SrcValue,
int &SrcValueOffset,
unsigned &SrcValueAlign,
@@ -10232,11 +10908,12 @@ bool DAGCombiner::FindAliasInfo(SDNode *N,
Ptr = LS->getBasePtr();
Size = LS->getMemoryVT().getSizeInBits() >> 3;
+ IsVolatile = LS->isVolatile();
SrcValue = LS->getSrcValue();
SrcValueOffset = LS->getSrcValueOffset();
SrcValueAlign = LS->getOriginalAlignment();
TBAAInfo = LS->getTBAAInfo();
- return isa<LoadSDNode>(LS);
+ return isa<LoadSDNode>(LS) && !IsVolatile;
}
/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
@@ -10249,12 +10926,13 @@ void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
// Get alias information for node.
SDValue Ptr;
int64_t Size;
+ bool IsVolatile;
const Value *SrcValue;
int SrcValueOffset;
unsigned SrcValueAlign;
const MDNode *SrcTBAAInfo;
- bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
- SrcValueAlign, SrcTBAAInfo);
+ bool IsLoad = FindAliasInfo(N, Ptr, Size, IsVolatile, SrcValue,
+ SrcValueOffset, SrcValueAlign, SrcTBAAInfo);
// Starting off.
Chains.push_back(OriginalChain);
@@ -10295,20 +10973,21 @@ void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
// Get alias information for Chain.
SDValue OpPtr;
int64_t OpSize;
+ bool OpIsVolatile;
const Value *OpSrcValue;
int OpSrcValueOffset;
unsigned OpSrcValueAlign;
const MDNode *OpSrcTBAAInfo;
bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
- OpSrcValue, OpSrcValueOffset,
+ OpIsVolatile, OpSrcValue, OpSrcValueOffset,
OpSrcValueAlign,
OpSrcTBAAInfo);
// If chain is alias then stop here.
if (!(IsLoad && IsOpLoad) &&
- isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
- SrcTBAAInfo,
- OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
+ isAlias(Ptr, Size, IsVolatile, SrcValue, SrcValueOffset,
+ SrcValueAlign, SrcTBAAInfo,
+ OpPtr, OpSize, OpIsVolatile, OpSrcValue, OpSrcValueOffset,
OpSrcValueAlign, OpSrcTBAAInfo)) {
Aliases.push_back(Chain);
} else {
diff --git a/lib/CodeGen/SelectionDAG/FastISel.cpp b/lib/CodeGen/SelectionDAG/FastISel.cpp
index b4ac948f..a6f7461 100644
--- a/lib/CodeGen/SelectionDAG/FastISel.cpp
+++ b/lib/CodeGen/SelectionDAG/FastISel.cpp
@@ -638,29 +638,25 @@ bool FastISel::SelectCall(const User *I) {
(!isa<AllocaInst>(Address) ||
!FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
- false);
+ false);
- if (Op)
+ if (Op) {
if (Op->isReg()) {
- // Set the indirect flag if the type and the DIVariable's
- // indirect field are in disagreement: Indirectly-addressed
- // variables that are nonpointer types should be marked as
- // indirect, and VLAs should be marked as indirect eventhough
- // they are a pointer type.
- bool IsIndirect = DI->getAddress()->getType()->isPointerTy()
- ^ DIVar.isIndirect();
Op->setIsDebug(true);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
- TII.get(TargetOpcode::DBG_VALUE),
- IsIndirect, Op->getReg(), Offset, DI->getVariable());
+ TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
+ DI->getVariable());
} else
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
- TII.get(TargetOpcode::DBG_VALUE)).addOperand(*Op).addImm(0)
- .addMetadata(DI->getVariable());
- else
+ TII.get(TargetOpcode::DBG_VALUE))
+ .addOperand(*Op)
+ .addImm(0)
+ .addMetadata(DI->getVariable());
+ } else {
// We can't yet handle anything else here because it would require
// generating code, thus altering codegen because of debug info.
DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
+ }
return true;
}
case Intrinsic::dbg_value: {
@@ -688,6 +684,7 @@ bool FastISel::SelectCall(const User *I) {
.addFPImm(CF).addImm(DI->getOffset())
.addMetadata(DI->getVariable());
} else if (unsigned Reg = lookUpRegForValue(V)) {
+ // FIXME: This does not handle register-indirect values at offset 0.
bool IsIndirect = DI->getOffset() != 0;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect,
Reg, DI->getOffset(), DI->getVariable());
@@ -1574,4 +1571,19 @@ bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
}
+bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
+ // Must be an add.
+ if (!isa<AddOperator>(Add))
+ return false;
+ // Type size needs to match.
+ if (TD.getTypeSizeInBits(GEP->getType()) !=
+ TD.getTypeSizeInBits(Add->getType()))
+ return false;
+ // Must be in the same basic block.
+ if (isa<Instruction>(Add) &&
+ FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
+ return false;
+ // Must have a constant operand.
+ return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
+}
diff --git a/lib/CodeGen/SelectionDAG/InstrEmitter.cpp b/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
index e107276..3a8fb85 100644
--- a/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
+++ b/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
@@ -21,6 +21,7 @@
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
@@ -211,6 +212,7 @@ void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
"IMPLICIT_DEF should have been handled as a special case elsewhere!");
+ unsigned NumResults = CountResults(Node);
for (unsigned i = 0; i < II.getNumDefs(); ++i) {
// If the specific node value is only used by a CopyToReg and the dest reg
// is a vreg in the same register class, use the CopyToReg'd destination
@@ -218,6 +220,10 @@ void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
unsigned VRBase = 0;
const TargetRegisterClass *RC =
TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
+ // If the register class is unknown for the given definition, then try to
+ // infer one from the value type.
+ if (!RC && i < NumResults)
+ RC = TLI->getRegClassFor(Node->getSimpleValueType(i));
if (II.OpInfo[i].isOptionalDef()) {
// Optional def must be a physical register.
unsigned NumResults = CountResults(Node);
@@ -722,10 +728,20 @@ EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
const MCInstrDesc &II = TII->get(Opc);
unsigned NumResults = CountResults(Node);
+ unsigned NumDefs = II.getNumDefs();
+ const uint16_t *ScratchRegs = NULL;
+
+ // Handle PATCHPOINT specially and then use the generic code.
+ if (Opc == TargetOpcode::PATCHPOINT) {
+ unsigned CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
+ NumDefs = NumResults;
+ ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
+ }
+
unsigned NumImpUses = 0;
unsigned NodeOperands =
- countOperands(Node, II.getNumOperands() - II.getNumDefs(), NumImpUses);
- bool HasPhysRegOuts = NumResults > II.getNumDefs() && II.getImplicitDefs()!=0;
+ countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
+ bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=0;
#ifndef NDEBUG
unsigned NumMIOperands = NodeOperands + NumResults;
if (II.isVariadic())
@@ -748,14 +764,20 @@ EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
// Emit all of the actual operands of this instruction, adding them to the
// instruction as appropriate.
- bool HasOptPRefs = II.getNumDefs() > NumResults;
+ bool HasOptPRefs = NumDefs > NumResults;
assert((!HasOptPRefs || !HasPhysRegOuts) &&
"Unable to cope with optional defs and phys regs defs!");
- unsigned NumSkip = HasOptPRefs ? II.getNumDefs() - NumResults : 0;
+ unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
for (unsigned i = NumSkip; i != NodeOperands; ++i)
- AddOperand(MIB, Node->getOperand(i), i-NumSkip+II.getNumDefs(), &II,
+ AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
+ // Add scratch registers as implicit def and early clobber
+ if (ScratchRegs)
+ for (unsigned i = 0; ScratchRegs[i]; ++i)
+ MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
+ RegState::EarlyClobber);
+
// Transfer all of the memory reference descriptions of this instruction.
MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands_begin(),
cast<MachineSDNode>(Node)->memoperands_end());
@@ -784,8 +806,8 @@ EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
// Additional results must be physical register defs.
if (HasPhysRegOuts) {
- for (unsigned i = II.getNumDefs(); i < NumResults; ++i) {
- unsigned Reg = II.getImplicitDefs()[i - II.getNumDefs()];
+ for (unsigned i = NumDefs; i < NumResults; ++i) {
+ unsigned Reg = II.getImplicitDefs()[i - NumDefs];
if (!Node->hasAnyUseOfValue(i))
continue;
// This implicitly defined physreg has a use.
diff --git a/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp b/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
index bd844e5..9061ae9 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
@@ -95,8 +95,8 @@ private:
SDValue N1, SDValue N2,
ArrayRef<int> Mask) const;
- void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
- SDLoc dl);
+ bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
+ bool &NeedInvert, SDLoc dl);
SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
@@ -311,6 +311,8 @@ static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
SDValue Val = ST->getValue();
EVT VT = Val.getValueType();
int Alignment = ST->getAlignment();
+ unsigned AS = ST->getAddressSpace();
+
SDLoc dl(ST);
if (ST->getMemoryVT().isFloatingPoint() ||
ST->getMemoryVT().isVector()) {
@@ -343,7 +345,7 @@ static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
SDValue Store = DAG.getTruncStore(Chain, dl,
Val, StackPtr, MachinePointerInfo(),
StoredVT, false, false, 0);
- SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
+ SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy(AS));
SmallVector<SDValue, 8> Stores;
unsigned Offset = 0;
@@ -381,7 +383,8 @@ static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
.getWithOffset(Offset),
MemVT, ST->isVolatile(),
ST->isNonTemporal(),
- MinAlign(ST->getAlignment(), Offset)));
+ MinAlign(ST->getAlignment(), Offset),
+ ST->getTBAAInfo()));
// The order of the stores doesn't matter - say it with a TokenFactor.
SDValue Result =
DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
@@ -408,13 +411,14 @@ static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
ST->getPointerInfo(), NewStoredVT,
ST->isVolatile(), ST->isNonTemporal(), Alignment);
+
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getConstant(IncrementSize, TLI.getPointerTy()));
+ DAG.getConstant(IncrementSize, TLI.getPointerTy(AS)));
Alignment = MinAlign(Alignment, IncrementSize);
Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
ST->getPointerInfo().getWithOffset(IncrementSize),
NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
- Alignment);
+ Alignment, ST->getTBAAInfo());
SDValue Result =
DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
@@ -438,10 +442,8 @@ ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
// Expand to a (misaligned) integer load of the same size,
// then bitconvert to floating point or vector.
- SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
- LD->isVolatile(),
- LD->isNonTemporal(),
- LD->isInvariant(), LD->getAlignment());
+ SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
+ LD->getMemOperand());
SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
if (LoadedVT != VT)
Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
@@ -474,7 +476,8 @@ ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
LD->getPointerInfo().getWithOffset(Offset),
LD->isVolatile(), LD->isNonTemporal(),
LD->isInvariant(),
- MinAlign(LD->getAlignment(), Offset));
+ MinAlign(LD->getAlignment(), Offset),
+ LD->getTBAAInfo());
// Follow the load with a store to the stack slot. Remember the store.
Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
MachinePointerInfo(), false, false, 0));
@@ -492,7 +495,8 @@ ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
LD->getPointerInfo().getWithOffset(Offset),
MemVT, LD->isVolatile(),
LD->isNonTemporal(),
- MinAlign(LD->getAlignment(), Offset));
+ MinAlign(LD->getAlignment(), Offset),
+ LD->getTBAAInfo());
// Follow the load with a store to the stack slot. Remember the store.
// On big-endian machines this requires a truncating store to ensure
// that the bits end up in the right place.
@@ -536,23 +540,25 @@ ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
if (TLI.isLittleEndian()) {
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
NewLoadedVT, LD->isVolatile(),
- LD->isNonTemporal(), Alignment);
+ LD->isNonTemporal(), Alignment, LD->getTBAAInfo());
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getConstant(IncrementSize, TLI.getPointerTy()));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
NewLoadedVT, LD->isVolatile(),
- LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
+ LD->isNonTemporal(), MinAlign(Alignment, IncrementSize),
+ LD->getTBAAInfo());
} else {
Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
NewLoadedVT, LD->isVolatile(),
- LD->isNonTemporal(), Alignment);
+ LD->isNonTemporal(), Alignment, LD->getTBAAInfo());
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getConstant(IncrementSize, TLI.getPointerTy()));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
NewLoadedVT, LD->isVolatile(),
- LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
+ LD->isNonTemporal(), MinAlign(Alignment, IncrementSize),
+ LD->getTBAAInfo());
}
// aggregate the two parts
@@ -655,6 +661,7 @@ SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
+ const MDNode *TBAAInfo = ST->getTBAAInfo();
SDLoc dl(ST);
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
if (CFP->getValueType(0) == MVT::f32 &&
@@ -663,7 +670,7 @@ SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
bitcastToAPInt().zextOrTrunc(32),
MVT::i32);
return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
- isVolatile, isNonTemporal, Alignment);
+ isVolatile, isNonTemporal, Alignment, TBAAInfo);
}
if (CFP->getValueType(0) == MVT::f64) {
@@ -672,7 +679,7 @@ SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
zextOrTrunc(64), MVT::i64);
return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
- isVolatile, isNonTemporal, Alignment);
+ isVolatile, isNonTemporal, Alignment, TBAAInfo);
}
if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
@@ -685,12 +692,13 @@ SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
if (TLI.isBigEndian()) std::swap(Lo, Hi);
Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
- isNonTemporal, Alignment);
+ isNonTemporal, Alignment, TBAAInfo);
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(4));
+ DAG.getConstant(4, Ptr.getValueType()));
Hi = DAG.getStore(Chain, dl, Hi, Ptr,
ST->getPointerInfo().getWithOffset(4),
- isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
+ isVolatile, isNonTemporal, MinAlign(Alignment, 4U),
+ TBAAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
@@ -708,6 +716,7 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
+ const MDNode *TBAAInfo = ST->getTBAAInfo();
if (!ST->isTruncatingStore()) {
if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
@@ -745,7 +754,7 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
SDValue Result =
DAG.getStore(Chain, dl, Value, Ptr,
ST->getPointerInfo(), isVolatile,
- isNonTemporal, Alignment);
+ isNonTemporal, Alignment, TBAAInfo);
ReplaceNode(SDValue(Node, 0), Result);
break;
}
@@ -767,7 +776,8 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
Value = DAG.getZeroExtendInReg(Value, dl, StVT);
SDValue Result =
DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
- NVT, isVolatile, isNonTemporal, Alignment);
+ NVT, isVolatile, isNonTemporal, Alignment,
+ TBAAInfo);
ReplaceNode(SDValue(Node, 0), Result);
} else if (StWidth & (StWidth - 1)) {
// If not storing a power-of-2 number of bits, expand as two stores.
@@ -788,19 +798,20 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
// Store the bottom RoundWidth bits.
Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
RoundVT,
- isVolatile, isNonTemporal, Alignment);
+ isVolatile, isNonTemporal, Alignment,
+ TBAAInfo);
// Store the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
DAG.getConstant(RoundWidth,
TLI.getShiftAmountTy(Value.getValueType())));
Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
ST->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize));
+ MinAlign(Alignment, IncrementSize), TBAAInfo);
} else {
// Big endian - avoid unaligned stores.
// TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
@@ -809,16 +820,17 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
DAG.getConstant(ExtraWidth,
TLI.getShiftAmountTy(Value.getValueType())));
Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
- RoundVT, isVolatile, isNonTemporal, Alignment);
+ RoundVT, isVolatile, isNonTemporal, Alignment,
+ TBAAInfo);
// Store the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
ST->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize));
+ MinAlign(Alignment, IncrementSize), TBAAInfo);
}
// The order of the stores doesn't matter.
@@ -854,7 +866,7 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
SDValue Result =
DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
- isVolatile, isNonTemporal, Alignment);
+ isVolatile, isNonTemporal, Alignment, TBAAInfo);
ReplaceNode(SDValue(Node, 0), Result);
break;
}
@@ -902,9 +914,7 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
"Can only promote loads to same size type");
- SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(),
- LD->isVolatile(), LD->isNonTemporal(),
- LD->isInvariant(), LD->getAlignment());
+ SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
RChain = Res.getValue(1);
break;
@@ -924,6 +934,7 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
unsigned Alignment = LD->getAlignment();
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
+ const MDNode *TBAAInfo = LD->getTBAAInfo();
if (SrcWidth != SrcVT.getStoreSizeInBits() &&
// Some targets pretend to have an i1 loading operation, and actually
@@ -950,7 +961,7 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
SDValue Result =
DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
Chain, Ptr, LD->getPointerInfo(),
- NVT, isVolatile, isNonTemporal, Alignment);
+ NVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
Ch = Result.getValue(1); // The chain.
@@ -987,16 +998,16 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
Chain, Ptr,
LD->getPointerInfo(), RoundVT, isVolatile,
- isNonTemporal, Alignment);
+ isNonTemporal, Alignment, TBAAInfo);
// Load the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize));
+ MinAlign(Alignment, IncrementSize), TBAAInfo);
// Build a factor node to remember that this load is independent of
// the other one.
@@ -1016,17 +1027,17 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
// Load the top RoundWidth bits.
Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo(), RoundVT, isVolatile,
- isNonTemporal, Alignment);
+ isNonTemporal, Alignment, TBAAInfo);
// Load the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize));
+ MinAlign(Alignment, IncrementSize), TBAAInfo);
// Build a factor node to remember that this load is independent of
// the other one.
@@ -1079,9 +1090,7 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
case TargetLowering::Expand:
if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
- LD->getPointerInfo(),
- LD->isVolatile(), LD->isNonTemporal(),
- LD->isInvariant(), LD->getAlignment());
+ LD->getMemOperand());
unsigned ExtendOp;
switch (ExtType) {
case ISD::EXTLOAD:
@@ -1109,9 +1118,8 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
// Turn the unsupported load into an EXTLOAD followed by an explicit
// zero/sign extend inreg.
SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
- Chain, Ptr, LD->getPointerInfo(), SrcVT,
- LD->isVolatile(), LD->isNonTemporal(),
- LD->getAlignment());
+ Chain, Ptr, SrcVT,
+ LD->getMemOperand());
SDValue ValRes;
if (ExtType == ISD::SEXTLOAD)
ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
@@ -1386,11 +1394,7 @@ SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
DAG.getConstant(EltSize, Idx.getValueType()));
- if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
- Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
- else
- Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
-
+ Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy());
StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
if (Op.getValueType().isVector())
@@ -1428,11 +1432,7 @@ SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
DAG.getConstant(EltSize, Idx.getValueType()));
-
- if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
- Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
- else
- Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
+ Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy());
SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
StackPtr);
@@ -1531,7 +1531,8 @@ SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
- LoadPtr, DAG.getIntPtrConstant(ByteOffset));
+ LoadPtr,
+ DAG.getConstant(ByteOffset, LoadPtr.getValueType()));
// Load a legal integer containing the sign bit.
SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
false, false, false, 0);
@@ -1580,10 +1581,10 @@ void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
Chain = SP.getValue(1);
unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
- if (Align > StackAlign)
- SP = DAG.getNode(ISD::AND, dl, VT, SP,
- DAG.getConstant(-(uint64_t)Align, VT));
Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
+ if (Align > StackAlign)
+ Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
+ DAG.getConstant(-(uint64_t)Align, VT));
Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
@@ -1595,22 +1596,44 @@ void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
}
/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
-/// condition code CC on the current target. This routine expands SETCC with
-/// illegal condition code into AND / OR of multiple SETCC values.
-void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
+/// condition code CC on the current target.
+///
+/// If the SETCC has been legalized using AND / OR, then the legalized node
+/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
+/// will be set to false.
+///
+/// If the SETCC has been legalized by using getSetCCSwappedOperands(),
+/// then the values of LHS and RHS will be swapped, CC will be set to the
+/// new condition, and NeedInvert will be set to false.
+///
+/// If the SETCC has been legalized using the inverse condcode, then LHS and
+/// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
+/// will be set to true. The caller must invert the result of the SETCC with
+/// SelectionDAG::getNOT() or take equivalent action to swap the effect of a
+/// true/false result.
+///
+/// \returns true if the SetCC has been legalized, false if it hasn't.
+bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
SDValue &LHS, SDValue &RHS,
SDValue &CC,
+ bool &NeedInvert,
SDLoc dl) {
MVT OpVT = LHS.getSimpleValueType();
ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
+ NeedInvert = false;
switch (TLI.getCondCodeAction(CCCode, OpVT)) {
default: llvm_unreachable("Unknown condition code action!");
case TargetLowering::Legal:
// Nothing to do.
break;
case TargetLowering::Expand: {
+ ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
+ if (TLI.isCondCodeLegal(InvCC, OpVT)) {
+ std::swap(LHS, RHS);
+ CC = DAG.getCondCode(InvCC);
+ return true;
+ }
ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
- ISD::CondCode InvCC = ISD::SETCC_INVALID;
unsigned Opc = 0;
switch (CCCode) {
default: llvm_unreachable("Don't know how to expand this condition!");
@@ -1650,18 +1673,21 @@ void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETLT:
+ // We only support using the inverted operation, which is computed above
+ // and not a different manner of supporting expanding these cases.
+ llvm_unreachable("Don't know how to expand this condition!");
case ISD::SETNE:
case ISD::SETEQ:
- InvCC = ISD::getSetCCSwappedOperands(CCCode);
- if (TLI.getCondCodeAction(InvCC, OpVT) == TargetLowering::Expand) {
- // We only support using the inverted operation and not a
- // different manner of supporting expanding these cases.
- llvm_unreachable("Don't know how to expand this condition!");
+ // Try inverting the result of the inverse condition.
+ InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ;
+ if (TLI.isCondCodeLegal(InvCC, OpVT)) {
+ CC = DAG.getCondCode(InvCC);
+ NeedInvert = true;
+ return true;
}
- LHS = DAG.getSetCC(dl, VT, RHS, LHS, InvCC);
- RHS = SDValue();
- CC = SDValue();
- return;
+ // If inverting the condition didn't work then we have no means to expand
+ // the condition.
+ llvm_unreachable("Don't know how to expand this condition!");
}
SDValue SetCC1, SetCC2;
@@ -1678,9 +1704,10 @@ void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
RHS = SDValue();
CC = SDValue();
- break;
+ return true;
}
}
+ return false;
}
/// EmitStackConvert - Emit a store/load combination to the stack. This stores
@@ -1969,7 +1996,7 @@ SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
RTLIB::Libcall Call_F128,
RTLIB::Libcall Call_PPCF128) {
RTLIB::Libcall LC;
- switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
+ switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::f32: LC = Call_F32; break;
case MVT::f64: LC = Call_F64; break;
@@ -1987,7 +2014,7 @@ SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
RTLIB::Libcall Call_I64,
RTLIB::Libcall Call_I128) {
RTLIB::Libcall LC;
- switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
+ switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i8: LC = Call_I8; break;
case MVT::i16: LC = Call_I16; break;
@@ -2002,7 +2029,7 @@ SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
const TargetLowering &TLI) {
RTLIB::Libcall LC;
- switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
+ switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
@@ -2049,7 +2076,7 @@ SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
bool isSigned = Opcode == ISD::SDIVREM;
RTLIB::Libcall LC;
- switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
+ switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
@@ -2106,7 +2133,7 @@ SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
/// isSinCosLibcallAvailable - Return true if sincos libcall is available.
static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
RTLIB::Libcall LC;
- switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
+ switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::f32: LC = RTLIB::SINCOS_F32; break;
case MVT::f64: LC = RTLIB::SINCOS_F64; break;
@@ -2156,7 +2183,7 @@ void
SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
SmallVectorImpl<SDValue> &Results) {
RTLIB::Libcall LC;
- switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
+ switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::f32: LC = RTLIB::SINCOS_F32; break;
case MVT::f64: LC = RTLIB::SINCOS_F64; break;
@@ -2232,11 +2259,11 @@ SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
// word offset constant for Hi/Lo address computation
- SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
+ SDValue WordOff = DAG.getConstant(sizeof(int), StackSlot.getValueType());
// set up Hi and Lo (into buffer) address based on endian
SDValue Hi = StackSlot;
- SDValue Lo = DAG.getNode(ISD::ADD, dl,
- TLI.getPointerTy(), StackSlot, WordOff);
+ SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
+ StackSlot, WordOff);
if (TLI.isLittleEndian())
std::swap(Hi, Lo);
@@ -2382,7 +2409,7 @@ SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
// as a negative number. To counteract this, the dynamic code adds an
// offset depending on the data type.
uint64_t FF;
- switch (Op0.getValueType().getSimpleVT().SimpleTy) {
+ switch (Op0.getSimpleValueType().SimpleTy) {
default: llvm_unreachable("Unsupported integer type!");
case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
@@ -2395,7 +2422,7 @@ SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
- CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
+ CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
Alignment = std::min(Alignment, 4u);
SDValue FudgeInReg;
if (DestVT == MVT::f32)
@@ -2656,6 +2683,7 @@ std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_LOCK_TEST_AND_SET_16;break;
}
break;
case ISD::ATOMIC_CMP_SWAP:
@@ -2665,6 +2693,7 @@ std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16;break;
}
break;
case ISD::ATOMIC_LOAD_ADD:
@@ -2674,6 +2703,7 @@ std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_ADD_16;break;
}
break;
case ISD::ATOMIC_LOAD_SUB:
@@ -2683,6 +2713,7 @@ std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_SUB_16;break;
}
break;
case ISD::ATOMIC_LOAD_AND:
@@ -2692,6 +2723,7 @@ std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_AND_16;break;
}
break;
case ISD::ATOMIC_LOAD_OR:
@@ -2701,6 +2733,7 @@ std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_OR_16;break;
}
break;
case ISD::ATOMIC_LOAD_XOR:
@@ -2710,6 +2743,7 @@ std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_XOR_16;break;
}
break;
case ISD::ATOMIC_LOAD_NAND:
@@ -2719,6 +2753,47 @@ std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_NAND_16;break;
+ }
+ break;
+ case ISD::ATOMIC_LOAD_MAX:
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type for atomic!");
+ case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_MAX_1; break;
+ case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_MAX_2; break;
+ case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_MAX_4; break;
+ case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_MAX_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_MAX_16;break;
+ }
+ break;
+ case ISD::ATOMIC_LOAD_UMAX:
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type for atomic!");
+ case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_UMAX_1; break;
+ case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_UMAX_2; break;
+ case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_UMAX_4; break;
+ case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_UMAX_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_UMAX_16;break;
+ }
+ break;
+ case ISD::ATOMIC_LOAD_MIN:
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type for atomic!");
+ case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_MIN_1; break;
+ case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_MIN_2; break;
+ case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_MIN_4; break;
+ case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_MIN_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_MIN_16;break;
+ }
+ break;
+ case ISD::ATOMIC_LOAD_UMIN:
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type for atomic!");
+ case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_UMIN_1; break;
+ case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_UMIN_2; break;
+ case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_UMIN_4; break;
+ case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_UMIN_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_UMIN_16;break;
}
break;
}
@@ -2730,6 +2805,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
SmallVector<SDValue, 8> Results;
SDLoc dl(Node);
SDValue Tmp1, Tmp2, Tmp3, Tmp4;
+ bool NeedInvert;
switch (Node->getOpcode()) {
case ISD::CTPOP:
case ISD::CTLZ:
@@ -2947,20 +3023,20 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
if (Align > TLI.getMinStackArgumentAlignment()) {
assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
- VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
+ VAList = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
DAG.getConstant(Align - 1,
- TLI.getPointerTy()));
+ VAList.getValueType()));
- VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
+ VAList = DAG.getNode(ISD::AND, dl, VAList.getValueType(), VAList,
DAG.getConstant(-(int64_t)Align,
- TLI.getPointerTy()));
+ VAList.getValueType()));
}
// Increment the pointer, VAList, to the next vaarg
- Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
+ Tmp3 = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
DAG.getConstant(TLI.getDataLayout()->
getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
- TLI.getPointerTy()));
+ VAList.getValueType()));
// Store the incremented VAList to the legalized pointer
Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
MachinePointerInfo(V), false, false, 0);
@@ -3231,6 +3307,13 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
RTLIB::NEARBYINT_F128,
RTLIB::NEARBYINT_PPCF128));
break;
+ case ISD::FROUND:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
+ RTLIB::ROUND_F64,
+ RTLIB::ROUND_F80,
+ RTLIB::ROUND_F128,
+ RTLIB::ROUND_PPCF128));
+ break;
case ISD::FPOWI:
Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
RTLIB::POWI_F80, RTLIB::POWI_F128,
@@ -3565,9 +3648,10 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
unsigned EntrySize =
DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
- Index = DAG.getNode(ISD::MUL, dl, PTy,
- Index, DAG.getConstant(EntrySize, PTy));
- SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
+ Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(),
+ Index, DAG.getConstant(EntrySize, Index.getValueType()));
+ SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
+ Index, Table);
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
@@ -3611,10 +3695,21 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
Tmp1 = Node->getOperand(0);
Tmp2 = Node->getOperand(1);
Tmp3 = Node->getOperand(2);
- LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
+ bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
+ Tmp3, NeedInvert, dl);
+
+ if (Legalized) {
+ // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
+ // condition code, create a new SETCC node.
+ if (Tmp3.getNode())
+ Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
+ Tmp1, Tmp2, Tmp3);
+
+ // If we expanded the SETCC by inverting the condition code, then wrap
+ // the existing SETCC in a NOT to restore the intended condition.
+ if (NeedInvert)
+ Tmp1 = DAG.getNOT(dl, Tmp1, Tmp1->getValueType(0));
- // If we expanded the SETCC into an AND/OR, return the new node
- if (Tmp2.getNode() == 0) {
Results.push_back(Tmp1);
break;
}
@@ -3645,14 +3740,52 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
Tmp4 = Node->getOperand(3); // False
SDValue CC = Node->getOperand(4);
- LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
- Tmp1, Tmp2, CC, dl);
+ bool Legalized = false;
+ // Try to legalize by inverting the condition. This is for targets that
+ // might support an ordered version of a condition, but not the unordered
+ // version (or vice versa).
+ ISD::CondCode InvCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
+ Tmp1.getValueType().isInteger());
+ if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) {
+ // Use the new condition code and swap true and false
+ Legalized = true;
+ Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
+ } else {
+ // If The inverse is not legal, then try to swap the arguments using
+ // the inverse condition code.
+ ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
+ if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) {
+ // The swapped inverse condition is legal, so swap true and false,
+ // lhs and rhs.
+ Legalized = true;
+ Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
+ }
+ }
+
+ if (!Legalized) {
+ Legalized = LegalizeSetCCCondCode(
+ getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
+ dl);
+
+ assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
+
+ // If we expanded the SETCC by inverting the condition code, then swap
+ // the True/False operands to match.
+ if (NeedInvert)
+ std::swap(Tmp3, Tmp4);
- assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
- Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
- CC = DAG.getCondCode(ISD::SETNE);
- Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
- Tmp3, Tmp4, CC);
+ // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
+ // condition code, create a new SELECT_CC node.
+ if (CC.getNode()) {
+ Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
+ Tmp1, Tmp2, Tmp3, Tmp4, CC);
+ } else {
+ Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
+ CC = DAG.getCondCode(ISD::SETNE);
+ Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
+ Tmp3, Tmp4, CC);
+ }
+ }
Results.push_back(Tmp1);
break;
}
@@ -3662,14 +3795,27 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
Tmp3 = Node->getOperand(3); // RHS
Tmp4 = Node->getOperand(1); // CC
- LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()),
- Tmp2, Tmp3, Tmp4, dl);
-
- assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
- Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
- Tmp4 = DAG.getCondCode(ISD::SETNE);
- Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
- Tmp3, Node->getOperand(4));
+ bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
+ Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
+ (void)Legalized;
+ assert(Legalized && "Can't legalize BR_CC with legal condition!");
+
+ // If we expanded the SETCC by inverting the condition code, then wrap
+ // the existing SETCC in a NOT to restore the intended condition.
+ if (NeedInvert)
+ Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0));
+
+ // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
+ // node.
+ if (Tmp4.getNode()) {
+ Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
+ Tmp4, Tmp2, Tmp3, Node->getOperand(4));
+ } else {
+ Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
+ Tmp4 = DAG.getCondCode(ISD::SETNE);
+ Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
+ Tmp3, Node->getOperand(4));
+ }
Results.push_back(Tmp1);
break;
}
diff --git a/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
index cea0b02..ecf4c5d 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
@@ -88,6 +88,7 @@ void DAGTypeLegalizer::SoftenFloatResult(SDNode *N, unsigned ResNo) {
case ISD::FPOWI: R = SoftenFloatRes_FPOWI(N); break;
case ISD::FREM: R = SoftenFloatRes_FREM(N); break;
case ISD::FRINT: R = SoftenFloatRes_FRINT(N); break;
+ case ISD::FROUND: R = SoftenFloatRes_FROUND(N); break;
case ISD::FSIN: R = SoftenFloatRes_FSIN(N); break;
case ISD::FSQRT: R = SoftenFloatRes_FSQRT(N); break;
case ISD::FSUB: R = SoftenFloatRes_FSUB(N); break;
@@ -160,7 +161,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FADD(SDNode *N) {
RTLIB::ADD_F80,
RTLIB::ADD_F128,
RTLIB::ADD_PPCF128),
- NVT, Ops, 2, false, SDLoc(N));
+ NVT, Ops, 2, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FCEIL(SDNode *N) {
@@ -172,7 +173,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FCEIL(SDNode *N) {
RTLIB::CEIL_F80,
RTLIB::CEIL_F128,
RTLIB::CEIL_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FCOPYSIGN(SDNode *N) {
@@ -226,7 +227,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FCOS(SDNode *N) {
RTLIB::COS_F80,
RTLIB::COS_F128,
RTLIB::COS_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FDIV(SDNode *N) {
@@ -239,7 +240,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FDIV(SDNode *N) {
RTLIB::DIV_F80,
RTLIB::DIV_F128,
RTLIB::DIV_PPCF128),
- NVT, Ops, 2, false, SDLoc(N));
+ NVT, Ops, 2, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP(SDNode *N) {
@@ -251,7 +252,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP(SDNode *N) {
RTLIB::EXP_F80,
RTLIB::EXP_F128,
RTLIB::EXP_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP2(SDNode *N) {
@@ -263,7 +264,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP2(SDNode *N) {
RTLIB::EXP2_F80,
RTLIB::EXP2_F128,
RTLIB::EXP2_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FFLOOR(SDNode *N) {
@@ -275,7 +276,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FFLOOR(SDNode *N) {
RTLIB::FLOOR_F80,
RTLIB::FLOOR_F128,
RTLIB::FLOOR_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG(SDNode *N) {
@@ -287,7 +288,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG(SDNode *N) {
RTLIB::LOG_F80,
RTLIB::LOG_F128,
RTLIB::LOG_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG2(SDNode *N) {
@@ -299,7 +300,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG2(SDNode *N) {
RTLIB::LOG2_F80,
RTLIB::LOG2_F128,
RTLIB::LOG2_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG10(SDNode *N) {
@@ -311,7 +312,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG10(SDNode *N) {
RTLIB::LOG10_F80,
RTLIB::LOG10_F128,
RTLIB::LOG10_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FMA(SDNode *N) {
@@ -325,7 +326,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FMA(SDNode *N) {
RTLIB::FMA_F80,
RTLIB::FMA_F128,
RTLIB::FMA_PPCF128),
- NVT, Ops, 3, false, SDLoc(N));
+ NVT, Ops, 3, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FMUL(SDNode *N) {
@@ -338,7 +339,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FMUL(SDNode *N) {
RTLIB::MUL_F80,
RTLIB::MUL_F128,
RTLIB::MUL_PPCF128),
- NVT, Ops, 2, false, SDLoc(N));
+ NVT, Ops, 2, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FNEARBYINT(SDNode *N) {
@@ -350,7 +351,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FNEARBYINT(SDNode *N) {
RTLIB::NEARBYINT_F80,
RTLIB::NEARBYINT_F128,
RTLIB::NEARBYINT_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FNEG(SDNode *N) {
@@ -364,7 +365,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FNEG(SDNode *N) {
RTLIB::SUB_F80,
RTLIB::SUB_F128,
RTLIB::SUB_PPCF128),
- NVT, Ops, 2, false, SDLoc(N));
+ NVT, Ops, 2, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FP_EXTEND(SDNode *N) {
@@ -372,7 +373,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FP_EXTEND(SDNode *N) {
SDValue Op = N->getOperand(0);
RTLIB::Libcall LC = RTLIB::getFPEXT(Op.getValueType(), N->getValueType(0));
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!");
- return TLI.makeLibCall(DAG, LC, NVT, &Op, 1, false, SDLoc(N));
+ return TLI.makeLibCall(DAG, LC, NVT, &Op, 1, false, SDLoc(N)).first;
}
// FIXME: Should we just use 'normal' FP_EXTEND / FP_TRUNC instead of special
@@ -381,7 +382,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FP16_TO_FP32(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = N->getOperand(0);
return TLI.makeLibCall(DAG, RTLIB::FPEXT_F16_F32, NVT, &Op, 1, false,
- SDLoc(N));
+ SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FP_ROUND(SDNode *N) {
@@ -389,7 +390,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FP_ROUND(SDNode *N) {
SDValue Op = N->getOperand(0);
RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), N->getValueType(0));
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!");
- return TLI.makeLibCall(DAG, LC, NVT, &Op, 1, false, SDLoc(N));
+ return TLI.makeLibCall(DAG, LC, NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FPOW(SDNode *N) {
@@ -402,7 +403,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FPOW(SDNode *N) {
RTLIB::POW_F80,
RTLIB::POW_F128,
RTLIB::POW_PPCF128),
- NVT, Ops, 2, false, SDLoc(N));
+ NVT, Ops, 2, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FPOWI(SDNode *N) {
@@ -416,7 +417,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FPOWI(SDNode *N) {
RTLIB::POWI_F80,
RTLIB::POWI_F128,
RTLIB::POWI_PPCF128),
- NVT, Ops, 2, false, SDLoc(N));
+ NVT, Ops, 2, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FREM(SDNode *N) {
@@ -429,7 +430,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FREM(SDNode *N) {
RTLIB::REM_F80,
RTLIB::REM_F128,
RTLIB::REM_PPCF128),
- NVT, Ops, 2, false, SDLoc(N));
+ NVT, Ops, 2, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FRINT(SDNode *N) {
@@ -441,7 +442,19 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FRINT(SDNode *N) {
RTLIB::RINT_F80,
RTLIB::RINT_F128,
RTLIB::RINT_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
+}
+
+SDValue DAGTypeLegalizer::SoftenFloatRes_FROUND(SDNode *N) {
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ SDValue Op = GetSoftenedFloat(N->getOperand(0));
+ return TLI.makeLibCall(DAG, GetFPLibCall(N->getValueType(0),
+ RTLIB::ROUND_F32,
+ RTLIB::ROUND_F64,
+ RTLIB::ROUND_F80,
+ RTLIB::ROUND_F128,
+ RTLIB::ROUND_PPCF128),
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FSIN(SDNode *N) {
@@ -453,7 +466,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FSIN(SDNode *N) {
RTLIB::SIN_F80,
RTLIB::SIN_F128,
RTLIB::SIN_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FSQRT(SDNode *N) {
@@ -465,7 +478,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FSQRT(SDNode *N) {
RTLIB::SQRT_F80,
RTLIB::SQRT_F128,
RTLIB::SQRT_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FSUB(SDNode *N) {
@@ -478,7 +491,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FSUB(SDNode *N) {
RTLIB::SUB_F80,
RTLIB::SUB_F128,
RTLIB::SUB_PPCF128),
- NVT, Ops, 2, false, SDLoc(N));
+ NVT, Ops, 2, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FTRUNC(SDNode *N) {
@@ -490,7 +503,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FTRUNC(SDNode *N) {
RTLIB::TRUNC_F80,
RTLIB::TRUNC_F128,
RTLIB::TRUNC_PPCF128),
- NVT, &Op, 1, false, SDLoc(N));
+ NVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_LOAD(SDNode *N) {
@@ -504,7 +517,8 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_LOAD(SDNode *N) {
NewL = DAG.getLoad(L->getAddressingMode(), L->getExtensionType(),
NVT, dl, L->getChain(), L->getBasePtr(), L->getOffset(),
L->getPointerInfo(), NVT, L->isVolatile(),
- L->isNonTemporal(), false, L->getAlignment());
+ L->isNonTemporal(), false, L->getAlignment(),
+ L->getTBAAInfo());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), NewL.getValue(1));
@@ -516,7 +530,8 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_LOAD(SDNode *N) {
L->getMemoryVT(), dl, L->getChain(),
L->getBasePtr(), L->getOffset(), L->getPointerInfo(),
L->getMemoryVT(), L->isVolatile(),
- L->isNonTemporal(), false, L->getAlignment());
+ L->isNonTemporal(), false, L->getAlignment(),
+ L->getTBAAInfo());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), NewL.getValue(1));
@@ -585,7 +600,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP(SDNode *N) {
NVT, N->getOperand(0));
return TLI.makeLibCall(DAG, LC,
TLI.getTypeToTransformTo(*DAG.getContext(), RVT),
- &Op, 1, false, dl);
+ &Op, 1, false, dl).first;
}
@@ -645,7 +660,7 @@ SDValue DAGTypeLegalizer::SoftenFloatOp_FP_ROUND(SDNode *N) {
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND libcall");
SDValue Op = GetSoftenedFloat(N->getOperand(0));
- return TLI.makeLibCall(DAG, LC, RVT, &Op, 1, false, SDLoc(N));
+ return TLI.makeLibCall(DAG, LC, RVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatOp_BR_CC(SDNode *N) {
@@ -676,7 +691,7 @@ SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_SINT(SDNode *N) {
RTLIB::Libcall LC = RTLIB::getFPTOSINT(N->getOperand(0).getValueType(), RVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_SINT!");
SDValue Op = GetSoftenedFloat(N->getOperand(0));
- return TLI.makeLibCall(DAG, LC, RVT, &Op, 1, false, SDLoc(N));
+ return TLI.makeLibCall(DAG, LC, RVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_UINT(SDNode *N) {
@@ -684,14 +699,14 @@ SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_UINT(SDNode *N) {
RTLIB::Libcall LC = RTLIB::getFPTOUINT(N->getOperand(0).getValueType(), RVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_UINT!");
SDValue Op = GetSoftenedFloat(N->getOperand(0));
- return TLI.makeLibCall(DAG, LC, RVT, &Op, 1, false, SDLoc(N));
+ return TLI.makeLibCall(DAG, LC, RVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatOp_FP32_TO_FP16(SDNode *N) {
EVT RVT = N->getValueType(0);
RTLIB::Libcall LC = RTLIB::FPROUND_F32_F16;
SDValue Op = GetSoftenedFloat(N->getOperand(0));
- return TLI.makeLibCall(DAG, LC, RVT, &Op, 1, false, SDLoc(N));
+ return TLI.makeLibCall(DAG, LC, RVT, &Op, 1, false, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatOp_SELECT_CC(SDNode *N) {
@@ -754,9 +769,7 @@ SDValue DAGTypeLegalizer::SoftenFloatOp_STORE(SDNode *N, unsigned OpNo) {
Val = GetSoftenedFloat(Val);
return DAG.getStore(ST->getChain(), dl, Val, ST->getBasePtr(),
- ST->getPointerInfo(),
- ST->isVolatile(), ST->isNonTemporal(),
- ST->getAlignment());
+ ST->getMemOperand());
}
@@ -817,6 +830,7 @@ void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) {
case ISD::FPOW: ExpandFloatRes_FPOW(N, Lo, Hi); break;
case ISD::FPOWI: ExpandFloatRes_FPOWI(N, Lo, Hi); break;
case ISD::FRINT: ExpandFloatRes_FRINT(N, Lo, Hi); break;
+ case ISD::FROUND: ExpandFloatRes_FROUND(N, Lo, Hi); break;
case ISD::FSIN: ExpandFloatRes_FSIN(N, Lo, Hi); break;
case ISD::FSQRT: ExpandFloatRes_FSQRT(N, Lo, Hi); break;
case ISD::FSUB: ExpandFloatRes_FSUB(N, Lo, Hi); break;
@@ -912,7 +926,7 @@ void DAGTypeLegalizer::ExpandFloatRes_FDIV(SDNode *N, SDValue &Lo,
RTLIB::DIV_F128,
RTLIB::DIV_PPCF128),
N->getValueType(0), Ops, 2, false,
- SDLoc(N));
+ SDLoc(N)).first;
GetPairElements(Call, Lo, Hi);
}
@@ -986,7 +1000,7 @@ void DAGTypeLegalizer::ExpandFloatRes_FMA(SDNode *N, SDValue &Lo,
RTLIB::FMA_F128,
RTLIB::FMA_PPCF128),
N->getValueType(0), Ops, 3, false,
- SDLoc(N));
+ SDLoc(N)).first;
GetPairElements(Call, Lo, Hi);
}
@@ -1000,7 +1014,7 @@ void DAGTypeLegalizer::ExpandFloatRes_FMUL(SDNode *N, SDValue &Lo,
RTLIB::MUL_F128,
RTLIB::MUL_PPCF128),
N->getValueType(0), Ops, 2, false,
- SDLoc(N));
+ SDLoc(N)).first;
GetPairElements(Call, Lo, Hi);
}
@@ -1072,6 +1086,18 @@ void DAGTypeLegalizer::ExpandFloatRes_FRINT(SDNode *N,
GetPairElements(Call, Lo, Hi);
}
+void DAGTypeLegalizer::ExpandFloatRes_FROUND(SDNode *N,
+ SDValue &Lo, SDValue &Hi) {
+ SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
+ RTLIB::ROUND_F32,
+ RTLIB::ROUND_F64,
+ RTLIB::ROUND_F80,
+ RTLIB::ROUND_F128,
+ RTLIB::ROUND_PPCF128),
+ N, false);
+ GetPairElements(Call, Lo, Hi);
+}
+
void DAGTypeLegalizer::ExpandFloatRes_FSIN(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
@@ -1102,7 +1128,7 @@ void DAGTypeLegalizer::ExpandFloatRes_FSUB(SDNode *N, SDValue &Lo,
RTLIB::SUB_F128,
RTLIB::SUB_PPCF128),
N->getValueType(0), Ops, 2, false,
- SDLoc(N));
+ SDLoc(N)).first;
GetPairElements(Call, Lo, Hi);
}
@@ -1134,8 +1160,7 @@ void DAGTypeLegalizer::ExpandFloatRes_LOAD(SDNode *N, SDValue &Lo,
assert(LD->getMemoryVT().bitsLE(NVT) && "Float type not round?");
Hi = DAG.getExtLoad(LD->getExtensionType(), dl, NVT, Chain, Ptr,
- LD->getPointerInfo(), LD->getMemoryVT(), LD->isVolatile(),
- LD->isNonTemporal(), LD->getAlignment());
+ LD->getMemoryVT(), LD->getMemOperand());
// Remember the chain.
Chain = Hi.getValue(1);
@@ -1181,7 +1206,7 @@ void DAGTypeLegalizer::ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo,
}
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XINT_TO_FP!");
- Hi = TLI.makeLibCall(DAG, LC, VT, &Src, 1, true, dl);
+ Hi = TLI.makeLibCall(DAG, LC, VT, &Src, 1, true, dl).first;
GetPairElements(Hi, Lo, Hi);
}
@@ -1251,6 +1276,7 @@ bool DAGTypeLegalizer::ExpandFloatOperand(SDNode *N, unsigned OpNo) {
case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break;
case ISD::BR_CC: Res = ExpandFloatOp_BR_CC(N); break;
+ case ISD::FCOPYSIGN: Res = ExpandFloatOp_FCOPYSIGN(N); break;
case ISD::FP_ROUND: Res = ExpandFloatOp_FP_ROUND(N); break;
case ISD::FP_TO_SINT: Res = ExpandFloatOp_FP_TO_SINT(N); break;
case ISD::FP_TO_UINT: Res = ExpandFloatOp_FP_TO_UINT(N); break;
@@ -1325,6 +1351,17 @@ SDValue DAGTypeLegalizer::ExpandFloatOp_BR_CC(SDNode *N) {
N->getOperand(4)), 0);
}
+SDValue DAGTypeLegalizer::ExpandFloatOp_FCOPYSIGN(SDNode *N) {
+ assert(N->getOperand(1).getValueType() == MVT::ppcf128 &&
+ "Logic only correct for ppcf128!");
+ SDValue Lo, Hi;
+ GetExpandedFloat(N->getOperand(1), Lo, Hi);
+ // The ppcf128 value is providing only the sign; take it from the
+ // higher-order double (which must have the larger magnitude).
+ return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N),
+ N->getValueType(0), N->getOperand(0), Hi);
+}
+
SDValue DAGTypeLegalizer::ExpandFloatOp_FP_ROUND(SDNode *N) {
assert(N->getOperand(0).getValueType() == MVT::ppcf128 &&
"Logic only correct for ppcf128!");
@@ -1353,7 +1390,7 @@ SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_SINT(SDNode *N) {
RTLIB::Libcall LC = RTLIB::getFPTOSINT(N->getOperand(0).getValueType(), RVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_SINT!");
- return TLI.makeLibCall(DAG, LC, RVT, &N->getOperand(0), 1, false, dl);
+ return TLI.makeLibCall(DAG, LC, RVT, &N->getOperand(0), 1, false, dl).first;
}
SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_UINT(SDNode *N) {
@@ -1386,7 +1423,7 @@ SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_UINT(SDNode *N) {
RTLIB::Libcall LC = RTLIB::getFPTOUINT(N->getOperand(0).getValueType(), RVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_UINT!");
return TLI.makeLibCall(DAG, LC, N->getValueType(0), &N->getOperand(0), 1,
- false, dl);
+ false, dl).first;
}
SDValue DAGTypeLegalizer::ExpandFloatOp_SELECT_CC(SDNode *N) {
@@ -1445,7 +1482,5 @@ SDValue DAGTypeLegalizer::ExpandFloatOp_STORE(SDNode *N, unsigned OpNo) {
GetExpandedOp(ST->getValue(), Lo, Hi);
return DAG.getTruncStore(Chain, SDLoc(N), Hi, Ptr,
- ST->getPointerInfo(),
- ST->getMemoryVT(), ST->isVolatile(),
- ST->isNonTemporal(), ST->getAlignment());
+ ST->getMemoryVT(), ST->getMemOperand());
}
diff --git a/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
index ff8f1f9..4255948 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
@@ -417,9 +417,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
SDLoc dl(N);
SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
- N->getPointerInfo(),
- N->getMemoryVT(), N->isVolatile(),
- N->isNonTemporal(), N->getAlignment());
+ N->getMemoryVT(), N->getMemOperand());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
@@ -919,7 +917,8 @@ SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
// type does not have a strange size (eg: it is not i1).
EVT VecVT = N->getValueType(0);
unsigned NumElts = VecVT.getVectorNumElements();
- assert(!(NumElts & 1) && "Legal vector of one illegal element?");
+ assert(!((NumElts & 1) && (!TLI.isTypeLegal(VecVT))) &&
+ "Legal vector of one illegal element?");
// Promote the inserted value. The type does not need to match the
// vector element type. Check that any extra bits introduced will be
@@ -1037,17 +1036,13 @@ SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
- unsigned Alignment = N->getAlignment();
- bool isVolatile = N->isVolatile();
- bool isNonTemporal = N->isNonTemporal();
SDLoc dl(N);
SDValue Val = GetPromotedInteger(N->getValue()); // Get promoted value.
// Truncate the value and store the result.
- return DAG.getTruncStore(Ch, dl, Val, Ptr, N->getPointerInfo(),
- N->getMemoryVT(),
- isVolatile, isNonTemporal, Alignment);
+ return DAG.getTruncStore(Ch, dl, Val, Ptr,
+ N->getMemoryVT(), N->getMemOperand());
}
SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
@@ -1193,6 +1188,7 @@ std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_LOCK_TEST_AND_SET_16;break;
}
break;
case ISD::ATOMIC_CMP_SWAP:
@@ -1202,6 +1198,7 @@ std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16;break;
}
break;
case ISD::ATOMIC_LOAD_ADD:
@@ -1211,6 +1208,7 @@ std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_ADD_16;break;
}
break;
case ISD::ATOMIC_LOAD_SUB:
@@ -1220,6 +1218,7 @@ std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_SUB_16;break;
}
break;
case ISD::ATOMIC_LOAD_AND:
@@ -1229,6 +1228,7 @@ std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_AND_16;break;
}
break;
case ISD::ATOMIC_LOAD_OR:
@@ -1238,6 +1238,7 @@ std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_OR_16;break;
}
break;
case ISD::ATOMIC_LOAD_XOR:
@@ -1247,6 +1248,7 @@ std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_XOR_16;break;
}
break;
case ISD::ATOMIC_LOAD_NAND:
@@ -1256,6 +1258,7 @@ std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
+ case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_NAND_16;break;
}
break;
}
@@ -1770,7 +1773,8 @@ void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
SDValue Op = N->getOperand(0);
RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
- SplitInteger(TLI.makeLibCall(DAG, LC, VT, &Op, 1, true/*irrelevant*/, dl),
+ SplitInteger(TLI.makeLibCall(DAG, LC, VT, &Op, 1, true/*irrelevant*/,
+ dl).first,
Lo, Hi);
}
@@ -1781,7 +1785,8 @@ void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
SDValue Op = N->getOperand(0);
RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
- SplitInteger(TLI.makeLibCall(DAG, LC, VT, &Op, 1, false/*irrelevant*/, dl),
+ SplitInteger(TLI.makeLibCall(DAG, LC, VT, &Op, 1, false/*irrelevant*/,
+ dl).first,
Lo, Hi);
}
@@ -1803,6 +1808,7 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
bool isVolatile = N->isVolatile();
bool isNonTemporal = N->isNonTemporal();
bool isInvariant = N->isInvariant();
+ const MDNode *TBAAInfo = N->getTBAAInfo();
SDLoc dl(N);
assert(NVT.isByteSized() && "Expanded type not byte sized!");
@@ -1811,7 +1817,7 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
EVT MemVT = N->getMemoryVT();
Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
- MemVT, isVolatile, isNonTemporal, Alignment);
+ MemVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
// Remember the chain.
Ch = Lo.getValue(1);
@@ -1833,7 +1839,8 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
} else if (TLI.isLittleEndian()) {
// Little-endian - low bits are at low addresses.
Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(),
- isVolatile, isNonTemporal, isInvariant, Alignment);
+ isVolatile, isNonTemporal, isInvariant, Alignment,
+ TBAAInfo);
unsigned ExcessBits =
N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
@@ -1842,11 +1849,11 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
// Increment the pointer to the other half.
unsigned IncrementSize = NVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize));
+ MinAlign(Alignment, IncrementSize), TBAAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
@@ -1864,17 +1871,17 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
EVT::getIntegerVT(*DAG.getContext(),
MemVT.getSizeInBits() - ExcessBits),
- isVolatile, isNonTemporal, Alignment);
+ isVolatile, isNonTemporal, Alignment, TBAAInfo);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
// Load the rest of the low bits.
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize));
+ MinAlign(Alignment, IncrementSize), TBAAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
@@ -1997,7 +2004,8 @@ void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!");
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
- SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true/*irrelevant*/, dl),
+ SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true/*irrelevant*/,
+ dl).first,
Lo, Hi);
}
@@ -2060,7 +2068,7 @@ void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
- SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true, dl), Lo, Hi);
+ SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true, dl).first, Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
@@ -2155,7 +2163,8 @@ void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
- SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, isSigned, dl), Lo, Hi);
+ SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, isSigned, dl).first, Lo,
+ Hi);
return;
}
@@ -2238,7 +2247,7 @@ void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
- SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true, dl), Lo, Hi);
+ SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true, dl).first, Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
@@ -2378,7 +2387,7 @@ void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
- SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, false, dl), Lo, Hi);
+ SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, false, dl).first, Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
@@ -2398,7 +2407,7 @@ void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
- SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, false, dl), Lo, Hi);
+ SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, false, dl).first, Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
@@ -2685,7 +2694,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Don't know how to expand this SINT_TO_FP!");
- return TLI.makeLibCall(DAG, LC, DstVT, &Op, 1, true, SDLoc(N));
+ return TLI.makeLibCall(DAG, LC, DstVT, &Op, 1, true, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
@@ -2702,6 +2711,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
unsigned Alignment = N->getAlignment();
bool isVolatile = N->isVolatile();
bool isNonTemporal = N->isNonTemporal();
+ const MDNode *TBAAInfo = N->getTBAAInfo();
SDLoc dl(N);
SDValue Lo, Hi;
@@ -2711,7 +2721,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
GetExpandedInteger(N->getValue(), Lo, Hi);
return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
N->getMemoryVT(), isVolatile, isNonTemporal,
- Alignment);
+ Alignment, TBAAInfo);
}
if (TLI.isLittleEndian()) {
@@ -2719,7 +2729,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
GetExpandedInteger(N->getValue(), Lo, Hi);
Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
- isVolatile, isNonTemporal, Alignment);
+ isVolatile, isNonTemporal, Alignment, TBAAInfo);
unsigned ExcessBits =
N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
@@ -2728,11 +2738,11 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
// Increment the pointer to the other half.
unsigned IncrementSize = NVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
NEVT, isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize));
+ MinAlign(Alignment, IncrementSize), TBAAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
@@ -2760,17 +2770,17 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
// Store both the high bits and maybe some of the low bits.
Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(),
- HiVT, isVolatile, isNonTemporal, Alignment);
+ HiVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
// Store the lowest ExcessBits bits in the second half.
Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize));
+ MinAlign(Alignment, IncrementSize), TBAAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
@@ -2835,7 +2845,8 @@ SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet,
Zero, Four);
unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
- FudgePtr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), FudgePtr, Offset);
+ FudgePtr = DAG.getNode(ISD::ADD, dl, FudgePtr.getValueType(),
+ FudgePtr, Offset);
Alignment = std::min(Alignment, 4u);
// Load the value out, extending it from f32 to the destination float type.
@@ -2852,7 +2863,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Don't know how to expand this UINT_TO_FP!");
- return TLI.makeLibCall(DAG, LC, DstVT, &Op, 1, true, dl);
+ return TLI.makeLibCall(DAG, LC, DstVT, &Op, 1, true, dl).first;
}
SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) {
diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
index fd770d1..eb13230 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
@@ -958,20 +958,6 @@ SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
return SDValue(N->getOperand(ResNo));
}
-/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
-/// which is split into two not necessarily identical pieces.
-void DAGTypeLegalizer::GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT) {
- // Currently all types are split in half.
- if (!InVT.isVector()) {
- LoVT = HiVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
- } else {
- unsigned NumElements = InVT.getVectorNumElements();
- assert(!(NumElements & 1) && "Splitting vector, but not in half!");
- LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
- InVT.getVectorElementType(), NumElements/2);
- }
-}
-
/// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
/// high parts of the given value.
void DAGTypeLegalizer::GetPairElements(SDValue Pair,
@@ -988,10 +974,7 @@ SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
SDValue Index) {
SDLoc dl(Index);
// Make sure the index type is big enough to compute in.
- if (Index.getValueType().bitsGT(TLI.getPointerTy()))
- Index = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Index);
- else
- Index = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Index);
+ Index = DAG.getZExtOrTrunc(Index, dl, TLI.getPointerTy());
// Calculate the element offset and add it to the pointer.
unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
@@ -1024,20 +1007,23 @@ SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
unsigned NumOps = N->getNumOperands();
SDLoc dl(N);
if (NumOps == 0) {
- return TLI.makeLibCall(DAG, LC, N->getValueType(0), 0, 0, isSigned, dl);
+ return TLI.makeLibCall(DAG, LC, N->getValueType(0), 0, 0, isSigned,
+ dl).first;
} else if (NumOps == 1) {
SDValue Op = N->getOperand(0);
- return TLI.makeLibCall(DAG, LC, N->getValueType(0), &Op, 1, isSigned, dl);
+ return TLI.makeLibCall(DAG, LC, N->getValueType(0), &Op, 1, isSigned,
+ dl).first;
} else if (NumOps == 2) {
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
- return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, 2, isSigned, dl);
+ return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, 2, isSigned,
+ dl).first;
}
SmallVector<SDValue, 8> Ops(NumOps);
for (unsigned i = 0; i < NumOps; ++i)
Ops[i] = N->getOperand(i);
return TLI.makeLibCall(DAG, LC, N->getValueType(0),
- &Ops[0], NumOps, isSigned, dl);
+ &Ops[0], NumOps, isSigned, dl).first;
}
// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypes.h b/lib/CodeGen/SelectionDAG/LegalizeTypes.h
index 63e9af3..13bb08f 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeTypes.h
+++ b/lib/CodeGen/SelectionDAG/LegalizeTypes.h
@@ -410,6 +410,7 @@ private:
SDValue SoftenFloatRes_FPOWI(SDNode *N);
SDValue SoftenFloatRes_FREM(SDNode *N);
SDValue SoftenFloatRes_FRINT(SDNode *N);
+ SDValue SoftenFloatRes_FROUND(SDNode *N);
SDValue SoftenFloatRes_FSIN(SDNode *N);
SDValue SoftenFloatRes_FSQRT(SDNode *N);
SDValue SoftenFloatRes_FSUB(SDNode *N);
@@ -470,6 +471,7 @@ private:
void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
+ void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
@@ -480,6 +482,7 @@ private:
// Float Operand Expansion.
bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
SDValue ExpandFloatOp_BR_CC(SDNode *N);
+ SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
@@ -534,7 +537,7 @@ private:
// Vector Operand Scalarization: <1 x ty> -> ty.
bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_BITCAST(SDNode *N);
- SDValue ScalarizeVecOp_EXTEND(SDNode *N);
+ SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
@@ -558,6 +561,7 @@ private:
void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
+ void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
@@ -628,6 +632,7 @@ private:
SDValue WidenVecRes_Ternary(SDNode *N);
SDValue WidenVecRes_Binary(SDNode *N);
+ SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
SDValue WidenVecRes_Convert(SDNode *N);
SDValue WidenVecRes_POWI(SDNode *N);
SDValue WidenVecRes_Shift(SDNode *N);
@@ -699,10 +704,6 @@ private:
GetExpandedFloat(Op, Lo, Hi);
}
- /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
- /// which is split (or expanded) into two not necessarily identical pieces.
- void GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT);
-
/// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
/// high parts of the given value.
void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
@@ -730,6 +731,12 @@ private:
GetExpandedFloat(Op, Lo, Hi);
}
+
+ /// This function will split the integer \p Op into \p NumElements
+ /// operations of type \p EltVT and store them in \p Ops.
+ void IntegerToVector(SDValue Op, unsigned NumElements,
+ SmallVectorImpl<SDValue> &Ops, EVT EltVT);
+
// Generic Result Expansion.
void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi);
diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp b/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
index 96f6143..c749fde 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
@@ -77,13 +77,9 @@ void DAGTypeLegalizer::ExpandRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi) {
case TargetLowering::TypeWidenVector: {
assert(!(InVT.getVectorNumElements() & 1) && "Unsupported BITCAST");
InOp = GetWidenedVector(InOp);
- EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
- InVT.getVectorNumElements()/2);
- Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
- DAG.getConstant(0, TLI.getVectorIdxTy()));
- Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
- DAG.getConstant(InNVT.getVectorNumElements(),
- TLI.getVectorIdxTy()));
+ EVT LoVT, HiVT;
+ llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(InVT);
+ llvm::tie(Lo, Hi) = DAG.SplitVector(InOp, dl, LoVT, HiVT);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
@@ -169,7 +165,8 @@ void DAGTypeLegalizer::ExpandRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi) {
// Increment the pointer to the other half.
unsigned IncrementSize = NOutVT.getSizeInBits() / 8;
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize,
+ StackPtr.getValueType()));
// Load the second half from the stack slot.
Hi = DAG.getLoad(NOutVT, dl, Store, StackPtr,
@@ -253,20 +250,22 @@ void DAGTypeLegalizer::ExpandRes_NormalLoad(SDNode *N, SDValue &Lo,
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
bool isInvariant = LD->isInvariant();
+ const MDNode *TBAAInfo = LD->getTBAAInfo();
assert(NVT.isByteSized() && "Expanded type not byte sized!");
Lo = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(),
- isVolatile, isNonTemporal, isInvariant, Alignment);
+ isVolatile, isNonTemporal, isInvariant, Alignment,
+ TBAAInfo);
// Increment the pointer to the other half.
unsigned IncrementSize = NVT.getSizeInBits() / 8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getLoad(NVT, dl, Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
isVolatile, isNonTemporal, isInvariant,
- MinAlign(Alignment, IncrementSize));
+ MinAlign(Alignment, IncrementSize), TBAAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
@@ -307,6 +306,25 @@ void DAGTypeLegalizer::ExpandRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi) {
// Generic Operand Expansion.
//===--------------------------------------------------------------------===//
+void DAGTypeLegalizer::IntegerToVector(SDValue Op, unsigned NumElements,
+ SmallVectorImpl<SDValue> &Ops,
+ EVT EltVT) {
+ assert(Op.getValueType().isInteger());
+ SDLoc DL(Op);
+ SDValue Parts[2];
+
+ if (NumElements > 1) {
+ NumElements >>= 1;
+ SplitInteger(Op, Parts[0], Parts[1]);
+ if (TLI.isBigEndian())
+ std::swap(Parts[0], Parts[1]);
+ IntegerToVector(Parts[0], NumElements, Ops, EltVT);
+ IntegerToVector(Parts[1], NumElements, Ops, EltVT);
+ } else {
+ Ops.push_back(DAG.getNode(ISD::BITCAST, DL, EltVT, Op));
+ }
+}
+
SDValue DAGTypeLegalizer::ExpandOp_BITCAST(SDNode *N) {
SDLoc dl(N);
if (N->getValueType(0).isVector()) {
@@ -315,21 +333,27 @@ SDValue DAGTypeLegalizer::ExpandOp_BITCAST(SDNode *N) {
// instead, but only if the new vector type is legal (otherwise there
// is no point, and it might create expansion loops). For example, on
// x86 this turns v1i64 = BITCAST i64 into v1i64 = BITCAST v2i32.
+ //
+ // FIXME: I'm not sure why we are first trying to split the input into
+ // a 2 element vector, so I'm leaving it here to maintain the current
+ // behavior.
+ unsigned NumElts = 2;
EVT OVT = N->getOperand(0).getValueType();
EVT NVT = EVT::getVectorVT(*DAG.getContext(),
TLI.getTypeToTransformTo(*DAG.getContext(), OVT),
- 2);
-
- if (isTypeLegal(NVT)) {
- SDValue Parts[2];
- GetExpandedOp(N->getOperand(0), Parts[0], Parts[1]);
+ NumElts);
+ if (!isTypeLegal(NVT)) {
+ // If we can't find a legal type by splitting the integer in half,
+ // then we can use the node's value type.
+ NumElts = N->getValueType(0).getVectorNumElements();
+ NVT = N->getValueType(0);
+ }
- if (TLI.isBigEndian())
- std::swap(Parts[0], Parts[1]);
+ SmallVector<SDValue, 8> Ops;
+ IntegerToVector(N->getOperand(0), NumElts, Ops, NVT.getVectorElementType());
- SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Parts, 2);
- return DAG.getNode(ISD::BITCAST, dl, N->getValueType(0), Vec);
- }
+ SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &Ops[0], NumElts);
+ return DAG.getNode(ISD::BITCAST, dl, N->getValueType(0), Vec);
}
// Otherwise, store to a temporary and load out again as the new type.
@@ -439,6 +463,7 @@ SDValue DAGTypeLegalizer::ExpandOp_NormalStore(SDNode *N, unsigned OpNo) {
unsigned Alignment = St->getAlignment();
bool isVolatile = St->isVolatile();
bool isNonTemporal = St->isNonTemporal();
+ const MDNode *TBAAInfo = St->getTBAAInfo();
assert(NVT.isByteSized() && "Expanded type not byte sized!");
unsigned IncrementSize = NVT.getSizeInBits() / 8;
@@ -450,15 +475,14 @@ SDValue DAGTypeLegalizer::ExpandOp_NormalStore(SDNode *N, unsigned OpNo) {
std::swap(Lo, Hi);
Lo = DAG.getStore(Chain, dl, Lo, Ptr, St->getPointerInfo(),
- isVolatile, isNonTemporal, Alignment);
+ isVolatile, isNonTemporal, Alignment, TBAAInfo);
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(IncrementSize));
- assert(isTypeLegal(Ptr.getValueType()) && "Pointers must be legal!");
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getStore(Chain, dl, Hi, Ptr,
St->getPointerInfo().getWithOffset(IncrementSize),
isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize));
+ MinAlign(Alignment, IncrementSize), TBAAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
@@ -489,14 +513,12 @@ void DAGTypeLegalizer::SplitRes_SELECT(SDNode *N, SDValue &Lo,
SDValue Cond = N->getOperand(0);
CL = CH = Cond;
if (Cond.getValueType().isVector()) {
- assert(Cond.getValueType().getVectorElementType() == MVT::i1 &&
- "Condition legalized before result?");
- unsigned NumElements = Cond.getValueType().getVectorNumElements();
- EVT VCondTy = EVT::getVectorVT(*DAG.getContext(), MVT::i1, NumElements / 2);
- CL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VCondTy, Cond,
- DAG.getConstant(0, TLI.getVectorIdxTy()));
- CH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VCondTy, Cond,
- DAG.getConstant(NumElements / 2, TLI.getVectorIdxTy()));
+ // Check if there are already splitted versions of the vector available and
+ // use those instead of splitting the mask operand again.
+ if (getTypeAction(Cond.getValueType()) == TargetLowering::TypeSplitVector)
+ GetSplitVector(Cond, CL, CH);
+ else
+ llvm::tie(CL, CH) = DAG.SplitVector(Cond, dl);
}
Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), CL, LL, RL);
@@ -518,7 +540,7 @@ void DAGTypeLegalizer::SplitRes_SELECT_CC(SDNode *N, SDValue &Lo,
void DAGTypeLegalizer::SplitRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi) {
EVT LoVT, HiVT;
- GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
+ llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
Lo = DAG.getUNDEF(LoVT);
Hi = DAG.getUNDEF(HiVT);
}
diff --git a/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp b/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
index bbe11b8..2c3cdcc 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
@@ -171,7 +171,7 @@ SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
return TranslateLegalizeResults(Op, Result);
case TargetLowering::Custom:
Changed = true;
- return LegalizeOp(TLI.LowerOperation(Result, DAG));
+ return TranslateLegalizeResults(Op, TLI.LowerOperation(Result, DAG));
case TargetLowering::Expand:
Changed = true;
return LegalizeOp(ExpandStore(Op));
@@ -227,6 +227,7 @@ SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
case ISD::FP_TO_UINT:
case ISD::FNEG:
case ISD::FABS:
+ case ISD::FCOPYSIGN:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
@@ -241,6 +242,7 @@ SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
case ISD::FTRUNC:
case ISD::FRINT:
case ISD::FNEARBYINT:
+ case ISD::FROUND:
case ISD::FFLOOR:
case ISD::FP_ROUND:
case ISD::FP_EXTEND:
@@ -416,7 +418,8 @@ SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
LD->getPointerInfo().getWithOffset(Offset),
LD->isVolatile(), LD->isNonTemporal(),
- LD->isInvariant(), LD->getAlignment());
+ LD->isInvariant(), LD->getAlignment(),
+ LD->getTBAAInfo());
} else {
EVT LoadVT = WideVT;
while (RemainingBytes < LoadBytes) {
@@ -426,13 +429,14 @@ SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
LD->getPointerInfo().getWithOffset(Offset),
LoadVT, LD->isVolatile(),
- LD->isNonTemporal(), LD->getAlignment());
+ LD->isNonTemporal(), LD->getAlignment(),
+ LD->getTBAAInfo());
}
RemainingBytes -= LoadBytes;
Offset += LoadBytes;
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
- DAG.getIntPtrConstant(LoadBytes));
+ DAG.getConstant(LoadBytes, BasePTR.getValueType()));
LoadVals.push_back(ScalarLoad.getValue(0));
LoadChains.push_back(ScalarLoad.getValue(1));
@@ -497,10 +501,10 @@ SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
SrcVT.getScalarType(),
LD->isVolatile(), LD->isNonTemporal(),
- LD->getAlignment());
+ LD->getAlignment(), LD->getTBAAInfo());
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
- DAG.getIntPtrConstant(Stride));
+ DAG.getConstant(Stride, BasePTR.getValueType()));
Vals.push_back(ScalarLoad.getValue(0));
LoadChains.push_back(ScalarLoad.getValue(1));
@@ -529,6 +533,7 @@ SDValue VectorLegalizer::ExpandStore(SDValue Op) {
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
+ const MDNode *TBAAInfo = ST->getTBAAInfo();
unsigned NumElem = StVT.getVectorNumElements();
// The type of the data we want to save
@@ -556,10 +561,10 @@ SDValue VectorLegalizer::ExpandStore(SDValue Op) {
// This scalar TruncStore may be illegal, but we legalize it later.
SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
- isVolatile, isNonTemporal, Alignment);
+ isVolatile, isNonTemporal, Alignment, TBAAInfo);
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
- DAG.getIntPtrConstant(Stride));
+ DAG.getConstant(Stride, BasePTR.getValueType()));
Stores.push_back(Store);
}
@@ -597,10 +602,7 @@ SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
return DAG.UnrollVectorOp(Op.getNode());
// Generate a mask operand.
- EVT MaskTy = TLI.getSetCCResultType(*DAG.getContext(), VT);
- assert(MaskTy.isVector() && "Invalid CC type");
- assert(MaskTy.getSizeInBits() == Op1.getValueType().getSizeInBits()
- && "Invalid mask size");
+ EVT MaskTy = VT.changeVectorElementTypeToInteger();
// What is the size of each element in the vector mask.
EVT BitTy = MaskTy.getScalarType();
diff --git a/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
index 54380ec..f7a3e3d 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
@@ -83,6 +83,7 @@ void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FRINT:
+ case ISD::FROUND:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
@@ -97,6 +98,7 @@ void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
case ISD::ADD:
case ISD::AND:
case ISD::FADD:
+ case ISD::FCOPYSIGN:
case ISD::FDIV:
case ISD::FMUL:
case ISD::FPOW:
@@ -215,7 +217,8 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
N->getPointerInfo(),
N->getMemoryVT().getVectorElementType(),
N->isVolatile(), N->isNonTemporal(),
- N->isInvariant(), N->getOriginalAlignment());
+ N->isInvariant(), N->getOriginalAlignment(),
+ N->getTBAAInfo());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
@@ -369,7 +372,8 @@ bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
- Res = ScalarizeVecOp_EXTEND(N);
+ case ISD::TRUNCATE:
+ Res = ScalarizeVecOp_UnaryOp(N);
break;
case ISD::CONCAT_VECTORS:
Res = ScalarizeVecOp_CONCAT_VECTORS(N);
@@ -408,7 +412,7 @@ SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
/// ScalarizeVecOp_EXTEND - If the value to extend is a vector that needs
/// to be scalarized, it must be <1 x ty>. Extend the element instead.
-SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTEND(SDNode *N) {
+SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp(SDNode *N) {
assert(N->getValueType(0).getVectorNumElements() == 1 &&
"Unexected vector type!");
SDValue Elt = GetScalarizedVector(N->getOperand(0));
@@ -455,12 +459,12 @@ SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
N->getBasePtr(), N->getPointerInfo(),
N->getMemoryVT().getVectorElementType(),
N->isVolatile(), N->isNonTemporal(),
- N->getAlignment());
+ N->getAlignment(), N->getTBAAInfo());
return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
N->getBasePtr(), N->getPointerInfo(),
N->isVolatile(), N->isNonTemporal(),
- N->getOriginalAlignment());
+ N->getOriginalAlignment(), N->getTBAAInfo());
}
@@ -517,7 +521,6 @@ void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
break;
- case ISD::ANY_EXTEND:
case ISD::CONVERT_RNDSAT:
case ISD::CTLZ:
case ISD::CTTZ:
@@ -540,21 +543,27 @@ void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FRINT:
+ case ISD::FROUND:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
- case ISD::SIGN_EXTEND:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP:
- case ISD::ZERO_EXTEND:
SplitVecRes_UnaryOp(N, Lo, Hi);
break;
+ case ISD::ANY_EXTEND:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ SplitVecRes_ExtendOp(N, Lo, Hi);
+ break;
+
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::FADD:
+ case ISD::FCOPYSIGN:
case ISD::FSUB:
case ISD::FMUL:
case ISD::SDIV:
@@ -615,7 +624,7 @@ void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
// We know the result is a vector. The input may be either a vector or a
// scalar value.
EVT LoVT, HiVT;
- GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
+ llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
SDLoc dl(N);
SDValue InOp = N->getOperand(0);
@@ -670,7 +679,7 @@ void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
EVT LoVT, HiVT;
SDLoc dl(N);
- GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
+ llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
unsigned LoNumElts = LoVT.getVectorNumElements();
SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, &LoOps[0], LoOps.size());
@@ -691,7 +700,7 @@ void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
}
EVT LoVT, HiVT;
- GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
+ llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, &LoOps[0], LoOps.size());
@@ -707,7 +716,7 @@ void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
SDLoc dl(N);
EVT LoVT, HiVT;
- GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
+ llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
@@ -731,7 +740,8 @@ void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
SDLoc dl(N);
EVT LoVT, HiVT;
- GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT(), LoVT, HiVT);
+ llvm::tie(LoVT, HiVT) =
+ DAG.GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT());
Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
DAG.getValueType(LoVT));
@@ -783,7 +793,7 @@ void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
// Increment the pointer to the other part.
unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize, StackPtr.getValueType()));
// Load the Hi part from the stack slot.
Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
@@ -794,7 +804,7 @@ void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
EVT LoVT, HiVT;
SDLoc dl(N);
- GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
+ llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
Hi = DAG.getUNDEF(HiVT);
}
@@ -804,7 +814,7 @@ void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
EVT LoVT, HiVT;
SDLoc dl(LD);
- GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
+ llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(LD->getValueType(0));
ISD::LoadExtType ExtType = LD->getExtensionType();
SDValue Ch = LD->getChain();
@@ -815,20 +825,22 @@ void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
bool isInvariant = LD->isInvariant();
+ const MDNode *TBAAInfo = LD->getTBAAInfo();
EVT LoMemVT, HiMemVT;
- GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
+ llvm::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal,
- isInvariant, Alignment);
+ isInvariant, Alignment, TBAAInfo);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
LD->getPointerInfo().getWithOffset(IncrementSize),
- HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment);
+ HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment,
+ TBAAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
@@ -847,24 +859,12 @@ void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
EVT LoVT, HiVT;
SDLoc DL(N);
- GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
+ llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
// Split the input.
- EVT InVT = N->getOperand(0).getValueType();
SDValue LL, LH, RL, RH;
- EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
- LoVT.getVectorNumElements());
- LL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
- DAG.getConstant(0, TLI.getVectorIdxTy()));
- LH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
- DAG.getConstant(InNVT.getVectorNumElements(),
- TLI.getVectorIdxTy()));
-
- RL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
- DAG.getConstant(0, TLI.getVectorIdxTy()));
- RH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
- DAG.getConstant(InNVT.getVectorNumElements(),
- TLI.getVectorIdxTy()));
+ llvm::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
+ llvm::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
@@ -875,22 +875,15 @@ void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
// Get the dest types - they may not match the input types, e.g. int_to_fp.
EVT LoVT, HiVT;
SDLoc dl(N);
- GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
+ llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
// If the input also splits, handle it directly for a compile time speedup.
// Otherwise split it by hand.
EVT InVT = N->getOperand(0).getValueType();
- if (getTypeAction(InVT) == TargetLowering::TypeSplitVector) {
+ if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
GetSplitVector(N->getOperand(0), Lo, Hi);
- } else {
- EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
- LoVT.getVectorNumElements());
- Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
- DAG.getConstant(0, TLI.getVectorIdxTy()));
- Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
- DAG.getConstant(InNVT.getVectorNumElements(),
- TLI.getVectorIdxTy()));
- }
+ else
+ llvm::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
if (N->getOpcode() == ISD::FP_ROUND) {
Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
@@ -913,6 +906,58 @@ void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
}
}
+void DAGTypeLegalizer::SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDLoc dl(N);
+ EVT SrcVT = N->getOperand(0).getValueType();
+ EVT DestVT = N->getValueType(0);
+ EVT LoVT, HiVT;
+ llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(DestVT);
+
+ // We can do better than a generic split operation if the extend is doing
+ // more than just doubling the width of the elements and the following are
+ // true:
+ // - The number of vector elements is even,
+ // - the source type is legal,
+ // - the type of a split source is illegal,
+ // - the type of an extended (by doubling element size) source is legal, and
+ // - the type of that extended source when split is legal.
+ //
+ // This won't necessarily completely legalize the operation, but it will
+ // more effectively move in the right direction and prevent falling down
+ // to scalarization in many cases due to the input vector being split too
+ // far.
+ unsigned NumElements = SrcVT.getVectorNumElements();
+ if ((NumElements & 1) == 0 &&
+ SrcVT.getSizeInBits() * 2 < DestVT.getSizeInBits()) {
+ LLVMContext &Ctx = *DAG.getContext();
+ EVT NewSrcVT = EVT::getVectorVT(
+ Ctx, EVT::getIntegerVT(
+ Ctx, SrcVT.getVectorElementType().getSizeInBits() * 2),
+ NumElements);
+ EVT SplitSrcVT =
+ EVT::getVectorVT(Ctx, SrcVT.getVectorElementType(), NumElements / 2);
+ EVT SplitLoVT, SplitHiVT;
+ llvm::tie(SplitLoVT, SplitHiVT) = DAG.GetSplitDestVTs(NewSrcVT);
+ if (TLI.isTypeLegal(SrcVT) && !TLI.isTypeLegal(SplitSrcVT) &&
+ TLI.isTypeLegal(NewSrcVT) && TLI.isTypeLegal(SplitLoVT)) {
+ DEBUG(dbgs() << "Split vector extend via incremental extend:";
+ N->dump(&DAG); dbgs() << "\n");
+ // Extend the source vector by one step.
+ SDValue NewSrc =
+ DAG.getNode(N->getOpcode(), dl, NewSrcVT, N->getOperand(0));
+ // Get the low and high halves of the new, extended one step, vector.
+ llvm::tie(Lo, Hi) = DAG.SplitVector(NewSrc, dl);
+ // Extend those vector halves the rest of the way.
+ Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
+ Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
+ return;
+ }
+ }
+ // Fall back to the generic unary operator splitting otherwise.
+ SplitVecRes_UnaryOp(N, Lo, Hi);
+}
+
void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
SDValue &Lo, SDValue &Hi) {
// The low and high parts of the original input give four input vectors.
@@ -1105,41 +1150,23 @@ SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) {
SDValue Mask = N->getOperand(0);
SDValue Src0 = N->getOperand(1);
SDValue Src1 = N->getOperand(2);
+ EVT Src0VT = Src0.getValueType();
SDLoc DL(N);
- EVT MaskVT = Mask.getValueType();
- assert(MaskVT.isVector() && "VSELECT without a vector mask?");
+ assert(Mask.getValueType().isVector() && "VSELECT without a vector mask?");
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
assert(Lo.getValueType() == Hi.getValueType() &&
"Lo and Hi have differing types");
- unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
- unsigned HiNumElts = Hi.getValueType().getVectorNumElements();
- assert(LoNumElts == HiNumElts && "Asymmetric vector split?");
-
- LLVMContext &Ctx = *DAG.getContext();
- SDValue Zero = DAG.getConstant(0, TLI.getVectorIdxTy());
- SDValue LoElts = DAG.getConstant(LoNumElts, TLI.getVectorIdxTy());
- EVT Src0VT = Src0.getValueType();
- EVT Src0EltTy = Src0VT.getVectorElementType();
- EVT MaskEltTy = MaskVT.getVectorElementType();
-
- EVT LoOpVT = EVT::getVectorVT(Ctx, Src0EltTy, LoNumElts);
- EVT LoMaskVT = EVT::getVectorVT(Ctx, MaskEltTy, LoNumElts);
- EVT HiOpVT = EVT::getVectorVT(Ctx, Src0EltTy, HiNumElts);
- EVT HiMaskVT = EVT::getVectorVT(Ctx, MaskEltTy, HiNumElts);
+ EVT LoOpVT, HiOpVT;
+ llvm::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(Src0VT);
+ assert(LoOpVT == HiOpVT && "Asymmetric vector split?");
- SDValue LoOp0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoOpVT, Src0, Zero);
- SDValue LoOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoOpVT, Src1, Zero);
-
- SDValue HiOp0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HiOpVT, Src0, LoElts);
- SDValue HiOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HiOpVT, Src1, LoElts);
-
- SDValue LoMask =
- DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoMaskVT, Mask, Zero);
- SDValue HiMask =
- DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HiMaskVT, Mask, LoElts);
+ SDValue LoOp0, HiOp0, LoOp1, HiOp1, LoMask, HiMask;
+ llvm::tie(LoOp0, HiOp0) = DAG.SplitVector(Src0, DL);
+ llvm::tie(LoOp1, HiOp1) = DAG.SplitVector(Src1, DL);
+ llvm::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL);
SDValue LoSelect =
DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1);
@@ -1249,33 +1276,34 @@ SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
unsigned Alignment = N->getOriginalAlignment();
bool isVol = N->isVolatile();
bool isNT = N->isNonTemporal();
+ const MDNode *TBAAInfo = N->getTBAAInfo();
SDValue Lo, Hi;
GetSplitVector(N->getOperand(1), Lo, Hi);
EVT LoMemVT, HiMemVT;
- GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
+ llvm::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
if (isTruncating)
Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
- LoMemVT, isVol, isNT, Alignment);
+ LoMemVT, isVol, isNT, Alignment, TBAAInfo);
else
Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
- isVol, isNT, Alignment);
+ isVol, isNT, Alignment, TBAAInfo);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
- DAG.getIntPtrConstant(IncrementSize));
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
if (isTruncating)
Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
- HiMemVT, isVol, isNT, Alignment);
+ HiMemVT, isVol, isNT, Alignment, TBAAInfo);
else
Hi = DAG.getStore(Ch, DL, Hi, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
- isVol, isNT, Alignment);
+ isVol, isNT, Alignment, TBAAInfo);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
}
@@ -1341,13 +1369,8 @@ SDValue DAGTypeLegalizer::SplitVecOp_TRUNCATE(SDNode *N) {
SDLoc DL(N);
// Extract the halves of the input via extract_subvector.
- EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
- InVT.getVectorElementType(), NumElements/2);
- SDValue InLoVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, InVec,
- DAG.getConstant(0, TLI.getVectorIdxTy()));
- SDValue InHiVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, InVec,
- DAG.getConstant(NumElements/2,
- TLI.getVectorIdxTy()));
+ SDValue InLoVec, InHiVec;
+ llvm::tie(InLoVec, InHiVec) = DAG.SplitVector(InVec, DL);
// Truncate them to 1/2 the element size.
EVT HalfElementVT = EVT::getIntegerVT(*DAG.getContext(), InElementSize/2);
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT,
@@ -1446,27 +1469,31 @@ void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
case ISD::VECTOR_SHUFFLE:
Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
break;
+
case ISD::ADD:
case ISD::AND:
case ISD::BSWAP:
+ case ISD::MUL:
+ case ISD::MULHS:
+ case ISD::MULHU:
+ case ISD::OR:
+ case ISD::SUB:
+ case ISD::XOR:
+ Res = WidenVecRes_Binary(N);
+ break;
+
case ISD::FADD:
case ISD::FCOPYSIGN:
- case ISD::FDIV:
case ISD::FMUL:
case ISD::FPOW:
- case ISD::FREM:
case ISD::FSUB:
- case ISD::MUL:
- case ISD::MULHS:
- case ISD::MULHU:
- case ISD::OR:
+ case ISD::FDIV:
+ case ISD::FREM:
case ISD::SDIV:
- case ISD::SREM:
case ISD::UDIV:
+ case ISD::SREM:
case ISD::UREM:
- case ISD::SUB:
- case ISD::XOR:
- Res = WidenVecRes_Binary(N);
+ Res = WidenVecRes_BinaryCanTrap(N);
break;
case ISD::FPOWI:
@@ -1507,6 +1534,7 @@ void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
case ISD::FNEARBYINT:
case ISD::FNEG:
case ISD::FRINT:
+ case ISD::FROUND:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
@@ -1534,6 +1562,15 @@ SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) {
SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
// Binary op widening.
+ SDLoc dl(N);
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ SDValue InOp1 = GetWidenedVector(N->getOperand(0));
+ SDValue InOp2 = GetWidenedVector(N->getOperand(1));
+ return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_BinaryCanTrap(SDNode *N) {
+ // Binary op widening for operations that can trap.
unsigned Opcode = N->getOpcode();
SDLoc dl(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
@@ -2532,6 +2569,7 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
bool isInvariant = LD->isInvariant();
+ const MDNode *TBAAInfo = LD->getTBAAInfo();
int LdWidth = LdVT.getSizeInBits();
int WidthDiff = WidenWidth - LdWidth; // Difference
@@ -2541,7 +2579,8 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
int NewVTWidth = NewVT.getSizeInBits();
SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(),
- isVolatile, isNonTemporal, isInvariant, Align);
+ isVolatile, isNonTemporal, isInvariant, Align,
+ TBAAInfo);
LdChain.push_back(LdOp.getValue(1));
// Check if we can load the element with one instruction
@@ -2577,7 +2616,7 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
unsigned Increment = NewVTWidth / 8;
Offset += Increment;
BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
- DAG.getIntPtrConstant(Increment));
+ DAG.getConstant(Increment, BasePtr.getValueType()));
SDValue L;
if (LdWidth < NewVTWidth) {
@@ -2586,7 +2625,8 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
NewVTWidth = NewVT.getSizeInBits();
L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
LD->getPointerInfo().getWithOffset(Offset), isVolatile,
- isNonTemporal, isInvariant, MinAlign(Align, Increment));
+ isNonTemporal, isInvariant, MinAlign(Align, Increment),
+ TBAAInfo);
LdChain.push_back(L.getValue(1));
if (L->getValueType(0).isVector()) {
SmallVector<SDValue, 16> Loads;
@@ -2602,7 +2642,8 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
} else {
L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
LD->getPointerInfo().getWithOffset(Offset), isVolatile,
- isNonTemporal, isInvariant, MinAlign(Align, Increment));
+ isNonTemporal, isInvariant, MinAlign(Align, Increment),
+ TBAAInfo);
LdChain.push_back(L.getValue(1));
}
@@ -2682,6 +2723,7 @@ DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
unsigned Align = LD->getAlignment();
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
+ const MDNode *TBAAInfo = LD->getTBAAInfo();
EVT EltVT = WidenVT.getVectorElementType();
EVT LdEltVT = LdVT.getVectorElementType();
@@ -2693,15 +2735,17 @@ DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
unsigned Increment = LdEltVT.getSizeInBits() / 8;
Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr,
LD->getPointerInfo(),
- LdEltVT, isVolatile, isNonTemporal, Align);
+ LdEltVT, isVolatile, isNonTemporal, Align, TBAAInfo);
LdChain.push_back(Ops[0].getValue(1));
unsigned i = 0, Offset = Increment;
for (i=1; i < NumElts; ++i, Offset += Increment) {
SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
- BasePtr, DAG.getIntPtrConstant(Offset));
+ BasePtr,
+ DAG.getConstant(Offset,
+ BasePtr.getValueType()));
Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
- isVolatile, isNonTemporal, Align);
+ isVolatile, isNonTemporal, Align, TBAAInfo);
LdChain.push_back(Ops[i].getValue(1));
}
@@ -2724,6 +2768,7 @@ void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
unsigned Align = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
+ const MDNode *TBAAInfo = ST->getTBAAInfo();
SDValue ValOp = GetWidenedVector(ST->getValue());
SDLoc dl(ST);
@@ -2750,12 +2795,12 @@ void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
ST->getPointerInfo().getWithOffset(Offset),
isVolatile, isNonTemporal,
- MinAlign(Align, Offset)));
+ MinAlign(Align, Offset), TBAAInfo));
StWidth -= NewVTWidth;
Offset += Increment;
Idx += NumVTElts;
BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
- DAG.getIntPtrConstant(Increment));
+ DAG.getConstant(Increment, BasePtr.getValueType()));
} while (StWidth != 0 && StWidth >= NewVTWidth);
} else {
// Cast the vector to the scalar type we can store
@@ -2770,11 +2815,11 @@ void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
ST->getPointerInfo().getWithOffset(Offset),
isVolatile, isNonTemporal,
- MinAlign(Align, Offset)));
+ MinAlign(Align, Offset), TBAAInfo));
StWidth -= NewVTWidth;
Offset += Increment;
BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
- DAG.getIntPtrConstant(Increment));
+ DAG.getConstant(Increment, BasePtr.getValueType()));
} while (StWidth != 0 && StWidth >= NewVTWidth);
// Restore index back to be relative to the original widen element type
Idx = Idx * NewVTWidth / ValEltWidth;
@@ -2792,6 +2837,7 @@ DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
unsigned Align = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
+ const MDNode *TBAAInfo = ST->getTBAAInfo();
SDValue ValOp = GetWidenedVector(ST->getValue());
SDLoc dl(ST);
@@ -2814,17 +2860,19 @@ DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
DAG.getConstant(0, TLI.getVectorIdxTy()));
StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr,
ST->getPointerInfo(), StEltVT,
- isVolatile, isNonTemporal, Align));
+ isVolatile, isNonTemporal, Align,
+ TBAAInfo));
unsigned Offset = Increment;
for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
- BasePtr, DAG.getIntPtrConstant(Offset));
+ BasePtr, DAG.getConstant(Offset,
+ BasePtr.getValueType()));
SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
DAG.getConstant(0, TLI.getVectorIdxTy()));
StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr,
ST->getPointerInfo().getWithOffset(Offset),
StEltVT, isVolatile, isNonTemporal,
- MinAlign(Align, Offset)));
+ MinAlign(Align, Offset), TBAAInfo));
}
}
diff --git a/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp b/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp
index d684164..1dd2128 100644
--- a/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp
+++ b/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp
@@ -389,10 +389,9 @@ signed ResourcePriorityQueue::regPressureDelta(SUnit *SU, bool RawPressure) {
// Constants used to denote relative importance of
// heuristic components for cost computation.
static const unsigned PriorityOne = 200;
-static const unsigned PriorityTwo = 100;
-static const unsigned PriorityThree = 50;
-static const unsigned PriorityFour = 15;
-static const unsigned PriorityFive = 5;
+static const unsigned PriorityTwo = 50;
+static const unsigned PriorityThree = 15;
+static const unsigned PriorityFour = 5;
static const unsigned ScaleOne = 20;
static const unsigned ScaleTwo = 10;
static const unsigned ScaleThree = 5;
@@ -449,7 +448,7 @@ signed ResourcePriorityQueue::SUSchedulingCost(SUnit *SU) {
if (N->isMachineOpcode()) {
const MCInstrDesc &TID = TII->get(N->getMachineOpcode());
if (TID.isCall())
- ResCount += (PriorityThree + (ScaleThree*N->getNumValues()));
+ ResCount += (PriorityTwo + (ScaleThree*N->getNumValues()));
}
else
switch (N->getOpcode()) {
@@ -457,11 +456,11 @@ signed ResourcePriorityQueue::SUSchedulingCost(SUnit *SU) {
case ISD::TokenFactor:
case ISD::CopyFromReg:
case ISD::CopyToReg:
- ResCount += PriorityFive;
+ ResCount += PriorityFour;
break;
case ISD::INLINEASM:
- ResCount += PriorityFour;
+ ResCount += PriorityThree;
break;
}
}
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
index f5fe168..1a562d7 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
@@ -718,7 +718,7 @@ void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
// indicate the scheduled cycle.
SU->setHeightToAtLeast(CurCycle);
- // Reserve resources for the scheduled intruction.
+ // Reserve resources for the scheduled instruction.
EmitNode(SU);
Sequence.push_back(SU);
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
index 982dcc9..054e3dd 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
@@ -690,15 +690,6 @@ void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
}
#endif // NDEBUG
-namespace {
- struct OrderSorter {
- bool operator()(const std::pair<unsigned, MachineInstr*> &A,
- const std::pair<unsigned, MachineInstr*> &B) {
- return A.first < B.first;
- }
- };
-}
-
/// ProcessSDDbgValues - Process SDDbgValues associated with this node.
static void
ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
@@ -744,7 +735,10 @@ ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
}
MachineBasicBlock *BB = Emitter.getBlock();
- if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
+ if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI() ||
+ // Fast-isel may have inserted some instructions, in which case the
+ // BB->back().isPHI() test will not fire when we want it to.
+ prior(Emitter.getInsertPos())->isPHI()) {
// Did not insert any instruction.
Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
return;
@@ -857,7 +851,7 @@ EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
// Sort the source order instructions and use the order to insert debug
// values.
- std::sort(Orders.begin(), Orders.end(), OrderSorter());
+ std::sort(Orders.begin(), Orders.end(), less_first());
SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
index bc6063c..45d5a4f 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -869,16 +869,19 @@ unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
// EntryNode could meaningfully have debug info if we can find it...
SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
- : TM(tm), TSI(*tm.getSelectionDAGInfo()), TTI(0), OptLevel(OL),
+ : TM(tm), TSI(*tm.getSelectionDAGInfo()), TTI(0), TLI(0), OptLevel(OL),
EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
- Root(getEntryNode()), UpdateListeners(0) {
+ Root(getEntryNode()), NewNodesMustHaveLegalTypes(false),
+ UpdateListeners(0) {
AllNodes.push_back(&EntryNode);
DbgInfo = new SDDbgInfo();
}
-void SelectionDAG::init(MachineFunction &mf, const TargetTransformInfo *tti) {
+void SelectionDAG::init(MachineFunction &mf, const TargetTransformInfo *tti,
+ const TargetLowering *tli) {
MF = &mf;
TTI = tti;
+ TLI = tli;
Context = &mf.getFunction()->getContext();
}
@@ -983,6 +986,54 @@ SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
Elt = ConstantInt::get(*getContext(), NewVal);
}
+ // In other cases the element type is illegal and needs to be expanded, for
+ // example v2i64 on MIPS32. In this case, find the nearest legal type, split
+ // the value into n parts and use a vector type with n-times the elements.
+ // Then bitcast to the type requested.
+ // Legalizing constants too early makes the DAGCombiner's job harder so we
+ // only legalize if the DAG tells us we must produce legal types.
+ else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
+ TLI->getTypeAction(*getContext(), EltVT) ==
+ TargetLowering::TypeExpandInteger) {
+ APInt NewVal = Elt->getValue();
+ EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
+ unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
+ unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
+ EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
+
+ // Check the temporary vector is the correct size. If this fails then
+ // getTypeToTransformTo() probably returned a type whose size (in bits)
+ // isn't a power-of-2 factor of the requested type size.
+ assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ SmallVector<SDValue, 2> EltParts;
+ for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
+ EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
+ .trunc(ViaEltSizeInBits),
+ ViaEltVT, isT));
+ }
+
+ // EltParts is currently in little endian order. If we actually want
+ // big-endian order then reverse it now.
+ if (TLI->isBigEndian())
+ std::reverse(EltParts.begin(), EltParts.end());
+
+ // The elements must be reversed when the element order is different
+ // to the endianness of the elements (because the BITCAST is itself a
+ // vector shuffle in this situation). However, we do not need any code to
+ // perform this reversal because getConstant() is producing a vector
+ // splat.
+ // This situation occurs in MIPS MSA.
+
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < VT.getVectorNumElements(); ++i)
+ Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
+
+ SDValue Result = getNode(ISD::BITCAST, SDLoc(), VT,
+ getNode(ISD::BUILD_VECTOR, SDLoc(), ViaVecVT,
+ &Ops[0], Ops.size()));
+ return Result;
+ }
assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
"APInt size does not match type size!");
@@ -1077,9 +1128,10 @@ SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, SDLoc DL,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTargetGA) &&
"Cannot set target flags on target-independent globals");
+ const TargetLowering *TLI = TM.getTargetLowering();
// Truncate (with sign-extension) the offset value to the pointer size.
- unsigned BitWidth = TM.getTargetLowering()->getPointerTy().getSizeInBits();
+ unsigned BitWidth = TLI->getPointerTypeSizeInBits(GV->getType());
if (BitWidth < 64)
Offset = SignExtend64(Offset, BitWidth);
@@ -1298,11 +1350,8 @@ static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
SDValue SelectionDAG::getVectorShuffle(EVT VT, SDLoc dl, SDValue N1,
SDValue N2, const int *Mask) {
- assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
- assert(VT.isVector() && N1.getValueType().isVector() &&
- "Vector Shuffle VTs must be a vectors");
- assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
- && "Vector Shuffle VTs must have same element type");
+ assert(VT == N1.getValueType() && VT == N2.getValueType() &&
+ "Invalid VECTOR_SHUFFLE");
// Canonicalize shuffle undef, undef -> undef
if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
@@ -1351,17 +1400,13 @@ SDValue SelectionDAG::getVectorShuffle(EVT VT, SDLoc dl, SDValue N1,
commuteShuffle(N1, N2, MaskVec);
}
- // If Identity shuffle, or all shuffle in to undef, return that node.
- bool AllUndef = true;
+ // If Identity shuffle return that node.
bool Identity = true;
for (unsigned i = 0; i != NElts; ++i) {
if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
- if (MaskVec[i] >= 0) AllUndef = false;
}
- if (Identity && NElts == N1.getValueType().getVectorNumElements())
+ if (Identity && NElts)
return N1;
- if (AllUndef)
- return getUNDEF(VT);
FoldingSetNodeID ID;
SDValue Ops[2] = { N1, N2 };
@@ -1380,7 +1425,9 @@ SDValue SelectionDAG::getVectorShuffle(EVT VT, SDLoc dl, SDValue N1,
memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
ShuffleVectorSDNode *N =
- new (NodeAllocator) ShuffleVectorSDNode(VT, dl.getIROrder(), dl.getDebugLoc(), N1, N2, MaskAlloc);
+ new (NodeAllocator) ShuffleVectorSDNode(VT, dl.getIROrder(),
+ dl.getDebugLoc(), N1, N2,
+ MaskAlloc);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
@@ -1403,8 +1450,9 @@ SDValue SelectionDAG::getConvertRndSat(EVT VT, SDLoc dl,
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
- CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl.getIROrder(), dl.getDebugLoc(), Ops, 5,
- Code);
+ CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl.getIROrder(),
+ dl.getDebugLoc(),
+ Ops, 5, Code);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
@@ -1447,7 +1495,8 @@ SDValue SelectionDAG::getEHLabel(SDLoc dl, SDValue Root, MCSymbol *Label) {
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) EHLabelSDNode(dl.getIROrder(), dl.getDebugLoc(), Root, Label);
+ SDNode *N = new (NodeAllocator) EHLabelSDNode(dl.getIROrder(),
+ dl.getDebugLoc(), Root, Label);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
@@ -1510,6 +1559,26 @@ SDValue SelectionDAG::getMDNode(const MDNode *MD) {
return SDValue(N, 0);
}
+/// getAddrSpaceCast - Return an AddrSpaceCastSDNode.
+SDValue SelectionDAG::getAddrSpaceCast(SDLoc dl, EVT VT, SDValue Ptr,
+ unsigned SrcAS, unsigned DestAS) {
+ SDValue Ops[] = {Ptr};
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), &Ops[0], 1);
+ ID.AddInteger(SrcAS);
+ ID.AddInteger(DestAS);
+
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) AddrSpaceCastSDNode(dl.getIROrder(),
+ dl.getDebugLoc(),
+ VT, Ptr, SrcAS, DestAS);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
/// getShiftAmountOperand - Return the specified value casted to
/// the target's desired shift amount type.
@@ -1561,7 +1630,12 @@ SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
case ISD::SETFALSE:
case ISD::SETFALSE2: return getConstant(0, VT);
case ISD::SETTRUE:
- case ISD::SETTRUE2: return getConstant(1, VT);
+ case ISD::SETTRUE2: {
+ const TargetLowering *TLI = TM.getTargetLowering();
+ TargetLowering::BooleanContent Cnt = TLI->getBooleanContents(VT.isVector());
+ return getConstant(
+ Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
+ }
case ISD::SETOEQ:
case ISD::SETOGT:
@@ -1643,7 +1717,12 @@ SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
}
} else {
// Ensure that the constant occurs on the RHS.
- return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
+ ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
+ MVT CompVT = N1.getValueType().getSimpleVT();
+ if (!TM.getTargetLowering()->isCondCodeLegal(SwappedCond, CompVT))
+ return SDValue();
+
+ return getSetCC(dl, VT, N2, N1, SwappedCond);
}
}
@@ -1942,7 +2021,6 @@ void SelectionDAG::ComputeMaskedBits(SDValue Op, APInt &KnownZero,
case ISD::SIGN_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarType().getSizeInBits();
- APInt InSignBit = APInt::getSignBit(InBits);
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
KnownZero = KnownZero.trunc(InBits);
@@ -2054,7 +2132,6 @@ void SelectionDAG::ComputeMaskedBits(SDValue Op, APInt &KnownZero,
const APInt &RA = Rem->getAPIntValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
- APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
ComputeMaskedBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
// The low bits of the first operand are unchanged by the srem.
@@ -2150,7 +2227,8 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
}
case ISD::SIGN_EXTEND:
- Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+ Tmp =
+ VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
case ISD::SIGN_EXTEND_INREG:
@@ -2411,7 +2489,8 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT) {
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), getVTList(VT));
+ SDNode *N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), getVTList(VT));
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
@@ -2672,10 +2751,12 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
- N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, Operand);
+ N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTs, Operand);
CSEMap.InsertNode(N, IP);
} else {
- N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, Operand);
+ N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTs, Operand);
}
AllNodes.push_back(N);
@@ -3073,9 +3154,10 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
if (VT.isSimple() && N1.getValueType().isSimple()) {
assert(VT.isVector() && N1.getValueType().isVector() &&
"Extract subvector VTs must be a vectors!");
- assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
+ assert(VT.getVectorElementType() ==
+ N1.getValueType().getVectorElementType() &&
"Extract subvector VTs must have the same element type!");
- assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
+ assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
"Extract subvector must be from larger vector to smaller vector!");
if (isa<ConstantSDNode>(Index.getNode())) {
@@ -3086,7 +3168,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
}
// Trivial extraction.
- if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
+ if (VT.getSimpleVT() == N1.getSimpleValueType())
return N1;
}
break;
@@ -3244,10 +3326,12 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
- N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, N1, N2);
+ N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTs, N1, N2);
CSEMap.InsertNode(N, IP);
} else {
- N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, N1, N2);
+ N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTs, N1, N2);
}
AllNodes.push_back(N);
@@ -3316,7 +3400,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
"Insert subvector VTs must be a vectors");
assert(VT == N1.getValueType() &&
"Dest and insert subvector source types must match!");
- assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
+ assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
"Insert subvector must be from smaller vector to larger vector!");
if (isa<ConstantSDNode>(Index.getNode())) {
assert((N2.getValueType().getVectorNumElements() +
@@ -3326,7 +3410,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
}
// Trivial insertion.
- if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
+ if (VT.getSimpleVT() == N2.getSimpleValueType())
return N2;
}
break;
@@ -3349,10 +3433,12 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
- N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, N1, N2, N3);
+ N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTs, N1, N2, N3);
CSEMap.InsertNode(N, IP);
} else {
- N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, N1, N2, N3);
+ N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTs, N1, N2, N3);
}
AllNodes.push_back(N);
@@ -3771,7 +3857,7 @@ static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value, Store;
+ SDValue Value;
Value = DAG.getLoad(VT, dl, Chain,
getMemBasePlusOffset(Src, SrcOff, dl, DAG),
@@ -3787,7 +3873,7 @@ static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value, Store;
+ SDValue Store;
Store = DAG.getStore(Chain, dl, LoadValues[i],
getMemBasePlusOffset(Dst, DstOff, dl, DAG),
@@ -3800,6 +3886,24 @@ static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
&OutChains[0], OutChains.size());
}
+/// \brief Lower the call to 'memset' intrinsic function into a series of store
+/// operations.
+///
+/// \param DAG Selection DAG where lowered code is placed.
+/// \param dl Link to corresponding IR location.
+/// \param Chain Control flow dependency.
+/// \param Dst Pointer to destination memory location.
+/// \param Src Value of byte to write into the memory.
+/// \param Size Number of bytes to write.
+/// \param Align Alignment of the destination in bytes.
+/// \param isVol True if destination is volatile.
+/// \param DstPtrInfo IR information on the memory pointer.
+/// \returns New head in the control flow, if lowering was successful, empty
+/// SDValue otherwise.
+///
+/// The function tries to replace 'llvm.memset' intrinsic with several store
+/// operations and value calculation code. This is usually profitable for small
+/// memory size.
static SDValue getMemsetStores(SelectionDAG &DAG, SDLoc dl,
SDValue Chain, SDValue Dst,
SDValue Src, uint64_t Size,
@@ -4078,6 +4182,37 @@ SDValue SelectionDAG::getMemset(SDValue Chain, SDLoc dl, SDValue Dst,
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
+ SDVTList VTList, SDValue* Ops, unsigned NumOps,
+ MachineMemOperand *MMO,
+ AtomicOrdering Ordering,
+ SynchronizationScope SynchScope) {
+ FoldingSetNodeID ID;
+ ID.AddInteger(MemVT.getRawBits());
+ AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
+ ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+ void* IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<AtomicSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+
+ // Allocate the operands array for the node out of the BumpPtrAllocator, since
+ // SDNode doesn't have access to it. This memory will be "leaked" when
+ // the node is deallocated, but recovered when the allocator is released.
+ // If the number of operands is less than 5 we use AtomicSDNode's internal
+ // storage.
+ SDUse *DynOps = NumOps > 4 ? OperandAllocator.Allocate<SDUse>(NumOps) : 0;
+
+ SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl.getIROrder(),
+ dl.getDebugLoc(), VTList, MemVT,
+ Ops, DynOps, NumOps, MMO,
+ Ordering, SynchScope);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
SDValue Chain, SDValue Ptr, SDValue Cmp,
SDValue Swp, MachinePointerInfo PtrInfo,
unsigned Alignment,
@@ -4117,22 +4252,8 @@ SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
EVT VT = Cmp.getValueType();
SDVTList VTs = getVTList(VT, MVT::Other);
- FoldingSetNodeID ID;
- ID.AddInteger(MemVT.getRawBits());
SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
- AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
- cast<AtomicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, MemVT, Chain,
- Ptr, Cmp, Swp, MMO, Ordering,
- SynchScope);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
+ return getAtomic(Opcode, dl, MemVT, VTs, Ops, 4, MMO, Ordering, SynchScope);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
@@ -4190,22 +4311,8 @@ SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
getVTList(VT, MVT::Other);
- FoldingSetNodeID ID;
- ID.AddInteger(MemVT.getRawBits());
SDValue Ops[] = {Chain, Ptr, Val};
- AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
- cast<AtomicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, MemVT, Chain,
- Ptr, Val, MMO,
- Ordering, SynchScope);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
+ return getAtomic(Opcode, dl, MemVT, VTs, Ops, 3, MMO, Ordering, SynchScope);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
@@ -4248,21 +4355,8 @@ SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
SDVTList VTs = getVTList(VT, MVT::Other);
- FoldingSetNodeID ID;
- ID.AddInteger(MemVT.getRawBits());
SDValue Ops[] = {Chain, Ptr};
- AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
- cast<AtomicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, MemVT, Chain,
- Ptr, MMO, Ordering, SynchScope);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
+ return getAtomic(Opcode, dl, MemVT, VTs, Ops, 2, MMO, Ordering, SynchScope);
}
/// getMergeValues - Create a MERGE_VALUES node from the given operands.
@@ -4339,12 +4433,14 @@ SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList,
return SDValue(E, 0);
}
- N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTList, Ops, NumOps,
- MemVT, MMO);
+ N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(),
+ dl.getDebugLoc(), VTList, Ops,
+ NumOps, MemVT, MMO);
CSEMap.InsertNode(N, IP);
} else {
- N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTList, Ops, NumOps,
- MemVT, MMO);
+ N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(),
+ dl.getDebugLoc(), VTList, Ops,
+ NumOps, MemVT, MMO);
}
AllNodes.push_back(N);
return SDValue(N, 0);
@@ -4458,7 +4554,8 @@ SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
cast<LoadSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
- SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ExtType,
+ SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl.getIROrder(),
+ dl.getDebugLoc(), VTs, AM, ExtType,
MemVT, MMO);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
@@ -4478,6 +4575,14 @@ SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl,
TBAAInfo, Ranges);
}
+SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl,
+ SDValue Chain, SDValue Ptr,
+ MachineMemOperand *MMO) {
+ SDValue Undef = getUNDEF(Ptr.getValueType());
+ return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
+ VT, MMO);
+}
+
SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT,
SDValue Chain, SDValue Ptr,
MachinePointerInfo PtrInfo, EVT MemVT,
@@ -4490,6 +4595,14 @@ SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT,
}
+SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT,
+ SDValue Chain, SDValue Ptr, EVT MemVT,
+ MachineMemOperand *MMO) {
+ SDValue Undef = getUNDEF(Ptr.getValueType());
+ return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
+ MemVT, MMO);
+}
+
SDValue
SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDLoc dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM) {
@@ -4548,8 +4661,9 @@ SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val,
cast<StoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
- SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(), dl.getDebugLoc(), VTs, ISD::UNINDEXED,
- false, VT, MMO);
+ SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
+ dl.getDebugLoc(), VTs,
+ ISD::UNINDEXED, false, VT, MMO);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
@@ -4616,8 +4730,9 @@ SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val,
cast<StoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
- SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(), dl.getDebugLoc(), VTs, ISD::UNINDEXED,
- true, SVT, MMO);
+ SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
+ dl.getDebugLoc(), VTs,
+ ISD::UNINDEXED, true, SVT, MMO);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
@@ -4640,7 +4755,8 @@ SelectionDAG::getIndexedStore(SDValue OrigStore, SDLoc dl, SDValue Base,
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
+ SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
+ dl.getDebugLoc(), VTs, AM,
ST->isTruncatingStore(),
ST->getMemoryVT(),
ST->getMemOperand());
@@ -4715,10 +4831,12 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
- N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, Ops, NumOps);
+ N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
+ VTs, Ops, NumOps);
CSEMap.InsertNode(N, IP);
} else {
- N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, Ops, NumOps);
+ N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
+ VTs, Ops, NumOps);
}
AllNodes.push_back(N);
@@ -4781,26 +4899,36 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
return SDValue(E, 0);
if (NumOps == 1) {
- N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList, Ops[0]);
+ N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTList, Ops[0]);
} else if (NumOps == 2) {
- N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList, Ops[0], Ops[1]);
+ N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTList, Ops[0],
+ Ops[1]);
} else if (NumOps == 3) {
- N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList, Ops[0], Ops[1],
- Ops[2]);
+ N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTList, Ops[0],
+ Ops[1], Ops[2]);
} else {
- N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList, Ops, NumOps);
+ N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
+ VTList, Ops, NumOps);
}
CSEMap.InsertNode(N, IP);
} else {
if (NumOps == 1) {
- N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList, Ops[0]);
+ N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTList, Ops[0]);
} else if (NumOps == 2) {
- N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList, Ops[0], Ops[1]);
+ N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTList, Ops[0],
+ Ops[1]);
} else if (NumOps == 3) {
- N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList, Ops[0], Ops[1],
- Ops[2]);
+ N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTList, Ops[0],
+ Ops[1], Ops[2]);
} else {
- N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList, Ops, NumOps);
+ N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
+ VTList, Ops, NumOps);
}
}
AllNodes.push_back(N);
@@ -4851,76 +4979,81 @@ SDVTList SelectionDAG::getVTList(EVT VT) {
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
- for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
- E = VTList.rend(); I != E; ++I)
- if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
- return *I;
-
- EVT *Array = Allocator.Allocate<EVT>(2);
- Array[0] = VT1;
- Array[1] = VT2;
- SDVTList Result = makeVTList(Array, 2);
- VTList.push_back(Result);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(2U);
+ ID.AddInteger(VT1.getRawBits());
+ ID.AddInteger(VT2.getRawBits());
+
+ void *IP = 0;
+ SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
+ if (Result == NULL) {
+ EVT *Array = Allocator.Allocate<EVT>(2);
+ Array[0] = VT1;
+ Array[1] = VT2;
+ Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
+ VTListMap.InsertNode(Result, IP);
+ }
+ return Result->getSDVTList();
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
- for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
- E = VTList.rend(); I != E; ++I)
- if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
- I->VTs[2] == VT3)
- return *I;
-
- EVT *Array = Allocator.Allocate<EVT>(3);
- Array[0] = VT1;
- Array[1] = VT2;
- Array[2] = VT3;
- SDVTList Result = makeVTList(Array, 3);
- VTList.push_back(Result);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(3U);
+ ID.AddInteger(VT1.getRawBits());
+ ID.AddInteger(VT2.getRawBits());
+ ID.AddInteger(VT3.getRawBits());
+
+ void *IP = 0;
+ SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
+ if (Result == NULL) {
+ EVT *Array = Allocator.Allocate<EVT>(3);
+ Array[0] = VT1;
+ Array[1] = VT2;
+ Array[2] = VT3;
+ Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
+ VTListMap.InsertNode(Result, IP);
+ }
+ return Result->getSDVTList();
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
- for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
- E = VTList.rend(); I != E; ++I)
- if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
- I->VTs[2] == VT3 && I->VTs[3] == VT4)
- return *I;
-
- EVT *Array = Allocator.Allocate<EVT>(4);
- Array[0] = VT1;
- Array[1] = VT2;
- Array[2] = VT3;
- Array[3] = VT4;
- SDVTList Result = makeVTList(Array, 4);
- VTList.push_back(Result);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(4U);
+ ID.AddInteger(VT1.getRawBits());
+ ID.AddInteger(VT2.getRawBits());
+ ID.AddInteger(VT3.getRawBits());
+ ID.AddInteger(VT4.getRawBits());
+
+ void *IP = 0;
+ SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
+ if (Result == NULL) {
+ EVT *Array = Allocator.Allocate<EVT>(4);
+ Array[0] = VT1;
+ Array[1] = VT2;
+ Array[2] = VT3;
+ Array[3] = VT4;
+ Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
+ VTListMap.InsertNode(Result, IP);
+ }
+ return Result->getSDVTList();
}
SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
- switch (NumVTs) {
- case 0: llvm_unreachable("Cannot have nodes without results!");
- case 1: return getVTList(VTs[0]);
- case 2: return getVTList(VTs[0], VTs[1]);
- case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
- case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
- default: break;
+ FoldingSetNodeID ID;
+ ID.AddInteger(NumVTs);
+ for (unsigned index = 0; index < NumVTs; index++) {
+ ID.AddInteger(VTs[index].getRawBits());
}
- for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
- E = VTList.rend(); I != E; ++I) {
- if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
- continue;
-
- if (std::equal(&VTs[2], &VTs[NumVTs], &I->VTs[2]))
- return *I;
+ void *IP = 0;
+ SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
+ if (Result == NULL) {
+ EVT *Array = Allocator.Allocate<EVT>(NumVTs);
+ std::copy(VTs, VTs + NumVTs, Array);
+ Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
+ VTListMap.InsertNode(Result, IP);
}
-
- EVT *Array = Allocator.Allocate<EVT>(NumVTs);
- std::copy(VTs, VTs+NumVTs, Array);
- SDVTList Result = makeVTList(Array, NumVTs);
- VTList.push_back(Result);
- return Result;
+ return Result->getSDVTList();
}
@@ -5410,7 +5543,8 @@ SelectionDAG::getMachineNode(unsigned Opcode, SDLoc DL, SDVTList VTs,
}
// Allocate a new MachineSDNode.
- N = new (NodeAllocator) MachineSDNode(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
+ N = new (NodeAllocator) MachineSDNode(~Opcode, DL.getIROrder(),
+ DL.getDebugLoc(), VTs);
// Initialize the operands list.
if (NumOps > array_lengthof(N->LocalOperands))
@@ -5916,6 +6050,12 @@ GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
TheGlobal = GA;
}
+AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, DebugLoc dl, EVT VT,
+ SDValue X, unsigned SrcAS,
+ unsigned DestAS)
+ : UnarySDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT), X),
+ SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
+
MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
EVT memvt, MachineMemOperand *mmo)
: SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
@@ -6162,8 +6302,8 @@ SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
case ISD::ROTL:
case ISD::ROTR:
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
- getShiftAmountOperand(Operands[0].getValueType(),
- Operands[1])));
+ getShiftAmountOperand(Operands[0].getValueType(),
+ Operands[1])));
break;
case ISD::SIGN_EXTEND_INREG:
case ISD::FP_ROUND_INREG: {
@@ -6235,7 +6375,7 @@ unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
int64_t GVOffset = 0;
const TargetLowering *TLI = TM.getTargetLowering();
if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
- unsigned PtrWidth = TLI->getPointerTy().getSizeInBits();
+ unsigned PtrWidth = TLI->getPointerTypeSizeInBits(GV->getType());
APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
llvm::ComputeMaskedBits(const_cast<GlobalValue*>(GV), KnownZero, KnownOne,
TLI->getDataLayout());
@@ -6268,6 +6408,38 @@ unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
return 0;
}
+/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
+/// which is split (or expanded) into two not necessarily identical pieces.
+std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
+ // Currently all types are split in half.
+ EVT LoVT, HiVT;
+ if (!VT.isVector()) {
+ LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
+ } else {
+ unsigned NumElements = VT.getVectorNumElements();
+ assert(!(NumElements & 1) && "Splitting vector, but not in half!");
+ LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
+ NumElements/2);
+ }
+ return std::make_pair(LoVT, HiVT);
+}
+
+/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
+/// low/high part.
+std::pair<SDValue, SDValue>
+SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
+ const EVT &HiVT) {
+ assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
+ N.getValueType().getVectorNumElements() &&
+ "More vector elements requested than available!");
+ SDValue Lo, Hi;
+ Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
+ getConstant(0, TLI->getVectorIdxTy()));
+ Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
+ getConstant(LoVT.getVectorNumElements(), TLI->getVectorIdxTy()));
+ return std::make_pair(Lo, Hi);
+}
+
// getAddressSpace - Return the address space this GlobalAddress belongs to.
unsigned GlobalAddressSDNode::getAddressSpace() const {
return getGlobal()->getType()->getAddressSpace();
@@ -6389,7 +6561,7 @@ static void checkForCyclesHelper(const SDNode *N,
void llvm::checkForCycles(const llvm::SDNode *N) {
#ifdef XDEBUG
- assert(N && "Checking nonexistant SDNode");
+ assert(N && "Checking nonexistent SDNode");
SmallPtrSet<const SDNode*, 32> visited;
SmallPtrSet<const SDNode*, 32> checked;
checkForCyclesHelper(N, visited, checked);
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
index b9f4381..2b2713d 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -33,6 +33,7 @@
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/StackMaps.h"
#include "llvm/DebugInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
@@ -49,7 +50,6 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/IntegersSubsetMapping.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
@@ -58,6 +58,7 @@
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetSelectionDAGInfo.h"
#include <algorithm>
using namespace llvm;
@@ -1063,8 +1064,10 @@ SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
- if (isa<ConstantPointerNull>(C))
- return DAG.getConstant(0, TLI->getPointerTy());
+ if (isa<ConstantPointerNull>(C)) {
+ unsigned AS = V->getType()->getPointerAddressSpace();
+ return DAG.getConstant(0, TLI->getPointerTy(AS));
+ }
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
return DAG.getConstantFP(*CFP, VT);
@@ -1268,7 +1271,7 @@ void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
for (unsigned i = 0; i < NumParts; ++i) {
Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
- /*isfixed=*/true, 0, 0));
+ VT, /*isfixed=*/true, 0, 0));
OutVals.push_back(Parts[i]);
}
}
@@ -1617,8 +1620,7 @@ void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
} else
Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
} else {
- assert(CB.CC == ISD::SETCC_INVALID &&
- "Condition is undefined for to-the-range belonging check.");
+ assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
@@ -1626,9 +1628,9 @@ void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
SDValue CmpOp = getValue(CB.CmpMHS);
EVT VT = CmpOp.getValueType();
- if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
+ if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
- ISD::SETULE);
+ ISD::SETLE);
} else {
SDValue SUB = DAG.getNode(ISD::SUB, dl,
VT, CmpOp, DAG.getConstant(Low, VT));
@@ -1741,6 +1743,77 @@ void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
DAG.setRoot(BrCond);
}
+/// Codegen a new tail for a stack protector check ParentMBB which has had its
+/// tail spliced into a stack protector check success bb.
+///
+/// For a high level explanation of how this fits into the stack protector
+/// generation see the comment on the declaration of class
+/// StackProtectorDescriptor.
+void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
+ MachineBasicBlock *ParentBB) {
+
+ // First create the loads to the guard/stack slot for the comparison.
+ const TargetLowering *TLI = TM.getTargetLowering();
+ EVT PtrTy = TLI->getPointerTy();
+
+ MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
+ int FI = MFI->getStackProtectorIndex();
+
+ const Value *IRGuard = SPD.getGuard();
+ SDValue GuardPtr = getValue(IRGuard);
+ SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
+
+ unsigned Align =
+ TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
+ SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
+ GuardPtr, MachinePointerInfo(IRGuard, 0),
+ true, false, false, Align);
+
+ SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
+ StackSlotPtr,
+ MachinePointerInfo::getFixedStack(FI),
+ true, false, false, Align);
+
+ // Perform the comparison via a subtract/getsetcc.
+ EVT VT = Guard.getValueType();
+ SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
+
+ SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
+ TLI->getSetCCResultType(*DAG.getContext(),
+ Sub.getValueType()),
+ Sub, DAG.getConstant(0, VT),
+ ISD::SETNE);
+
+ // If the sub is not 0, then we know the guard/stackslot do not equal, so
+ // branch to failure MBB.
+ SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
+ MVT::Other, StackSlot.getOperand(0),
+ Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
+ // Otherwise branch to success MBB.
+ SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
+ MVT::Other, BrCond,
+ DAG.getBasicBlock(SPD.getSuccessMBB()));
+
+ DAG.setRoot(Br);
+}
+
+/// Codegen the failure basic block for a stack protector check.
+///
+/// A failure stack protector machine basic block consists simply of a call to
+/// __stack_chk_fail().
+///
+/// For a high level explanation of how this fits into the stack protector
+/// generation see the comment on the declaration of class
+/// StackProtectorDescriptor.
+void
+SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
+ const TargetLowering *TLI = TM.getTargetLowering();
+ SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
+ MVT::isVoid, 0, 0, false, getCurSDLoc(),
+ false, false).second;
+ DAG.setRoot(Chain);
+}
+
/// visitBitTestHeader - This function emits necessary code to produce value
/// suitable for "bit tests"
void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
@@ -2073,7 +2146,7 @@ bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
CC = ISD::SETEQ;
LHS = SV; RHS = I->High; MHS = NULL;
} else {
- CC = ISD::SETCC_INVALID;
+ CC = ISD::SETLE;
LHS = I->Low; MHS = SV; RHS = I->High;
}
@@ -2107,7 +2180,7 @@ static inline bool areJTsAllowed(const TargetLowering &TLI) {
static APInt ComputeRange(const APInt &First, const APInt &Last) {
uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
- APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
+ APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
return (LastExt - FirstExt + 1ULL);
}
@@ -2174,7 +2247,7 @@ bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
const APInt &High = cast<ConstantInt>(I->High)->getValue();
- if (Low.ule(TEI) && TEI.ule(High)) {
+ if (Low.sle(TEI) && TEI.sle(High)) {
DestBBs.push_back(I->BB);
if (TEI==High)
++I;
@@ -2348,7 +2421,7 @@ bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
// Create a CaseBlock record representing a conditional branch to
// the LHS node if the value being switched on SV is less than C.
// Otherwise, branch to LHS.
- CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
+ CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
if (CR.CaseBB == SwitchBB)
visitSwitchCase(CB, SwitchBB);
@@ -2378,7 +2451,7 @@ bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
MachineFunction *CurMF = FuncInfo.MF;
// If target does not have legal shift left, do not emit bit tests at all.
- if (!TLI->isOperationLegal(ISD::SHL, TLI->getPointerTy()))
+ if (!TLI->isOperationLegal(ISD::SHL, PTy))
return false;
size_t numCmps = 0;
@@ -2421,7 +2494,7 @@ bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
// Optimize the case where all the case values fit in a
// word without having to subtract minValue. In this case,
// we can optimize away the subtraction.
- if (maxValue.ult(IntPtrBits)) {
+ if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
cmpRange = maxValue;
} else {
lowBound = minValue;
@@ -2496,12 +2569,7 @@ bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
/// Clusterify - Transform simple list of Cases into list of CaseRange's
size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
const SwitchInst& SI) {
-
- /// Use a shorter form of declaration, and also
- /// show the we want to use CRSBuilder as Clusterifier.
- typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
-
- Clusterifier TheClusterifier;
+ size_t numCmps = 0;
BranchProbabilityInfo *BPI = FuncInfo.BPI;
// Start with "simple" cases
@@ -2510,27 +2578,40 @@ size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
const BasicBlock *SuccBB = i.getCaseSuccessor();
MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
- TheClusterifier.add(i.getCaseValueEx(), SMBB,
- BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
- }
-
- TheClusterifier.optimize();
-
- size_t numCmps = 0;
- for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
- e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
- Clusterifier::Cluster &C = *i;
- // Update edge weight for the cluster.
- unsigned W = C.first.Weight;
-
- // FIXME: Currently work with ConstantInt based numbers.
- // Changing it to APInt based is a pretty heavy for this commit.
- Cases.push_back(Case(C.first.getLow().toConstantInt(),
- C.first.getHigh().toConstantInt(), C.second, W));
+ uint32_t ExtraWeight =
+ BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
+
+ Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
+ SMBB, ExtraWeight));
+ }
+ std::sort(Cases.begin(), Cases.end(), CaseCmp());
+
+ // Merge case into clusters
+ if (Cases.size() >= 2)
+ // Must recompute end() each iteration because it may be
+ // invalidated by erase if we hold on to it
+ for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
+ J != Cases.end(); ) {
+ const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
+ const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
+ MachineBasicBlock* nextBB = J->BB;
+ MachineBasicBlock* currentBB = I->BB;
+
+ // If the two neighboring cases go to the same destination, merge them
+ // into a single case.
+ if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
+ I->High = J->High;
+ I->ExtraWeight += J->ExtraWeight;
+ J = Cases.erase(J);
+ } else {
+ I = J++;
+ }
+ }
- if (C.first.getLow() != C.first.getHigh())
- // A range counts double, since it requires two compares.
- ++numCmps;
+ for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
+ if (I->Low != I->High)
+ // A range counts double, since it requires two compares.
+ ++numCmps;
}
return numCmps;
@@ -2859,6 +2940,21 @@ void SelectionDAGBuilder::visitBitCast(const User &I) {
setValue(&I, N); // noop cast.
}
+void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ const Value *SV = I.getOperand(0);
+ SDValue N = getValue(SV);
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+
+ unsigned SrcAS = SV->getType()->getPointerAddressSpace();
+ unsigned DestAS = I.getType()->getPointerAddressSpace();
+
+ if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
+ N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
+
+ setValue(&I, N);
+}
+
void SelectionDAGBuilder::visitInsertElement(const User &I) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue InVec = getValue(I.getOperand(0));
@@ -3151,10 +3247,12 @@ void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
}
void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
- SDValue N = getValue(I.getOperand(0));
+ Value *Op0 = I.getOperand(0);
// Note that the pointer operand may be a vector of pointers. Take the scalar
// element which holds a pointer.
- Type *Ty = I.getOperand(0)->getType()->getScalarType();
+ Type *Ty = Op0->getType()->getScalarType();
+ unsigned AS = Ty->getPointerAddressSpace();
+ SDValue N = getValue(Op0);
for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
OI != E; ++OI) {
@@ -3179,14 +3277,13 @@ void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
uint64_t Offs =
TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
SDValue OffsVal;
- EVT PTy = TLI->getPointerTy();
+ EVT PTy = TLI->getPointerTy(AS);
unsigned PtrBits = PTy.getSizeInBits();
if (PtrBits < 64)
- OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(),
- TLI->getPointerTy(),
+ OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
DAG.getConstant(Offs, MVT::i64));
else
- OffsVal = DAG.getIntPtrConstant(Offs);
+ OffsVal = DAG.getConstant(Offs, PTy);
N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
OffsVal);
@@ -3194,7 +3291,7 @@ void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
}
// N = N + Idx * ElementSize;
- APInt ElementSize = APInt(TLI->getPointerTy().getSizeInBits(),
+ APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
TD->getTypeAllocSize(Ty));
SDValue IdxN = getValue(Idx);
@@ -3451,7 +3548,7 @@ void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
SDValue L =
DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
- getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
+ getValue(I.getCompareOperand()).getSimpleValueType(),
InChain,
getValue(I.getPointerOperand()),
getValue(I.getCompareOperand()),
@@ -3499,7 +3596,7 @@ void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
SDValue L =
DAG.getAtomic(NT, dl,
- getValue(I.getValOperand()).getValueType().getSimpleVT(),
+ getValue(I.getValOperand()).getSimpleValueType(),
InChain,
getValue(I.getPointerOperand()),
getValue(I.getValOperand()),
@@ -4193,7 +4290,7 @@ static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
SelectionDAG &DAG, const TargetLowering &TLI) {
bool IsExp10 = false;
- if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
+ if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
APFloat Ten(10.0f);
@@ -4705,14 +4802,14 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
TLI->getPointerTy());
SDValue Offset = DAG.getNode(ISD::ADD, sdl,
- TLI->getPointerTy(),
+ CfaArg.getValueType(),
DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
- TLI->getPointerTy()),
+ CfaArg.getValueType()),
CfaArg);
SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
TLI->getPointerTy(),
DAG.getConstant(0, TLI->getPointerTy()));
- setValue(&I, DAG.getNode(ISD::ADD, sdl, TLI->getPointerTy(),
+ setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
FA, Offset));
return 0;
}
@@ -4902,7 +4999,8 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::ceil:
case Intrinsic::trunc:
case Intrinsic::rint:
- case Intrinsic::nearbyint: {
+ case Intrinsic::nearbyint:
+ case Intrinsic::round: {
unsigned Opcode;
switch (Intrinsic) {
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
@@ -4915,6 +5013,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
case Intrinsic::rint: Opcode = ISD::FRINT; break;
case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
+ case Intrinsic::round: Opcode = ISD::FROUND; break;
}
setValue(&I, DAG.getNode(Opcode, sdl,
@@ -4922,6 +5021,12 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
getValue(I.getArgOperand(0))));
return 0;
}
+ case Intrinsic::copysign:
+ setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
+ getValue(I.getArgOperand(0)).getValueType(),
+ getValue(I.getArgOperand(0)),
+ getValue(I.getArgOperand(1))));
+ return 0;
case Intrinsic::fma:
setValue(&I, DAG.getNode(ISD::FMA, sdl,
getValue(I.getArgOperand(0)).getValueType(),
@@ -5207,9 +5312,30 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::invariant_end:
// Discard region information.
return 0;
+ case Intrinsic::stackprotectorcheck: {
+ // Do not actually emit anything for this basic block. Instead we initialize
+ // the stack protector descriptor and export the guard variable so we can
+ // access it in FinishBasicBlock.
+ const BasicBlock *BB = I.getParent();
+ SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
+ ExportFromCurrentBlock(SPDescriptor.getGuard());
+
+ // Flush our exports since we are going to process a terminator.
+ (void)getControlRoot();
+ return 0;
+ }
case Intrinsic::donothing:
// ignore
return 0;
+ case Intrinsic::experimental_stackmap: {
+ visitStackmap(I);
+ return 0;
+ }
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64: {
+ visitPatchpoint(I);
+ return 0;
+ }
}
}
@@ -5274,15 +5400,8 @@ void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
SDValue ArgNode = getValue(V);
Entry.Node = ArgNode; Entry.Ty = V->getType();
- unsigned attrInd = i - CS.arg_begin() + 1;
- Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
- Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
- Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
- Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
- Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
- Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
- Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned);
- Entry.Alignment = CS.getParamAlignment(attrInd);
+ // Skip the first return-type Attribute to get to params.
+ Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
Args.push_back(Entry);
}
@@ -5364,8 +5483,8 @@ void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
}
if (!Result.second.getNode()) {
- // As a special case, a null chain means that a tail call has been emitted and
- // the DAG root is already updated.
+ // As a special case, a null chain means that a tail call has been emitted
+ // and the DAG root is already updated.
HasTailCall = true;
// Since there's no actual continuation from this block, nothing can be
@@ -5445,6 +5564,18 @@ static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
return LoadVal;
}
+/// processIntegerCallValue - Record the value for an instruction that
+/// produces an integer result, converting the type where necessary.
+void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
+ SDValue Value,
+ bool IsSigned) {
+ EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
+ if (IsSigned)
+ Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
+ else
+ Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
+ setValue(&I, Value);
+}
/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
/// If so, return true and lower it, otherwise return false and it will be
@@ -5460,15 +5591,33 @@ bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
!I.getType()->isIntegerTy())
return false;
- const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
+ const Value *Size = I.getArgOperand(2);
+ const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
+ if (CSize && CSize->getZExtValue() == 0) {
+ EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
+ setValue(&I, DAG.getConstant(0, CallVT));
+ return true;
+ }
+
+ const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
+ std::pair<SDValue, SDValue> Res =
+ TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
+ getValue(LHS), getValue(RHS), getValue(Size),
+ MachinePointerInfo(LHS),
+ MachinePointerInfo(RHS));
+ if (Res.first.getNode()) {
+ processIntegerCallValue(I, Res.first, true);
+ PendingLoads.push_back(Res.second);
+ return true;
+ }
// memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
// memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
- if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
+ if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
bool ActuallyDoIt = true;
MVT LoadVT;
Type *LoadTy;
- switch (Size->getZExtValue()) {
+ switch (CSize->getZExtValue()) {
default:
LoadVT = MVT::Other;
LoadTy = 0;
@@ -5476,20 +5625,20 @@ bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
break;
case 2:
LoadVT = MVT::i16;
- LoadTy = Type::getInt16Ty(Size->getContext());
+ LoadTy = Type::getInt16Ty(CSize->getContext());
break;
case 4:
LoadVT = MVT::i32;
- LoadTy = Type::getInt32Ty(Size->getContext());
+ LoadTy = Type::getInt32Ty(CSize->getContext());
break;
case 8:
LoadVT = MVT::i64;
- LoadTy = Type::getInt64Ty(Size->getContext());
+ LoadTy = Type::getInt64Ty(CSize->getContext());
break;
/*
case 16:
LoadVT = MVT::v4i32;
- LoadTy = Type::getInt32Ty(Size->getContext());
+ LoadTy = Type::getInt32Ty(CSize->getContext());
LoadTy = VectorType::get(LoadTy, 4);
break;
*/
@@ -5503,7 +5652,7 @@ bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
// supports unaligned loads of that type. Expanding into byte loads would
// bloat the code.
const TargetLowering *TLI = TM.getTargetLowering();
- if (ActuallyDoIt && Size->getZExtValue() > 4) {
+ if (ActuallyDoIt && CSize->getZExtValue() > 4) {
// TODO: Handle 5 byte compare as 4-byte + 1 byte.
// TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
@@ -5516,8 +5665,7 @@ bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
ISD::SETNE);
- EVT CallVT = TLI->getValueType(I.getType(), true);
- setValue(&I, DAG.getZExtOrTrunc(Res, getCurSDLoc(), CallVT));
+ processIntegerCallValue(I, Res, false);
return true;
}
}
@@ -5526,6 +5674,148 @@ bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
return false;
}
+/// visitMemChrCall -- See if we can lower a memchr call into an optimized
+/// form. If so, return true and lower it, otherwise return false and it
+/// will be lowered like a normal call.
+bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
+ // Verify that the prototype makes sense. void *memchr(void *, int, size_t)
+ if (I.getNumArgOperands() != 3)
+ return false;
+
+ const Value *Src = I.getArgOperand(0);
+ const Value *Char = I.getArgOperand(1);
+ const Value *Length = I.getArgOperand(2);
+ if (!Src->getType()->isPointerTy() ||
+ !Char->getType()->isIntegerTy() ||
+ !Length->getType()->isIntegerTy() ||
+ !I.getType()->isPointerTy())
+ return false;
+
+ const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
+ std::pair<SDValue, SDValue> Res =
+ TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
+ getValue(Src), getValue(Char), getValue(Length),
+ MachinePointerInfo(Src));
+ if (Res.first.getNode()) {
+ setValue(&I, Res.first);
+ PendingLoads.push_back(Res.second);
+ return true;
+ }
+
+ return false;
+}
+
+/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
+/// optimized form. If so, return true and lower it, otherwise return false
+/// and it will be lowered like a normal call.
+bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
+ // Verify that the prototype makes sense. char *strcpy(char *, char *)
+ if (I.getNumArgOperands() != 2)
+ return false;
+
+ const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
+ if (!Arg0->getType()->isPointerTy() ||
+ !Arg1->getType()->isPointerTy() ||
+ !I.getType()->isPointerTy())
+ return false;
+
+ const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
+ std::pair<SDValue, SDValue> Res =
+ TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
+ getValue(Arg0), getValue(Arg1),
+ MachinePointerInfo(Arg0),
+ MachinePointerInfo(Arg1), isStpcpy);
+ if (Res.first.getNode()) {
+ setValue(&I, Res.first);
+ DAG.setRoot(Res.second);
+ return true;
+ }
+
+ return false;
+}
+
+/// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
+/// If so, return true and lower it, otherwise return false and it will be
+/// lowered like a normal call.
+bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
+ // Verify that the prototype makes sense. int strcmp(void*,void*)
+ if (I.getNumArgOperands() != 2)
+ return false;
+
+ const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
+ if (!Arg0->getType()->isPointerTy() ||
+ !Arg1->getType()->isPointerTy() ||
+ !I.getType()->isIntegerTy())
+ return false;
+
+ const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
+ std::pair<SDValue, SDValue> Res =
+ TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
+ getValue(Arg0), getValue(Arg1),
+ MachinePointerInfo(Arg0),
+ MachinePointerInfo(Arg1));
+ if (Res.first.getNode()) {
+ processIntegerCallValue(I, Res.first, true);
+ PendingLoads.push_back(Res.second);
+ return true;
+ }
+
+ return false;
+}
+
+/// visitStrLenCall -- See if we can lower a strlen call into an optimized
+/// form. If so, return true and lower it, otherwise return false and it
+/// will be lowered like a normal call.
+bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
+ // Verify that the prototype makes sense. size_t strlen(char *)
+ if (I.getNumArgOperands() != 1)
+ return false;
+
+ const Value *Arg0 = I.getArgOperand(0);
+ if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
+ return false;
+
+ const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
+ std::pair<SDValue, SDValue> Res =
+ TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
+ getValue(Arg0), MachinePointerInfo(Arg0));
+ if (Res.first.getNode()) {
+ processIntegerCallValue(I, Res.first, false);
+ PendingLoads.push_back(Res.second);
+ return true;
+ }
+
+ return false;
+}
+
+/// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
+/// form. If so, return true and lower it, otherwise return false and it
+/// will be lowered like a normal call.
+bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
+ // Verify that the prototype makes sense. size_t strnlen(char *, size_t)
+ if (I.getNumArgOperands() != 2)
+ return false;
+
+ const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
+ if (!Arg0->getType()->isPointerTy() ||
+ !Arg1->getType()->isIntegerTy() ||
+ !I.getType()->isIntegerTy())
+ return false;
+
+ const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
+ std::pair<SDValue, SDValue> Res =
+ TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
+ getValue(Arg0), getValue(Arg1),
+ MachinePointerInfo(Arg0));
+ if (Res.first.getNode()) {
+ processIntegerCallValue(I, Res.first, false);
+ PendingLoads.push_back(Res.second);
+ return true;
+ }
+
+ return false;
+}
+
/// visitUnaryFloatCall - If a call instruction is a unary floating-point
/// operation (as expected), translate it to an SDNode with the specified opcode
/// and return true.
@@ -5644,6 +5934,12 @@ void SelectionDAGBuilder::visitCall(const CallInst &I) {
if (visitUnaryFloatCall(I, ISD::FRINT))
return;
break;
+ case LibFunc::round:
+ case LibFunc::roundf:
+ case LibFunc::roundl:
+ if (visitUnaryFloatCall(I, ISD::FROUND))
+ return;
+ break;
case LibFunc::trunc:
case LibFunc::truncf:
case LibFunc::truncl:
@@ -5666,6 +5962,30 @@ void SelectionDAGBuilder::visitCall(const CallInst &I) {
if (visitMemCmpCall(I))
return;
break;
+ case LibFunc::memchr:
+ if (visitMemChrCall(I))
+ return;
+ break;
+ case LibFunc::strcpy:
+ if (visitStrCpyCall(I, false))
+ return;
+ break;
+ case LibFunc::stpcpy:
+ if (visitStrCpyCall(I, true))
+ return;
+ break;
+ case LibFunc::strcmp:
+ if (visitStrCmpCall(I))
+ return;
+ break;
+ case LibFunc::strlen:
+ if (visitStrLenCall(I))
+ return;
+ break;
+ case LibFunc::strnlen:
+ if (visitStrNLenCall(I))
+ return;
+ break;
}
}
}
@@ -6421,6 +6741,248 @@ void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
DAG.getSrcValue(I.getArgOperand(1))));
}
+/// \brief Lower an argument list according to the target calling convention.
+///
+/// \return A tuple of <return-value, token-chain>
+///
+/// This is a helper for lowering intrinsics that follow a target calling
+/// convention or require stack pointer adjustment. Only a subset of the
+/// intrinsic's operands need to participate in the calling convention.
+std::pair<SDValue, SDValue>
+SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
+ unsigned NumArgs, SDValue Callee,
+ bool useVoidTy) {
+ TargetLowering::ArgListTy Args;
+ Args.reserve(NumArgs);
+
+ // Populate the argument list.
+ // Attributes for args start at offset 1, after the return attribute.
+ ImmutableCallSite CS(&CI);
+ for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
+ ArgI != ArgE; ++ArgI) {
+ const Value *V = CI.getOperand(ArgI);
+
+ assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
+
+ TargetLowering::ArgListEntry Entry;
+ Entry.Node = getValue(V);
+ Entry.Ty = V->getType();
+ Entry.setAttributes(&CS, AttrI);
+ Args.push_back(Entry);
+ }
+
+ Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType();
+ TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false,
+ /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs,
+ CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false,
+ /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc());
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ return TLI->LowerCallTo(CLI);
+}
+
+/// \brief Lower llvm.experimental.stackmap directly to its target opcode.
+void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
+ // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
+ // [live variables...])
+
+ assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
+
+ SDValue Callee = getValue(CI.getCalledValue());
+
+ // Lower into a call sequence with no args and no return value.
+ std::pair<SDValue, SDValue> Result = LowerCallOperands(CI, 0, 0, Callee);
+ // Set the root to the target-lowered call chain.
+ SDValue Chain = Result.second;
+ DAG.setRoot(Chain);
+
+ /// Get a call instruction from the call sequence chain.
+ /// Tail calls are not allowed.
+ SDNode *CallEnd = Chain.getNode();
+ assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
+ "Expected a callseq node.");
+ SDNode *Call = CallEnd->getOperand(0).getNode();
+ bool hasGlue = Call->getGluedNode();
+
+ // Replace the target specific call node with the stackmap intrinsic.
+ SmallVector<SDValue, 8> Ops;
+
+ // Add the <id> and <numShadowBytes> constants.
+ for (unsigned i = 0; i < 2; ++i) {
+ SDValue tmp = getValue(CI.getOperand(i));
+ Ops.push_back(DAG.getTargetConstant(
+ cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32));
+ }
+ // Push live variables for the stack map.
+ for (unsigned i = 2, e = CI.getNumArgOperands(); i != e; ++i)
+ Ops.push_back(getValue(CI.getArgOperand(i)));
+
+ // Push the chain (this is originally the first operand of the call, but
+ // becomes now the last or second to last operand).
+ Ops.push_back(*(Call->op_begin()));
+
+ // Push the glue flag (last operand).
+ if (hasGlue)
+ Ops.push_back(*(Call->op_end()-1));
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ // Replace the target specific call node with a STACKMAP node.
+ MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::STACKMAP, getCurSDLoc(),
+ NodeTys, Ops);
+
+ // StackMap generates no value, so nothing goes in the NodeMap.
+
+ // Fixup the consumers of the intrinsic. The chain and glue may be used in the
+ // call sequence.
+ DAG.ReplaceAllUsesWith(Call, MN);
+
+ DAG.DeleteNode(Call);
+}
+
+/// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
+void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
+ // void|i64 @llvm.experimental.patchpoint.void|i64(i32 <id>,
+ // i32 <numBytes>,
+ // i8* <target>,
+ // i32 <numArgs>,
+ // [Args...],
+ // [live variables...])
+
+ CallingConv::ID CC = CI.getCallingConv();
+ bool isAnyRegCC = CC == CallingConv::AnyReg;
+ bool hasDef = !CI.getType()->isVoidTy();
+ SDValue Callee = getValue(CI.getOperand(2)); // <target>
+
+ // Get the real number of arguments participating in the call <numArgs>
+ unsigned NumArgs =
+ cast<ConstantSDNode>(getValue(CI.getArgOperand(3)))->getZExtValue();
+
+ // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
+ assert(CI.getNumArgOperands() >= NumArgs + 4 &&
+ "Not enough arguments provided to the patchpoint intrinsic");
+
+ // For AnyRegCC the arguments are lowered later on manually.
+ unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs;
+ std::pair<SDValue, SDValue> Result =
+ LowerCallOperands(CI, 4, NumCallArgs, Callee, isAnyRegCC);
+
+ // Set the root to the target-lowered call chain.
+ SDValue Chain = Result.second;
+ DAG.setRoot(Chain);
+
+ SDNode *CallEnd = Chain.getNode();
+ if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
+ CallEnd = CallEnd->getOperand(0).getNode();
+
+ /// Get a call instruction from the call sequence chain.
+ /// Tail calls are not allowed.
+ assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
+ "Expected a callseq node.");
+ SDNode *Call = CallEnd->getOperand(0).getNode();
+ bool hasGlue = Call->getGluedNode();
+
+ // Replace the target specific call node with the patchable intrinsic.
+ SmallVector<SDValue, 8> Ops;
+
+ // Add the <id> and <numNopBytes> constants.
+ for (unsigned i = 0; i < 2; ++i) {
+ SDValue tmp = getValue(CI.getOperand(i));
+ Ops.push_back(DAG.getTargetConstant(
+ cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32));
+ }
+ // Assume that the Callee is a constant address.
+ Ops.push_back(
+ DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
+ /*isTarget=*/true));
+
+ // Adjust <numArgs> to account for any arguments that have been passed on the
+ // stack instead.
+ // Call Node: Chain, Target, {Args}, RegMask, [Glue]
+ unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
+ NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs;
+ Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
+
+ // Add the calling convention
+ Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
+
+ // Add the arguments we omitted previously. The register allocator should
+ // place these in any free register.
+ if (isAnyRegCC)
+ for (unsigned i = 4, e = NumArgs + 4; i != e; ++i)
+ Ops.push_back(getValue(CI.getArgOperand(i)));
+
+ // Push the arguments from the call instruction.
+ SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
+ for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
+ Ops.push_back(*i);
+
+ // Push live variables for the stack map.
+ for (unsigned i = NumArgs + 4, e = CI.getNumArgOperands(); i != e; ++i) {
+ SDValue OpVal = getValue(CI.getArgOperand(i));
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
+ Ops.push_back(
+ DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
+ Ops.push_back(
+ DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
+ } else
+ Ops.push_back(OpVal);
+ }
+
+ // Push the register mask info.
+ if (hasGlue)
+ Ops.push_back(*(Call->op_end()-2));
+ else
+ Ops.push_back(*(Call->op_end()-1));
+
+ // Push the chain (this is originally the first operand of the call, but
+ // becomes now the last or second to last operand).
+ Ops.push_back(*(Call->op_begin()));
+
+ // Push the glue flag (last operand).
+ if (hasGlue)
+ Ops.push_back(*(Call->op_end()-1));
+
+ SDVTList NodeTys;
+ if (isAnyRegCC && hasDef) {
+ // Create the return types based on the intrinsic definition
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SmallVector<EVT, 3> ValueVTs;
+ ComputeValueVTs(TLI, CI.getType(), ValueVTs);
+ assert(ValueVTs.size() == 1 && "Expected only one return value type.");
+
+ // There is always a chain and a glue type at the end
+ ValueVTs.push_back(MVT::Other);
+ ValueVTs.push_back(MVT::Glue);
+ NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
+ } else
+ NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ // Replace the target specific call node with a PATCHPOINT node.
+ MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
+ getCurSDLoc(), NodeTys, Ops);
+
+ // Update the NodeMap.
+ if (hasDef) {
+ if (isAnyRegCC)
+ setValue(&CI, SDValue(MN, 0));
+ else
+ setValue(&CI, Result.first);
+ }
+
+ // Fixup the consumers of the intrinsic. The chain and glue may be used in the
+ // call sequence. Furthermore the location of the chain and glue can change
+ // when the AnyReg calling convention is used and the intrinsic returns a
+ // value.
+ if (isAnyRegCC && hasDef) {
+ SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
+ SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
+ DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
+ } else
+ DAG.ReplaceAllUsesWith(Call, MN);
+ DAG.DeleteNode(Call);
+}
+
/// TargetLowering::LowerCallTo - This is the default LowerCallTo
/// implementation, which just calls LowerCall.
/// FIXME: When all targets are
@@ -6438,6 +7000,7 @@ TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
for (unsigned i = 0; i != NumRegs; ++i) {
ISD::InputArg MyFlags;
MyFlags.VT = RegisterVT;
+ MyFlags.ArgVT = VT;
MyFlags.Used = CLI.IsReturnValueUsed;
if (CLI.RetSExt)
MyFlags.Flags.setSExt();
@@ -6527,7 +7090,7 @@ TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
for (unsigned j = 0; j != NumParts; ++j) {
// if it isn't first piece, alignment must be 1
- ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
+ ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
i < CLI.NumFixedArgs,
i, j*Parts[j].getValueType().getStoreSize());
if (NumParts > 1 && j == 0)
@@ -6666,7 +7229,7 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
ISD::ArgFlagsTy Flags;
Flags.setSRet();
MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
- ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
+ ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
Ins.push_back(RetArg);
}
@@ -6677,6 +7240,7 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(*TLI, I->getType(), ValueVTs);
bool isArgValueUsed = !I->use_empty();
+ unsigned PartBase = 0;
for (unsigned Value = 0, NumValues = ValueVTs.size();
Value != NumValues; ++Value) {
EVT VT = ValueVTs[Value];
@@ -6714,8 +7278,8 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
for (unsigned i = 0; i != NumRegs; ++i) {
- ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
- Idx-1, i*RegisterVT.getStoreSize());
+ ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
+ Idx-1, PartBase+i*RegisterVT.getStoreSize());
if (NumRegs > 1 && i == 0)
MyFlags.Flags.setSplit();
// if it isn't first piece, alignment must be 1
@@ -6723,6 +7287,7 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
MyFlags.Flags.setOrigAlign(1);
Ins.push_back(MyFlags);
}
+ PartBase += VT.getStoreSize();
}
}
@@ -6940,3 +7505,22 @@ SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
ConstantsOut.clear();
}
+
+/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
+/// is 0.
+MachineBasicBlock *
+SelectionDAGBuilder::StackProtectorDescriptor::
+AddSuccessorMBB(const BasicBlock *BB,
+ MachineBasicBlock *ParentMBB,
+ MachineBasicBlock *SuccMBB) {
+ // If SuccBB has not been created yet, create it.
+ if (!SuccMBB) {
+ MachineFunction *MF = ParentMBB->getParent();
+ MachineFunction::iterator BBI = ParentMBB;
+ SuccMBB = MF->CreateMachineBasicBlock(BB);
+ MF->insert(++BBI, SuccMBB);
+ }
+ // Add it as a successor of ParentMBB.
+ ParentMBB->addSuccessor(SuccMBB);
+ return SuccMBB;
+}
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
index ef73c00..835f643 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
@@ -1,4 +1,4 @@
-//===-- SelectionDAGBuilder.h - Selection-DAG building --------*- c++ -*---===//
+//===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
//
// The LLVM Compiler Infrastructure
//
@@ -26,6 +26,7 @@
namespace llvm {
+class AddrSpaceCastInst;
class AliasAnalysis;
class AllocaInst;
class BasicBlock;
@@ -84,7 +85,7 @@ class SelectionDAGBuilder {
const Instruction *CurInst;
DenseMap<const Value*, SDValue> NodeMap;
-
+
/// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
/// to preserve debug information for incoming arguments.
DenseMap<const Value*, SDValue> UnusedArgNodeMap;
@@ -182,6 +183,17 @@ private:
typedef std::vector<CaseRec> CaseRecVector;
+ /// The comparison function for sorting the switch case values in the vector.
+ /// WARNING: Case ranges should be disjoint!
+ struct CaseCmp {
+ bool operator()(const Case &C1, const Case &C2) {
+ assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
+ const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
+ const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
+ return CI1->getValue().slt(CI2->getValue());
+ }
+ };
+
struct CaseBitsCmp {
bool operator()(const CaseBits &C1, const CaseBits &C2) {
return C1.Bits > C2.Bits;
@@ -224,7 +236,7 @@ private:
struct JumpTable {
JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
-
+
/// Reg - the virtual register containing the index of the jump table entry
//. to jump to.
unsigned Reg;
@@ -278,6 +290,201 @@ private:
BitTestInfo Cases;
};
+ /// A class which encapsulates all of the information needed to generate a
+ /// stack protector check and signals to isel via its state being initialized
+ /// that a stack protector needs to be generated.
+ ///
+ /// *NOTE* The following is a high level documentation of SelectionDAG Stack
+ /// Protector Generation. The reason that it is placed here is for a lack of
+ /// other good places to stick it.
+ ///
+ /// High Level Overview of SelectionDAG Stack Protector Generation:
+ ///
+ /// Previously, generation of stack protectors was done exclusively in the
+ /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
+ /// splitting basic blocks at the IR level to create the success/failure basic
+ /// blocks in the tail of the basic block in question. As a result of this,
+ /// calls that would have qualified for the sibling call optimization were no
+ /// longer eligible for optimization since said calls were no longer right in
+ /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
+ /// instruction).
+ ///
+ /// Then it was noticed that since the sibling call optimization causes the
+ /// callee to reuse the caller's stack, if we could delay the generation of
+ /// the stack protector check until later in CodeGen after the sibling call
+ /// decision was made, we get both the tail call optimization and the stack
+ /// protector check!
+ ///
+ /// A few goals in solving this problem were:
+ ///
+ /// 1. Preserve the architecture independence of stack protector generation.
+ ///
+ /// 2. Preserve the normal IR level stack protector check for platforms like
+ /// OpenBSD for which we support platform specific stack protector
+ /// generation.
+ ///
+ /// The main problem that guided the present solution is that one can not
+ /// solve this problem in an architecture independent manner at the IR level
+ /// only. This is because:
+ ///
+ /// 1. The decision on whether or not to perform a sibling call on certain
+ /// platforms (for instance i386) requires lower level information
+ /// related to available registers that can not be known at the IR level.
+ ///
+ /// 2. Even if the previous point were not true, the decision on whether to
+ /// perform a tail call is done in LowerCallTo in SelectionDAG which
+ /// occurs after the Stack Protector Pass. As a result, one would need to
+ /// put the relevant callinst into the stack protector check success
+ /// basic block (where the return inst is placed) and then move it back
+ /// later at SelectionDAG/MI time before the stack protector check if the
+ /// tail call optimization failed. The MI level option was nixed
+ /// immediately since it would require platform specific pattern
+ /// matching. The SelectionDAG level option was nixed because
+ /// SelectionDAG only processes one IR level basic block at a time
+ /// implying one could not create a DAG Combine to move the callinst.
+ ///
+ /// To get around this problem a few things were realized:
+ ///
+ /// 1. While one can not handle multiple IR level basic blocks at the
+ /// SelectionDAG Level, one can generate multiple machine basic blocks
+ /// for one IR level basic block. This is how we handle bit tests and
+ /// switches.
+ ///
+ /// 2. At the MI level, tail calls are represented via a special return
+ /// MIInst called "tcreturn". Thus if we know the basic block in which we
+ /// wish to insert the stack protector check, we get the correct behavior
+ /// by always inserting the stack protector check right before the return
+ /// statement. This is a "magical transformation" since no matter where
+ /// the stack protector check intrinsic is, we always insert the stack
+ /// protector check code at the end of the BB.
+ ///
+ /// Given the aforementioned constraints, the following solution was devised:
+ ///
+ /// 1. On platforms that do not support SelectionDAG stack protector check
+ /// generation, allow for the normal IR level stack protector check
+ /// generation to continue.
+ ///
+ /// 2. On platforms that do support SelectionDAG stack protector check
+ /// generation:
+ ///
+ /// a. Use the IR level stack protector pass to decide if a stack
+ /// protector is required/which BB we insert the stack protector check
+ /// in by reusing the logic already therein. If we wish to generate a
+ /// stack protector check in a basic block, we place a special IR
+ /// intrinsic called llvm.stackprotectorcheck right before the BB's
+ /// returninst or if there is a callinst that could potentially be
+ /// sibling call optimized, before the call inst.
+ ///
+ /// b. Then when a BB with said intrinsic is processed, we codegen the BB
+ /// normally via SelectBasicBlock. In said process, when we visit the
+ /// stack protector check, we do not actually emit anything into the
+ /// BB. Instead, we just initialize the stack protector descriptor
+ /// class (which involves stashing information/creating the success
+ /// mbbb and the failure mbb if we have not created one for this
+ /// function yet) and export the guard variable that we are going to
+ /// compare.
+ ///
+ /// c. After we finish selecting the basic block, in FinishBasicBlock if
+ /// the StackProtectorDescriptor attached to the SelectionDAGBuilder is
+ /// initialized, we first find a splice point in the parent basic block
+ /// before the terminator and then splice the terminator of said basic
+ /// block into the success basic block. Then we code-gen a new tail for
+ /// the parent basic block consisting of the two loads, the comparison,
+ /// and finally two branches to the success/failure basic blocks. We
+ /// conclude by code-gening the failure basic block if we have not
+ /// code-gened it already (all stack protector checks we generate in
+ /// the same function, use the same failure basic block).
+ class StackProtectorDescriptor {
+ public:
+ StackProtectorDescriptor() : ParentMBB(0), SuccessMBB(0), FailureMBB(0),
+ Guard(0) { }
+ ~StackProtectorDescriptor() { }
+
+ /// Returns true if all fields of the stack protector descriptor are
+ /// initialized implying that we should/are ready to emit a stack protector.
+ bool shouldEmitStackProtector() const {
+ return ParentMBB && SuccessMBB && FailureMBB && Guard;
+ }
+
+ /// Initialize the stack protector descriptor structure for a new basic
+ /// block.
+ void initialize(const BasicBlock *BB,
+ MachineBasicBlock *MBB,
+ const CallInst &StackProtCheckCall) {
+ // Make sure we are not initialized yet.
+ assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
+ "already initialized!");
+ ParentMBB = MBB;
+ SuccessMBB = AddSuccessorMBB(BB, MBB);
+ FailureMBB = AddSuccessorMBB(BB, MBB, FailureMBB);
+ if (!Guard)
+ Guard = StackProtCheckCall.getArgOperand(0);
+ }
+
+ /// Reset state that changes when we handle different basic blocks.
+ ///
+ /// This currently includes:
+ ///
+ /// 1. The specific basic block we are generating a
+ /// stack protector for (ParentMBB).
+ ///
+ /// 2. The successor machine basic block that will contain the tail of
+ /// parent mbb after we create the stack protector check (SuccessMBB). This
+ /// BB is visited only on stack protector check success.
+ void resetPerBBState() {
+ ParentMBB = 0;
+ SuccessMBB = 0;
+ }
+
+ /// Reset state that only changes when we switch functions.
+ ///
+ /// This currently includes:
+ ///
+ /// 1. FailureMBB since we reuse the failure code path for all stack
+ /// protector checks created in an individual function.
+ ///
+ /// 2.The guard variable since the guard variable we are checking against is
+ /// always the same.
+ void resetPerFunctionState() {
+ FailureMBB = 0;
+ Guard = 0;
+ }
+
+ MachineBasicBlock *getParentMBB() { return ParentMBB; }
+ MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
+ MachineBasicBlock *getFailureMBB() { return FailureMBB; }
+ const Value *getGuard() { return Guard; }
+
+ private:
+ /// The basic block for which we are generating the stack protector.
+ ///
+ /// As a result of stack protector generation, we will splice the
+ /// terminators of this basic block into the successor mbb SuccessMBB and
+ /// replace it with a compare/branch to the successor mbbs
+ /// SuccessMBB/FailureMBB depending on whether or not the stack protector
+ /// was violated.
+ MachineBasicBlock *ParentMBB;
+
+ /// A basic block visited on stack protector check success that contains the
+ /// terminators of ParentMBB.
+ MachineBasicBlock *SuccessMBB;
+
+ /// This basic block visited on stack protector check failure that will
+ /// contain a call to __stack_chk_fail().
+ MachineBasicBlock *FailureMBB;
+
+ /// The guard variable which we will compare against the stored value in the
+ /// stack protector stack slot.
+ const Value *Guard;
+
+ /// Add a successor machine basic block to ParentMBB. If the successor mbb
+ /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
+ /// block will be created.
+ MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
+ MachineBasicBlock *ParentMBB,
+ MachineBasicBlock *SuccMBB = 0);
+ };
+
private:
const TargetMachine &TM;
public:
@@ -295,6 +502,9 @@ public:
/// BitTestCases - Vector of BitTestBlock structures used to communicate
/// SwitchInst code generation information.
std::vector<BitTestBlock> BitTestCases;
+ /// A StackProtectorDescriptor structure used to communicate stack protector
+ /// information in between SelectBasicBlock and FinishBasicBlock.
+ StackProtectorDescriptor SPDescriptor;
// Emit PHI-node-operand constants only once even if used by multiple
// PHI nodes.
@@ -305,9 +515,9 @@ public:
FunctionLoweringInfo &FuncInfo;
/// OptLevel - What optimization level we're generating code for.
- ///
+ ///
CodeGenOpt::Level OptLevel;
-
+
/// GFI - Garbage collection metadata for the function.
GCFunctionInfo *GFI;
@@ -389,7 +599,7 @@ public:
assert(N.getNode() == 0 && "Already set a value for this node!");
N = NewN;
}
-
+
void setUnusedArgValue(const Value *V, SDValue NewN) {
SDValue &N = UnusedArgNodeMap[V];
assert(N.getNode() == 0 && "Already set a value for this node!");
@@ -410,6 +620,12 @@ public:
void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
MachineBasicBlock *LandingPad = NULL);
+ std::pair<SDValue, SDValue> LowerCallOperands(const CallInst &CI,
+ unsigned ArgIdx,
+ unsigned NumArgs,
+ SDValue Callee,
+ bool useVoidTy = false);
+
/// UpdateSplitBlock - When an MBB was split during scheduling, update the
/// references that ned to refer to the last resulting block.
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
@@ -451,6 +667,9 @@ private:
public:
void visitSwitchCase(CaseBlock &CB,
MachineBasicBlock *SwitchBB);
+ void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
+ MachineBasicBlock *ParentBB);
+ void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
void visitBitTestCase(BitTestBlock &BB,
MachineBasicBlock* NextMBB,
@@ -461,7 +680,7 @@ public:
void visitJumpTable(JumpTable &JT);
void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
MachineBasicBlock *SwitchBB);
-
+
private:
// These all get lowered before this pass.
void visitInvoke(const InvokeInst &I);
@@ -502,6 +721,7 @@ private:
void visitPtrToInt(const User &I);
void visitIntToPtr(const User &I);
void visitBitCast(const User &I);
+ void visitAddrSpaceCast(const User &I);
void visitExtractElement(const User &I);
void visitInsertElement(const User &I);
@@ -523,6 +743,11 @@ private:
void visitPHI(const PHINode &I);
void visitCall(const CallInst &I);
bool visitMemCmpCall(const CallInst &I);
+ bool visitMemChrCall(const CallInst &I);
+ bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
+ bool visitStrCmpCall(const CallInst &I);
+ bool visitStrLenCall(const CallInst &I);
+ bool visitStrNLenCall(const CallInst &I);
bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
void visitAtomicLoad(const LoadInst &I);
void visitAtomicStore(const StoreInst &I);
@@ -535,6 +760,8 @@ private:
void visitVAArg(const VAArgInst &I);
void visitVAEnd(const CallInst &I);
void visitVACopy(const CallInst &I);
+ void visitStackmap(const CallInst &I);
+ void visitPatchpoint(const CallInst &I);
void visitUserOp1(const Instruction &I) {
llvm_unreachable("UserOp1 should not exist at instruction selection time!");
@@ -543,10 +770,13 @@ private:
llvm_unreachable("UserOp2 should not exist at instruction selection time!");
}
+ void processIntegerCallValue(const Instruction &I,
+ SDValue Value, bool IsSigned);
+
void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
/// EmitFuncArgumentDbgValue - If V is an function argument then create
- /// corresponding DBG_VALUE machine instruction for it now. At the end of
+ /// corresponding DBG_VALUE machine instruction for it now. At the end of
/// instruction selection, they will be inserted to the entry BB.
bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
int64_t Offset, const SDValue &N);
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp
index d8ee221..c04a08d 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp
@@ -142,6 +142,7 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
case ISD::FCEIL: return "fceil";
case ISD::FRINT: return "frint";
case ISD::FNEARBYINT: return "fnearbyint";
+ case ISD::FROUND: return "fround";
case ISD::FEXP: return "fexp";
case ISD::FEXP2: return "fexp2";
case ISD::FLOG: return "flog";
@@ -223,6 +224,7 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
case ISD::FP_TO_SINT: return "fp_to_sint";
case ISD::FP_TO_UINT: return "fp_to_uint";
case ISD::BITCAST: return "bitcast";
+ case ISD::ADDRSPACECAST: return "addrspacecast";
case ISD::FP16_TO_FP32: return "fp16_to_fp32";
case ISD::FP32_TO_FP16: return "fp32_to_fp16";
@@ -484,6 +486,13 @@ void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
OS << " " << offset;
if (unsigned int TF = BA->getTargetFlags())
OS << " [TF=" << TF << ']';
+ } else if (const AddrSpaceCastSDNode *ASC =
+ dyn_cast<AddrSpaceCastSDNode>(this)) {
+ OS << '['
+ << ASC->getSrcAddressSpace()
+ << " -> "
+ << ASC->getDestAddressSpace()
+ << ']';
}
if (unsigned Order = getIROrder())
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
index 01da51c..3a0cfa1 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
@@ -223,6 +223,44 @@ defaultListDAGScheduler("default", "Best scheduler for the target",
namespace llvm {
//===--------------------------------------------------------------------===//
+ /// \brief This class is used by SelectionDAGISel to temporarily override
+ /// the optimization level on a per-function basis.
+ class OptLevelChanger {
+ SelectionDAGISel &IS;
+ CodeGenOpt::Level SavedOptLevel;
+ bool SavedFastISel;
+
+ public:
+ OptLevelChanger(SelectionDAGISel &ISel,
+ CodeGenOpt::Level NewOptLevel) : IS(ISel) {
+ SavedOptLevel = IS.OptLevel;
+ if (NewOptLevel == SavedOptLevel)
+ return;
+ IS.OptLevel = NewOptLevel;
+ IS.TM.setOptLevel(NewOptLevel);
+ SavedFastISel = IS.TM.Options.EnableFastISel;
+ if (NewOptLevel == CodeGenOpt::None)
+ IS.TM.setFastISel(true);
+ DEBUG(dbgs() << "\nChanging optimization level for Function "
+ << IS.MF->getFunction()->getName() << "\n");
+ DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
+ << " ; After: -O" << NewOptLevel << "\n");
+ }
+
+ ~OptLevelChanger() {
+ if (IS.OptLevel == SavedOptLevel)
+ return;
+ DEBUG(dbgs() << "\nRestoring optimization level for Function "
+ << IS.MF->getFunction()->getName() << "\n");
+ DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
+ << " ; After: -O" << SavedOptLevel << "\n");
+ IS.OptLevel = SavedOptLevel;
+ IS.TM.setOptLevel(SavedOptLevel);
+ IS.TM.setFastISel(SavedFastISel);
+ }
+ };
+
+ //===--------------------------------------------------------------------===//
/// createDefaultScheduler - This creates an instruction scheduler appropriate
/// for the target.
ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
@@ -230,7 +268,7 @@ namespace llvm {
const TargetLowering *TLI = IS->getTargetLowering();
const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
- if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
+ if (OptLevel == CodeGenOpt::None || ST.useMachineScheduler() ||
TLI->getSchedulingPreference() == Sched::Source)
return createSourceListDAGScheduler(IS, OptLevel);
if (TLI->getSchedulingPreference() == Sched::RegPressure)
@@ -356,6 +394,7 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
const Function &Fn = *mf.getFunction();
const TargetInstrInfo &TII = *TM.getInstrInfo();
const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
+ const TargetLowering *TLI = TM.getTargetLowering();
MF = &mf;
RegInfo = &MF->getRegInfo();
@@ -369,11 +408,17 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
ST.resetSubtargetFeatures(MF);
TM.resetTargetOptions(MF);
+ // Reset OptLevel to None for optnone functions.
+ CodeGenOpt::Level NewOptLevel = OptLevel;
+ if (Fn.hasFnAttribute(Attribute::OptimizeNone))
+ NewOptLevel = CodeGenOpt::None;
+ OptLevelChanger OLC(*this, NewOptLevel);
+
DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
- CurDAG->init(*MF, TTI);
+ CurDAG->init(*MF, TTI, TLI);
FuncInfo->set(Fn, *MF);
if (UseMBPI && OptLevel != CodeGenOpt::None)
@@ -408,9 +453,13 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
EntryMBB->insert(EntryMBB->begin(), MI);
else {
MachineInstr *Def = RegInfo->getVRegDef(Reg);
- MachineBasicBlock::iterator InsertPos = Def;
- // FIXME: VR def may not be in entry block.
- Def->getParent()->insert(llvm::next(InsertPos), MI);
+ if (Def) {
+ MachineBasicBlock::iterator InsertPos = Def;
+ // FIXME: VR def may not be in entry block.
+ Def->getParent()->insert(llvm::next(InsertPos), MI);
+ } else
+ DEBUG(dbgs() << "Dropping debug info for dead vreg"
+ << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
}
// If Reg is live-in then update debug info to track its copy in a vreg.
@@ -422,7 +471,7 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
MachineBasicBlock::iterator InsertPos = Def;
const MDNode *Variable =
MI->getOperand(MI->getNumOperands()-1).getMetadata();
- bool IsIndirect = MI->getOperand(1).isImm();
+ bool IsIndirect = MI->isIndirectDebugValue();
unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
// Def is never a terminator here, so it is ok to increment InsertPos.
BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
@@ -497,6 +546,10 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
if (J == E) break;
To = J->second;
}
+ // Make sure the new register has a sufficiently constrained register class.
+ if (TargetRegisterInfo::isVirtualRegister(From) &&
+ TargetRegisterInfo::isVirtualRegister(To))
+ MRI.constrainRegClass(To, MRI.getRegClass(From));
// Replace it.
MRI.replaceRegWith(From, To);
}
@@ -617,6 +670,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
<< " '" << BlockName << "'\n"; CurDAG->dump());
+ CurDAG->NewNodesMustHaveLegalTypes = true;
+
if (Changed) {
if (ViewDAGCombineLT)
CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
@@ -1140,6 +1195,91 @@ void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
delete FastIS;
SDB->clearDanglingDebugInfo();
+ SDB->SPDescriptor.resetPerFunctionState();
+}
+
+/// Given that the input MI is before a partial terminator sequence TSeq, return
+/// true if M + TSeq also a partial terminator sequence.
+///
+/// A Terminator sequence is a sequence of MachineInstrs which at this point in
+/// lowering copy vregs into physical registers, which are then passed into
+/// terminator instructors so we can satisfy ABI constraints. A partial
+/// terminator sequence is an improper subset of a terminator sequence (i.e. it
+/// may be the whole terminator sequence).
+static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
+ // If we do not have a copy or an implicit def, we return true if and only if
+ // MI is a debug value.
+ if (!MI->isCopy() && !MI->isImplicitDef())
+ // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
+ // physical registers if there is debug info associated with the terminator
+ // of our mbb. We want to include said debug info in our terminator
+ // sequence, so we return true in that case.
+ return MI->isDebugValue();
+
+ // We have left the terminator sequence if we are not doing one of the
+ // following:
+ //
+ // 1. Copying a vreg into a physical register.
+ // 2. Copying a vreg into a vreg.
+ // 3. Defining a register via an implicit def.
+
+ // OPI should always be a register definition...
+ MachineInstr::const_mop_iterator OPI = MI->operands_begin();
+ if (!OPI->isReg() || !OPI->isDef())
+ return false;
+
+ // Defining any register via an implicit def is always ok.
+ if (MI->isImplicitDef())
+ return true;
+
+ // Grab the copy source...
+ MachineInstr::const_mop_iterator OPI2 = OPI;
+ ++OPI2;
+ assert(OPI2 != MI->operands_end()
+ && "Should have a copy implying we should have 2 arguments.");
+
+ // Make sure that the copy dest is not a vreg when the copy source is a
+ // physical register.
+ if (!OPI2->isReg() ||
+ (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
+ TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
+ return false;
+
+ return true;
+}
+
+/// Find the split point at which to splice the end of BB into its success stack
+/// protector check machine basic block.
+///
+/// On many platforms, due to ABI constraints, terminators, even before register
+/// allocation, use physical registers. This creates an issue for us since
+/// physical registers at this point can not travel across basic
+/// blocks. Luckily, selectiondag always moves physical registers into vregs
+/// when they enter functions and moves them through a sequence of copies back
+/// into the physical registers right before the terminator creating a
+/// ``Terminator Sequence''. This function is searching for the beginning of the
+/// terminator sequence so that we can ensure that we splice off not just the
+/// terminator, but additionally the copies that move the vregs into the
+/// physical registers.
+static MachineBasicBlock::iterator
+FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
+ MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
+ //
+ if (SplitPoint == BB->begin())
+ return SplitPoint;
+
+ MachineBasicBlock::iterator Start = BB->begin();
+ MachineBasicBlock::iterator Previous = SplitPoint;
+ --Previous;
+
+ while (MIIsInTerminatorSequence(Previous)) {
+ SplitPoint = Previous;
+ if (Previous == Start)
+ break;
+ --Previous;
+ }
+
+ return SplitPoint;
}
void
@@ -1152,11 +1292,13 @@ SelectionDAGISel::FinishBasicBlock() {
<< FuncInfo->PHINodesToUpdate[i].first
<< ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
+ const bool MustUpdatePHINodes = SDB->SwitchCases.empty() &&
+ SDB->JTCases.empty() &&
+ SDB->BitTestCases.empty();
+
// Next, now that we know what the last MBB the LLVM BB expanded is, update
// PHI nodes in successors.
- if (SDB->SwitchCases.empty() &&
- SDB->JTCases.empty() &&
- SDB->BitTestCases.empty()) {
+ if (MustUpdatePHINodes) {
for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
assert(PHI->isPHI() &&
@@ -1165,9 +1307,54 @@ SelectionDAGISel::FinishBasicBlock() {
continue;
PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
}
- return;
}
+ // Handle stack protector.
+ if (SDB->SPDescriptor.shouldEmitStackProtector()) {
+ MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
+ MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
+
+ // Find the split point to split the parent mbb. At the same time copy all
+ // physical registers used in the tail of parent mbb into virtual registers
+ // before the split point and back into physical registers after the split
+ // point. This prevents us needing to deal with Live-ins and many other
+ // register allocation issues caused by us splitting the parent mbb. The
+ // register allocator will clean up said virtual copies later on.
+ MachineBasicBlock::iterator SplitPoint =
+ FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
+
+ // Splice the terminator of ParentMBB into SuccessMBB.
+ SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
+ SplitPoint,
+ ParentMBB->end());
+
+ // Add compare/jump on neq/jump to the parent BB.
+ FuncInfo->MBB = ParentMBB;
+ FuncInfo->InsertPt = ParentMBB->end();
+ SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+
+ // CodeGen Failure MBB if we have not codegened it yet.
+ MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
+ if (!FailureMBB->size()) {
+ FuncInfo->MBB = FailureMBB;
+ FuncInfo->InsertPt = FailureMBB->end();
+ SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+ }
+
+ // Clear the Per-BB State.
+ SDB->SPDescriptor.resetPerBBState();
+ }
+
+ // If we updated PHI Nodes, return early.
+ if (MustUpdatePHINodes)
+ return;
+
for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
// Lower header first, if it wasn't already lowered
if (!SDB->BitTestCases[i].Emitted) {
@@ -1741,15 +1928,15 @@ WalkChainUsers(const SDNode *ChainedNode,
SDNode *User = *UI;
+ if (User->getOpcode() == ISD::HANDLENODE) // Root of the graph.
+ continue;
+
// If we see an already-selected machine node, then we've gone beyond the
// pattern that we're selecting down into the already selected chunk of the
// DAG.
- if (User->isMachineOpcode() ||
- User->getOpcode() == ISD::HANDLENODE) // Root of the graph.
- continue;
-
unsigned UserOpcode = User->getOpcode();
- if (UserOpcode == ISD::CopyToReg ||
+ if (User->isMachineOpcode() ||
+ UserOpcode == ISD::CopyToReg ||
UserOpcode == ISD::CopyFromReg ||
UserOpcode == ISD::INLINEASM ||
UserOpcode == ISD::EH_LABEL ||
@@ -1886,7 +2073,6 @@ HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
}
}
- SDValue Res;
if (InputChains.size() == 1)
return InputChains[0];
return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
@@ -1962,6 +2148,18 @@ CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
return N == RecordedNodes[RecNo].first;
}
+/// CheckChildSame - Implements OP_CheckChildXSame.
+LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
+CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N,
+ const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
+ unsigned ChildNo) {
+ if (ChildNo >= N.getNumOperands())
+ return false; // Match fails if out of range child #.
+ return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
+ RecordedNodes);
+}
+
/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
@@ -2076,6 +2274,13 @@ static unsigned IsPredicateKnownToFail(const unsigned char *Table,
case SelectionDAGISel::OPC_CheckSame:
Result = !::CheckSame(Table, Index, N, RecordedNodes);
return Index;
+ case SelectionDAGISel::OPC_CheckChild0Same:
+ case SelectionDAGISel::OPC_CheckChild1Same:
+ case SelectionDAGISel::OPC_CheckChild2Same:
+ case SelectionDAGISel::OPC_CheckChild3Same:
+ Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
+ Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
+ return Index;
case SelectionDAGISel::OPC_CheckPatternPredicate:
Result = !::CheckPatternPredicate(Table, Index, SDISel);
return Index;
@@ -2373,6 +2578,14 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
case OPC_CheckSame:
if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
continue;
+
+ case OPC_CheckChild0Same: case OPC_CheckChild1Same:
+ case OPC_CheckChild2Same: case OPC_CheckChild3Same:
+ if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
+ Opcode-OPC_CheckChild0Same))
+ break;
+ continue;
+
case OPC_CheckPatternPredicate:
if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
continue;
@@ -2432,7 +2645,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
}
case OPC_SwitchType: {
- MVT CurNodeVT = N.getValueType().getSimpleVT();
+ MVT CurNodeVT = N.getSimpleValueType();
unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
unsigned CaseSize;
while (1) {
@@ -2544,7 +2757,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
case OPC_EmitConvertToTarget: {
// Convert from IMM/FPIMM to target version.
unsigned RecNo = MatcherTable[MatcherIndex++];
- assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
SDValue Imm = RecordedNodes[RecNo].first;
if (Imm->getOpcode() == ISD::Constant) {
@@ -2569,7 +2782,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
// Read all of the chained nodes.
unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
- assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
// FIXME: What if other value results of the node have uses not matched
@@ -2606,7 +2819,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
// Read all of the chained nodes.
for (unsigned i = 0; i != NumChains; ++i) {
unsigned RecNo = MatcherTable[MatcherIndex++];
- assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
// FIXME: What if other value results of the node have uses not matched
@@ -2633,7 +2846,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
case OPC_EmitCopyToReg: {
unsigned RecNo = MatcherTable[MatcherIndex++];
- assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
unsigned DestPhysReg = MatcherTable[MatcherIndex++];
if (InputChain.getNode() == 0)
@@ -2650,7 +2863,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
case OPC_EmitNodeXForm: {
unsigned XFormNo = MatcherTable[MatcherIndex++];
unsigned RecNo = MatcherTable[MatcherIndex++];
- assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
continue;
@@ -2827,7 +3040,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
if (RecNo & 128)
RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
- assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults");
GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
}
continue;
@@ -2844,7 +3057,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
if (ResSlot & 128)
ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
- assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
+ assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
SDValue Res = RecordedNodes[ResSlot].first;
assert(i < NodeToMatch->getNumValues() &&
diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
index e3c6306..82b068d 100644
--- a/lib/CodeGen/SelectionDAG/TargetLowering.cpp
+++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -64,13 +64,29 @@ bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
return isUsedByReturnOnly(Node, Chain);
}
+/// \brief Set CallLoweringInfo attribute flags based on a call instruction
+/// and called function attributes.
+void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
+ unsigned AttrIdx) {
+ isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
+ isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
+ isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
+ isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
+ isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
+ isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
+ isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
+ Alignment = CS->getParamAlignment(AttrIdx);
+}
/// Generate a libcall taking the given operands as arguments and returning a
/// result of type RetVT.
-SDValue TargetLowering::makeLibCall(SelectionDAG &DAG,
- RTLIB::Libcall LC, EVT RetVT,
- const SDValue *Ops, unsigned NumOps,
- bool isSigned, SDLoc dl) const {
+std::pair<SDValue, SDValue>
+TargetLowering::makeLibCall(SelectionDAG &DAG,
+ RTLIB::Libcall LC, EVT RetVT,
+ const SDValue *Ops, unsigned NumOps,
+ bool isSigned, SDLoc dl,
+ bool doesNotReturn,
+ bool isReturnValueUsed) const {
TargetLowering::ArgListTy Args;
Args.reserve(NumOps);
@@ -89,11 +105,9 @@ SDValue TargetLowering::makeLibCall(SelectionDAG &DAG,
CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
false, 0, getLibcallCallingConv(LC),
/*isTailCall=*/false,
- /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
- Callee, Args, DAG, dl);
- std::pair<SDValue,SDValue> CallInfo = LowerCallTo(CLI);
-
- return CallInfo.first;
+ doesNotReturn, isReturnValueUsed, Callee, Args,
+ DAG, dl);
+ return LowerCallTo(CLI);
}
@@ -183,14 +197,16 @@ void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
// Use the target specific return value for comparions lib calls.
EVT RetVT = getCmpLibcallReturnType();
SDValue Ops[2] = { NewLHS, NewRHS };
- NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, dl);
+ NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/,
+ dl).first;
NewRHS = DAG.getConstant(0, RetVT);
CCCode = getCmpLibcallCC(LC1);
if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
getSetCCResultType(*DAG.getContext(), RetVT),
NewLHS, NewRHS, DAG.getCondCode(CCCode));
- NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, dl);
+ NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/,
+ dl).first;
NewLHS = DAG.getNode(ISD::SETCC, dl,
getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
@@ -632,6 +648,31 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
NarrowShl));
}
+ // Repeat the SHL optimization above in cases where an extension
+ // intervenes: (shl (anyext (shr x, c1)), c2) to
+ // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
+ // aren't demanded (as above) and that the shifted upper c1 bits of
+ // x aren't demanded.
+ if (InOp.hasOneUse() &&
+ InnerOp.getOpcode() == ISD::SRL &&
+ InnerOp.hasOneUse() &&
+ isa<ConstantSDNode>(InnerOp.getOperand(1))) {
+ uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
+ ->getZExtValue();
+ if (InnerShAmt < ShAmt &&
+ InnerShAmt < InnerBits &&
+ NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
+ NewMask.trunc(ShAmt) == 0) {
+ SDValue NewSA =
+ TLO.DAG.getConstant(ShAmt - InnerShAmt,
+ Op.getOperand(1).getValueType());
+ EVT VT = Op.getValueType();
+ SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
+ InnerOp.getOperand(0));
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
+ NewExt, NewSA));
+ }
+ }
}
KnownZero <<= SA->getZExtValue();
@@ -722,13 +763,24 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
- if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
+ if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits)
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
Op.getOperand(0),
Op.getOperand(1)));
- } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
- KnownOne |= HighBits;
+
+ int Log2 = NewMask.exactLogBase2();
+ if (Log2 >= 0) {
+ // The bit must come from the sign.
+ SDValue NewSA =
+ TLO.DAG.getConstant(BitWidth - 1 - Log2,
+ Op.getOperand(1).getValueType());
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
+ Op.getOperand(0), NewSA));
}
+
+ if (KnownOne.intersects(SignBit))
+ // New bits are known one.
+ KnownOne |= HighBits;
}
break;
case ISD::SIGN_EXTEND_INREG: {
@@ -1077,13 +1129,20 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
case ISD::SETFALSE:
case ISD::SETFALSE2: return DAG.getConstant(0, VT);
case ISD::SETTRUE:
- case ISD::SETTRUE2: return DAG.getConstant(1, VT);
+ case ISD::SETTRUE2: {
+ TargetLowering::BooleanContent Cnt = getBooleanContents(VT.isVector());
+ return DAG.getConstant(
+ Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
+ }
}
// Ensure that the constant occurs on the RHS, and fold constant
// comparisons.
- if (isa<ConstantSDNode>(N0.getNode()))
- return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
+ ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
+ if (isa<ConstantSDNode>(N0.getNode()) &&
+ (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
+ return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
const APInt &C1 = N1C->getAPIntValue();
@@ -1178,6 +1237,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
// the test is for equality or unsigned, and all 1 bits of the const are
// in the same partial word, see if we can shorten the load.
if (DCI.isBeforeLegalize() &&
+ !ISD::isSignedIntSetCC(Cond) &&
N0.getOpcode() == ISD::AND && C1 == 0 &&
N0.getNode()->hasOneUse() &&
isa<LoadSDNode>(N0.getOperand(0)) &&
@@ -1322,7 +1382,9 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
CC = ISD::getSetCCInverse(CC,
N0.getOperand(0).getValueType().isInteger());
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
}
if ((N0.getOpcode() == ISD::XOR ||
@@ -1759,16 +1821,22 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
if (ValueHasExactlyOneBitSet(N1, DAG)) {
Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
- SDValue Zero = DAG.getConstant(0, N1.getValueType());
- return DAG.getSetCC(dl, VT, N0, Zero, Cond);
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(Cond, N0.getSimpleValueType())) {
+ SDValue Zero = DAG.getConstant(0, N1.getValueType());
+ return DAG.getSetCC(dl, VT, N0, Zero, Cond);
+ }
}
}
if (N1.getOpcode() == ISD::AND)
if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
if (ValueHasExactlyOneBitSet(N0, DAG)) {
Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
- SDValue Zero = DAG.getConstant(0, N0.getValueType());
- return DAG.getSetCC(dl, VT, N1, Zero, Cond);
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(Cond, N1.getSimpleValueType())) {
+ SDValue Zero = DAG.getConstant(0, N0.getValueType());
+ return DAG.getSetCC(dl, VT, N1, Zero, Cond);
+ }
}
}
}
@@ -1993,7 +2061,7 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint,
MVT VT) const {
- if (Constraint[0] != '{')
+ if (Constraint.empty() || Constraint[0] != '{')
return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
@@ -2142,8 +2210,9 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
break;
}
} else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
- OpInfo.ConstraintVT = MVT::getIntegerVT(
- 8*getDataLayout()->getPointerSize(PT->getAddressSpace()));
+ unsigned PtrSize
+ = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace());
+ OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
} else {
OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
}
diff --git a/lib/CodeGen/ShrinkWrapping.cpp b/lib/CodeGen/ShrinkWrapping.cpp
deleted file mode 100644
index 6c826de..0000000
--- a/lib/CodeGen/ShrinkWrapping.cpp
+++ /dev/null
@@ -1,1152 +0,0 @@
-//===-- ShrinkWrapping.cpp - Reduce spills/restores of callee-saved regs --===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a shrink wrapping variant of prolog/epilog insertion:
-// - Spills and restores of callee-saved registers (CSRs) are placed in the
-// machine CFG to tightly surround their uses so that execution paths that
-// do not use CSRs do not pay the spill/restore penalty.
-//
-// - Avoiding placment of spills/restores in loops: if a CSR is used inside a
-// loop the spills are placed in the loop preheader, and restores are
-// placed in the loop exit nodes (the successors of loop _exiting_ nodes).
-//
-// - Covering paths without CSR uses:
-// If a region in a CFG uses CSRs and has multiple entry and/or exit points,
-// the use info for the CSRs inside the region is propagated outward in the
-// CFG to ensure validity of the spill/restore placements. This decreases
-// the effectiveness of shrink wrapping but does not require edge splitting
-// in the machine CFG.
-//
-// This shrink wrapping implementation uses an iterative analysis to determine
-// which basic blocks require spills and restores for CSRs.
-//
-// This pass uses MachineDominators and MachineLoopInfo. Loop information
-// is used to prevent placement of callee-saved register spills/restores
-// in the bodies of loops.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "shrink-wrap"
-
-#include "PrologEpilogInserter.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SparseBitVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/MachineDominators.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineLoopInfo.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include <sstream>
-
-using namespace llvm;
-
-STATISTIC(numSRReduced, "Number of CSR spills+restores reduced.");
-
-// Shrink Wrapping:
-static cl::opt<bool>
-ShrinkWrapping("shrink-wrap",
- cl::desc("Shrink wrap callee-saved register spills/restores"));
-
-// Shrink wrap only the specified function, a debugging aid.
-static cl::opt<std::string>
-ShrinkWrapFunc("shrink-wrap-func", cl::Hidden,
- cl::desc("Shrink wrap the specified function"),
- cl::value_desc("funcname"),
- cl::init(""));
-
-// Debugging level for shrink wrapping.
-enum ShrinkWrapDebugLevel {
- Disabled, BasicInfo, Iterations, Details
-};
-
-static cl::opt<enum ShrinkWrapDebugLevel>
-ShrinkWrapDebugging("shrink-wrap-dbg", cl::Hidden,
- cl::desc("Print shrink wrapping debugging information"),
- cl::values(
- clEnumVal(Disabled , "disable debug output"),
- clEnumVal(BasicInfo , "print basic DF sets"),
- clEnumVal(Iterations, "print SR sets for each iteration"),
- clEnumVal(Details , "print all DF sets"),
- clEnumValEnd));
-
-
-void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- if (ShrinkWrapping || ShrinkWrapFunc != "") {
- AU.addRequired<MachineLoopInfo>();
- AU.addRequired<MachineDominatorTree>();
- }
- AU.addPreserved<MachineLoopInfo>();
- AU.addPreserved<MachineDominatorTree>();
- AU.addRequired<TargetPassConfig>();
- MachineFunctionPass::getAnalysisUsage(AU);
-}
-
-//===----------------------------------------------------------------------===//
-// ShrinkWrapping implementation
-//===----------------------------------------------------------------------===//
-
-// Convienences for dealing with machine loops.
-MachineBasicBlock* PEI::getTopLevelLoopPreheader(MachineLoop* LP) {
- assert(LP && "Machine loop is NULL.");
- MachineBasicBlock* PHDR = LP->getLoopPreheader();
- MachineLoop* PLP = LP->getParentLoop();
- while (PLP) {
- PHDR = PLP->getLoopPreheader();
- PLP = PLP->getParentLoop();
- }
- return PHDR;
-}
-
-MachineLoop* PEI::getTopLevelLoopParent(MachineLoop *LP) {
- if (LP == 0)
- return 0;
- MachineLoop* PLP = LP->getParentLoop();
- while (PLP) {
- LP = PLP;
- PLP = PLP->getParentLoop();
- }
- return LP;
-}
-
-bool PEI::isReturnBlock(MachineBasicBlock* MBB) {
- return (MBB && !MBB->empty() && MBB->back().isReturn());
-}
-
-// Initialize shrink wrapping DFA sets, called before iterations.
-void PEI::clearAnticAvailSets() {
- AnticIn.clear();
- AnticOut.clear();
- AvailIn.clear();
- AvailOut.clear();
-}
-
-// Clear all sets constructed by shrink wrapping.
-void PEI::clearAllSets() {
- ReturnBlocks.clear();
- clearAnticAvailSets();
- UsedCSRegs.clear();
- CSRUsed.clear();
- TLLoops.clear();
- CSRSave.clear();
- CSRRestore.clear();
-}
-
-// Initialize all shrink wrapping data.
-void PEI::initShrinkWrappingInfo() {
- clearAllSets();
- EntryBlock = 0;
-#ifndef NDEBUG
- HasFastExitPath = false;
-#endif
- ShrinkWrapThisFunction = ShrinkWrapping;
- // DEBUG: enable or disable shrink wrapping for the current function
- // via --shrink-wrap-func=<funcname>.
-#ifndef NDEBUG
- if (ShrinkWrapFunc != "") {
- std::string MFName = MF->getName().str();
- ShrinkWrapThisFunction = (MFName == ShrinkWrapFunc);
- }
-#endif
-}
-
-
-/// placeCSRSpillsAndRestores - determine which MBBs of the function
-/// need save, restore code for callee-saved registers by doing a DF analysis
-/// similar to the one used in code motion (GVNPRE). This produces maps of MBBs
-/// to sets of registers (CSRs) for saves and restores. MachineLoopInfo
-/// is used to ensure that CSR save/restore code is not placed inside loops.
-/// This function computes the maps of MBBs -> CSRs to spill and restore
-/// in CSRSave, CSRRestore.
-///
-/// If shrink wrapping is not being performed, place all spills in
-/// the entry block, all restores in return blocks. In this case,
-/// CSRSave has a single mapping, CSRRestore has mappings for each
-/// return block.
-///
-void PEI::placeCSRSpillsAndRestores(MachineFunction &Fn) {
-
- DEBUG(MF = &Fn);
-
- initShrinkWrappingInfo();
-
- DEBUG(if (ShrinkWrapThisFunction) {
- dbgs() << "Place CSR spills/restores for "
- << MF->getName() << "\n";
- });
-
- if (calculateSets(Fn))
- placeSpillsAndRestores(Fn);
-}
-
-/// calcAnticInOut - calculate the anticipated in/out reg sets
-/// for the given MBB by looking forward in the MCFG at MBB's
-/// successors.
-///
-bool PEI::calcAnticInOut(MachineBasicBlock* MBB) {
- bool changed = false;
-
- // AnticOut[MBB] = INTERSECT(AnticIn[S] for S in SUCCESSORS(MBB))
- SmallVector<MachineBasicBlock*, 4> successors;
- for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
- SE = MBB->succ_end(); SI != SE; ++SI) {
- MachineBasicBlock* SUCC = *SI;
- if (SUCC != MBB)
- successors.push_back(SUCC);
- }
-
- unsigned i = 0, e = successors.size();
- if (i != e) {
- CSRegSet prevAnticOut = AnticOut[MBB];
- MachineBasicBlock* SUCC = successors[i];
-
- AnticOut[MBB] = AnticIn[SUCC];
- for (++i; i != e; ++i) {
- SUCC = successors[i];
- AnticOut[MBB] &= AnticIn[SUCC];
- }
- if (prevAnticOut != AnticOut[MBB])
- changed = true;
- }
-
- // AnticIn[MBB] = UNION(CSRUsed[MBB], AnticOut[MBB]);
- CSRegSet prevAnticIn = AnticIn[MBB];
- AnticIn[MBB] = CSRUsed[MBB] | AnticOut[MBB];
- if (prevAnticIn != AnticIn[MBB])
- changed = true;
- return changed;
-}
-
-/// calcAvailInOut - calculate the available in/out reg sets
-/// for the given MBB by looking backward in the MCFG at MBB's
-/// predecessors.
-///
-bool PEI::calcAvailInOut(MachineBasicBlock* MBB) {
- bool changed = false;
-
- // AvailIn[MBB] = INTERSECT(AvailOut[P] for P in PREDECESSORS(MBB))
- SmallVector<MachineBasicBlock*, 4> predecessors;
- for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
- PE = MBB->pred_end(); PI != PE; ++PI) {
- MachineBasicBlock* PRED = *PI;
- if (PRED != MBB)
- predecessors.push_back(PRED);
- }
-
- unsigned i = 0, e = predecessors.size();
- if (i != e) {
- CSRegSet prevAvailIn = AvailIn[MBB];
- MachineBasicBlock* PRED = predecessors[i];
-
- AvailIn[MBB] = AvailOut[PRED];
- for (++i; i != e; ++i) {
- PRED = predecessors[i];
- AvailIn[MBB] &= AvailOut[PRED];
- }
- if (prevAvailIn != AvailIn[MBB])
- changed = true;
- }
-
- // AvailOut[MBB] = UNION(CSRUsed[MBB], AvailIn[MBB]);
- CSRegSet prevAvailOut = AvailOut[MBB];
- AvailOut[MBB] = CSRUsed[MBB] | AvailIn[MBB];
- if (prevAvailOut != AvailOut[MBB])
- changed = true;
- return changed;
-}
-
-/// calculateAnticAvail - build the sets anticipated and available
-/// registers in the MCFG of the current function iteratively,
-/// doing a combined forward and backward analysis.
-///
-void PEI::calculateAnticAvail(MachineFunction &Fn) {
- // Initialize data flow sets.
- clearAnticAvailSets();
-
- // Calculate Antic{In,Out} and Avail{In,Out} iteratively on the MCFG.
- bool changed = true;
- unsigned iterations = 0;
- while (changed) {
- changed = false;
- ++iterations;
- for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end();
- MBBI != MBBE; ++MBBI) {
- MachineBasicBlock* MBB = MBBI;
-
- // Calculate anticipated in, out regs at MBB from
- // anticipated at successors of MBB.
- changed |= calcAnticInOut(MBB);
-
- // Calculate available in, out regs at MBB from
- // available at predecessors of MBB.
- changed |= calcAvailInOut(MBB);
- }
- }
-
- DEBUG({
- if (ShrinkWrapDebugging >= Details) {
- dbgs()
- << "-----------------------------------------------------------\n"
- << " Antic/Avail Sets:\n"
- << "-----------------------------------------------------------\n"
- << "iterations = " << iterations << "\n"
- << "-----------------------------------------------------------\n"
- << "MBB | USED | ANTIC_IN | ANTIC_OUT | AVAIL_IN | AVAIL_OUT\n"
- << "-----------------------------------------------------------\n";
-
- for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end();
- MBBI != MBBE; ++MBBI) {
- MachineBasicBlock* MBB = MBBI;
- dumpSets(MBB);
- }
-
- dbgs()
- << "-----------------------------------------------------------\n";
- }
- });
-}
-
-/// propagateUsesAroundLoop - copy used register info from MBB to all blocks
-/// of the loop given by LP and its parent loops. This prevents spills/restores
-/// from being placed in the bodies of loops.
-///
-void PEI::propagateUsesAroundLoop(MachineBasicBlock* MBB, MachineLoop* LP) {
- if (! MBB || !LP)
- return;
-
- std::vector<MachineBasicBlock*> loopBlocks = LP->getBlocks();
- for (unsigned i = 0, e = loopBlocks.size(); i != e; ++i) {
- MachineBasicBlock* LBB = loopBlocks[i];
- if (LBB == MBB)
- continue;
- if (CSRUsed[LBB].contains(CSRUsed[MBB]))
- continue;
- CSRUsed[LBB] |= CSRUsed[MBB];
- }
-}
-
-/// calculateSets - collect the CSRs used in this function, compute
-/// the DF sets that describe the initial minimal regions in the
-/// Machine CFG around which CSR spills and restores must be placed.
-///
-/// Additionally, this function decides if shrink wrapping should
-/// be disabled for the current function, checking the following:
-/// 1. the current function has more than 500 MBBs: heuristic limit
-/// on function size to reduce compile time impact of the current
-/// iterative algorithm.
-/// 2. all CSRs are used in the entry block.
-/// 3. all CSRs are used in all immediate successors of the entry block.
-/// 4. all CSRs are used in a subset of blocks, each of which dominates
-/// all return blocks. These blocks, taken as a subgraph of the MCFG,
-/// are equivalent to the entry block since all execution paths pass
-/// through them.
-///
-bool PEI::calculateSets(MachineFunction &Fn) {
- // Sets used to compute spill, restore placement sets.
- const std::vector<CalleeSavedInfo> CSI =
- Fn.getFrameInfo()->getCalleeSavedInfo();
-
- // If no CSRs used, we are done.
- if (CSI.empty()) {
- DEBUG(if (ShrinkWrapThisFunction)
- dbgs() << "DISABLED: " << Fn.getName()
- << ": uses no callee-saved registers\n");
- return false;
- }
-
- // Save refs to entry and return blocks.
- EntryBlock = Fn.begin();
- for (MachineFunction::iterator MBB = Fn.begin(), E = Fn.end();
- MBB != E; ++MBB)
- if (isReturnBlock(MBB))
- ReturnBlocks.push_back(MBB);
-
- // Determine if this function has fast exit paths.
- DEBUG(if (ShrinkWrapThisFunction)
- findFastExitPath());
-
- // Limit shrink wrapping via the current iterative bit vector
- // implementation to functions with <= 500 MBBs.
- if (Fn.size() > 500) {
- DEBUG(if (ShrinkWrapThisFunction)
- dbgs() << "DISABLED: " << Fn.getName()
- << ": too large (" << Fn.size() << " MBBs)\n");
- ShrinkWrapThisFunction = false;
- }
-
- // Return now if not shrink wrapping.
- if (! ShrinkWrapThisFunction)
- return false;
-
- // Collect set of used CSRs.
- for (unsigned inx = 0, e = CSI.size(); inx != e; ++inx) {
- UsedCSRegs.set(inx);
- }
-
- // Walk instructions in all MBBs, create CSRUsed[] sets, choose
- // whether or not to shrink wrap this function.
- MachineLoopInfo &LI = getAnalysis<MachineLoopInfo>();
- MachineDominatorTree &DT = getAnalysis<MachineDominatorTree>();
- const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
-
- bool allCSRUsesInEntryBlock = true;
- for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end();
- MBBI != MBBE; ++MBBI) {
- MachineBasicBlock* MBB = MBBI;
- for (MachineBasicBlock::iterator I = MBB->begin(); I != MBB->end(); ++I) {
- for (unsigned inx = 0, e = CSI.size(); inx != e; ++inx) {
- unsigned Reg = CSI[inx].getReg();
- // If instruction I reads or modifies Reg, add it to UsedCSRegs,
- // CSRUsed map for the current block.
- for (unsigned opInx = 0, opEnd = I->getNumOperands();
- opInx != opEnd; ++opInx) {
- const MachineOperand &MO = I->getOperand(opInx);
- if (! (MO.isReg() && (MO.isUse() || MO.isDef())))
- continue;
- unsigned MOReg = MO.getReg();
- if (!MOReg)
- continue;
- if (MOReg == Reg ||
- (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
- TargetRegisterInfo::isPhysicalRegister(Reg) &&
- TRI->isSubRegister(Reg, MOReg))) {
- // CSR Reg is defined/used in block MBB.
- CSRUsed[MBB].set(inx);
- // Check for uses in EntryBlock.
- if (MBB != EntryBlock)
- allCSRUsesInEntryBlock = false;
- }
- }
- }
- }
-
- if (CSRUsed[MBB].empty())
- continue;
-
- // Propagate CSRUsed[MBB] in loops
- if (MachineLoop* LP = LI.getLoopFor(MBB)) {
- // Add top level loop to work list.
- MachineBasicBlock* HDR = getTopLevelLoopPreheader(LP);
- MachineLoop* PLP = getTopLevelLoopParent(LP);
-
- if (! HDR) {
- HDR = PLP->getHeader();
- assert(HDR->pred_size() > 0 && "Loop header has no predecessors?");
- MachineBasicBlock::pred_iterator PI = HDR->pred_begin();
- HDR = *PI;
- }
- TLLoops[HDR] = PLP;
-
- // Push uses from inside loop to its parent loops,
- // or to all other MBBs in its loop.
- if (LP->getLoopDepth() > 1) {
- for (MachineLoop* PLP = LP->getParentLoop(); PLP;
- PLP = PLP->getParentLoop()) {
- propagateUsesAroundLoop(MBB, PLP);
- }
- } else {
- propagateUsesAroundLoop(MBB, LP);
- }
- }
- }
-
- if (allCSRUsesInEntryBlock) {
- DEBUG(dbgs() << "DISABLED: " << Fn.getName()
- << ": all CSRs used in EntryBlock\n");
- ShrinkWrapThisFunction = false;
- } else {
- bool allCSRsUsedInEntryFanout = true;
- for (MachineBasicBlock::succ_iterator SI = EntryBlock->succ_begin(),
- SE = EntryBlock->succ_end(); SI != SE; ++SI) {
- MachineBasicBlock* SUCC = *SI;
- if (CSRUsed[SUCC] != UsedCSRegs)
- allCSRsUsedInEntryFanout = false;
- }
- if (allCSRsUsedInEntryFanout) {
- DEBUG(dbgs() << "DISABLED: " << Fn.getName()
- << ": all CSRs used in imm successors of EntryBlock\n");
- ShrinkWrapThisFunction = false;
- }
- }
-
- if (ShrinkWrapThisFunction) {
- // Check if MBB uses CSRs and dominates all exit nodes.
- // Such nodes are equiv. to the entry node w.r.t.
- // CSR uses: every path through the function must
- // pass through this node. If each CSR is used at least
- // once by these nodes, shrink wrapping is disabled.
- CSRegSet CSRUsedInChokePoints;
- for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end();
- MBBI != MBBE; ++MBBI) {
- MachineBasicBlock* MBB = MBBI;
- if (MBB == EntryBlock || CSRUsed[MBB].empty() || MBB->succ_size() < 1)
- continue;
- bool dominatesExitNodes = true;
- for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri)
- if (! DT.dominates(MBB, ReturnBlocks[ri])) {
- dominatesExitNodes = false;
- break;
- }
- if (dominatesExitNodes) {
- CSRUsedInChokePoints |= CSRUsed[MBB];
- if (CSRUsedInChokePoints == UsedCSRegs) {
- DEBUG(dbgs() << "DISABLED: " << Fn.getName()
- << ": all CSRs used in choke point(s) at "
- << getBasicBlockName(MBB) << "\n");
- ShrinkWrapThisFunction = false;
- break;
- }
- }
- }
- }
-
- // Return now if we have decided not to apply shrink wrapping
- // to the current function.
- if (! ShrinkWrapThisFunction)
- return false;
-
- DEBUG({
- dbgs() << "ENABLED: " << Fn.getName();
- if (HasFastExitPath)
- dbgs() << " (fast exit path)";
- dbgs() << "\n";
- if (ShrinkWrapDebugging >= BasicInfo) {
- dbgs() << "------------------------------"
- << "-----------------------------\n";
- dbgs() << "UsedCSRegs = " << stringifyCSRegSet(UsedCSRegs) << "\n";
- if (ShrinkWrapDebugging >= Details) {
- dbgs() << "------------------------------"
- << "-----------------------------\n";
- dumpAllUsed();
- }
- }
- });
-
- // Build initial DF sets to determine minimal regions in the
- // Machine CFG around which CSRs must be spilled and restored.
- calculateAnticAvail(Fn);
-
- return true;
-}
-
-/// addUsesForMEMERegion - add uses of CSRs spilled or restored in
-/// multi-entry, multi-exit (MEME) regions so spill and restore
-/// placement will not break code that enters or leaves a
-/// shrink-wrapped region by inducing spills with no matching
-/// restores or restores with no matching spills. A MEME region
-/// is a subgraph of the MCFG with multiple entry edges, multiple
-/// exit edges, or both. This code propagates use information
-/// through the MCFG until all paths requiring spills and restores
-/// _outside_ the computed minimal placement regions have been covered.
-///
-bool PEI::addUsesForMEMERegion(MachineBasicBlock* MBB,
- SmallVectorImpl<MachineBasicBlock *> &blks) {
- if (MBB->succ_size() < 2 && MBB->pred_size() < 2) {
- bool processThisBlock = false;
- for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
- SE = MBB->succ_end(); SI != SE; ++SI) {
- MachineBasicBlock* SUCC = *SI;
- if (SUCC->pred_size() > 1) {
- processThisBlock = true;
- break;
- }
- }
- if (!CSRRestore[MBB].empty() && MBB->succ_size() > 0) {
- for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
- PE = MBB->pred_end(); PI != PE; ++PI) {
- MachineBasicBlock* PRED = *PI;
- if (PRED->succ_size() > 1) {
- processThisBlock = true;
- break;
- }
- }
- }
- if (! processThisBlock)
- return false;
- }
-
- CSRegSet prop;
- if (!CSRSave[MBB].empty())
- prop = CSRSave[MBB];
- else if (!CSRRestore[MBB].empty())
- prop = CSRRestore[MBB];
- else
- prop = CSRUsed[MBB];
- if (prop.empty())
- return false;
-
- // Propagate selected bits to successors, predecessors of MBB.
- bool addedUses = false;
- for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
- SE = MBB->succ_end(); SI != SE; ++SI) {
- MachineBasicBlock* SUCC = *SI;
- // Self-loop
- if (SUCC == MBB)
- continue;
- if (! CSRUsed[SUCC].contains(prop)) {
- CSRUsed[SUCC] |= prop;
- addedUses = true;
- blks.push_back(SUCC);
- DEBUG(if (ShrinkWrapDebugging >= Iterations)
- dbgs() << getBasicBlockName(MBB)
- << "(" << stringifyCSRegSet(prop) << ")->"
- << "successor " << getBasicBlockName(SUCC) << "\n");
- }
- }
- for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
- PE = MBB->pred_end(); PI != PE; ++PI) {
- MachineBasicBlock* PRED = *PI;
- // Self-loop
- if (PRED == MBB)
- continue;
- if (! CSRUsed[PRED].contains(prop)) {
- CSRUsed[PRED] |= prop;
- addedUses = true;
- blks.push_back(PRED);
- DEBUG(if (ShrinkWrapDebugging >= Iterations)
- dbgs() << getBasicBlockName(MBB)
- << "(" << stringifyCSRegSet(prop) << ")->"
- << "predecessor " << getBasicBlockName(PRED) << "\n");
- }
- }
- return addedUses;
-}
-
-/// addUsesForTopLevelLoops - add uses for CSRs used inside top
-/// level loops to the exit blocks of those loops.
-///
-bool PEI::addUsesForTopLevelLoops(SmallVectorImpl<MachineBasicBlock *> &blks) {
- bool addedUses = false;
-
- // Place restores for top level loops where needed.
- for (DenseMap<MachineBasicBlock*, MachineLoop*>::iterator
- I = TLLoops.begin(), E = TLLoops.end(); I != E; ++I) {
- MachineBasicBlock* MBB = I->first;
- MachineLoop* LP = I->second;
- MachineBasicBlock* HDR = LP->getHeader();
- SmallVector<MachineBasicBlock*, 4> exitBlocks;
- CSRegSet loopSpills;
-
- loopSpills = CSRSave[MBB];
- if (CSRSave[MBB].empty()) {
- loopSpills = CSRUsed[HDR];
- assert(!loopSpills.empty() && "No CSRs used in loop?");
- } else if (CSRRestore[MBB].contains(CSRSave[MBB]))
- continue;
-
- LP->getExitBlocks(exitBlocks);
- assert(exitBlocks.size() > 0 && "Loop has no top level exit blocks?");
- for (unsigned i = 0, e = exitBlocks.size(); i != e; ++i) {
- MachineBasicBlock* EXB = exitBlocks[i];
- if (! CSRUsed[EXB].contains(loopSpills)) {
- CSRUsed[EXB] |= loopSpills;
- addedUses = true;
- DEBUG(if (ShrinkWrapDebugging >= Iterations)
- dbgs() << "LOOP " << getBasicBlockName(MBB)
- << "(" << stringifyCSRegSet(loopSpills) << ")->"
- << getBasicBlockName(EXB) << "\n");
- if (EXB->succ_size() > 1 || EXB->pred_size() > 1)
- blks.push_back(EXB);
- }
- }
- }
- return addedUses;
-}
-
-/// calcSpillPlacements - determine which CSRs should be spilled
-/// in MBB using AnticIn sets of MBB's predecessors, keeping track
-/// of changes to spilled reg sets. Add MBB to the set of blocks
-/// that need to be processed for propagating use info to cover
-/// multi-entry/exit regions.
-///
-bool PEI::calcSpillPlacements(MachineBasicBlock* MBB,
- SmallVectorImpl<MachineBasicBlock *> &blks,
- CSRegBlockMap &prevSpills) {
- bool placedSpills = false;
- // Intersect (CSRegs - AnticIn[P]) for P in Predecessors(MBB)
- CSRegSet anticInPreds;
- SmallVector<MachineBasicBlock*, 4> predecessors;
- for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
- PE = MBB->pred_end(); PI != PE; ++PI) {
- MachineBasicBlock* PRED = *PI;
- if (PRED != MBB)
- predecessors.push_back(PRED);
- }
- unsigned i = 0, e = predecessors.size();
- if (i != e) {
- MachineBasicBlock* PRED = predecessors[i];
- anticInPreds = UsedCSRegs - AnticIn[PRED];
- for (++i; i != e; ++i) {
- PRED = predecessors[i];
- anticInPreds &= (UsedCSRegs - AnticIn[PRED]);
- }
- } else {
- // Handle uses in entry blocks (which have no predecessors).
- // This is necessary because the DFA formulation assumes the
- // entry and (multiple) exit nodes cannot have CSR uses, which
- // is not the case in the real world.
- anticInPreds = UsedCSRegs;
- }
- // Compute spills required at MBB:
- CSRSave[MBB] |= (AnticIn[MBB] - AvailIn[MBB]) & anticInPreds;
-
- if (! CSRSave[MBB].empty()) {
- if (MBB == EntryBlock) {
- for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri)
- CSRRestore[ReturnBlocks[ri]] |= CSRSave[MBB];
- } else {
- // Reset all regs spilled in MBB that are also spilled in EntryBlock.
- if (CSRSave[EntryBlock].intersects(CSRSave[MBB])) {
- CSRSave[MBB] = CSRSave[MBB] - CSRSave[EntryBlock];
- }
- }
- }
- placedSpills = (CSRSave[MBB] != prevSpills[MBB]);
- prevSpills[MBB] = CSRSave[MBB];
- // Remember this block for adding restores to successor
- // blocks for multi-entry region.
- if (placedSpills)
- blks.push_back(MBB);
-
- DEBUG(if (! CSRSave[MBB].empty() && ShrinkWrapDebugging >= Iterations)
- dbgs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(CSRSave[MBB]) << "\n");
-
- return placedSpills;
-}
-
-/// calcRestorePlacements - determine which CSRs should be restored
-/// in MBB using AvailOut sets of MBB's succcessors, keeping track
-/// of changes to restored reg sets. Add MBB to the set of blocks
-/// that need to be processed for propagating use info to cover
-/// multi-entry/exit regions.
-///
-bool PEI::calcRestorePlacements(MachineBasicBlock* MBB,
- SmallVectorImpl<MachineBasicBlock *> &blks,
- CSRegBlockMap &prevRestores) {
- bool placedRestores = false;
- // Intersect (CSRegs - AvailOut[S]) for S in Successors(MBB)
- CSRegSet availOutSucc;
- SmallVector<MachineBasicBlock*, 4> successors;
- for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
- SE = MBB->succ_end(); SI != SE; ++SI) {
- MachineBasicBlock* SUCC = *SI;
- if (SUCC != MBB)
- successors.push_back(SUCC);
- }
- unsigned i = 0, e = successors.size();
- if (i != e) {
- MachineBasicBlock* SUCC = successors[i];
- availOutSucc = UsedCSRegs - AvailOut[SUCC];
- for (++i; i != e; ++i) {
- SUCC = successors[i];
- availOutSucc &= (UsedCSRegs - AvailOut[SUCC]);
- }
- } else {
- if (! CSRUsed[MBB].empty() || ! AvailOut[MBB].empty()) {
- // Handle uses in return blocks (which have no successors).
- // This is necessary because the DFA formulation assumes the
- // entry and (multiple) exit nodes cannot have CSR uses, which
- // is not the case in the real world.
- availOutSucc = UsedCSRegs;
- }
- }
- // Compute restores required at MBB:
- CSRRestore[MBB] |= (AvailOut[MBB] - AnticOut[MBB]) & availOutSucc;
-
- // Postprocess restore placements at MBB.
- // Remove the CSRs that are restored in the return blocks.
- // Lest this be confusing, note that:
- // CSRSave[EntryBlock] == CSRRestore[B] for all B in ReturnBlocks.
- if (MBB->succ_size() && ! CSRRestore[MBB].empty()) {
- if (! CSRSave[EntryBlock].empty())
- CSRRestore[MBB] = CSRRestore[MBB] - CSRSave[EntryBlock];
- }
- placedRestores = (CSRRestore[MBB] != prevRestores[MBB]);
- prevRestores[MBB] = CSRRestore[MBB];
- // Remember this block for adding saves to predecessor
- // blocks for multi-entry region.
- if (placedRestores)
- blks.push_back(MBB);
-
- DEBUG(if (! CSRRestore[MBB].empty() && ShrinkWrapDebugging >= Iterations)
- dbgs() << "RESTORE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(CSRRestore[MBB]) << "\n");
-
- return placedRestores;
-}
-
-/// placeSpillsAndRestores - place spills and restores of CSRs
-/// used in MBBs in minimal regions that contain the uses.
-///
-void PEI::placeSpillsAndRestores(MachineFunction &Fn) {
- CSRegBlockMap prevCSRSave;
- CSRegBlockMap prevCSRRestore;
- SmallVector<MachineBasicBlock*, 4> cvBlocks, ncvBlocks;
- bool changed = true;
- unsigned iterations = 0;
-
- // Iterate computation of spill and restore placements in the MCFG until:
- // 1. CSR use info has been fully propagated around the MCFG, and
- // 2. computation of CSRSave[], CSRRestore[] reach fixed points.
- while (changed) {
- changed = false;
- ++iterations;
-
- DEBUG(if (ShrinkWrapDebugging >= Iterations)
- dbgs() << "iter " << iterations
- << " --------------------------------------------------\n");
-
- // Calculate CSR{Save,Restore} sets using Antic, Avail on the MCFG,
- // which determines the placements of spills and restores.
- // Keep track of changes to spills, restores in each iteration to
- // minimize the total iterations.
- bool SRChanged = false;
- for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end();
- MBBI != MBBE; ++MBBI) {
- MachineBasicBlock* MBB = MBBI;
-
- // Place spills for CSRs in MBB.
- SRChanged |= calcSpillPlacements(MBB, cvBlocks, prevCSRSave);
-
- // Place restores for CSRs in MBB.
- SRChanged |= calcRestorePlacements(MBB, cvBlocks, prevCSRRestore);
- }
-
- // Add uses of CSRs used inside loops where needed.
- changed |= addUsesForTopLevelLoops(cvBlocks);
-
- // Add uses for CSRs spilled or restored at branch, join points.
- if (changed || SRChanged) {
- while (! cvBlocks.empty()) {
- MachineBasicBlock* MBB = cvBlocks.pop_back_val();
- changed |= addUsesForMEMERegion(MBB, ncvBlocks);
- }
- if (! ncvBlocks.empty()) {
- cvBlocks = ncvBlocks;
- ncvBlocks.clear();
- }
- }
-
- if (changed) {
- calculateAnticAvail(Fn);
- CSRSave.clear();
- CSRRestore.clear();
- }
- }
-
- // Check for effectiveness:
- // SR0 = {r | r in CSRSave[EntryBlock], CSRRestore[RB], RB in ReturnBlocks}
- // numSRReduced = |(UsedCSRegs - SR0)|, approx. SR0 by CSRSave[EntryBlock]
- // Gives a measure of how many CSR spills have been moved from EntryBlock
- // to minimal regions enclosing their uses.
- CSRegSet notSpilledInEntryBlock = (UsedCSRegs - CSRSave[EntryBlock]);
- unsigned numSRReducedThisFunc = notSpilledInEntryBlock.count();
- numSRReduced += numSRReducedThisFunc;
- DEBUG(if (ShrinkWrapDebugging >= BasicInfo) {
- dbgs() << "-----------------------------------------------------------\n";
- dbgs() << "total iterations = " << iterations << " ( "
- << Fn.getName()
- << " " << numSRReducedThisFunc
- << " " << Fn.size()
- << " )\n";
- dbgs() << "-----------------------------------------------------------\n";
- dumpSRSets();
- dbgs() << "-----------------------------------------------------------\n";
- if (numSRReducedThisFunc)
- verifySpillRestorePlacement();
- });
-}
-
-// Debugging methods.
-#ifndef NDEBUG
-/// findFastExitPath - debugging method used to detect functions
-/// with at least one path from the entry block to a return block
-/// directly or which has a very small number of edges.
-///
-void PEI::findFastExitPath() {
- if (! EntryBlock)
- return;
- // Fina a path from EntryBlock to any return block that does not branch:
- // Entry
- // | ...
- // v |
- // B1<-----+
- // |
- // v
- // Return
- for (MachineBasicBlock::succ_iterator SI = EntryBlock->succ_begin(),
- SE = EntryBlock->succ_end(); SI != SE; ++SI) {
- MachineBasicBlock* SUCC = *SI;
-
- // Assume positive, disprove existence of fast path.
- HasFastExitPath = true;
-
- // Check the immediate successors.
- if (isReturnBlock(SUCC)) {
- if (ShrinkWrapDebugging >= BasicInfo)
- dbgs() << "Fast exit path: " << getBasicBlockName(EntryBlock)
- << "->" << getBasicBlockName(SUCC) << "\n";
- break;
- }
- // Traverse df from SUCC, look for a branch block.
- std::string exitPath = getBasicBlockName(SUCC);
- for (df_iterator<MachineBasicBlock*> BI = df_begin(SUCC),
- BE = df_end(SUCC); BI != BE; ++BI) {
- MachineBasicBlock* SBB = *BI;
- // Reject paths with branch nodes.
- if (SBB->succ_size() > 1) {
- HasFastExitPath = false;
- break;
- }
- exitPath += "->" + getBasicBlockName(SBB);
- }
- if (HasFastExitPath) {
- if (ShrinkWrapDebugging >= BasicInfo)
- dbgs() << "Fast exit path: " << getBasicBlockName(EntryBlock)
- << "->" << exitPath << "\n";
- break;
- }
- }
-}
-
-/// verifySpillRestorePlacement - check the current spill/restore
-/// sets for safety. Attempt to find spills without restores or
-/// restores without spills.
-/// Spills: walk df from each MBB in spill set ensuring that
-/// all CSRs spilled at MMBB are restored on all paths
-/// from MBB to all exit blocks.
-/// Restores: walk idf from each MBB in restore set ensuring that
-/// all CSRs restored at MBB are spilled on all paths
-/// reaching MBB.
-///
-void PEI::verifySpillRestorePlacement() {
- unsigned numReturnBlocks = 0;
- for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
- MBBI != MBBE; ++MBBI) {
- MachineBasicBlock* MBB = MBBI;
- if (isReturnBlock(MBB) || MBB->succ_size() == 0)
- ++numReturnBlocks;
- }
- for (CSRegBlockMap::iterator BI = CSRSave.begin(),
- BE = CSRSave.end(); BI != BE; ++BI) {
- MachineBasicBlock* MBB = BI->first;
- CSRegSet spilled = BI->second;
- CSRegSet restored;
-
- if (spilled.empty())
- continue;
-
- DEBUG(dbgs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(spilled)
- << " RESTORE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(CSRRestore[MBB]) << "\n");
-
- if (CSRRestore[MBB].intersects(spilled)) {
- restored |= (CSRRestore[MBB] & spilled);
- }
-
- // Walk depth first from MBB to find restores of all CSRs spilled at MBB:
- // we must find restores for all spills w/no intervening spills on all
- // paths from MBB to all return blocks.
- for (df_iterator<MachineBasicBlock*> BI = df_begin(MBB),
- BE = df_end(MBB); BI != BE; ++BI) {
- MachineBasicBlock* SBB = *BI;
- if (SBB == MBB)
- continue;
- // Stop when we encounter spills of any CSRs spilled at MBB that
- // have not yet been seen to be restored.
- if (CSRSave[SBB].intersects(spilled) &&
- !restored.contains(CSRSave[SBB] & spilled))
- break;
- // Collect the CSRs spilled at MBB that are restored
- // at this DF successor of MBB.
- if (CSRRestore[SBB].intersects(spilled))
- restored |= (CSRRestore[SBB] & spilled);
- // If we are at a retun block, check that the restores
- // we have seen so far exhaust the spills at MBB, then
- // reset the restores.
- if (isReturnBlock(SBB) || SBB->succ_size() == 0) {
- if (restored != spilled) {
- CSRegSet notRestored = (spilled - restored);
- DEBUG(dbgs() << MF->getName() << ": "
- << stringifyCSRegSet(notRestored)
- << " spilled at " << getBasicBlockName(MBB)
- << " are never restored on path to return "
- << getBasicBlockName(SBB) << "\n");
- }
- restored.clear();
- }
- }
- }
-
- // Check restore placements.
- for (CSRegBlockMap::iterator BI = CSRRestore.begin(),
- BE = CSRRestore.end(); BI != BE; ++BI) {
- MachineBasicBlock* MBB = BI->first;
- CSRegSet restored = BI->second;
- CSRegSet spilled;
-
- if (restored.empty())
- continue;
-
- DEBUG(dbgs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(CSRSave[MBB])
- << " RESTORE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(restored) << "\n");
-
- if (CSRSave[MBB].intersects(restored)) {
- spilled |= (CSRSave[MBB] & restored);
- }
- // Walk inverse depth first from MBB to find spills of all
- // CSRs restored at MBB:
- for (idf_iterator<MachineBasicBlock*> BI = idf_begin(MBB),
- BE = idf_end(MBB); BI != BE; ++BI) {
- MachineBasicBlock* PBB = *BI;
- if (PBB == MBB)
- continue;
- // Stop when we encounter restores of any CSRs restored at MBB that
- // have not yet been seen to be spilled.
- if (CSRRestore[PBB].intersects(restored) &&
- !spilled.contains(CSRRestore[PBB] & restored))
- break;
- // Collect the CSRs restored at MBB that are spilled
- // at this DF predecessor of MBB.
- if (CSRSave[PBB].intersects(restored))
- spilled |= (CSRSave[PBB] & restored);
- }
- if (spilled != restored) {
- CSRegSet notSpilled = (restored - spilled);
- DEBUG(dbgs() << MF->getName() << ": "
- << stringifyCSRegSet(notSpilled)
- << " restored at " << getBasicBlockName(MBB)
- << " are never spilled\n");
- }
- }
-}
-
-// Debugging print methods.
-std::string PEI::getBasicBlockName(const MachineBasicBlock* MBB) {
- if (!MBB)
- return "";
-
- if (MBB->getBasicBlock())
- return MBB->getBasicBlock()->getName().str();
-
- std::ostringstream name;
- name << "_MBB_" << MBB->getNumber();
- return name.str();
-}
-
-std::string PEI::stringifyCSRegSet(const CSRegSet& s) {
- const TargetRegisterInfo* TRI = MF->getTarget().getRegisterInfo();
- const std::vector<CalleeSavedInfo> CSI =
- MF->getFrameInfo()->getCalleeSavedInfo();
-
- std::ostringstream srep;
- if (CSI.size() == 0) {
- srep << "[]";
- return srep.str();
- }
- srep << "[";
- CSRegSet::iterator I = s.begin(), E = s.end();
- if (I != E) {
- unsigned reg = CSI[*I].getReg();
- srep << TRI->getName(reg);
- for (++I; I != E; ++I) {
- reg = CSI[*I].getReg();
- srep << ",";
- srep << TRI->getName(reg);
- }
- }
- srep << "]";
- return srep.str();
-}
-
-void PEI::dumpSet(const CSRegSet& s) {
- DEBUG(dbgs() << stringifyCSRegSet(s) << "\n");
-}
-
-void PEI::dumpUsed(MachineBasicBlock* MBB) {
- DEBUG({
- if (MBB)
- dbgs() << "CSRUsed[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(CSRUsed[MBB]) << "\n";
- });
-}
-
-void PEI::dumpAllUsed() {
- for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
- MBBI != MBBE; ++MBBI) {
- MachineBasicBlock* MBB = MBBI;
- dumpUsed(MBB);
- }
-}
-
-void PEI::dumpSets(MachineBasicBlock* MBB) {
- DEBUG({
- if (MBB)
- dbgs() << getBasicBlockName(MBB) << " | "
- << stringifyCSRegSet(CSRUsed[MBB]) << " | "
- << stringifyCSRegSet(AnticIn[MBB]) << " | "
- << stringifyCSRegSet(AnticOut[MBB]) << " | "
- << stringifyCSRegSet(AvailIn[MBB]) << " | "
- << stringifyCSRegSet(AvailOut[MBB]) << "\n";
- });
-}
-
-void PEI::dumpSets1(MachineBasicBlock* MBB) {
- DEBUG({
- if (MBB)
- dbgs() << getBasicBlockName(MBB) << " | "
- << stringifyCSRegSet(CSRUsed[MBB]) << " | "
- << stringifyCSRegSet(AnticIn[MBB]) << " | "
- << stringifyCSRegSet(AnticOut[MBB]) << " | "
- << stringifyCSRegSet(AvailIn[MBB]) << " | "
- << stringifyCSRegSet(AvailOut[MBB]) << " | "
- << stringifyCSRegSet(CSRSave[MBB]) << " | "
- << stringifyCSRegSet(CSRRestore[MBB]) << "\n";
- });
-}
-
-void PEI::dumpAllSets() {
- for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
- MBBI != MBBE; ++MBBI) {
- MachineBasicBlock* MBB = MBBI;
- dumpSets1(MBB);
- }
-}
-
-void PEI::dumpSRSets() {
- DEBUG({
- for (MachineFunction::iterator MBB = MF->begin(), E = MF->end();
- MBB != E; ++MBB) {
- if (!CSRSave[MBB].empty()) {
- dbgs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(CSRSave[MBB]);
- if (CSRRestore[MBB].empty())
- dbgs() << '\n';
- }
-
- if (!CSRRestore[MBB].empty() && !CSRSave[MBB].empty())
- dbgs() << " "
- << "RESTORE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(CSRRestore[MBB]) << "\n";
- }
- });
-}
-#endif
diff --git a/lib/CodeGen/SjLjEHPrepare.cpp b/lib/CodeGen/SjLjEHPrepare.cpp
index 2fc8f46..da2e710 100644
--- a/lib/CodeGen/SjLjEHPrepare.cpp
+++ b/lib/CodeGen/SjLjEHPrepare.cpp
@@ -42,41 +42,40 @@ STATISTIC(NumInvokes, "Number of invokes replaced");
STATISTIC(NumSpilled, "Number of registers live across unwind edges");
namespace {
- class SjLjEHPrepare : public FunctionPass {
- const TargetMachine *TM;
- Type *FunctionContextTy;
- Constant *RegisterFn;
- Constant *UnregisterFn;
- Constant *BuiltinSetjmpFn;
- Constant *FrameAddrFn;
- Constant *StackAddrFn;
- Constant *StackRestoreFn;
- Constant *LSDAAddrFn;
- Value *PersonalityFn;
- Constant *CallSiteFn;
- Constant *FuncCtxFn;
- AllocaInst *FuncCtx;
- public:
- static char ID; // Pass identification, replacement for typeid
- explicit SjLjEHPrepare(const TargetMachine *TM)
- : FunctionPass(ID), TM(TM) { }
- bool doInitialization(Module &M);
- bool runOnFunction(Function &F);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {}
- const char *getPassName() const {
- return "SJLJ Exception Handling preparation";
- }
+class SjLjEHPrepare : public FunctionPass {
+ const TargetMachine *TM;
+ Type *FunctionContextTy;
+ Constant *RegisterFn;
+ Constant *UnregisterFn;
+ Constant *BuiltinSetjmpFn;
+ Constant *FrameAddrFn;
+ Constant *StackAddrFn;
+ Constant *StackRestoreFn;
+ Constant *LSDAAddrFn;
+ Value *PersonalityFn;
+ Constant *CallSiteFn;
+ Constant *FuncCtxFn;
+ AllocaInst *FuncCtx;
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+ explicit SjLjEHPrepare(const TargetMachine *TM) : FunctionPass(ID), TM(TM) {}
+ bool doInitialization(Module &M);
+ bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {}
+ const char *getPassName() const {
+ return "SJLJ Exception Handling preparation";
+ }
- private:
- bool setupEntryBlockAndCallSites(Function &F);
- void substituteLPadValues(LandingPadInst *LPI, Value *ExnVal,
- Value *SelVal);
- Value *setupFunctionContext(Function &F, ArrayRef<LandingPadInst*> LPads);
- void lowerIncomingArguments(Function &F);
- void lowerAcrossUnwindEdges(Function &F, ArrayRef<InvokeInst*> Invokes);
- void insertCallSiteStore(Instruction *I, int Number);
- };
+private:
+ bool setupEntryBlockAndCallSites(Function &F);
+ void substituteLPadValues(LandingPadInst *LPI, Value *ExnVal, Value *SelVal);
+ Value *setupFunctionContext(Function &F, ArrayRef<LandingPadInst *> LPads);
+ void lowerIncomingArguments(Function &F);
+ void lowerAcrossUnwindEdges(Function &F, ArrayRef<InvokeInst *> Invokes);
+ void insertCallSiteStore(Instruction *I, int Number);
+};
} // end anonymous namespace
char SjLjEHPrepare::ID = 0;
@@ -92,23 +91,19 @@ bool SjLjEHPrepare::doInitialization(Module &M) {
// builtin_setjmp uses a five word jbuf
Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
Type *Int32Ty = Type::getInt32Ty(M.getContext());
- FunctionContextTy =
- StructType::get(VoidPtrTy, // __prev
- Int32Ty, // call_site
- ArrayType::get(Int32Ty, 4), // __data
- VoidPtrTy, // __personality
- VoidPtrTy, // __lsda
- ArrayType::get(VoidPtrTy, 5), // __jbuf
- NULL);
- RegisterFn = M.getOrInsertFunction("_Unwind_SjLj_Register",
- Type::getVoidTy(M.getContext()),
- PointerType::getUnqual(FunctionContextTy),
- (Type *)0);
- UnregisterFn =
- M.getOrInsertFunction("_Unwind_SjLj_Unregister",
- Type::getVoidTy(M.getContext()),
- PointerType::getUnqual(FunctionContextTy),
- (Type *)0);
+ FunctionContextTy = StructType::get(VoidPtrTy, // __prev
+ Int32Ty, // call_site
+ ArrayType::get(Int32Ty, 4), // __data
+ VoidPtrTy, // __personality
+ VoidPtrTy, // __lsda
+ ArrayType::get(VoidPtrTy, 5), // __jbuf
+ NULL);
+ RegisterFn = M.getOrInsertFunction(
+ "_Unwind_SjLj_Register", Type::getVoidTy(M.getContext()),
+ PointerType::getUnqual(FunctionContextTy), (Type *)0);
+ UnregisterFn = M.getOrInsertFunction(
+ "_Unwind_SjLj_Unregister", Type::getVoidTy(M.getContext()),
+ PointerType::getUnqual(FunctionContextTy), (Type *)0);
FrameAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::frameaddress);
StackAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
@@ -134,16 +129,17 @@ void SjLjEHPrepare::insertCallSiteStore(Instruction *I, int Number) {
Value *CallSite = Builder.CreateGEP(FuncCtx, Idxs, "call_site");
// Insert a store of the call-site number
- ConstantInt *CallSiteNoC = ConstantInt::get(Type::getInt32Ty(I->getContext()),
- Number);
- Builder.CreateStore(CallSiteNoC, CallSite, true/*volatile*/);
+ ConstantInt *CallSiteNoC =
+ ConstantInt::get(Type::getInt32Ty(I->getContext()), Number);
+ Builder.CreateStore(CallSiteNoC, CallSite, true /*volatile*/);
}
/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
/// we reach blocks we've already seen.
static void MarkBlocksLiveIn(BasicBlock *BB,
- SmallPtrSet<BasicBlock*, 64> &LiveBBs) {
- if (!LiveBBs.insert(BB)) return; // already been here.
+ SmallPtrSet<BasicBlock *, 64> &LiveBBs) {
+ if (!LiveBBs.insert(BB))
+ return; // already been here.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
MarkBlocksLiveIn(*PI, LiveBBs);
@@ -153,12 +149,14 @@ static void MarkBlocksLiveIn(BasicBlock *BB,
/// instruction with those returned by the personality function.
void SjLjEHPrepare::substituteLPadValues(LandingPadInst *LPI, Value *ExnVal,
Value *SelVal) {
- SmallVector<Value*, 8> UseWorkList(LPI->use_begin(), LPI->use_end());
+ SmallVector<Value *, 8> UseWorkList(LPI->use_begin(), LPI->use_end());
while (!UseWorkList.empty()) {
Value *Val = UseWorkList.pop_back_val();
ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Val);
- if (!EVI) continue;
- if (EVI->getNumIndices() != 1) continue;
+ if (!EVI)
+ continue;
+ if (EVI->getNumIndices() != 1)
+ continue;
if (*EVI->idx_begin() == 0)
EVI->replaceAllUsesWith(ExnVal);
else if (*EVI->idx_begin() == 1)
@@ -167,14 +165,15 @@ void SjLjEHPrepare::substituteLPadValues(LandingPadInst *LPI, Value *ExnVal,
EVI->eraseFromParent();
}
- if (LPI->getNumUses() == 0) return;
+ if (LPI->getNumUses() == 0)
+ return;
// There are still some uses of LPI. Construct an aggregate with the exception
// values and replace the LPI with that aggregate.
Type *LPadType = LPI->getType();
Value *LPadVal = UndefValue::get(LPadType);
- IRBuilder<>
- Builder(llvm::next(BasicBlock::iterator(cast<Instruction>(SelVal))));
+ IRBuilder<> Builder(
+ llvm::next(BasicBlock::iterator(cast<Instruction>(SelVal))));
LPadVal = Builder.CreateInsertValue(LPadVal, ExnVal, 0, "lpad.val");
LPadVal = Builder.CreateInsertValue(LPadVal, SelVal, 1, "lpad.val");
@@ -183,8 +182,8 @@ void SjLjEHPrepare::substituteLPadValues(LandingPadInst *LPI, Value *ExnVal,
/// setupFunctionContext - Allocate the function context on the stack and fill
/// it with all of the data that we know at this point.
-Value *SjLjEHPrepare::
-setupFunctionContext(Function &F, ArrayRef<LandingPadInst*> LPads) {
+Value *SjLjEHPrepare::setupFunctionContext(Function &F,
+ ArrayRef<LandingPadInst *> LPads) {
BasicBlock *EntryBB = F.begin();
// Create an alloca for the incoming jump buffer ptr and the new jump buffer
@@ -192,9 +191,9 @@ setupFunctionContext(Function &F, ArrayRef<LandingPadInst*> LPads) {
// because the value needs to be added to the global context list.
const TargetLowering *TLI = TM->getTargetLowering();
unsigned Align =
- TLI->getDataLayout()->getPrefTypeAlignment(FunctionContextTy);
- FuncCtx =
- new AllocaInst(FunctionContextTy, 0, Align, "fn_context", EntryBB->begin());
+ TLI->getDataLayout()->getPrefTypeAlignment(FunctionContextTy);
+ FuncCtx = new AllocaInst(FunctionContextTy, 0, Align, "fn_context",
+ EntryBB->begin());
// Fill in the function context structure.
for (unsigned I = 0, E = LPads.size(); I != E; ++I) {
@@ -205,13 +204,13 @@ setupFunctionContext(Function &F, ArrayRef<LandingPadInst*> LPads) {
Value *FCData = Builder.CreateConstGEP2_32(FuncCtx, 0, 2, "__data");
// The exception values come back in context->__data[0].
- Value *ExceptionAddr = Builder.CreateConstGEP2_32(FCData, 0, 0,
- "exception_gep");
+ Value *ExceptionAddr =
+ Builder.CreateConstGEP2_32(FCData, 0, 0, "exception_gep");
Value *ExnVal = Builder.CreateLoad(ExceptionAddr, true, "exn_val");
ExnVal = Builder.CreateIntToPtr(ExnVal, Builder.getInt8PtrTy());
- Value *SelectorAddr = Builder.CreateConstGEP2_32(FCData, 0, 1,
- "exn_selector_gep");
+ Value *SelectorAddr =
+ Builder.CreateConstGEP2_32(FCData, 0, 1, "exn_selector_gep");
Value *SelVal = Builder.CreateLoad(SelectorAddr, true, "exn_selector_val");
substituteLPadValues(LPI, ExnVal, SelVal);
@@ -221,11 +220,11 @@ setupFunctionContext(Function &F, ArrayRef<LandingPadInst*> LPads) {
IRBuilder<> Builder(EntryBB->getTerminator());
if (!PersonalityFn)
PersonalityFn = LPads[0]->getPersonalityFn();
- Value *PersonalityFieldPtr = Builder.CreateConstGEP2_32(FuncCtx, 0, 3,
- "pers_fn_gep");
- Builder.CreateStore(Builder.CreateBitCast(PersonalityFn,
- Builder.getInt8PtrTy()),
- PersonalityFieldPtr, /*isVolatile=*/true);
+ Value *PersonalityFieldPtr =
+ Builder.CreateConstGEP2_32(FuncCtx, 0, 3, "pers_fn_gep");
+ Builder.CreateStore(
+ Builder.CreateBitCast(PersonalityFn, Builder.getInt8PtrTy()),
+ PersonalityFieldPtr, /*isVolatile=*/true);
// LSDA address
Value *LSDA = Builder.CreateCall(LSDAAddrFn, "lsda_addr");
@@ -245,8 +244,8 @@ void SjLjEHPrepare::lowerIncomingArguments(Function &F) {
isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsPt)->getArraySize()))
++AfterAllocaInsPt;
- for (Function::arg_iterator
- AI = F.arg_begin(), AE = F.arg_end(); AI != AE; ++AI) {
+ for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end(); AI != AE;
+ ++AI) {
Type *Ty = AI->getType();
// Aggregate types can't be cast, but are legal argument types, so we have
@@ -265,9 +264,8 @@ void SjLjEHPrepare::lowerIncomingArguments(Function &F) {
// This is always a no-op cast because we're casting AI to AI->getType()
// so src and destination types are identical. BitCast is the only
// possibility.
- CastInst *NC =
- new BitCastInst(AI, AI->getType(), AI->getName() + ".tmp",
- AfterAllocaInsPt);
+ CastInst *NC = new BitCastInst(AI, AI->getType(), AI->getName() + ".tmp",
+ AfterAllocaInsPt);
AI->replaceAllUsesWith(NC);
// Set the operand of the cast instruction back to the AllocaInst.
@@ -284,20 +282,21 @@ void SjLjEHPrepare::lowerIncomingArguments(Function &F) {
/// lowerAcrossUnwindEdges - Find all variables which are alive across an unwind
/// edge and spill them.
void SjLjEHPrepare::lowerAcrossUnwindEdges(Function &F,
- ArrayRef<InvokeInst*> Invokes) {
+ ArrayRef<InvokeInst *> Invokes) {
// Finally, scan the code looking for instructions with bad live ranges.
- for (Function::iterator
- BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
- for (BasicBlock::iterator
- II = BB->begin(), IIE = BB->end(); II != IIE; ++II) {
+ for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
+ for (BasicBlock::iterator II = BB->begin(), IIE = BB->end(); II != IIE;
+ ++II) {
// Ignore obvious cases we don't have to handle. In particular, most
// instructions either have no uses or only have a single use inside the
// current block. Ignore them quickly.
Instruction *Inst = II;
- if (Inst->use_empty()) continue;
+ if (Inst->use_empty())
+ continue;
if (Inst->hasOneUse() &&
cast<Instruction>(Inst->use_back())->getParent() == BB &&
- !isa<PHINode>(Inst->use_back())) continue;
+ !isa<PHINode>(Inst->use_back()))
+ continue;
// If this is an alloca in the entry block, it's not a real register
// value.
@@ -306,16 +305,16 @@ void SjLjEHPrepare::lowerAcrossUnwindEdges(Function &F,
continue;
// Avoid iterator invalidation by copying users to a temporary vector.
- SmallVector<Instruction*, 16> Users;
- for (Value::use_iterator
- UI = Inst->use_begin(), E = Inst->use_end(); UI != E; ++UI) {
+ SmallVector<Instruction *, 16> Users;
+ for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
+ UI != E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
if (User->getParent() != BB || isa<PHINode>(User))
Users.push_back(User);
}
// Find all of the blocks that this value is live in.
- SmallPtrSet<BasicBlock*, 64> LiveBBs;
+ SmallPtrSet<BasicBlock *, 64> LiveBBs;
LiveBBs.insert(Inst->getParent());
while (!Users.empty()) {
Instruction *U = Users.back();
@@ -339,7 +338,7 @@ void SjLjEHPrepare::lowerAcrossUnwindEdges(Function &F,
BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
DEBUG(dbgs() << "SJLJ Spill: " << *Inst << " around "
- << UnwindBlock->getName() << "\n");
+ << UnwindBlock->getName() << "\n");
NeedsSpill = true;
break;
}
@@ -362,15 +361,16 @@ void SjLjEHPrepare::lowerAcrossUnwindEdges(Function &F,
LandingPadInst *LPI = UnwindBlock->getLandingPadInst();
// Place PHIs into a set to avoid invalidating the iterator.
- SmallPtrSet<PHINode*, 8> PHIsToDemote;
- for (BasicBlock::iterator
- PN = UnwindBlock->begin(); isa<PHINode>(PN); ++PN)
+ SmallPtrSet<PHINode *, 8> PHIsToDemote;
+ for (BasicBlock::iterator PN = UnwindBlock->begin(); isa<PHINode>(PN); ++PN)
PHIsToDemote.insert(cast<PHINode>(PN));
- if (PHIsToDemote.empty()) continue;
+ if (PHIsToDemote.empty())
+ continue;
// Demote the PHIs to the stack.
- for (SmallPtrSet<PHINode*, 8>::iterator
- I = PHIsToDemote.begin(), E = PHIsToDemote.end(); I != E; ++I)
+ for (SmallPtrSet<PHINode *, 8>::iterator I = PHIsToDemote.begin(),
+ E = PHIsToDemote.end();
+ I != E; ++I)
DemotePHIToStack(*I);
// Move the landingpad instruction back to the top of the landing pad block.
@@ -382,9 +382,9 @@ void SjLjEHPrepare::lowerAcrossUnwindEdges(Function &F,
/// the function context and marking the call sites with the appropriate
/// values. These values are used by the DWARF EH emitter.
bool SjLjEHPrepare::setupEntryBlockAndCallSites(Function &F) {
- SmallVector<ReturnInst*, 16> Returns;
- SmallVector<InvokeInst*, 16> Invokes;
- SmallSetVector<LandingPadInst*, 16> LPads;
+ SmallVector<ReturnInst *, 16> Returns;
+ SmallVector<InvokeInst *, 16> Invokes;
+ SmallSetVector<LandingPadInst *, 16> LPads;
// Look through the terminators of the basic blocks to find invokes.
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
@@ -404,7 +404,8 @@ bool SjLjEHPrepare::setupEntryBlockAndCallSites(Function &F) {
Returns.push_back(RI);
}
- if (Invokes.empty()) return false;
+ if (Invokes.empty())
+ return false;
NumInvokes += Invokes.size();
@@ -412,7 +413,7 @@ bool SjLjEHPrepare::setupEntryBlockAndCallSites(Function &F) {
lowerAcrossUnwindEdges(F, Invokes);
Value *FuncCtx =
- setupFunctionContext(F, makeArrayRef(LPads.begin(), LPads.end()));
+ setupFunctionContext(F, makeArrayRef(LPads.begin(), LPads.end()));
BasicBlock *EntryBB = F.begin();
IRBuilder<> Builder(EntryBB->getTerminator());
@@ -446,7 +447,7 @@ bool SjLjEHPrepare::setupEntryBlockAndCallSites(Function &F) {
insertCallSiteStore(Invokes[I], I + 1);
ConstantInt *CallSiteNum =
- ConstantInt::get(Type::getInt32Ty(F.getContext()), I + 1);
+ ConstantInt::get(Type::getInt32Ty(F.getContext()), I + 1);
// Record the call site value for the back end so it stays associated with
// the invoke.
@@ -468,8 +469,8 @@ bool SjLjEHPrepare::setupEntryBlockAndCallSites(Function &F) {
}
// Register the function context and make sure it's known to not throw
- CallInst *Register = CallInst::Create(RegisterFn, FuncCtx, "",
- EntryBB->getTerminator());
+ CallInst *Register =
+ CallInst::Create(RegisterFn, FuncCtx, "", EntryBB->getTerminator());
Register->setDoesNotThrow();
// Following any allocas not in the entry block, update the saved SP in the
diff --git a/lib/CodeGen/Spiller.cpp b/lib/CodeGen/Spiller.cpp
index 209792f..d5b3a4a 100644
--- a/lib/CodeGen/Spiller.cpp
+++ b/lib/CodeGen/Spiller.cpp
@@ -77,7 +77,7 @@ protected:
DEBUG(dbgs() << "Spilling everywhere " << *li << "\n");
- assert(li->weight != HUGE_VALF &&
+ assert(li->weight != llvm::huge_valf &&
"Attempting to spill already spilled value.");
assert(!TargetRegisterInfo::isStackSlot(li->reg) &&
@@ -115,15 +115,14 @@ protected:
indices.push_back(i);
}
- // Create a new vreg & interval for this instr.
- LiveInterval *newLI = &LRE.create();
- newLI->weight = HUGE_VALF;
+ // Create a new virtual register for the load and/or store.
+ unsigned NewVReg = LRE.create();
// Update the reg operands & kill flags.
for (unsigned i = 0; i < indices.size(); ++i) {
unsigned mopIdx = indices[i];
MachineOperand &mop = mi->getOperand(mopIdx);
- mop.setReg(newLI->reg);
+ mop.setReg(NewVReg);
if (mop.isUse() && !mi->isRegTiedToDefOperand(mopIdx)) {
mop.setIsKill(true);
}
@@ -133,28 +132,20 @@ protected:
// Insert reload if necessary.
MachineBasicBlock::iterator miItr(mi);
if (hasUse) {
- tii->loadRegFromStackSlot(*mi->getParent(), miItr, newLI->reg, ss, trc,
+ MachineInstrSpan MIS(miItr);
+
+ tii->loadRegFromStackSlot(*mi->getParent(), miItr, NewVReg, ss, trc,
tri);
- MachineInstr *loadInstr(prior(miItr));
- SlotIndex loadIndex =
- lis->InsertMachineInstrInMaps(loadInstr).getRegSlot();
- SlotIndex endIndex = loadIndex.getNextIndex();
- VNInfo *loadVNI =
- newLI->getNextValue(loadIndex, lis->getVNInfoAllocator());
- newLI->addRange(LiveRange(loadIndex, endIndex, loadVNI));
+ lis->InsertMachineInstrRangeInMaps(MIS.begin(), miItr);
}
// Insert store if necessary.
if (hasDef) {
- tii->storeRegToStackSlot(*mi->getParent(), llvm::next(miItr),newLI->reg,
+ MachineInstrSpan MIS(miItr);
+
+ tii->storeRegToStackSlot(*mi->getParent(), llvm::next(miItr), NewVReg,
true, ss, trc, tri);
- MachineInstr *storeInstr(llvm::next(miItr));
- SlotIndex storeIndex =
- lis->InsertMachineInstrInMaps(storeInstr).getRegSlot();
- SlotIndex beginIndex = storeIndex.getPrevIndex();
- VNInfo *storeVNI =
- newLI->getNextValue(beginIndex, lis->getVNInfoAllocator());
- newLI->addRange(LiveRange(beginIndex, storeIndex, storeVNI));
+ lis->InsertMachineInstrRangeInMaps(llvm::next(miItr), MIS.end());
}
}
}
diff --git a/lib/CodeGen/SplitKit.cpp b/lib/CodeGen/SplitKit.cpp
index e717fac..68a15f7 100644
--- a/lib/CodeGen/SplitKit.cpp
+++ b/lib/CodeGen/SplitKit.cpp
@@ -214,7 +214,7 @@ bool SplitAnalysis::calcLiveBlockInfo() {
// When not live in, the first use should be a def.
if (!BI.LiveIn) {
- assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
+ assert(LVI->start == LVI->valno->def && "Dangling Segment start");
assert(LVI->start == BI.FirstInstr && "First instr should be a def");
BI.FirstDef = BI.FirstInstr;
}
@@ -245,8 +245,8 @@ bool SplitAnalysis::calcLiveBlockInfo() {
BI.FirstInstr = BI.FirstDef = LVI->start;
}
- // A LiveRange that starts in the middle of the block must be a def.
- assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
+ // A Segment that starts in the middle of the block must be a def.
+ assert(LVI->start == LVI->valno->def && "Dangling Segment start");
if (!BI.FirstDef)
BI.FirstDef = LVI->start;
}
@@ -377,7 +377,7 @@ VNInfo *SplitEditor::defValue(unsigned RegIdx,
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
- LiveInterval *LI = Edit->get(RegIdx);
+ LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
// Create a new value.
VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
@@ -395,14 +395,14 @@ VNInfo *SplitEditor::defValue(unsigned RegIdx,
// If the previous value was a simple mapping, add liveness for it now.
if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
SlotIndex Def = OldVNI->def;
- LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI));
+ LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
// No longer a simple mapping. Switch to a complex, non-forced mapping.
InsP.first->second = ValueForcePair();
}
// This is a complex mapping, add liveness for VNI
SlotIndex Def = VNI->def;
- LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
+ LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
return VNI;
}
@@ -422,7 +422,8 @@ void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
// This was previously a single mapping. Make sure the old def is represented
// by a trivial live range.
SlotIndex Def = VNI->def;
- Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
+ LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
+ LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
// Mark as complex mapped, forced.
VFP = ValueForcePair(0, true);
}
@@ -434,7 +435,7 @@ VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
MachineBasicBlock::iterator I) {
MachineInstr *CopyMI = 0;
SlotIndex Def;
- LiveInterval *LI = Edit->get(RegIdx);
+ LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
// We may be trying to avoid interference that ends at a deleted instruction,
// so always begin RegIdx 0 early and all others late.
@@ -462,11 +463,11 @@ VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
unsigned SplitEditor::openIntv() {
// Create the complement as index 0.
if (Edit->empty())
- Edit->create();
+ Edit->createEmptyInterval();
// Create the open interval.
OpenIdx = Edit->size();
- Edit->create();
+ Edit->createEmptyInterval();
return OpenIdx;
}
@@ -631,7 +632,7 @@ void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
//===----------------------------------------------------------------------===//
void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
- LiveInterval *LI = Edit->get(0);
+ LiveInterval *LI = &LIS.getInterval(Edit->get(0));
DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
RegAssignMap::iterator AssignI;
AssignI.setMap(RegAssign);
@@ -730,7 +731,7 @@ SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
void SplitEditor::hoistCopiesForSize() {
// Get the complement interval, always RegIdx 0.
- LiveInterval *LI = Edit->get(0);
+ LiveInterval *LI = &LIS.getInterval(Edit->get(0));
LiveInterval *Parent = &Edit->getParent();
// Track the nearest common dominator for all back-copies for each ParentVNI,
@@ -861,13 +862,13 @@ bool SplitEditor::transferValues() {
// The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
- LiveInterval *LI = Edit->get(RegIdx);
+ LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
// Check for a simply defined value that can be blitted directly.
ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
if (VNInfo *VNI = VFP.getPointer()) {
DEBUG(dbgs() << ':' << VNI->id);
- LI->addRange(LiveRange(Start, End, VNI));
+ LR.addSegment(LiveInterval::Segment(Start, End, VNI));
Start = End;
continue;
}
@@ -891,7 +892,7 @@ bool SplitEditor::transferValues() {
// The first block may be live-in, or it may have its own def.
if (Start != BlockStart) {
- VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
+ VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
assert(VNI && "Missing def for complex mapped value");
DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
// MBB has its own def. Is it also live-out?
@@ -911,7 +912,7 @@ bool SplitEditor::transferValues() {
if (BlockStart == ParentVNI->def) {
// This block has the def of a parent PHI, so it isn't live-in.
assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
- VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
+ VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
assert(VNI && "Missing def for complex mapped parent PHI");
if (End >= BlockEnd)
LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
@@ -919,10 +920,10 @@ bool SplitEditor::transferValues() {
// This block needs a live-in value. The last block covered may not
// be live-out.
if (End < BlockEnd)
- LRC.addLiveInBlock(LI, MDT[MBB], End);
+ LRC.addLiveInBlock(LR, MDT[MBB], End);
else {
// Live-through, and we don't know the value.
- LRC.addLiveInBlock(LI, MDT[MBB]);
+ LRC.addLiveInBlock(LR, MDT[MBB]);
LRC.setLiveOutValue(MBB, 0);
}
}
@@ -949,7 +950,7 @@ void SplitEditor::extendPHIKillRanges() {
if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
continue;
unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
- LiveInterval *LI = Edit->get(RegIdx);
+ LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
LiveRangeCalc &LRC = getLRCalc(RegIdx);
MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
@@ -961,7 +962,7 @@ void SplitEditor::extendPHIKillRanges() {
if (Edit->getParent().liveAt(LastUse)) {
assert(RegAssign.lookup(LastUse) == RegIdx &&
"Different register assignment in phi predecessor");
- LRC.extend(LI, End);
+ LRC.extend(LR, End);
}
}
}
@@ -990,7 +991,7 @@ void SplitEditor::rewriteAssigned(bool ExtendRanges) {
// Rewrite to the mapped register at Idx.
unsigned RegIdx = RegAssign.lookup(Idx);
- LiveInterval *LI = Edit->get(RegIdx);
+ LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
MO.setReg(LI->reg);
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
<< Idx << ':' << RegIdx << '\t' << *MI);
@@ -1011,14 +1012,14 @@ void SplitEditor::rewriteAssigned(bool ExtendRanges) {
} else
Idx = Idx.getRegSlot(true);
- getLRCalc(RegIdx).extend(LI, Idx.getNextSlot());
+ getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
}
}
void SplitEditor::deleteRematVictims() {
SmallVector<MachineInstr*, 8> Dead;
for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
- LiveInterval *LI = *I;
+ LiveInterval *LI = &LIS.getInterval(*I);
for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
LII != LIE; ++LII) {
// Dead defs end at the dead slot.
@@ -1091,8 +1092,10 @@ void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
deleteRematVictims();
// Get rid of unused values and set phi-kill flags.
- for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
- (*I)->RenumberValues(LIS);
+ for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
+ LiveInterval &LI = LIS.getInterval(*I);
+ LI.RenumberValues();
+ }
// Provide a reverse mapping from original indices to Edit ranges.
if (LRMap) {
@@ -1105,7 +1108,7 @@ void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
ConnectedVNInfoEqClasses ConEQ(LIS);
for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
// Don't use iterators, they are invalidated by create() below.
- LiveInterval *li = Edit->get(i);
+ LiveInterval *li = &LIS.getInterval(Edit->get(i));
unsigned NumComp = ConEQ.Classify(li);
if (NumComp <= 1)
continue;
@@ -1113,7 +1116,7 @@ void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
SmallVector<LiveInterval*, 8> dups;
dups.push_back(li);
for (unsigned j = 1; j != NumComp; ++j)
- dups.push_back(&Edit->create());
+ dups.push_back(&Edit->createEmptyInterval());
ConEQ.Distribute(&dups[0], MRI);
// The new intervals all map back to i.
if (LRMap)
diff --git a/lib/CodeGen/StackColoring.cpp b/lib/CodeGen/StackColoring.cpp
index faaa6e7..3dbc050 100644
--- a/lib/CodeGen/StackColoring.cpp
+++ b/lib/CodeGen/StackColoring.cpp
@@ -170,7 +170,7 @@ private:
/// slots to use the joint slots.
void remapInstructions(DenseMap<int, int> &SlotRemap);
- /// The input program may contain intructions which are not inside lifetime
+ /// The input program may contain instructions which are not inside lifetime
/// markers. This can happen due to a bug in the compiler or due to a bug in
/// user code (for example, returning a reference to a local variable).
/// This procedure checks all of the instructions in the function and
@@ -450,14 +450,14 @@ void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
SlotIndex F = Finishes[i];
if (S < F) {
// We have a single consecutive region.
- Intervals[i]->addRange(LiveRange(S, F, ValNum));
+ Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
} else {
// We have two non consecutive regions. This happens when
// LIFETIME_START appears after the LIFETIME_END marker.
SlotIndex NewStart = Indexes->getMBBStartIdx(MBB);
SlotIndex NewFin = Indexes->getMBBEndIdx(MBB);
- Intervals[i]->addRange(LiveRange(NewStart, F, ValNum));
- Intervals[i]->addRange(LiveRange(S, NewFin, ValNum));
+ Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
+ Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
}
}
}
@@ -763,7 +763,7 @@ bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
// Merge disjoint slots.
if (!First->overlaps(*Second)) {
Changed = true;
- First->MergeRangesInAsValue(*Second, First->getValNumInfo(0));
+ First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
SlotRemap[SecondSlot] = FirstSlot;
SortedSlots[J] = -1;
DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
diff --git a/lib/CodeGen/StackMaps.cpp b/lib/CodeGen/StackMaps.cpp
new file mode 100644
index 0000000..40893ea
--- /dev/null
+++ b/lib/CodeGen/StackMaps.cpp
@@ -0,0 +1,314 @@
+//===---------------------------- StackMaps.cpp ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "stackmaps"
+
+#include "llvm/CodeGen/StackMaps.h"
+
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCObjectFileInfo.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOpcodes.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#include <iterator>
+
+using namespace llvm;
+
+PatchPointOpers::PatchPointOpers(const MachineInstr *MI):
+ MI(MI),
+ HasDef(MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
+ !MI->getOperand(0).isImplicit()),
+ IsAnyReg(MI->getOperand(getMetaIdx(CCPos)).getImm() == CallingConv::AnyReg) {
+
+#ifndef NDEBUG
+ {
+ unsigned CheckStartIdx = 0, e = MI->getNumOperands();
+ while (CheckStartIdx < e && MI->getOperand(CheckStartIdx).isReg() &&
+ MI->getOperand(CheckStartIdx).isDef() &&
+ !MI->getOperand(CheckStartIdx).isImplicit())
+ ++CheckStartIdx;
+
+ assert(getMetaIdx() == CheckStartIdx &&
+ "Unexpected additonal definition in Patchpoint intrinsic.");
+ }
+#endif
+}
+
+unsigned PatchPointOpers::getNextScratchIdx(unsigned StartIdx) const {
+ if (!StartIdx)
+ StartIdx = getVarIdx();
+
+ // Find the next scratch register (implicit def and early clobber)
+ unsigned ScratchIdx = StartIdx, e = MI->getNumOperands();
+ while (ScratchIdx < e &&
+ !(MI->getOperand(ScratchIdx).isReg() &&
+ MI->getOperand(ScratchIdx).isDef() &&
+ MI->getOperand(ScratchIdx).isImplicit() &&
+ MI->getOperand(ScratchIdx).isEarlyClobber()))
+ ++ScratchIdx;
+
+ assert(ScratchIdx != e && "No scratch register available");
+ return ScratchIdx;
+}
+
+void StackMaps::recordStackMapOpers(const MachineInstr &MI, uint32_t ID,
+ MachineInstr::const_mop_iterator MOI,
+ MachineInstr::const_mop_iterator MOE,
+ bool recordResult) {
+
+ MCContext &OutContext = AP.OutStreamer.getContext();
+ MCSymbol *MILabel = OutContext.CreateTempSymbol();
+ AP.OutStreamer.EmitLabel(MILabel);
+
+ LocationVec CallsiteLocs;
+
+ if (recordResult) {
+ std::pair<Location, MachineInstr::const_mop_iterator> ParseResult =
+ OpParser(MI.operands_begin(), llvm::next(MI.operands_begin()), AP.TM);
+
+ Location &Loc = ParseResult.first;
+ assert(Loc.LocType == Location::Register &&
+ "Stackmap return location must be a register.");
+ CallsiteLocs.push_back(Loc);
+ }
+
+ while (MOI != MOE) {
+ std::pair<Location, MachineInstr::const_mop_iterator> ParseResult =
+ OpParser(MOI, MOE, AP.TM);
+
+ Location &Loc = ParseResult.first;
+
+ // Move large constants into the constant pool.
+ if (Loc.LocType == Location::Constant && (Loc.Offset & ~0xFFFFFFFFULL)) {
+ Loc.LocType = Location::ConstantIndex;
+ Loc.Offset = ConstPool.getConstantIndex(Loc.Offset);
+ }
+
+ CallsiteLocs.push_back(Loc);
+ MOI = ParseResult.second;
+ }
+
+ const MCExpr *CSOffsetExpr = MCBinaryExpr::CreateSub(
+ MCSymbolRefExpr::Create(MILabel, OutContext),
+ MCSymbolRefExpr::Create(AP.CurrentFnSym, OutContext),
+ OutContext);
+
+ CSInfos.push_back(CallsiteInfo(CSOffsetExpr, ID, CallsiteLocs));
+}
+
+static MachineInstr::const_mop_iterator
+getStackMapEndMOP(MachineInstr::const_mop_iterator MOI,
+ MachineInstr::const_mop_iterator MOE) {
+ for (; MOI != MOE; ++MOI)
+ if (MOI->isRegMask() || (MOI->isReg() && MOI->isImplicit()))
+ break;
+
+ return MOI;
+}
+
+void StackMaps::recordStackMap(const MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::STACKMAP && "exected stackmap");
+
+ int64_t ID = MI.getOperand(0).getImm();
+ assert((int32_t)ID == ID && "Stack maps hold 32-bit IDs");
+ recordStackMapOpers(MI, ID, llvm::next(MI.operands_begin(), 2),
+ getStackMapEndMOP(MI.operands_begin(),
+ MI.operands_end()));
+}
+
+void StackMaps::recordPatchPoint(const MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::PATCHPOINT && "exected stackmap");
+
+ PatchPointOpers opers(&MI);
+ int64_t ID = opers.getMetaOper(PatchPointOpers::IDPos).getImm();
+ assert((int32_t)ID == ID && "Stack maps hold 32-bit IDs");
+ MachineInstr::const_mop_iterator MOI =
+ llvm::next(MI.operands_begin(), opers.getStackMapStartIdx());
+ recordStackMapOpers(MI, ID, MOI, getStackMapEndMOP(MOI, MI.operands_end()),
+ opers.isAnyReg() && opers.hasDef());
+
+#ifndef NDEBUG
+ // verify anyregcc
+ LocationVec &Locations = CSInfos.back().Locations;
+ if (opers.isAnyReg()) {
+ unsigned NArgs = opers.getMetaOper(PatchPointOpers::NArgPos).getImm();
+ for (unsigned i = 0, e = (opers.hasDef() ? NArgs+1 : NArgs); i != e; ++i)
+ assert(Locations[i].LocType == Location::Register &&
+ "anyreg arg must be in reg.");
+ }
+#endif
+}
+
+/// serializeToStackMapSection conceptually populates the following fields:
+///
+/// uint32 : Reserved (header)
+/// uint32 : NumConstants
+/// int64 : Constants[NumConstants]
+/// uint32 : NumRecords
+/// StkMapRecord[NumRecords] {
+/// uint32 : PatchPoint ID
+/// uint32 : Instruction Offset
+/// uint16 : Reserved (record flags)
+/// uint16 : NumLocations
+/// Location[NumLocations] {
+/// uint8 : Register | Direct | Indirect | Constant | ConstantIndex
+/// uint8 : Size in Bytes
+/// uint16 : Dwarf RegNum
+/// int32 : Offset
+/// }
+/// }
+///
+/// Location Encoding, Type, Value:
+/// 0x1, Register, Reg (value in register)
+/// 0x2, Direct, Reg + Offset (frame index)
+/// 0x3, Indirect, [Reg + Offset] (spilled value)
+/// 0x4, Constant, Offset (small constant)
+/// 0x5, ConstIndex, Constants[Offset] (large constant)
+///
+void StackMaps::serializeToStackMapSection() {
+ // Bail out if there's no stack map data.
+ if (CSInfos.empty())
+ return;
+
+ MCContext &OutContext = AP.OutStreamer.getContext();
+ const TargetRegisterInfo *TRI = AP.TM.getRegisterInfo();
+
+ // Create the section.
+ const MCSection *StackMapSection =
+ OutContext.getObjectFileInfo()->getStackMapSection();
+ AP.OutStreamer.SwitchSection(StackMapSection);
+
+ // Emit a dummy symbol to force section inclusion.
+ AP.OutStreamer.EmitLabel(
+ OutContext.GetOrCreateSymbol(Twine("__LLVM_StackMaps")));
+
+ // Serialize data.
+ const char *WSMP = "Stack Maps: ";
+ (void)WSMP;
+ const MCRegisterInfo &MCRI = *OutContext.getRegisterInfo();
+
+ DEBUG(dbgs() << "********** Stack Map Output **********\n");
+
+ // Header.
+ AP.OutStreamer.EmitIntValue(0, 4);
+
+ // Num constants.
+ AP.OutStreamer.EmitIntValue(ConstPool.getNumConstants(), 4);
+
+ // Constant pool entries.
+ for (unsigned i = 0; i < ConstPool.getNumConstants(); ++i)
+ AP.OutStreamer.EmitIntValue(ConstPool.getConstant(i), 8);
+
+ DEBUG(dbgs() << WSMP << "#callsites = " << CSInfos.size() << "\n");
+ AP.OutStreamer.EmitIntValue(CSInfos.size(), 4);
+
+ for (CallsiteInfoList::const_iterator CSII = CSInfos.begin(),
+ CSIE = CSInfos.end();
+ CSII != CSIE; ++CSII) {
+
+ unsigned CallsiteID = CSII->ID;
+ const LocationVec &CSLocs = CSII->Locations;
+
+ DEBUG(dbgs() << WSMP << "callsite " << CallsiteID << "\n");
+
+ // Verify stack map entry. It's better to communicate a problem to the
+ // runtime than crash in case of in-process compilation. Currently, we do
+ // simple overflow checks, but we may eventually communicate other
+ // compilation errors this way.
+ if (CSLocs.size() > UINT16_MAX) {
+ AP.OutStreamer.EmitIntValue(UINT32_MAX, 4); // Invalid ID.
+ AP.OutStreamer.EmitValue(CSII->CSOffsetExpr, 4);
+ AP.OutStreamer.EmitIntValue(0, 2); // Reserved.
+ AP.OutStreamer.EmitIntValue(0, 2); // 0 locations.
+ continue;
+ }
+
+ AP.OutStreamer.EmitIntValue(CallsiteID, 4);
+ AP.OutStreamer.EmitValue(CSII->CSOffsetExpr, 4);
+
+ // Reserved for flags.
+ AP.OutStreamer.EmitIntValue(0, 2);
+
+ DEBUG(dbgs() << WSMP << " has " << CSLocs.size() << " locations\n");
+
+ AP.OutStreamer.EmitIntValue(CSLocs.size(), 2);
+
+ unsigned operIdx = 0;
+ for (LocationVec::const_iterator LocI = CSLocs.begin(), LocE = CSLocs.end();
+ LocI != LocE; ++LocI, ++operIdx) {
+ const Location &Loc = *LocI;
+ DEBUG(
+ dbgs() << WSMP << " Loc " << operIdx << ": ";
+ switch (Loc.LocType) {
+ case Location::Unprocessed:
+ dbgs() << "<Unprocessed operand>";
+ break;
+ case Location::Register:
+ dbgs() << "Register " << MCRI.getName(Loc.Reg);
+ break;
+ case Location::Direct:
+ dbgs() << "Direct " << MCRI.getName(Loc.Reg);
+ if (Loc.Offset)
+ dbgs() << " + " << Loc.Offset;
+ break;
+ case Location::Indirect:
+ dbgs() << "Indirect " << MCRI.getName(Loc.Reg)
+ << " + " << Loc.Offset;
+ break;
+ case Location::Constant:
+ dbgs() << "Constant " << Loc.Offset;
+ break;
+ case Location::ConstantIndex:
+ dbgs() << "Constant Index " << Loc.Offset;
+ break;
+ }
+ dbgs() << "\n";
+ );
+
+ unsigned RegNo = 0;
+ int Offset = Loc.Offset;
+ if(Loc.Reg) {
+ RegNo = MCRI.getDwarfRegNum(Loc.Reg, false);
+ for (MCSuperRegIterator SR(Loc.Reg, TRI);
+ SR.isValid() && (int)RegNo < 0; ++SR) {
+ RegNo = TRI->getDwarfRegNum(*SR, false);
+ }
+ // If this is a register location, put the subregister byte offset in
+ // the location offset.
+ if (Loc.LocType == Location::Register) {
+ assert(!Loc.Offset && "Register location should have zero offset");
+ unsigned LLVMRegNo = MCRI.getLLVMRegNum(RegNo, false);
+ unsigned SubRegIdx = MCRI.getSubRegIndex(LLVMRegNo, Loc.Reg);
+ if (SubRegIdx)
+ Offset = MCRI.getSubRegIdxOffset(SubRegIdx);
+ }
+ }
+ else {
+ assert(Loc.LocType != Location::Register &&
+ "Missing location register");
+ }
+ AP.OutStreamer.EmitIntValue(Loc.LocType, 1);
+ AP.OutStreamer.EmitIntValue(Loc.Size, 1);
+ AP.OutStreamer.EmitIntValue(RegNo, 2);
+ AP.OutStreamer.EmitIntValue(Offset, 4);
+ }
+ }
+
+ AP.OutStreamer.AddBlankLine();
+
+ CSInfos.clear();
+}
diff --git a/lib/CodeGen/StackProtector.cpp b/lib/CodeGen/StackProtector.cpp
index 4c56380..9020449 100644
--- a/lib/CodeGen/StackProtector.cpp
+++ b/lib/CodeGen/StackProtector.cpp
@@ -15,11 +15,13 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "stack-protector"
+#include "llvm/CodeGen/StackProtector.h"
+#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
@@ -27,12 +29,12 @@
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
-#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Target/TargetLowering.h"
#include <cstdlib>
using namespace llvm;
@@ -40,137 +42,93 @@ STATISTIC(NumFunProtected, "Number of functions protected");
STATISTIC(NumAddrTaken, "Number of local variables that have their address"
" taken.");
-namespace {
- class StackProtector : public FunctionPass {
- const TargetMachine *TM;
-
- /// TLI - Keep a pointer of a TargetLowering to consult for determining
- /// target type sizes.
- const TargetLoweringBase *TLI;
- const Triple Trip;
-
- Function *F;
- Module *M;
-
- DominatorTree *DT;
-
- /// \brief The minimum size of buffers that will receive stack smashing
- /// protection when -fstack-protection is used.
- unsigned SSPBufferSize;
-
- /// VisitedPHIs - The set of PHI nodes visited when determining
- /// if a variable's reference has been taken. This set
- /// is maintained to ensure we don't visit the same PHI node multiple
- /// times.
- SmallPtrSet<const PHINode*, 16> VisitedPHIs;
-
- /// InsertStackProtectors - Insert code into the prologue and epilogue of
- /// the function.
- ///
- /// - The prologue code loads and stores the stack guard onto the stack.
- /// - The epilogue checks the value stored in the prologue against the
- /// original value. It calls __stack_chk_fail if they differ.
- bool InsertStackProtectors();
-
- /// CreateFailBB - Create a basic block to jump to when the stack protector
- /// check fails.
- BasicBlock *CreateFailBB();
-
- /// ContainsProtectableArray - Check whether the type either is an array or
- /// contains an array of sufficient size so that we need stack protectors
- /// for it.
- bool ContainsProtectableArray(Type *Ty, bool Strong = false,
- bool InStruct = false) const;
-
- /// \brief Check whether a stack allocation has its address taken.
- bool HasAddressTaken(const Instruction *AI);
-
- /// RequiresStackProtector - Check whether or not this function needs a
- /// stack protector based upon the stack protector level.
- bool RequiresStackProtector();
- public:
- static char ID; // Pass identification, replacement for typeid.
- StackProtector() : FunctionPass(ID), TM(0), TLI(0), SSPBufferSize(0) {
- initializeStackProtectorPass(*PassRegistry::getPassRegistry());
- }
- StackProtector(const TargetMachine *TM)
- : FunctionPass(ID), TM(TM), TLI(0), Trip(TM->getTargetTriple()),
- SSPBufferSize(8) {
- initializeStackProtectorPass(*PassRegistry::getPassRegistry());
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addPreserved<DominatorTree>();
- }
-
- virtual bool runOnFunction(Function &Fn);
- };
-} // end anonymous namespace
+static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
+ cl::init(true), cl::Hidden);
char StackProtector::ID = 0;
-INITIALIZE_PASS(StackProtector, "stack-protector",
- "Insert stack protectors", false, false)
+INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
+ false, true)
FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
return new StackProtector(TM);
}
+StackProtector::SSPLayoutKind
+StackProtector::getSSPLayout(const AllocaInst *AI) const {
+ return AI ? Layout.lookup(AI) : SSPLK_None;
+}
+
bool StackProtector::runOnFunction(Function &Fn) {
F = &Fn;
M = F->getParent();
DT = getAnalysisIfAvailable<DominatorTree>();
TLI = TM->getTargetLowering();
- if (!RequiresStackProtector()) return false;
+ if (!RequiresStackProtector())
+ return false;
- Attribute Attr =
- Fn.getAttributes().getAttribute(AttributeSet::FunctionIndex,
- "stack-protector-buffer-size");
+ Attribute Attr = Fn.getAttributes().getAttribute(
+ AttributeSet::FunctionIndex, "stack-protector-buffer-size");
if (Attr.isStringAttribute())
- SSPBufferSize = atoi(Attr.getValueAsString().data());
+ Attr.getValueAsString().getAsInteger(10, SSPBufferSize);
++NumFunProtected;
return InsertStackProtectors();
}
-/// ContainsProtectableArray - Check whether the type either is an array or
-/// contains a char array of sufficient size so that we need stack protectors
-/// for it.
-bool StackProtector::ContainsProtectableArray(Type *Ty, bool Strong,
+/// \param [out] IsLarge is set to true if a protectable array is found and
+/// it is "large" ( >= ssp-buffer-size). In the case of a structure with
+/// multiple arrays, this gets set if any of them is large.
+bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
+ bool Strong,
bool InStruct) const {
- if (!Ty) return false;
+ if (!Ty)
+ return false;
if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
- // In strong mode any array, regardless of type and size, triggers a
- // protector
- if (Strong)
- return true;
if (!AT->getElementType()->isIntegerTy(8)) {
// If we're on a non-Darwin platform or we're inside of a structure, don't
// add stack protectors unless the array is a character array.
- if (InStruct || !Trip.isOSDarwin())
- return false;
+ // However, in strong mode any array, regardless of type and size,
+ // triggers a protector.
+ if (!Strong && (InStruct || !Trip.isOSDarwin()))
+ return false;
}
// If an array has more than SSPBufferSize bytes of allocated space, then we
// emit stack protectors.
- if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT))
+ if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) {
+ IsLarge = true;
+ return true;
+ }
+
+ if (Strong)
+ // Require a protector for all arrays in strong mode
return true;
}
const StructType *ST = dyn_cast<StructType>(Ty);
- if (!ST) return false;
+ if (!ST)
+ return false;
+ bool NeedsProtector = false;
for (StructType::element_iterator I = ST->element_begin(),
- E = ST->element_end(); I != E; ++I)
- if (ContainsProtectableArray(*I, Strong, true))
- return true;
+ E = ST->element_end();
+ I != E; ++I)
+ if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
+ // If the element is a protectable array and is large (>= SSPBufferSize)
+ // then we are done. If the protectable array is not large, then
+ // keep looking in case a subsequent element is a large array.
+ if (IsLarge)
+ return true;
+ NeedsProtector = true;
+ }
- return false;
+ return NeedsProtector;
}
bool StackProtector::HasAddressTaken(const Instruction *AI) {
for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
- UI != UE; ++UI) {
+ UI != UE; ++UI) {
const User *U = *UI;
if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
if (AI == SI->getValueOperand())
@@ -217,11 +175,13 @@ bool StackProtector::HasAddressTaken(const Instruction *AI) {
/// address taken.
bool StackProtector::RequiresStackProtector() {
bool Strong = false;
+ bool NeedsProtector = false;
if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::StackProtectReq))
- return true;
- else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::StackProtectStrong))
+ Attribute::StackProtectReq)) {
+ NeedsProtector = true;
+ Strong = true; // Use the same heuristic as strong to determine SSPLayout
+ } else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtectStrong))
Strong = true;
else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::StackProtect))
@@ -230,39 +190,116 @@ bool StackProtector::RequiresStackProtector() {
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
BasicBlock *BB = I;
- for (BasicBlock::iterator
- II = BB->begin(), IE = BB->end(); II != IE; ++II) {
+ for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;
+ ++II) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
if (AI->isArrayAllocation()) {
// SSP-Strong: Enable protectors for any call to alloca, regardless
// of size.
if (Strong)
return true;
-
+
if (const ConstantInt *CI =
- dyn_cast<ConstantInt>(AI->getArraySize())) {
- if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize)
+ dyn_cast<ConstantInt>(AI->getArraySize())) {
+ if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
// A call to alloca with size >= SSPBufferSize requires
// stack protectors.
- return true;
+ Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
+ NeedsProtector = true;
+ } else if (Strong) {
+ // Require protectors for all alloca calls in strong mode.
+ Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
+ NeedsProtector = true;
+ }
} else {
// A call to alloca with a variable size requires protectors.
- return true;
+ Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
+ NeedsProtector = true;
}
+ continue;
}
- if (ContainsProtectableArray(AI->getAllocatedType(), Strong))
- return true;
+ bool IsLarge = false;
+ if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
+ Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
+ : SSPLK_SmallArray));
+ NeedsProtector = true;
+ continue;
+ }
if (Strong && HasAddressTaken(AI)) {
- ++NumAddrTaken;
- return true;
+ ++NumAddrTaken;
+ Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
+ NeedsProtector = true;
}
}
}
}
- return false;
+ return NeedsProtector;
+}
+
+static bool InstructionWillNotHaveChain(const Instruction *I) {
+ return !I->mayHaveSideEffects() && !I->mayReadFromMemory() &&
+ isSafeToSpeculativelyExecute(I);
+}
+
+/// Identify if RI has a previous instruction in the "Tail Position" and return
+/// it. Otherwise return 0.
+///
+/// This is based off of the code in llvm::isInTailCallPosition. The difference
+/// is that it inverts the first part of llvm::isInTailCallPosition since
+/// isInTailCallPosition is checking if a call is in a tail call position, and
+/// we are searching for an unknown tail call that might be in the tail call
+/// position. Once we find the call though, the code uses the same refactored
+/// code, returnTypeIsEligibleForTailCall.
+static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI,
+ const TargetLoweringBase *TLI) {
+ // Establish a reasonable upper bound on the maximum amount of instructions we
+ // will look through to find a tail call.
+ unsigned SearchCounter = 0;
+ const unsigned MaxSearch = 4;
+ bool NoInterposingChain = true;
+
+ for (BasicBlock::reverse_iterator I = llvm::next(BB->rbegin()),
+ E = BB->rend();
+ I != E && SearchCounter < MaxSearch; ++I) {
+ Instruction *Inst = &*I;
+
+ // Skip over debug intrinsics and do not allow them to affect our MaxSearch
+ // counter.
+ if (isa<DbgInfoIntrinsic>(Inst))
+ continue;
+
+ // If we find a call and the following conditions are satisifed, then we
+ // have found a tail call that satisfies at least the target independent
+ // requirements of a tail call:
+ //
+ // 1. The call site has the tail marker.
+ //
+ // 2. The call site either will not cause the creation of a chain or if a
+ // chain is necessary there are no instructions in between the callsite and
+ // the call which would create an interposing chain.
+ //
+ // 3. The return type of the function does not impede tail call
+ // optimization.
+ if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
+ if (CI->isTailCall() &&
+ (InstructionWillNotHaveChain(CI) || NoInterposingChain) &&
+ returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI))
+ return CI;
+ }
+
+ // If we did not find a call see if we have an instruction that may create
+ // an interposing chain.
+ NoInterposingChain =
+ NoInterposingChain && InstructionWillNotHaveChain(Inst);
+
+ // Increment max search.
+ SearchCounter++;
+ }
+
+ return 0;
}
/// Insert code into the entry block that stores the __stack_chk_guard
@@ -273,36 +310,36 @@ bool StackProtector::RequiresStackProtector() {
/// StackGuard = load __stack_chk_guard
/// call void @llvm.stackprotect.create(StackGuard, StackGuardSlot)
///
-static void CreatePrologue(Function *F, Module *M, ReturnInst *RI,
+/// Returns true if the platform/triple supports the stackprotectorcreate pseudo
+/// node.
+static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
const TargetLoweringBase *TLI, const Triple &Trip,
AllocaInst *&AI, Value *&StackGuardVar) {
+ bool SupportsSelectionDAGSP = false;
PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
unsigned AddressSpace, Offset;
if (TLI->getStackCookieLocation(AddressSpace, Offset)) {
Constant *OffsetVal =
- ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
-
- StackGuardVar = ConstantExpr::getIntToPtr(OffsetVal,
- PointerType::get(PtrTy,
- AddressSpace));
+ ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
+
+ StackGuardVar = ConstantExpr::getIntToPtr(
+ OffsetVal, PointerType::get(PtrTy, AddressSpace));
} else if (Trip.getOS() == llvm::Triple::OpenBSD) {
StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy);
cast<GlobalValue>(StackGuardVar)
- ->setVisibility(GlobalValue::HiddenVisibility);
+ ->setVisibility(GlobalValue::HiddenVisibility);
} else {
+ SupportsSelectionDAGSP = true;
StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy);
}
-
- BasicBlock &Entry = F->getEntryBlock();
- Instruction *InsPt = &Entry.front();
-
- AI = new AllocaInst(PtrTy, "StackGuardSlot", InsPt);
- LoadInst *LI = new LoadInst(StackGuardVar, "StackGuard", false, InsPt);
-
- Value *Args[] = { LI, AI };
- CallInst::
- Create(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
- Args, "", InsPt);
+
+ IRBuilder<> B(&F->getEntryBlock().front());
+ AI = B.CreateAlloca(PtrTy, 0, "StackGuardSlot");
+ LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard");
+ B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI,
+ AI);
+
+ return SupportsSelectionDAGSP;
}
/// InsertStackProtectors - Insert code into the prologue and epilogue of the
@@ -312,72 +349,102 @@ static void CreatePrologue(Function *F, Module *M, ReturnInst *RI,
/// - The epilogue checks the value stored in the prologue against the original
/// value. It calls __stack_chk_fail if they differ.
bool StackProtector::InsertStackProtectors() {
- BasicBlock *FailBB = 0; // The basic block to jump to if check fails.
- BasicBlock *FailBBDom = 0; // FailBB's dominator.
- AllocaInst *AI = 0; // Place on stack that stores the stack guard.
- Value *StackGuardVar = 0; // The stack guard variable.
+ bool HasPrologue = false;
+ bool SupportsSelectionDAGSP =
+ EnableSelectionDAGSP && !TM->Options.EnableFastISel;
+ AllocaInst *AI = 0; // Place on stack that stores the stack guard.
+ Value *StackGuardVar = 0; // The stack guard variable.
- for (Function::iterator I = F->begin(), E = F->end(); I != E; ) {
+ for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
BasicBlock *BB = I++;
ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
- if (!RI) continue;
+ if (!RI)
+ continue;
- if (!FailBB) {
- CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar);
- // Create the basic block to jump to when the guard check fails.
- FailBB = CreateFailBB();
+ if (!HasPrologue) {
+ HasPrologue = true;
+ SupportsSelectionDAGSP &=
+ CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar);
}
- // For each block with a return instruction, convert this:
- //
- // return:
- // ...
- // ret ...
- //
- // into this:
- //
- // return:
- // ...
- // %1 = load __stack_chk_guard
- // %2 = load StackGuardSlot
- // %3 = cmp i1 %1, %2
- // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
- //
- // SP_return:
- // ret ...
- //
- // CallStackCheckFailBlk:
- // call void @__stack_chk_fail()
- // unreachable
-
- // Split the basic block before the return instruction.
- BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return");
+ if (SupportsSelectionDAGSP) {
+ // Since we have a potential tail call, insert the special stack check
+ // intrinsic.
+ Instruction *InsertionPt = 0;
+ if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) {
+ InsertionPt = CI;
+ } else {
+ InsertionPt = RI;
+ // At this point we know that BB has a return statement so it *DOES*
+ // have a terminator.
+ assert(InsertionPt != 0 && "BB must have a terminator instruction at "
+ "this point.");
+ }
- if (DT && DT->isReachableFromEntry(BB)) {
- DT->addNewBlock(NewBB, BB);
- FailBBDom = FailBBDom ? DT->findNearestCommonDominator(FailBBDom, BB) :BB;
- }
+ Function *Intrinsic =
+ Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck);
+ CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt);
+
+ } else {
+ // If we do not support SelectionDAG based tail calls, generate IR level
+ // tail calls.
+ //
+ // For each block with a return instruction, convert this:
+ //
+ // return:
+ // ...
+ // ret ...
+ //
+ // into this:
+ //
+ // return:
+ // ...
+ // %1 = load __stack_chk_guard
+ // %2 = load StackGuardSlot
+ // %3 = cmp i1 %1, %2
+ // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
+ //
+ // SP_return:
+ // ret ...
+ //
+ // CallStackCheckFailBlk:
+ // call void @__stack_chk_fail()
+ // unreachable
+
+ // Create the FailBB. We duplicate the BB every time since the MI tail
+ // merge pass will merge together all of the various BB into one including
+ // fail BB generated by the stack protector pseudo instruction.
+ BasicBlock *FailBB = CreateFailBB();
+
+ // Split the basic block before the return instruction.
+ BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return");
+
+ // Update the dominator tree if we need to.
+ if (DT && DT->isReachableFromEntry(BB)) {
+ DT->addNewBlock(NewBB, BB);
+ DT->addNewBlock(FailBB, BB);
+ }
- // Remove default branch instruction to the new BB.
- BB->getTerminator()->eraseFromParent();
+ // Remove default branch instruction to the new BB.
+ BB->getTerminator()->eraseFromParent();
- // Move the newly created basic block to the point right after the old basic
- // block so that it's in the "fall through" position.
- NewBB->moveAfter(BB);
+ // Move the newly created basic block to the point right after the old
+ // basic block so that it's in the "fall through" position.
+ NewBB->moveAfter(BB);
- // Generate the stack protector instructions in the old basic block.
- LoadInst *LI1 = new LoadInst(StackGuardVar, "", false, BB);
- LoadInst *LI2 = new LoadInst(AI, "", true, BB);
- ICmpInst *Cmp = new ICmpInst(*BB, CmpInst::ICMP_EQ, LI1, LI2, "");
- BranchInst::Create(NewBB, FailBB, Cmp, BB);
+ // Generate the stack protector instructions in the old basic block.
+ IRBuilder<> B(BB);
+ LoadInst *LI1 = B.CreateLoad(StackGuardVar);
+ LoadInst *LI2 = B.CreateLoad(AI);
+ Value *Cmp = B.CreateICmpEQ(LI1, LI2);
+ B.CreateCondBr(Cmp, NewBB, FailBB);
+ }
}
// Return if we didn't modify any basic blocks. I.e., there are no return
// statements in the function.
- if (!FailBB) return false;
-
- if (DT && FailBBDom)
- DT->addNewBlock(FailBB, FailBBDom);
+ if (!HasPrologue)
+ return false;
return true;
}
@@ -387,29 +454,18 @@ bool StackProtector::InsertStackProtectors() {
BasicBlock *StackProtector::CreateFailBB() {
LLVMContext &Context = F->getContext();
BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
+ IRBuilder<> B(FailBB);
if (Trip.getOS() == llvm::Triple::OpenBSD) {
Constant *StackChkFail = M->getOrInsertFunction(
"__stack_smash_handler", Type::getVoidTy(Context),
Type::getInt8PtrTy(Context), NULL);
- Constant *NameStr = ConstantDataArray::getString(Context, F->getName());
- Constant *FuncName =
- new GlobalVariable(*M, NameStr->getType(), true,
- GlobalVariable::PrivateLinkage, NameStr, "SSH");
-
- SmallVector<Constant *, 2> IdxList;
- IdxList.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
- IdxList.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
-
- SmallVector<Value *, 1> Args;
- Args.push_back(ConstantExpr::getGetElementPtr(FuncName, IdxList));
-
- CallInst::Create(StackChkFail, Args, "", FailBB);
+ B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
} else {
Constant *StackChkFail = M->getOrInsertFunction(
"__stack_chk_fail", Type::getVoidTy(Context), NULL);
- CallInst::Create(StackChkFail, "", FailBB);
+ B.CreateCall(StackChkFail);
}
- new UnreachableInst(Context, FailBB);
+ B.CreateUnreachable();
return FailBB;
}
diff --git a/lib/CodeGen/StrongPHIElimination.cpp b/lib/CodeGen/StrongPHIElimination.cpp
deleted file mode 100644
index b337c53..0000000
--- a/lib/CodeGen/StrongPHIElimination.cpp
+++ /dev/null
@@ -1,825 +0,0 @@
-//===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass eliminates PHI instructions by aggressively coalescing the copies
-// that would be inserted by a naive algorithm and only inserting the copies
-// that are necessary. The coalescing technique initially assumes that all
-// registers appearing in a PHI instruction do not interfere. It then eliminates
-// proven interferences, using dominators to only perform a linear number of
-// interference tests instead of the quadratic number of interference tests
-// that this would naively require. This is a technique derived from:
-//
-// Budimlic, et al. Fast copy coalescing and live-range identification.
-// In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
-// Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
-// PLDI '02. ACM, New York, NY, 25-32.
-//
-// The original implementation constructs a data structure they call a dominance
-// forest for this purpose. The dominance forest was shown to be unnecessary,
-// as it is possible to emulate the creation and traversal of a dominance forest
-// by directly using the dominator tree, rather than actually constructing the
-// dominance forest. This technique is explained in:
-//
-// Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
-// Quality and Efficiency,
-// In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
-// Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
-// CGO '09. IEEE, Washington, DC, 114-125.
-//
-// Careful implementation allows for all of the dominator forest interference
-// checks to be performed at once in a single depth-first traversal of the
-// dominator tree, which is what is implemented here.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "strongphielim"
-#include "llvm/CodeGen/Passes.h"
-#include "PHIEliminationUtils.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/LiveIntervalAnalysis.h"
-#include "llvm/CodeGen/MachineDominators.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Target/TargetInstrInfo.h"
-using namespace llvm;
-
-namespace {
- class StrongPHIElimination : public MachineFunctionPass {
- public:
- static char ID; // Pass identification, replacement for typeid
- StrongPHIElimination() : MachineFunctionPass(ID) {
- initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
- }
-
- virtual void getAnalysisUsage(AnalysisUsage&) const;
- bool runOnMachineFunction(MachineFunction&);
-
- private:
- /// This struct represents a single node in the union-find data structure
- /// representing the variable congruence classes. There is one difference
- /// from a normal union-find data structure. We steal two bits from the parent
- /// pointer . One of these bits is used to represent whether the register
- /// itself has been isolated, and the other is used to represent whether the
- /// PHI with that register as its destination has been isolated.
- ///
- /// Note that this leads to the strange situation where the leader of a
- /// congruence class may no longer logically be a member, due to being
- /// isolated.
- struct Node {
- enum Flags {
- kRegisterIsolatedFlag = 1,
- kPHIIsolatedFlag = 2
- };
- Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }
-
- Node *getLeader();
-
- PointerIntPair<Node*, 2> parent;
- unsigned value;
- unsigned rank;
- };
-
- /// Add a register in a new congruence class containing only itself.
- void addReg(unsigned);
-
- /// Join the congruence classes of two registers. This function is biased
- /// towards the left argument, i.e. after
- ///
- /// addReg(r2);
- /// unionRegs(r1, r2);
- ///
- /// the leader of the unioned congruence class is the same as the leader of
- /// r1's congruence class prior to the union. This is actually relied upon
- /// in the copy insertion code.
- void unionRegs(unsigned, unsigned);
-
- /// Get the color of a register. The color is 0 if the register has been
- /// isolated.
- unsigned getRegColor(unsigned);
-
- // Isolate a register.
- void isolateReg(unsigned);
-
- /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
- /// isolated. Otherwise, it is the original color of its destination and
- /// all of its operands (before they were isolated, if they were).
- unsigned getPHIColor(MachineInstr*);
-
- /// Isolate a PHI.
- void isolatePHI(MachineInstr*);
-
- /// Traverses a basic block, splitting any interferences found between
- /// registers in the same congruence class. It takes two DenseMaps as
- /// arguments that it also updates: CurrentDominatingParent, which maps
- /// a color to the register in that congruence class whose definition was
- /// most recently seen, and ImmediateDominatingParent, which maps a register
- /// to the register in the same congruence class that most immediately
- /// dominates it.
- ///
- /// This function assumes that it is being called in a depth-first traversal
- /// of the dominator tree.
- void SplitInterferencesForBasicBlock(
- MachineBasicBlock&,
- DenseMap<unsigned, unsigned> &CurrentDominatingParent,
- DenseMap<unsigned, unsigned> &ImmediateDominatingParent);
-
- // Lowers a PHI instruction, inserting copies of the source and destination
- // registers as necessary.
- void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);
-
- // Merges the live interval of Reg into NewReg and renames Reg to NewReg
- // everywhere that Reg appears. Requires Reg and NewReg to have non-
- // overlapping lifetimes.
- void MergeLIsAndRename(unsigned Reg, unsigned NewReg);
-
- MachineRegisterInfo *MRI;
- const TargetInstrInfo *TII;
- MachineDominatorTree *DT;
- LiveIntervals *LI;
-
- BumpPtrAllocator Allocator;
-
- DenseMap<unsigned, Node*> RegNodeMap;
-
- // Maps a basic block to a list of its defs of registers that appear as PHI
- // sources.
- DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > PHISrcDefs;
-
- // Maps a color to a pair of a MachineInstr* and a virtual register, which
- // is the operand of that PHI corresponding to the current basic block.
- DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;
-
- // FIXME: Can these two data structures be combined? Would a std::multimap
- // be any better?
-
- // Stores pairs of predecessor basic blocks and the source registers of
- // inserted copy instructions.
- typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
- SrcCopySet InsertedSrcCopySet;
-
- // Maps pairs of predecessor basic blocks and colors to their defining copy
- // instructions.
- typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
- SrcCopyMap;
- SrcCopyMap InsertedSrcCopyMap;
-
- // Maps inserted destination copy registers to their defining copy
- // instructions.
- typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
- DestCopyMap InsertedDestCopies;
- };
-
- struct MIIndexCompare {
- MIIndexCompare(LiveIntervals *LiveIntervals) : LI(LiveIntervals) { }
-
- bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const {
- return LI->getInstructionIndex(LHS) < LI->getInstructionIndex(RHS);
- }
-
- LiveIntervals *LI;
- };
-} // namespace
-
-STATISTIC(NumPHIsLowered, "Number of PHIs lowered");
-STATISTIC(NumDestCopiesInserted, "Number of destination copies inserted");
-STATISTIC(NumSrcCopiesInserted, "Number of source copies inserted");
-
-char StrongPHIElimination::ID = 0;
-INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
- "Eliminate PHI nodes for register allocation, intelligently", false, false)
-INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
-INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
-INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
-INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
- "Eliminate PHI nodes for register allocation, intelligently", false, false)
-
-char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
-
-void StrongPHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<MachineDominatorTree>();
- AU.addRequired<SlotIndexes>();
- AU.addPreserved<SlotIndexes>();
- AU.addRequired<LiveIntervals>();
- AU.addPreserved<LiveIntervals>();
- MachineFunctionPass::getAnalysisUsage(AU);
-}
-
-static MachineOperand *findLastUse(MachineBasicBlock *MBB, unsigned Reg) {
- // FIXME: This only needs to check from the first terminator, as only the
- // first terminator can use a virtual register.
- for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
- assert (RI != MBB->rend());
- MachineInstr *MI = &*RI;
-
- for (MachineInstr::mop_iterator OI = MI->operands_begin(),
- OE = MI->operands_end(); OI != OE; ++OI) {
- MachineOperand &MO = *OI;
- if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
- return &MO;
- }
- }
-}
-
-bool StrongPHIElimination::runOnMachineFunction(MachineFunction &MF) {
- MRI = &MF.getRegInfo();
- TII = MF.getTarget().getInstrInfo();
- DT = &getAnalysis<MachineDominatorTree>();
- LI = &getAnalysis<LiveIntervals>();
-
- for (MachineFunction::iterator I = MF.begin(), E = MF.end();
- I != E; ++I) {
- for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
- BBI != BBE && BBI->isPHI(); ++BBI) {
- unsigned DestReg = BBI->getOperand(0).getReg();
- addReg(DestReg);
- PHISrcDefs[I].push_back(BBI);
-
- for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
- MachineOperand &SrcMO = BBI->getOperand(i);
- unsigned SrcReg = SrcMO.getReg();
- addReg(SrcReg);
- unionRegs(DestReg, SrcReg);
-
- MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
- if (DefMI)
- PHISrcDefs[DefMI->getParent()].push_back(DefMI);
- }
- }
- }
-
- // Perform a depth-first traversal of the dominator tree, splitting
- // interferences amongst PHI-congruence classes.
- DenseMap<unsigned, unsigned> CurrentDominatingParent;
- DenseMap<unsigned, unsigned> ImmediateDominatingParent;
- for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
- DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
- SplitInterferencesForBasicBlock(*DI->getBlock(),
- CurrentDominatingParent,
- ImmediateDominatingParent);
- }
-
- // Insert copies for all PHI source and destination registers.
- for (MachineFunction::iterator I = MF.begin(), E = MF.end();
- I != E; ++I) {
- for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
- BBI != BBE && BBI->isPHI(); ++BBI) {
- InsertCopiesForPHI(BBI, I);
- }
- }
-
- // FIXME: Preserve the equivalence classes during copy insertion and use
- // the preversed equivalence classes instead of recomputing them.
- RegNodeMap.clear();
- for (MachineFunction::iterator I = MF.begin(), E = MF.end();
- I != E; ++I) {
- for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
- BBI != BBE && BBI->isPHI(); ++BBI) {
- unsigned DestReg = BBI->getOperand(0).getReg();
- addReg(DestReg);
-
- for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
- unsigned SrcReg = BBI->getOperand(i).getReg();
- addReg(SrcReg);
- unionRegs(DestReg, SrcReg);
- }
- }
- }
-
- DenseMap<unsigned, unsigned> RegRenamingMap;
- bool Changed = false;
- for (MachineFunction::iterator I = MF.begin(), E = MF.end();
- I != E; ++I) {
- MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
- while (BBI != BBE && BBI->isPHI()) {
- MachineInstr *PHI = BBI;
-
- assert(PHI->getNumOperands() > 0);
-
- unsigned SrcReg = PHI->getOperand(1).getReg();
- unsigned SrcColor = getRegColor(SrcReg);
- unsigned NewReg = RegRenamingMap[SrcColor];
- if (!NewReg) {
- NewReg = SrcReg;
- RegRenamingMap[SrcColor] = SrcReg;
- }
- MergeLIsAndRename(SrcReg, NewReg);
-
- unsigned DestReg = PHI->getOperand(0).getReg();
- if (!InsertedDestCopies.count(DestReg))
- MergeLIsAndRename(DestReg, NewReg);
-
- for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
- unsigned SrcReg = PHI->getOperand(i).getReg();
- MergeLIsAndRename(SrcReg, NewReg);
- }
-
- ++BBI;
- LI->RemoveMachineInstrFromMaps(PHI);
- PHI->eraseFromParent();
- Changed = true;
- }
- }
-
- // Due to the insertion of copies to split live ranges, the live intervals are
- // guaranteed to not overlap, except in one case: an original PHI source and a
- // PHI destination copy. In this case, they have the same value and thus don't
- // truly intersect, so we merge them into the value live at that point.
- // FIXME: Is there some better way we can handle this?
- for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
- E = InsertedDestCopies.end(); I != E; ++I) {
- unsigned DestReg = I->first;
- unsigned DestColor = getRegColor(DestReg);
- unsigned NewReg = RegRenamingMap[DestColor];
-
- LiveInterval &DestLI = LI->getInterval(DestReg);
- LiveInterval &NewLI = LI->getInterval(NewReg);
-
- assert(DestLI.ranges.size() == 1
- && "PHI destination copy's live interval should be a single live "
- "range from the beginning of the BB to the copy instruction.");
- LiveRange *DestLR = DestLI.begin();
- VNInfo *NewVNI = NewLI.getVNInfoAt(DestLR->start);
- if (!NewVNI) {
- NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator());
- MachineInstr *CopyInstr = I->second;
- CopyInstr->getOperand(1).setIsKill(true);
- }
-
- LiveRange NewLR(DestLR->start, DestLR->end, NewVNI);
- NewLI.addRange(NewLR);
-
- LI->removeInterval(DestReg);
- MRI->replaceRegWith(DestReg, NewReg);
- }
-
- // Adjust the live intervals of all PHI source registers to handle the case
- // where the PHIs in successor blocks were the only later uses of the source
- // register.
- for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
- E = InsertedSrcCopySet.end(); I != E; ++I) {
- MachineBasicBlock *MBB = I->first;
- unsigned SrcReg = I->second;
- if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
- SrcReg = RenamedRegister;
-
- LiveInterval &SrcLI = LI->getInterval(SrcReg);
-
- bool isLiveOut = false;
- for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
- SE = MBB->succ_end(); SI != SE; ++SI) {
- if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
- isLiveOut = true;
- break;
- }
- }
-
- if (isLiveOut)
- continue;
-
- MachineOperand *LastUse = findLastUse(MBB, SrcReg);
- assert(LastUse);
- SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
- SrcLI.removeRange(LastUseIndex.getRegSlot(), LI->getMBBEndIdx(MBB));
- LastUse->setIsKill(true);
- }
-
- Allocator.Reset();
- RegNodeMap.clear();
- PHISrcDefs.clear();
- InsertedSrcCopySet.clear();
- InsertedSrcCopyMap.clear();
- InsertedDestCopies.clear();
-
- return Changed;
-}
-
-void StrongPHIElimination::addReg(unsigned Reg) {
- Node *&N = RegNodeMap[Reg];
- if (!N)
- N = new (Allocator) Node(Reg);
-}
-
-StrongPHIElimination::Node*
-StrongPHIElimination::Node::getLeader() {
- Node *N = this;
- Node *Parent = parent.getPointer();
- Node *Grandparent = Parent->parent.getPointer();
-
- while (Parent != Grandparent) {
- N->parent.setPointer(Grandparent);
- N = Grandparent;
- Parent = Parent->parent.getPointer();
- Grandparent = Parent->parent.getPointer();
- }
-
- return Parent;
-}
-
-unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
- DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
- if (RI == RegNodeMap.end())
- return 0;
- Node *Node = RI->second;
- if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
- return 0;
- return Node->getLeader()->value;
-}
-
-void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
- Node *Node1 = RegNodeMap[Reg1]->getLeader();
- Node *Node2 = RegNodeMap[Reg2]->getLeader();
-
- if (Node1->rank > Node2->rank) {
- Node2->parent.setPointer(Node1->getLeader());
- } else if (Node1->rank < Node2->rank) {
- Node1->parent.setPointer(Node2->getLeader());
- } else if (Node1 != Node2) {
- Node2->parent.setPointer(Node1->getLeader());
- Node1->rank++;
- }
-}
-
-void StrongPHIElimination::isolateReg(unsigned Reg) {
- Node *Node = RegNodeMap[Reg];
- Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
-}
-
-unsigned StrongPHIElimination::getPHIColor(MachineInstr *PHI) {
- assert(PHI->isPHI());
-
- unsigned DestReg = PHI->getOperand(0).getReg();
- Node *DestNode = RegNodeMap[DestReg];
- if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
- return 0;
-
- for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
- unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
- if (SrcColor)
- return SrcColor;
- }
- return 0;
-}
-
-void StrongPHIElimination::isolatePHI(MachineInstr *PHI) {
- assert(PHI->isPHI());
- Node *Node = RegNodeMap[PHI->getOperand(0).getReg()];
- Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
-}
-
-/// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
-/// interferences found between registers in the same congruence class. It
-/// takes two DenseMaps as arguments that it also updates:
-///
-/// 1) CurrentDominatingParent, which maps a color to the register in that
-/// congruence class whose definition was most recently seen.
-///
-/// 2) ImmediateDominatingParent, which maps a register to the register in the
-/// same congruence class that most immediately dominates it.
-///
-/// This function assumes that it is being called in a depth-first traversal
-/// of the dominator tree.
-///
-/// The algorithm used here is a generalization of the dominance-based SSA test
-/// for two variables. If there are variables a_1, ..., a_n such that
-///
-/// def(a_1) dom ... dom def(a_n),
-///
-/// then we can test for an interference between any two a_i by only using O(n)
-/// interference tests between pairs of variables. If i < j and a_i and a_j
-/// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
-/// Thus, in order to test for an interference involving a_i, we need only check
-/// for a potential interference with a_i+1.
-///
-/// This method can be generalized to arbitrary sets of variables by performing
-/// a depth-first traversal of the dominator tree. As we traverse down a branch
-/// of the dominator tree, we keep track of the current dominating variable and
-/// only perform an interference test with that variable. However, when we go to
-/// another branch of the dominator tree, the definition of the current dominating
-/// variable may no longer dominate the current block. In order to correct this,
-/// we need to use a stack of past choices of the current dominating variable
-/// and pop from this stack until we find a variable whose definition actually
-/// dominates the current block.
-///
-/// There will be one push on this stack for each variable that has become the
-/// current dominating variable, so instead of using an explicit stack we can
-/// simply associate the previous choice for a current dominating variable with
-/// the new choice. This works better in our implementation, where we test for
-/// interference in multiple distinct sets at once.
-void
-StrongPHIElimination::SplitInterferencesForBasicBlock(
- MachineBasicBlock &MBB,
- DenseMap<unsigned, unsigned> &CurrentDominatingParent,
- DenseMap<unsigned, unsigned> &ImmediateDominatingParent) {
- // Sort defs by their order in the original basic block, as the code below
- // assumes that it is processing definitions in dominance order.
- std::vector<MachineInstr*> &DefInstrs = PHISrcDefs[&MBB];
- std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LI));
-
- for (std::vector<MachineInstr*>::const_iterator BBI = DefInstrs.begin(),
- BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
- for (MachineInstr::const_mop_iterator I = (*BBI)->operands_begin(),
- E = (*BBI)->operands_end(); I != E; ++I) {
- const MachineOperand &MO = *I;
-
- // FIXME: This would be faster if it were possible to bail out of checking
- // an instruction's operands after the explicit defs, but this is incorrect
- // for variadic instructions, which may appear before register allocation
- // in the future.
- if (!MO.isReg() || !MO.isDef())
- continue;
-
- unsigned DestReg = MO.getReg();
- if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
- continue;
-
- // If the virtual register being defined is not used in any PHI or has
- // already been isolated, then there are no more interferences to check.
- unsigned DestColor = getRegColor(DestReg);
- if (!DestColor)
- continue;
-
- // The input to this pass sometimes is not in SSA form in every basic
- // block, as some virtual registers have redefinitions. We could eliminate
- // this by fixing the passes that generate the non-SSA code, or we could
- // handle it here by tracking defining machine instructions rather than
- // virtual registers. For now, we just handle the situation conservatively
- // in a way that will possibly lead to false interferences.
- unsigned &CurrentParent = CurrentDominatingParent[DestColor];
- unsigned NewParent = CurrentParent;
- if (NewParent == DestReg)
- continue;
-
- // Pop registers from the stack represented by ImmediateDominatingParent
- // until we find a parent that dominates the current instruction.
- while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), *BBI)
- || !getRegColor(NewParent)))
- NewParent = ImmediateDominatingParent[NewParent];
-
- // If NewParent is nonzero, then its definition dominates the current
- // instruction, so it is only necessary to check for the liveness of
- // NewParent in order to check for an interference.
- if (NewParent
- && LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(*BBI))) {
- // If there is an interference, always isolate the new register. This
- // could be improved by using a heuristic that decides which of the two
- // registers to isolate.
- isolateReg(DestReg);
- CurrentParent = NewParent;
- } else {
- // If there is no interference, update ImmediateDominatingParent and set
- // the CurrentDominatingParent for this color to the current register.
- ImmediateDominatingParent[DestReg] = NewParent;
- CurrentParent = DestReg;
- }
- }
- }
-
- // We now walk the PHIs in successor blocks and check for interferences. This
- // is necessary because the use of a PHI's operands are logically contained in
- // the predecessor block. The def of a PHI's destination register is processed
- // along with the other defs in a basic block.
-
- CurrentPHIForColor.clear();
-
- for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
- SE = MBB.succ_end(); SI != SE; ++SI) {
- for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
- BBI != BBE && BBI->isPHI(); ++BBI) {
- MachineInstr *PHI = BBI;
-
- // If a PHI is already isolated, either by being isolated directly or
- // having all of its operands isolated, ignore it.
- unsigned Color = getPHIColor(PHI);
- if (!Color)
- continue;
-
- // Find the index of the PHI operand that corresponds to this basic block.
- unsigned PredIndex;
- for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
- if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
- break;
- }
- assert(PredIndex < PHI->getNumOperands());
- unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();
-
- // Pop registers from the stack represented by ImmediateDominatingParent
- // until we find a parent that dominates the current instruction.
- unsigned &CurrentParent = CurrentDominatingParent[Color];
- unsigned NewParent = CurrentParent;
- while (NewParent
- && (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
- || !getRegColor(NewParent)))
- NewParent = ImmediateDominatingParent[NewParent];
- CurrentParent = NewParent;
-
- // If there is an interference with a register, always isolate the
- // register rather than the PHI. It is also possible to isolate the
- // PHI, but that introduces copies for all of the registers involved
- // in that PHI.
- if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
- && NewParent != PredOperandReg)
- isolateReg(NewParent);
-
- std::pair<MachineInstr*, unsigned>
- &CurrentPHI = CurrentPHIForColor[Color];
-
- // If two PHIs have the same operand from every shared predecessor, then
- // they don't actually interfere. Otherwise, isolate the current PHI. This
- // could possibly be improved, e.g. we could isolate the PHI with the
- // fewest operands.
- if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
- isolatePHI(PHI);
- else
- CurrentPHI = std::make_pair(PHI, PredOperandReg);
- }
- }
-}
-
-void StrongPHIElimination::InsertCopiesForPHI(MachineInstr *PHI,
- MachineBasicBlock *MBB) {
- assert(PHI->isPHI());
- ++NumPHIsLowered;
- unsigned PHIColor = getPHIColor(PHI);
-
- for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
- MachineOperand &SrcMO = PHI->getOperand(i);
-
- // If a source is defined by an implicit def, there is no need to insert a
- // copy in the predecessor.
- if (SrcMO.isUndef())
- continue;
-
- unsigned SrcReg = SrcMO.getReg();
- assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
- "Machine PHI Operands must all be virtual registers!");
-
- MachineBasicBlock *PredBB = PHI->getOperand(i + 1).getMBB();
- unsigned SrcColor = getRegColor(SrcReg);
-
- // If neither the PHI nor the operand were isolated, then we only need to
- // set the phi-kill flag on the VNInfo at this PHI.
- if (PHIColor && SrcColor == PHIColor) {
- LiveInterval &SrcInterval = LI->getInterval(SrcReg);
- SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
- VNInfo *SrcVNI = SrcInterval.getVNInfoBefore(PredIndex);
- (void)SrcVNI;
- assert(SrcVNI);
- continue;
- }
-
- unsigned CopyReg = 0;
- if (PHIColor) {
- SrcCopyMap::const_iterator I
- = InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
- CopyReg
- = I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
- }
-
- if (!CopyReg) {
- const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
- CopyReg = MRI->createVirtualRegister(RC);
-
- MachineBasicBlock::iterator
- CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
- unsigned SrcSubReg = SrcMO.getSubReg();
- MachineInstr *CopyInstr = BuildMI(*PredBB,
- CopyInsertPoint,
- PHI->getDebugLoc(),
- TII->get(TargetOpcode::COPY),
- CopyReg).addReg(SrcReg, 0, SrcSubReg);
- LI->InsertMachineInstrInMaps(CopyInstr);
- ++NumSrcCopiesInserted;
-
- // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
- // the newly added range.
- LI->addLiveRangeToEndOfBlock(CopyReg, CopyInstr);
- InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));
-
- addReg(CopyReg);
- if (PHIColor) {
- unionRegs(PHIColor, CopyReg);
- assert(getRegColor(CopyReg) != CopyReg);
- } else {
- PHIColor = CopyReg;
- assert(getRegColor(CopyReg) == CopyReg);
- }
-
- // Insert into map if not already there.
- InsertedSrcCopyMap.insert(std::make_pair(std::make_pair(PredBB, PHIColor),
- CopyInstr));
- }
-
- SrcMO.setReg(CopyReg);
-
- // If SrcReg is not live beyond the PHI, trim its interval so that it is no
- // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
- // processed later, but this is still correct to do at this point because we
- // never rely on LiveIntervals being correct while inserting copies.
- // FIXME: Should this just count uses at PHIs like the normal PHIElimination
- // pass does?
- LiveInterval &SrcLI = LI->getInterval(SrcReg);
- SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
- SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
- SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
- if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
- SrcLI.removeRange(MBBStartIndex, PHIIndex, true);
- }
-
- unsigned DestReg = PHI->getOperand(0).getReg();
- unsigned DestColor = getRegColor(DestReg);
-
- if (PHIColor && DestColor == PHIColor) {
- LiveInterval &DestLI = LI->getInterval(DestReg);
-
- // Set the phi-def flag for the VN at this PHI.
- SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
- VNInfo *DestVNI = DestLI.getVNInfoAt(PHIIndex.getRegSlot());
- assert(DestVNI);
-
- // Prior to PHI elimination, the live ranges of PHIs begin at their defining
- // instruction. After PHI elimination, PHI instructions are replaced by VNs
- // with the phi-def flag set, and the live ranges of these VNs start at the
- // beginning of the basic block.
- SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
- DestVNI->def = MBBStartIndex;
- DestLI.addRange(LiveRange(MBBStartIndex,
- PHIIndex.getRegSlot(),
- DestVNI));
- return;
- }
-
- const TargetRegisterClass *RC = MRI->getRegClass(DestReg);
- unsigned CopyReg = MRI->createVirtualRegister(RC);
-
- MachineInstr *CopyInstr = BuildMI(*MBB,
- MBB->SkipPHIsAndLabels(MBB->begin()),
- PHI->getDebugLoc(),
- TII->get(TargetOpcode::COPY),
- DestReg).addReg(CopyReg);
- LI->InsertMachineInstrInMaps(CopyInstr);
- PHI->getOperand(0).setReg(CopyReg);
- ++NumDestCopiesInserted;
-
- // Add the region from the beginning of MBB to the copy instruction to
- // CopyReg's live interval, and give the VNInfo the phidef flag.
- LiveInterval &CopyLI = LI->getOrCreateInterval(CopyReg);
- SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
- SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
- VNInfo *CopyVNI = CopyLI.getNextValue(MBBStartIndex,
- LI->getVNInfoAllocator());
- CopyLI.addRange(LiveRange(MBBStartIndex,
- DestCopyIndex.getRegSlot(),
- CopyVNI));
-
- // Adjust DestReg's live interval to adjust for its new definition at
- // CopyInstr.
- LiveInterval &DestLI = LI->getOrCreateInterval(DestReg);
- SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
- DestLI.removeRange(PHIIndex.getRegSlot(), DestCopyIndex.getRegSlot());
-
- VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
- assert(DestVNI);
- DestVNI->def = DestCopyIndex.getRegSlot();
-
- InsertedDestCopies[CopyReg] = CopyInstr;
-}
-
-void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
- if (Reg == NewReg)
- return;
-
- LiveInterval &OldLI = LI->getInterval(Reg);
- LiveInterval &NewLI = LI->getInterval(NewReg);
-
- // Merge the live ranges of the two registers.
- DenseMap<VNInfo*, VNInfo*> VNMap;
- for (LiveInterval::iterator LRI = OldLI.begin(), LRE = OldLI.end();
- LRI != LRE; ++LRI) {
- LiveRange OldLR = *LRI;
- VNInfo *OldVN = OldLR.valno;
-
- VNInfo *&NewVN = VNMap[OldVN];
- if (!NewVN) {
- NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
- VNMap[OldVN] = NewVN;
- }
-
- LiveRange LR(OldLR.start, OldLR.end, NewVN);
- NewLI.addRange(LR);
- }
-
- // Remove the LiveInterval for the register being renamed and replace all
- // of its defs and uses with the new register.
- LI->removeInterval(Reg);
- MRI->replaceRegWith(Reg, NewReg);
-}
diff --git a/lib/CodeGen/TailDuplication.cpp b/lib/CodeGen/TailDuplication.cpp
index 8a1d567..ff0181e 100644
--- a/lib/CodeGen/TailDuplication.cpp
+++ b/lib/CodeGen/TailDuplication.cpp
@@ -638,8 +638,6 @@ bothUsedInPHI(const MachineBasicBlock &A,
bool
TailDuplicatePass::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
- SmallPtrSet<MachineBasicBlock*, 8> Succs(BB.succ_begin(), BB.succ_end());
-
for (MachineBasicBlock::pred_iterator PI = BB.pred_begin(),
PE = BB.pred_end(); PI != PE; ++PI) {
MachineBasicBlock *PredBB = *PI;
diff --git a/lib/CodeGen/TargetInstrInfo.cpp b/lib/CodeGen/TargetInstrInfo.cpp
index bb8bd42..bf4fd65 100644
--- a/lib/CodeGen/TargetInstrInfo.cpp
+++ b/lib/CodeGen/TargetInstrInfo.cpp
@@ -17,6 +17,7 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/CommandLine.h"
@@ -276,6 +277,36 @@ bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
return false;
}
+bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
+ unsigned SubIdx, unsigned &Size,
+ unsigned &Offset,
+ const TargetMachine *TM) const {
+ if (!SubIdx) {
+ Size = RC->getSize();
+ Offset = 0;
+ return true;
+ }
+ unsigned BitSize = TM->getRegisterInfo()->getSubRegIdxSize(SubIdx);
+ // Convert bit size to byte size to be consistent with
+ // MCRegisterClass::getSize().
+ if (BitSize % 8)
+ return false;
+
+ int BitOffset = TM->getRegisterInfo()->getSubRegIdxOffset(SubIdx);
+ if (BitOffset < 0 || BitOffset % 8)
+ return false;
+
+ Size = BitSize /= 8;
+ Offset = (unsigned)BitOffset / 8;
+
+ assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
+
+ if (!TM->getDataLayout()->isLittleEndian()) {
+ Offset = RC->getSize() - (Offset + Size);
+ }
+ return true;
+}
+
void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg,
@@ -364,6 +395,7 @@ TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
// Ask the target to do the actual folding.
if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
+ NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
// Add a memory operand, foldMemoryOperandImpl doesn't do that.
assert((!(Flags & MachineMemOperand::MOStore) ||
NewMI->mayStore()) &&
@@ -424,9 +456,19 @@ TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
NewMI = MBB.insert(MI, NewMI);
// Copy the memoperands from the load to the folded instruction.
- NewMI->setMemRefs(LoadMI->memoperands_begin(),
- LoadMI->memoperands_end());
-
+ if (MI->memoperands_empty()) {
+ NewMI->setMemRefs(LoadMI->memoperands_begin(),
+ LoadMI->memoperands_end());
+ }
+ else {
+ // Handle the rare case of folding multiple loads.
+ NewMI->setMemRefs(MI->memoperands_begin(),
+ MI->memoperands_end());
+ for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(),
+ E = LoadMI->memoperands_end(); I != E; ++I) {
+ NewMI->addMemOperand(MF, *I);
+ }
+ }
return NewMI;
}
@@ -630,6 +672,10 @@ unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel,
return 1;
}
+unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const {
+ return 0;
+}
+
unsigned TargetInstrInfo::
getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
diff --git a/lib/CodeGen/TargetLoweringBase.cpp b/lib/CodeGen/TargetLoweringBase.cpp
index 8d8f81b..30305af 100644
--- a/lib/CodeGen/TargetLoweringBase.cpp
+++ b/lib/CodeGen/TargetLoweringBase.cpp
@@ -191,6 +191,11 @@ static void InitLibcallNames(const char **Names, const TargetMachine &TM) {
Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
+ Names[RTLIB::ROUND_F32] = "roundf";
+ Names[RTLIB::ROUND_F64] = "round";
+ Names[RTLIB::ROUND_F80] = "roundl";
+ Names[RTLIB::ROUND_F128] = "roundl";
+ Names[RTLIB::ROUND_PPCF128] = "roundl";
Names[RTLIB::FLOOR_F32] = "floorf";
Names[RTLIB::FLOOR_F64] = "floor";
Names[RTLIB::FLOOR_F80] = "floorl";
@@ -313,34 +318,62 @@ static void InitLibcallNames(const char **Names, const TargetMachine &TM) {
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
+ Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
+ Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
+ Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
+ Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
+ Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
+ Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
+ Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
+ Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
+ Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
+ Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
+ Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
+ Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
+ Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
+ Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
+ Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
+ Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
+ Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
+ Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
+ Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
+ Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
+ Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
+ Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
+ Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
+ Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
+ Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
+ Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
+ Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
+ Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) {
Names[RTLIB::SINCOS_F32] = "sincosf";
@@ -356,6 +389,13 @@ static void InitLibcallNames(const char **Names, const TargetMachine &TM) {
Names[RTLIB::SINCOS_F128] = 0;
Names[RTLIB::SINCOS_PPCF128] = 0;
}
+
+ if (Triple(TM.getTargetTriple()).getOS() != Triple::OpenBSD) {
+ Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
+ } else {
+ // These are generally not available.
+ Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = 0;
+ }
}
/// InitLibcallCallingConvs - Set default libcall CallingConvs.
@@ -624,7 +664,6 @@ TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
// Perform these initializations only once.
IsLittleEndian = TD->isLittleEndian();
- PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0));
MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
= MaxStoresPerMemmoveOptSize = 4;
@@ -682,6 +721,14 @@ void TargetLoweringBase::initActions() {
// These operations default to expand.
setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
+
+ // These library functions default to expand.
+ setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand);
+
+ // These operations default to expand for vector types.
+ if (VT >= MVT::FIRST_VECTOR_VALUETYPE &&
+ VT <= MVT::LAST_VECTOR_VALUETYPE)
+ setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
}
// Most targets ignore the @llvm.prefetch intrinsic.
@@ -747,6 +794,19 @@ void TargetLoweringBase::initActions() {
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
}
+MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
+ return MVT::getIntegerVT(getPointerSizeInBits(AS));
+}
+
+unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
+ return TD->getPointerSizeInBits(AS);
+}
+
+unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
+ assert(Ty->isPointerTy());
+ return getPointerSizeInBits(Ty->getPointerAddressSpace());
+}
+
MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
return MVT::getIntegerVT(8*TD->getPointerSize(0));
}
@@ -1162,7 +1222,7 @@ void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
Flags.setZExt();
for (unsigned i = 0; i < NumParts; ++i)
- Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true, 0, 0));
+ Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
}
}
@@ -1228,6 +1288,7 @@ int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
case PtrToInt: return ISD::BITCAST;
case IntToPtr: return ISD::BITCAST;
case BitCast: return ISD::BITCAST;
+ case AddrSpaceCast: return ISD::ADDRSPACECAST;
case ICmp: return ISD::SETCC;
case FCmp: return ISD::SETCC;
case PHI: return 0;
diff --git a/lib/CodeGen/TargetLoweringObjectFileImpl.cpp b/lib/CodeGen/TargetLoweringObjectFileImpl.cpp
index 07cf871..59d7b57 100644
--- a/lib/CodeGen/TargetLoweringObjectFileImpl.cpp
+++ b/lib/CodeGen/TargetLoweringObjectFileImpl.cpp
@@ -52,10 +52,10 @@ TargetLoweringObjectFileELF::getCFIPersonalitySymbol(const GlobalValue *GV,
default:
report_fatal_error("We do not support this DWARF encoding yet!");
case dwarf::DW_EH_PE_absptr:
- return Mang->getSymbol(GV);
+ return getSymbol(*Mang, GV);
case dwarf::DW_EH_PE_pcrel: {
return getContext().GetOrCreateSymbol(StringRef("DW.ref.") +
- Mang->getSymbol(GV)->getName());
+ getSymbol(*Mang, GV)->getName());
}
}
}
@@ -104,7 +104,7 @@ getTTypeGlobalReference(const GlobalValue *GV, Mangler *Mang,
MCSymbol *SSym = getContext().GetOrCreateSymbol(Name.str());
MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
if (StubSym.getPointer() == 0) {
- MCSymbol *Sym = Mang->getSymbol(GV);
+ MCSymbol *Sym = getSymbol(*Mang, GV);
StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
}
@@ -252,7 +252,7 @@ SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
Prefix = getSectionPrefixForGlobal(Kind);
SmallString<128> Name(Prefix, Prefix+strlen(Prefix));
- MCSymbol *Sym = Mang->getSymbol(GV);
+ MCSymbol *Sym = getSymbol(*Mang, GV);
Name.append(Sym->getName().begin(), Sym->getName().end());
StringRef Group = "";
unsigned Flags = getELFSectionFlags(Kind);
@@ -523,6 +523,11 @@ getExplicitSectionGlobal(const GlobalValue *GV, SectionKind Kind,
const MCSection *TargetLoweringObjectFileMachO::
SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
Mangler *Mang, const TargetMachine &TM) const {
+
+ // Handle thread local data.
+ if (Kind.isThreadBSS()) return TLSBSSSection;
+ if (Kind.isThreadData()) return TLSDataSection;
+
if (Kind.isText())
return GV->isWeakForLinker() ? TextCoalSection : TextSection;
@@ -575,10 +580,6 @@ SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
if (Kind.isBSSLocal())
return DataBSSSection;
- // Handle thread local data.
- if (Kind.isThreadBSS()) return TLSBSSSection;
- if (Kind.isThreadData()) return TLSDataSection;
-
// Otherwise, just drop the variable in the normal data section.
return DataSection;
}
@@ -613,7 +614,7 @@ shouldEmitUsedDirectiveFor(const GlobalValue *GV, Mangler *Mang) const {
// FIXME: ObjC metadata is currently emitted as internal symbols that have
// \1L and \0l prefixes on them. Fix them to be Private/LinkerPrivate and
// this horrible hack can go away.
- MCSymbol *Sym = Mang->getSymbol(GV);
+ MCSymbol *Sym = getSymbol(*Mang, GV);
if (Sym->getName()[0] == 'L' || Sym->getName()[0] == 'l')
return false;
}
@@ -642,7 +643,7 @@ getTTypeGlobalReference(const GlobalValue *GV, Mangler *Mang,
GV->hasHiddenVisibility() ? MachOMMI.getHiddenGVStubEntry(SSym) :
MachOMMI.getGVStubEntry(SSym);
if (StubSym.getPointer() == 0) {
- MCSymbol *Sym = Mang->getSymbol(GV);
+ MCSymbol *Sym = getSymbol(*Mang, GV);
StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
}
@@ -671,7 +672,7 @@ getCFIPersonalitySymbol(const GlobalValue *GV, Mangler *Mang,
MCSymbol *SSym = getContext().GetOrCreateSymbol(Name.str());
MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
if (StubSym.getPointer() == 0) {
- MCSymbol *Sym = Mang->getSymbol(GV);
+ MCSymbol *Sym = getSymbol(*Mang, GV);
StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
}
@@ -732,6 +733,7 @@ getExplicitSectionGlobal(const GlobalValue *GV, SectionKind Kind,
return getContext().getCOFFSection(Name,
Characteristics,
Kind,
+ "",
Selection);
}
@@ -767,16 +769,22 @@ SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
return getContext().getCOFFSection(Name.str(), Characteristics,
- Kind, COFF::IMAGE_COMDAT_SELECT_ANY);
+ Kind, "", COFF::IMAGE_COMDAT_SELECT_ANY);
}
if (Kind.isText())
- return getTextSection();
+ return TextSection;
if (Kind.isThreadLocal())
- return getTLSDataSection();
+ return TLSDataSection;
- return getDataSection();
+ if (Kind.isReadOnly())
+ return ReadOnlySection;
+
+ if (Kind.isBSS())
+ return BSSSection;
+
+ return DataSection;
}
void TargetLoweringObjectFileCOFF::
diff --git a/lib/CodeGen/TargetOptionsImpl.cpp b/lib/CodeGen/TargetOptionsImpl.cpp
index 7a39a4c..f7bf86b 100644
--- a/lib/CodeGen/TargetOptionsImpl.cpp
+++ b/lib/CodeGen/TargetOptionsImpl.cpp
@@ -22,10 +22,8 @@ using namespace llvm;
bool TargetOptions::DisableFramePointerElim(const MachineFunction &MF) const {
// Check to see if we should eliminate non-leaf frame pointers and then
// check to see if we should eliminate all frame pointers.
- bool NoFramePointerElimNonLeaf =
- MF.getFunction()->getFnAttribute("no-frame-pointer-elim-non-leaf")
- .getValueAsString() == "true";
- if (NoFramePointerElimNonLeaf && !NoFramePointerElim) {
+ if (MF.getFunction()->hasFnAttribute("no-frame-pointer-elim-non-leaf") &&
+ !NoFramePointerElim) {
const MachineFrameInfo *MFI = MF.getFrameInfo();
return MFI->hasCalls();
}
diff --git a/lib/CodeGen/TargetRegisterInfo.cpp b/lib/CodeGen/TargetRegisterInfo.cpp
index ffcee1f..5a15243 100644
--- a/lib/CodeGen/TargetRegisterInfo.cpp
+++ b/lib/CodeGen/TargetRegisterInfo.cpp
@@ -73,6 +73,14 @@ void PrintRegUnit::print(raw_ostream &OS) const {
OS << '~' << TRI->getName(*Roots);
}
+void PrintVRegOrUnit::print(raw_ostream &OS) const {
+ if (TRI && TRI->isVirtualRegister(Unit)) {
+ OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
+ return;
+ }
+ PrintRegUnit::print(OS);
+}
+
/// getAllocatableClass - Return the maximal subclass of the given register
/// class that is alloctable, or NULL.
const TargetRegisterClass *
diff --git a/lib/CodeGen/TargetSchedule.cpp b/lib/CodeGen/TargetSchedule.cpp
index 64ee9d1..b0f2ca6 100644
--- a/lib/CodeGen/TargetSchedule.cpp
+++ b/lib/CodeGen/TargetSchedule.cpp
@@ -210,7 +210,8 @@ unsigned TargetSchedModel::computeOperandLatency(
// unit latency (defaultDefLatency may be too conservative).
#ifndef NDEBUG
if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
- && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()) {
+ && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()
+ && SchedModel.isComplete()) {
std::string Err;
raw_string_ostream ss(Err);
ss << "DefIdx " << DefIdx << " exceeds machine model writes for "
@@ -224,10 +225,13 @@ unsigned TargetSchedModel::computeOperandLatency(
return DefMI->isTransient() ? 0 : TII->defaultDefLatency(&SchedModel, DefMI);
}
-unsigned TargetSchedModel::computeInstrLatency(const MachineInstr *MI) const {
+unsigned
+TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
+ bool UseDefaultDefLatency) const {
// For the itinerary model, fall back to the old subtarget hook.
// Allow subtargets to compute Bundle latencies outside the machine model.
- if (hasInstrItineraries() || MI->isBundle())
+ if (hasInstrItineraries() || MI->isBundle() ||
+ (!hasInstrSchedModel() && !UseDefaultDefLatency))
return TII->getInstrLatency(&InstrItins, MI);
if (hasInstrSchedModel()) {
diff --git a/lib/CodeGen/TwoAddressInstructionPass.cpp b/lib/CodeGen/TwoAddressInstructionPass.cpp
index c52e675..b9a6b47 100644
--- a/lib/CodeGen/TwoAddressInstructionPass.cpp
+++ b/lib/CodeGen/TwoAddressInstructionPass.cpp
@@ -1400,7 +1400,7 @@ TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
SlotIndex endIdx =
LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber);
- LI.addRange(LiveRange(LastCopyIdx, endIdx, VNI));
+ LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
}
}
@@ -1457,7 +1457,7 @@ TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
if (I->end == UseIdx)
- LI.removeRange(LastCopyIdx, UseIdx);
+ LI.removeSegment(LastCopyIdx, UseIdx);
}
} else if (RemovedKillFlag) {
diff --git a/lib/CodeGen/UnreachableBlockElim.cpp b/lib/CodeGen/UnreachableBlockElim.cpp
index a95ebcd..f735ef2 100644
--- a/lib/CodeGen/UnreachableBlockElim.cpp
+++ b/lib/CodeGen/UnreachableBlockElim.cpp
@@ -24,7 +24,6 @@
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
@@ -50,7 +49,6 @@ namespace {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorTree>();
- AU.addPreserved<ProfileInfo>();
}
};
}
@@ -87,9 +85,7 @@ bool UnreachableBlockElim::runOnFunction(Function &F) {
}
// Actually remove the blocks now.
- ProfileInfo *PI = getAnalysisIfAvailable<ProfileInfo>();
for (unsigned i = 0, e = DeadBlocks.size(); i != e; ++i) {
- if (PI) PI->removeBlock(DeadBlocks[i]);
DeadBlocks[i]->eraseFromParent();
}
diff --git a/lib/CodeGen/VirtRegMap.cpp b/lib/CodeGen/VirtRegMap.cpp
index cd012d2..e0aa405 100644
--- a/lib/CodeGen/VirtRegMap.cpp
+++ b/lib/CodeGen/VirtRegMap.cpp
@@ -28,6 +28,7 @@
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
@@ -264,15 +265,36 @@ void VirtRegRewriter::rewrite() {
SmallVector<unsigned, 8> SuperDeads;
SmallVector<unsigned, 8> SuperDefs;
SmallVector<unsigned, 8> SuperKills;
+ SmallPtrSet<const MachineInstr *, 4> NoReturnInsts;
for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
MBBI != MBBE; ++MBBI) {
DEBUG(MBBI->print(dbgs(), Indexes));
+ bool IsExitBB = MBBI->succ_empty();
for (MachineBasicBlock::instr_iterator
MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
MachineInstr *MI = MII;
++MII;
+ // Check if this instruction is a call to a noreturn function.
+ // If so, all the definitions set by this instruction can be ignored.
+ if (IsExitBB && MI->isCall())
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end(); MOI != MOE; ++MOI) {
+ MachineOperand &MO = *MOI;
+ if (!MO.isGlobal())
+ continue;
+ const Function *Func = dyn_cast<Function>(MO.getGlobal());
+ if (!Func || !Func->hasFnAttribute(Attribute::NoReturn) ||
+ // We need to keep correct unwind information
+ // even if the function will not return, since the
+ // runtime may need it.
+ !Func->hasFnAttribute(Attribute::NoUnwind))
+ continue;
+ NoReturnInsts.insert(MI);
+ break;
+ }
+
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
MOE = MI->operands_end(); MOI != MOE; ++MOI) {
MachineOperand &MO = *MOI;
@@ -353,7 +375,25 @@ void VirtRegRewriter::rewrite() {
}
// Tell MRI about physical registers in use.
- for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg)
- if (!MRI->reg_nodbg_empty(Reg))
- MRI->setPhysRegUsed(Reg);
+ if (NoReturnInsts.empty()) {
+ for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg)
+ if (!MRI->reg_nodbg_empty(Reg))
+ MRI->setPhysRegUsed(Reg);
+ } else {
+ for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg) {
+ if (MRI->reg_nodbg_empty(Reg))
+ continue;
+ // Check if this register has a use that will impact the rest of the
+ // code. Uses in debug and noreturn instructions do not impact the
+ // generated code.
+ for (MachineRegisterInfo::reg_nodbg_iterator It =
+ MRI->reg_nodbg_begin(Reg),
+ EndIt = MRI->reg_nodbg_end(); It != EndIt; ++It) {
+ if (!NoReturnInsts.count(&(*It))) {
+ MRI->setPhysRegUsed(Reg);
+ break;
+ }
+ }
+ }
+ }
}