aboutsummaryrefslogtreecommitdiffstats
path: root/lib/IR/Verifier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/IR/Verifier.cpp')
-rw-r--r--lib/IR/Verifier.cpp2012
1 files changed, 1015 insertions, 997 deletions
diff --git a/lib/IR/Verifier.cpp b/lib/IR/Verifier.cpp
index d01e138..fcf48c4 100644
--- a/lib/IR/Verifier.cpp
+++ b/lib/IR/Verifier.cpp
@@ -78,7 +78,7 @@
#include <cstdarg>
using namespace llvm;
-static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(false));
+static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
namespace {
struct VerifierSupport {
@@ -87,11 +87,13 @@ struct VerifierSupport {
/// \brief Track the brokenness of the module while recursively visiting.
bool Broken;
+ bool EverBroken;
explicit VerifierSupport(raw_ostream &OS)
- : OS(OS), M(nullptr), Broken(false) {}
+ : OS(OS), M(nullptr), Broken(false), EverBroken(false) {}
- void WriteValue(const Value *V) {
+private:
+ void Write(const Value *V) {
if (!V)
return;
if (isa<Instruction>(V)) {
@@ -102,81 +104,61 @@ struct VerifierSupport {
}
}
- void WriteMetadata(const Metadata *MD) {
+ void Write(const Metadata *MD) {
if (!MD)
return;
- MD->printAsOperand(OS, true, M);
+ MD->print(OS, M);
+ OS << '\n';
+ }
+
+ void Write(const NamedMDNode *NMD) {
+ if (!NMD)
+ return;
+ NMD->print(OS);
OS << '\n';
}
- void WriteType(Type *T) {
+ void Write(Type *T) {
if (!T)
return;
OS << ' ' << *T;
}
- void WriteComdat(const Comdat *C) {
+ void Write(const Comdat *C) {
if (!C)
return;
OS << *C;
}
- // CheckFailed - A check failed, so print out the condition and the message
- // that failed. This provides a nice place to put a breakpoint if you want
- // to see why something is not correct.
- void CheckFailed(const Twine &Message, const Value *V1 = nullptr,
- const Value *V2 = nullptr, const Value *V3 = nullptr,
- const Value *V4 = nullptr) {
- OS << Message.str() << "\n";
- WriteValue(V1);
- WriteValue(V2);
- WriteValue(V3);
- WriteValue(V4);
- Broken = true;
- }
-
- void CheckFailed(const Twine &Message, const Metadata *V1, const Metadata *V2,
- const Metadata *V3 = nullptr, const Metadata *V4 = nullptr) {
- OS << Message.str() << "\n";
- WriteMetadata(V1);
- WriteMetadata(V2);
- WriteMetadata(V3);
- WriteMetadata(V4);
- Broken = true;
- }
-
- void CheckFailed(const Twine &Message, const Metadata *V1,
- const Value *V2 = nullptr) {
- OS << Message.str() << "\n";
- WriteMetadata(V1);
- WriteValue(V2);
- Broken = true;
- }
-
- void CheckFailed(const Twine &Message, const Value *V1, Type *T2,
- const Value *V3 = nullptr) {
- OS << Message.str() << "\n";
- WriteValue(V1);
- WriteType(T2);
- WriteValue(V3);
- Broken = true;
- }
-
- void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr,
- Type *T3 = nullptr) {
- OS << Message.str() << "\n";
- WriteType(T1);
- WriteType(T2);
- WriteType(T3);
- Broken = true;
- }
-
- void CheckFailed(const Twine &Message, const Comdat *C) {
- OS << Message.str() << "\n";
- WriteComdat(C);
- Broken = true;
+ template <typename T1, typename... Ts>
+ void WriteTs(const T1 &V1, const Ts &... Vs) {
+ Write(V1);
+ WriteTs(Vs...);
+ }
+
+ template <typename... Ts> void WriteTs() {}
+
+public:
+ /// \brief A check failed, so printout out the condition and the message.
+ ///
+ /// This provides a nice place to put a breakpoint if you want to see why
+ /// something is not correct.
+ void CheckFailed(const Twine &Message) {
+ OS << Message << '\n';
+ EverBroken = Broken = true;
+ }
+
+ /// \brief A check failed (with values to print).
+ ///
+ /// This calls the Message-only version so that the above is easier to set a
+ /// breakpoint on.
+ template <typename T1, typename... Ts>
+ void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
+ CheckFailed(Message);
+ WriteTs(V1, Vs...);
}
};
+
class Verifier : public InstVisitor<Verifier>, VerifierSupport {
friend class InstVisitor<Verifier>;
@@ -198,14 +180,18 @@ class Verifier : public InstVisitor<Verifier>, VerifierSupport {
/// personality function.
const Value *PersonalityFn;
- /// \brief Whether we've seen a call to @llvm.frameallocate in this function
+ /// \brief Whether we've seen a call to @llvm.frameescape in this function
/// already.
- bool SawFrameAllocate;
+ bool SawFrameEscape;
+
+ /// Stores the count of how many objects were passed to llvm.frameescape for a
+ /// given function and the largest index passed to llvm.framerecover.
+ DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
public:
- explicit Verifier(raw_ostream &OS = dbgs())
+ explicit Verifier(raw_ostream &OS)
: VerifierSupport(OS), Context(nullptr), PersonalityFn(nullptr),
- SawFrameAllocate(false) {}
+ SawFrameEscape(false) {}
bool verify(const Function &F) {
M = F.getParent();
@@ -240,7 +226,7 @@ public:
visit(const_cast<Function &>(F));
InstsInThisBlock.clear();
PersonalityFn = nullptr;
- SawFrameAllocate = false;
+ SawFrameEscape = false;
return !Broken;
}
@@ -259,6 +245,10 @@ public:
visitFunction(*I);
}
+ // Now that we've visited every function, verify that we never asked to
+ // recover a frame index that wasn't escaped.
+ verifyFrameRecoverIndices();
+
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
visitGlobalVariable(*I);
@@ -278,6 +268,9 @@ public:
visitModuleFlags(M);
visitModuleIdents(M);
+ // Verify debug info last.
+ verifyDebugInfo();
+
return !Broken;
}
@@ -347,6 +340,8 @@ private:
void visitUserOp1(Instruction &I);
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
+ template <class DbgIntrinsicTy>
+ void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
void visitAtomicRMWInst(AtomicRMWInst &RMWI);
void visitFenceInst(FenceInst &FI);
@@ -373,18 +368,9 @@ private:
void VerifyConstantExprBitcastType(const ConstantExpr *CE);
void VerifyStatepoint(ImmutableCallSite CS);
-};
-class DebugInfoVerifier : public VerifierSupport {
-public:
- explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {}
+ void verifyFrameRecoverIndices();
- bool verify(const Module &M) {
- this->M = &M;
- verifyDebugInfo();
- return !Broken;
- }
-
-private:
+ // Module-level debug info verification...
void verifyDebugInfo();
void processInstructions(DebugInfoFinder &Finder);
void processCallInst(DebugInfoFinder &Finder, const CallInst &CI);
@@ -392,66 +378,58 @@ private:
} // End anonymous namespace
// Assert - We know that cond should be true, if not print an error message.
-#define Assert(C, M) \
- do { if (!(C)) { CheckFailed(M); return; } } while (0)
-#define Assert1(C, M, V1) \
- do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
-#define Assert2(C, M, V1, V2) \
- do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
-#define Assert3(C, M, V1, V2, V3) \
- do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
-#define Assert4(C, M, V1, V2, V3, V4) \
- do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
+#define Assert(C, ...) \
+ do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
void Verifier::visit(Instruction &I) {
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
- Assert1(I.getOperand(i) != nullptr, "Operand is null", &I);
+ Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
InstVisitor<Verifier>::visit(I);
}
void Verifier::visitGlobalValue(const GlobalValue &GV) {
- Assert1(!GV.isDeclaration() || GV.hasExternalLinkage() ||
- GV.hasExternalWeakLinkage(),
- "Global is external, but doesn't have external or weak linkage!",
- &GV);
+ Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
+ GV.hasExternalWeakLinkage(),
+ "Global is external, but doesn't have external or weak linkage!", &GV);
- Assert1(GV.getAlignment() <= Value::MaximumAlignment,
- "huge alignment values are unsupported", &GV);
- Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
- "Only global variables can have appending linkage!", &GV);
+ Assert(GV.getAlignment() <= Value::MaximumAlignment,
+ "huge alignment values are unsupported", &GV);
+ Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
+ "Only global variables can have appending linkage!", &GV);
if (GV.hasAppendingLinkage()) {
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
- Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
- "Only global arrays can have appending linkage!", GVar);
+ Assert(GVar && GVar->getType()->getElementType()->isArrayTy(),
+ "Only global arrays can have appending linkage!", GVar);
}
}
void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
if (GV.hasInitializer()) {
- Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
- "Global variable initializer type does not match global "
- "variable type!", &GV);
+ Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
+ "Global variable initializer type does not match global "
+ "variable type!",
+ &GV);
// If the global has common linkage, it must have a zero initializer and
// cannot be constant.
if (GV.hasCommonLinkage()) {
- Assert1(GV.getInitializer()->isNullValue(),
- "'common' global must have a zero initializer!", &GV);
- Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
- &GV);
- Assert1(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
+ Assert(GV.getInitializer()->isNullValue(),
+ "'common' global must have a zero initializer!", &GV);
+ Assert(!GV.isConstant(), "'common' global may not be marked constant!",
+ &GV);
+ Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
}
} else {
- Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
- "invalid linkage type for global declaration", &GV);
+ Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
+ "invalid linkage type for global declaration", &GV);
}
if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
GV.getName() == "llvm.global_dtors")) {
- Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
- "invalid linkage for intrinsic global variable", &GV);
+ Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
+ "invalid linkage for intrinsic global variable", &GV);
// Don't worry about emitting an error for it not being an array,
// visitGlobalValue will complain on appending non-array.
if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) {
@@ -459,48 +437,48 @@ void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
PointerType *FuncPtrTy =
FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
// FIXME: Reject the 2-field form in LLVM 4.0.
- Assert1(STy && (STy->getNumElements() == 2 ||
- STy->getNumElements() == 3) &&
- STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
- STy->getTypeAtIndex(1) == FuncPtrTy,
- "wrong type for intrinsic global variable", &GV);
+ Assert(STy &&
+ (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
+ STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
+ STy->getTypeAtIndex(1) == FuncPtrTy,
+ "wrong type for intrinsic global variable", &GV);
if (STy->getNumElements() == 3) {
Type *ETy = STy->getTypeAtIndex(2);
- Assert1(ETy->isPointerTy() &&
- cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
- "wrong type for intrinsic global variable", &GV);
+ Assert(ETy->isPointerTy() &&
+ cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
+ "wrong type for intrinsic global variable", &GV);
}
}
}
if (GV.hasName() && (GV.getName() == "llvm.used" ||
GV.getName() == "llvm.compiler.used")) {
- Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
- "invalid linkage for intrinsic global variable", &GV);
+ Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
+ "invalid linkage for intrinsic global variable", &GV);
Type *GVType = GV.getType()->getElementType();
if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
- Assert1(PTy, "wrong type for intrinsic global variable", &GV);
+ Assert(PTy, "wrong type for intrinsic global variable", &GV);
if (GV.hasInitializer()) {
const Constant *Init = GV.getInitializer();
const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
- Assert1(InitArray, "wrong initalizer for intrinsic global variable",
- Init);
+ Assert(InitArray, "wrong initalizer for intrinsic global variable",
+ Init);
for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
- Assert1(
- isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V),
- "invalid llvm.used member", V);
- Assert1(V->hasName(), "members of llvm.used must be named", V);
+ Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
+ isa<GlobalAlias>(V),
+ "invalid llvm.used member", V);
+ Assert(V->hasName(), "members of llvm.used must be named", V);
}
}
}
}
- Assert1(!GV.hasDLLImportStorageClass() ||
- (GV.isDeclaration() && GV.hasExternalLinkage()) ||
- GV.hasAvailableExternallyLinkage(),
- "Global is marked as dllimport, but not external", &GV);
+ Assert(!GV.hasDLLImportStorageClass() ||
+ (GV.isDeclaration() && GV.hasExternalLinkage()) ||
+ GV.hasAvailableExternallyLinkage(),
+ "Global is marked as dllimport, but not external", &GV);
if (!GV.hasInitializer()) {
visitGlobalValue(GV);
@@ -540,13 +518,13 @@ void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
const GlobalAlias &GA, const Constant &C) {
if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
- Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA);
+ Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA);
if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
- Assert1(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
+ Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
- Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
- &GA);
+ Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
+ &GA);
} else {
// Only continue verifying subexpressions of GlobalAliases.
// Do not recurse into global initializers.
@@ -567,19 +545,18 @@ void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
}
void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
- Assert1(!GA.getName().empty(),
- "Alias name cannot be empty!", &GA);
- Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()),
- "Alias should have private, internal, linkonce, weak, linkonce_odr, "
- "weak_odr, or external linkage!",
- &GA);
+ Assert(!GA.getName().empty(), "Alias name cannot be empty!", &GA);
+ Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
+ "Alias should have private, internal, linkonce, weak, linkonce_odr, "
+ "weak_odr, or external linkage!",
+ &GA);
const Constant *Aliasee = GA.getAliasee();
- Assert1(Aliasee, "Aliasee cannot be NULL!", &GA);
- Assert1(GA.getType() == Aliasee->getType(),
- "Alias and aliasee types should match!", &GA);
+ Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
+ Assert(GA.getType() == Aliasee->getType(),
+ "Alias and aliasee types should match!", &GA);
- Assert1(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
- "Aliasee should be either GlobalValue or ConstantExpr", &GA);
+ Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
+ "Aliasee should be either GlobalValue or ConstantExpr", &GA);
visitAliaseeSubExpr(GA, *Aliasee);
@@ -592,6 +569,10 @@ void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
if (!MD)
continue;
+ if (NMD.getName() == "llvm.dbg.cu") {
+ Assert(isa<MDCompileUnit>(MD), "invalid compile unit", &NMD, MD);
+ }
+
visitMDNode(*MD);
}
}
@@ -618,8 +599,8 @@ void Verifier::visitMDNode(const MDNode &MD) {
Metadata *Op = MD.getOperand(i);
if (!Op)
continue;
- Assert2(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
- &MD, Op);
+ Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
+ &MD, Op);
if (auto *N = dyn_cast<MDNode>(Op)) {
visitMDNode(*N);
continue;
@@ -631,26 +612,26 @@ void Verifier::visitMDNode(const MDNode &MD) {
}
// Check these last, so we diagnose problems in operands first.
- Assert1(!MD.isTemporary(), "Expected no forward declarations!", &MD);
- Assert1(MD.isResolved(), "All nodes should be resolved!", &MD);
+ Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
+ Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
}
void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
- Assert1(MD.getValue(), "Expected valid value", &MD);
- Assert2(!MD.getValue()->getType()->isMetadataTy(),
- "Unexpected metadata round-trip through values", &MD, MD.getValue());
+ Assert(MD.getValue(), "Expected valid value", &MD);
+ Assert(!MD.getValue()->getType()->isMetadataTy(),
+ "Unexpected metadata round-trip through values", &MD, MD.getValue());
auto *L = dyn_cast<LocalAsMetadata>(&MD);
if (!L)
return;
- Assert1(F, "function-local metadata used outside a function", L);
+ Assert(F, "function-local metadata used outside a function", L);
// If this was an instruction, bb, or argument, verify that it is in the
// function that we expect.
Function *ActualF = nullptr;
if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
- Assert2(I->getParent(), "function-local metadata not in basic block", L, I);
+ Assert(I->getParent(), "function-local metadata not in basic block", L, I);
ActualF = I->getParent()->getParent();
} else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
ActualF = BB->getParent();
@@ -658,7 +639,7 @@ void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
ActualF = A->getParent();
assert(ActualF && "Unimplemented function local metadata case!");
- Assert1(ActualF == F, "function-local metadata used in wrong function", L);
+ Assert(ActualF == F, "function-local metadata used in wrong function", L);
}
void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
@@ -678,126 +659,126 @@ void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
}
void Verifier::visitMDLocation(const MDLocation &N) {
- Assert1(N.getScope(), "location requires a valid scope", &N);
- if (auto *IA = N.getInlinedAt())
- Assert2(isa<MDLocation>(IA), "inlined-at should be a location", &N, IA);
+ Assert(N.getRawScope() && isa<MDLocalScope>(N.getRawScope()),
+ "location requires a valid scope", &N, N.getRawScope());
+ if (auto *IA = N.getRawInlinedAt())
+ Assert(isa<MDLocation>(IA), "inlined-at should be a location", &N, IA);
}
void Verifier::visitGenericDebugNode(const GenericDebugNode &N) {
- Assert1(N.getTag(), "invalid tag", &N);
+ Assert(N.getTag(), "invalid tag", &N);
}
void Verifier::visitMDSubrange(const MDSubrange &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
}
void Verifier::visitMDEnumerator(const MDEnumerator &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
}
void Verifier::visitMDBasicType(const MDBasicType &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_base_type ||
- N.getTag() == dwarf::DW_TAG_unspecified_type,
- "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_base_type ||
+ N.getTag() == dwarf::DW_TAG_unspecified_type,
+ "invalid tag", &N);
}
void Verifier::visitMDDerivedType(const MDDerivedType &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_typedef ||
- N.getTag() == dwarf::DW_TAG_pointer_type ||
- N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
- N.getTag() == dwarf::DW_TAG_reference_type ||
- N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
- N.getTag() == dwarf::DW_TAG_const_type ||
- N.getTag() == dwarf::DW_TAG_volatile_type ||
- N.getTag() == dwarf::DW_TAG_restrict_type ||
- N.getTag() == dwarf::DW_TAG_member ||
- N.getTag() == dwarf::DW_TAG_inheritance ||
- N.getTag() == dwarf::DW_TAG_friend,
- "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_typedef ||
+ N.getTag() == dwarf::DW_TAG_pointer_type ||
+ N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
+ N.getTag() == dwarf::DW_TAG_reference_type ||
+ N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
+ N.getTag() == dwarf::DW_TAG_const_type ||
+ N.getTag() == dwarf::DW_TAG_volatile_type ||
+ N.getTag() == dwarf::DW_TAG_restrict_type ||
+ N.getTag() == dwarf::DW_TAG_member ||
+ N.getTag() == dwarf::DW_TAG_inheritance ||
+ N.getTag() == dwarf::DW_TAG_friend,
+ "invalid tag", &N);
}
void Verifier::visitMDCompositeType(const MDCompositeType &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_array_type ||
- N.getTag() == dwarf::DW_TAG_structure_type ||
- N.getTag() == dwarf::DW_TAG_union_type ||
- N.getTag() == dwarf::DW_TAG_enumeration_type ||
- N.getTag() == dwarf::DW_TAG_subroutine_type ||
- N.getTag() == dwarf::DW_TAG_class_type,
- "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_array_type ||
+ N.getTag() == dwarf::DW_TAG_structure_type ||
+ N.getTag() == dwarf::DW_TAG_union_type ||
+ N.getTag() == dwarf::DW_TAG_enumeration_type ||
+ N.getTag() == dwarf::DW_TAG_subroutine_type ||
+ N.getTag() == dwarf::DW_TAG_class_type,
+ "invalid tag", &N);
}
void Verifier::visitMDSubroutineType(const MDSubroutineType &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
}
void Verifier::visitMDFile(const MDFile &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
}
void Verifier::visitMDCompileUnit(const MDCompileUnit &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
}
void Verifier::visitMDSubprogram(const MDSubprogram &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
}
void Verifier::visitMDLexicalBlock(const MDLexicalBlock &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
}
void Verifier::visitMDLexicalBlockFile(const MDLexicalBlockFile &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
}
void Verifier::visitMDNamespace(const MDNamespace &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
}
void Verifier::visitMDTemplateTypeParameter(const MDTemplateTypeParameter &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
- &N);
+ Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
+ &N);
}
void Verifier::visitMDTemplateValueParameter(
const MDTemplateValueParameter &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
- N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
- N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
- "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
+ N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
+ N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
+ "invalid tag", &N);
}
void Verifier::visitMDGlobalVariable(const MDGlobalVariable &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
}
void Verifier::visitMDLocalVariable(const MDLocalVariable &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_auto_variable ||
- N.getTag() == dwarf::DW_TAG_arg_variable,
- "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_auto_variable ||
+ N.getTag() == dwarf::DW_TAG_arg_variable,
+ "invalid tag", &N);
}
void Verifier::visitMDExpression(const MDExpression &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_expression, "invalid tag", &N);
- Assert1(N.isValid(), "invalid expression", &N);
+ Assert(N.isValid(), "invalid expression", &N);
}
void Verifier::visitMDObjCProperty(const MDObjCProperty &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
}
void Verifier::visitMDImportedEntity(const MDImportedEntity &N) {
- Assert1(N.getTag() == dwarf::DW_TAG_imported_module ||
- N.getTag() == dwarf::DW_TAG_imported_declaration,
- "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
+ N.getTag() == dwarf::DW_TAG_imported_declaration,
+ "invalid tag", &N);
}
void Verifier::visitComdat(const Comdat &C) {
// The Module is invalid if the GlobalValue has private linkage. Entities
// with private linkage don't have entries in the symbol table.
if (const GlobalValue *GV = M->getNamedValue(C.getName()))
- Assert1(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
- GV);
+ Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
+ GV);
}
void Verifier::visitModuleIdents(const Module &M) {
@@ -809,12 +790,12 @@ void Verifier::visitModuleIdents(const Module &M) {
// Scan each llvm.ident entry and make sure that this requirement is met.
for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
const MDNode *N = Idents->getOperand(i);
- Assert1(N->getNumOperands() == 1,
- "incorrect number of operands in llvm.ident metadata", N);
- Assert1(dyn_cast_or_null<MDString>(N->getOperand(0)),
- ("invalid value for llvm.ident metadata entry operand"
- "(the operand should be a string)"),
- N->getOperand(0));
+ Assert(N->getNumOperands() == 1,
+ "incorrect number of operands in llvm.ident metadata", N);
+ Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
+ ("invalid value for llvm.ident metadata entry operand"
+ "(the operand should be a string)"),
+ N->getOperand(0));
}
}
@@ -857,22 +838,21 @@ Verifier::visitModuleFlag(const MDNode *Op,
SmallVectorImpl<const MDNode *> &Requirements) {
// Each module flag should have three arguments, the merge behavior (a
// constant int), the flag ID (an MDString), and the value.
- Assert1(Op->getNumOperands() == 3,
- "incorrect number of operands in module flag", Op);
+ Assert(Op->getNumOperands() == 3,
+ "incorrect number of operands in module flag", Op);
Module::ModFlagBehavior MFB;
if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
- Assert1(
+ Assert(
mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
"invalid behavior operand in module flag (expected constant integer)",
Op->getOperand(0));
- Assert1(false,
- "invalid behavior operand in module flag (unexpected constant)",
- Op->getOperand(0));
+ Assert(false,
+ "invalid behavior operand in module flag (unexpected constant)",
+ Op->getOperand(0));
}
MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
- Assert1(ID,
- "invalid ID operand in module flag (expected metadata string)",
- Op->getOperand(1));
+ Assert(ID, "invalid ID operand in module flag (expected metadata string)",
+ Op->getOperand(1));
// Sanity check the values for behaviors with additional requirements.
switch (MFB) {
@@ -886,13 +866,13 @@ Verifier::visitModuleFlag(const MDNode *Op,
// The value should itself be an MDNode with two operands, a flag ID (an
// MDString), and a value.
MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
- Assert1(Value && Value->getNumOperands() == 2,
- "invalid value for 'require' module flag (expected metadata pair)",
- Op->getOperand(2));
- Assert1(isa<MDString>(Value->getOperand(0)),
- ("invalid value for 'require' module flag "
- "(first value operand should be a string)"),
- Value->getOperand(0));
+ Assert(Value && Value->getNumOperands() == 2,
+ "invalid value for 'require' module flag (expected metadata pair)",
+ Op->getOperand(2));
+ Assert(isa<MDString>(Value->getOperand(0)),
+ ("invalid value for 'require' module flag "
+ "(first value operand should be a string)"),
+ Value->getOperand(0));
// Append it to the list of requirements, to check once all module flags are
// scanned.
@@ -903,9 +883,10 @@ Verifier::visitModuleFlag(const MDNode *Op,
case Module::Append:
case Module::AppendUnique: {
// These behavior types require the operand be an MDNode.
- Assert1(isa<MDNode>(Op->getOperand(2)),
- "invalid value for 'append'-type module flag "
- "(expected a metadata node)", Op->getOperand(2));
+ Assert(isa<MDNode>(Op->getOperand(2)),
+ "invalid value for 'append'-type module flag "
+ "(expected a metadata node)",
+ Op->getOperand(2));
break;
}
}
@@ -913,9 +894,8 @@ Verifier::visitModuleFlag(const MDNode *Op,
// Unless this is a "requires" flag, check the ID is unique.
if (MFB != Module::Require) {
bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
- Assert1(Inserted,
- "module flag identifiers must be unique (or of 'require' type)",
- ID);
+ Assert(Inserted,
+ "module flag identifiers must be unique (or of 'require' type)", ID);
}
}
@@ -991,14 +971,15 @@ void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
VerifyAttributeTypes(Attrs, Idx, false, V);
if (isReturnValue)
- Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
- !Attrs.hasAttribute(Idx, Attribute::Nest) &&
- !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
- !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
- !Attrs.hasAttribute(Idx, Attribute::Returned) &&
- !Attrs.hasAttribute(Idx, Attribute::InAlloca),
- "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
- "'returned' do not apply to return values!", V);
+ Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
+ !Attrs.hasAttribute(Idx, Attribute::Nest) &&
+ !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
+ !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
+ !Attrs.hasAttribute(Idx, Attribute::Returned) &&
+ !Attrs.hasAttribute(Idx, Attribute::InAlloca),
+ "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
+ "'returned' do not apply to return values!",
+ V);
// Check for mutually incompatible attributes. Only inreg is compatible with
// sret.
@@ -1008,45 +989,58 @@ void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
Attrs.hasAttribute(Idx, Attribute::InReg);
AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
- Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
- "and 'sret' are incompatible!", V);
-
- Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
- Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
- "'inalloca and readonly' are incompatible!", V);
-
- Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
- Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes "
- "'sret and returned' are incompatible!", V);
-
- Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
- Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
- "'zeroext and signext' are incompatible!", V);
-
- Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
- Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
- "'readnone and readonly' are incompatible!", V);
-
- Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
- Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
- "'noinline and alwaysinline' are incompatible!", V);
-
- Assert1(!AttrBuilder(Attrs, Idx).
- hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
- "Wrong types for attribute: " +
- AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
+ Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
+ "and 'sret' are incompatible!",
+ V);
+
+ Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
+ Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
+ "Attributes "
+ "'inalloca and readonly' are incompatible!",
+ V);
+
+ Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
+ Attrs.hasAttribute(Idx, Attribute::Returned)),
+ "Attributes "
+ "'sret and returned' are incompatible!",
+ V);
+
+ Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
+ Attrs.hasAttribute(Idx, Attribute::SExt)),
+ "Attributes "
+ "'zeroext and signext' are incompatible!",
+ V);
+
+ Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
+ Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
+ "Attributes "
+ "'readnone and readonly' are incompatible!",
+ V);
+
+ Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
+ Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
+ "Attributes "
+ "'noinline and alwaysinline' are incompatible!",
+ V);
+
+ Assert(!AttrBuilder(Attrs, Idx)
+ .hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
+ "Wrong types for attribute: " +
+ AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx),
+ V);
if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
- if (!PTy->getElementType()->isSized()) {
- Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
- !Attrs.hasAttribute(Idx, Attribute::InAlloca),
- "Attributes 'byval' and 'inalloca' do not support unsized types!",
- V);
+ SmallPtrSet<const Type*, 4> Visited;
+ if (!PTy->getElementType()->isSized(&Visited)) {
+ Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
+ !Attrs.hasAttribute(Idx, Attribute::InAlloca),
+ "Attributes 'byval' and 'inalloca' do not support unsized types!",
+ V);
}
} else {
- Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
- "Attribute 'byval' only applies to parameters with pointer type!",
- V);
+ Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
+ "Attribute 'byval' only applies to parameters with pointer type!",
+ V);
}
}
@@ -1078,28 +1072,30 @@ void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
continue;
if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
- Assert1(!SawNest, "More than one parameter has attribute nest!", V);
+ Assert(!SawNest, "More than one parameter has attribute nest!", V);
SawNest = true;
}
if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
- Assert1(!SawReturned, "More than one parameter has attribute returned!",
- V);
- Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible "
- "argument and return types for 'returned' attribute", V);
+ Assert(!SawReturned, "More than one parameter has attribute returned!",
+ V);
+ Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
+ "Incompatible "
+ "argument and return types for 'returned' attribute",
+ V);
SawReturned = true;
}
if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
- Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
- Assert1(Idx == 1 || Idx == 2,
- "Attribute 'sret' is not on first or second parameter!", V);
+ Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
+ Assert(Idx == 1 || Idx == 2,
+ "Attribute 'sret' is not on first or second parameter!", V);
SawSRet = true;
}
if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
- Assert1(Idx == FT->getNumParams(),
- "inalloca isn't on the last parameter!", V);
+ Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
+ V);
}
}
@@ -1108,39 +1104,35 @@ void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
- Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::ReadNone) &&
- Attrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::ReadOnly)),
- "Attributes 'readnone and readonly' are incompatible!", V);
+ Assert(
+ !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
+ Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
+ "Attributes 'readnone and readonly' are incompatible!", V);
- Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::NoInline) &&
- Attrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::AlwaysInline)),
- "Attributes 'noinline and alwaysinline' are incompatible!", V);
+ Assert(
+ !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
+ Attrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::AlwaysInline)),
+ "Attributes 'noinline and alwaysinline' are incompatible!", V);
if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::OptimizeNone)) {
- Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::NoInline),
- "Attribute 'optnone' requires 'noinline'!", V);
+ Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
+ "Attribute 'optnone' requires 'noinline'!", V);
- Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::OptimizeForSize),
- "Attributes 'optsize and optnone' are incompatible!", V);
+ Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize),
+ "Attributes 'optsize and optnone' are incompatible!", V);
- Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::MinSize),
- "Attributes 'minsize and optnone' are incompatible!", V);
+ Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
+ "Attributes 'minsize and optnone' are incompatible!", V);
}
if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::JumpTable)) {
const GlobalValue *GV = cast<GlobalValue>(V);
- Assert1(GV->hasUnnamedAddr(),
- "Attribute 'jumptable' requires 'unnamed_addr'", V);
-
+ Assert(GV->hasUnnamedAddr(),
+ "Attribute 'jumptable' requires 'unnamed_addr'", V);
}
}
@@ -1148,9 +1140,9 @@ void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
if (CE->getOpcode() != Instruction::BitCast)
return;
- Assert1(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
- CE->getType()),
- "Invalid bitcast", CE);
+ Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
+ CE->getType()),
+ "Invalid bitcast", CE);
}
bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
@@ -1175,84 +1167,86 @@ void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
const Instruction &CI = *CS.getInstruction();
- Assert1(!CS.doesNotAccessMemory() &&
- !CS.onlyReadsMemory(),
- "gc.statepoint must read and write memory to preserve "
- "reordering restrictions required by safepoint semantics", &CI);
-
+ Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory(),
+ "gc.statepoint must read and write memory to preserve "
+ "reordering restrictions required by safepoint semantics",
+ &CI);
+
const Value *Target = CS.getArgument(0);
const PointerType *PT = dyn_cast<PointerType>(Target->getType());
- Assert2(PT && PT->getElementType()->isFunctionTy(),
- "gc.statepoint callee must be of function pointer type",
- &CI, Target);
+ Assert(PT && PT->getElementType()->isFunctionTy(),
+ "gc.statepoint callee must be of function pointer type", &CI, Target);
FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
const Value *NumCallArgsV = CS.getArgument(1);
- Assert1(isa<ConstantInt>(NumCallArgsV),
- "gc.statepoint number of arguments to underlying call "
- "must be constant integer", &CI);
+ Assert(isa<ConstantInt>(NumCallArgsV),
+ "gc.statepoint number of arguments to underlying call "
+ "must be constant integer",
+ &CI);
const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
- Assert1(NumCallArgs >= 0,
- "gc.statepoint number of arguments to underlying call "
- "must be positive", &CI);
+ Assert(NumCallArgs >= 0,
+ "gc.statepoint number of arguments to underlying call "
+ "must be positive",
+ &CI);
const int NumParams = (int)TargetFuncType->getNumParams();
if (TargetFuncType->isVarArg()) {
- Assert1(NumCallArgs >= NumParams,
- "gc.statepoint mismatch in number of vararg call args", &CI);
+ Assert(NumCallArgs >= NumParams,
+ "gc.statepoint mismatch in number of vararg call args", &CI);
// TODO: Remove this limitation
- Assert1(TargetFuncType->getReturnType()->isVoidTy(),
- "gc.statepoint doesn't support wrapping non-void "
- "vararg functions yet", &CI);
+ Assert(TargetFuncType->getReturnType()->isVoidTy(),
+ "gc.statepoint doesn't support wrapping non-void "
+ "vararg functions yet",
+ &CI);
} else
- Assert1(NumCallArgs == NumParams,
- "gc.statepoint mismatch in number of call args", &CI);
+ Assert(NumCallArgs == NumParams,
+ "gc.statepoint mismatch in number of call args", &CI);
const Value *Unused = CS.getArgument(2);
- Assert1(isa<ConstantInt>(Unused) &&
- cast<ConstantInt>(Unused)->isNullValue(),
- "gc.statepoint parameter #3 must be zero", &CI);
+ Assert(isa<ConstantInt>(Unused) && cast<ConstantInt>(Unused)->isNullValue(),
+ "gc.statepoint parameter #3 must be zero", &CI);
// Verify that the types of the call parameter arguments match
// the type of the wrapped callee.
for (int i = 0; i < NumParams; i++) {
Type *ParamType = TargetFuncType->getParamType(i);
Type *ArgType = CS.getArgument(3+i)->getType();
- Assert1(ArgType == ParamType,
- "gc.statepoint call argument does not match wrapped "
- "function type", &CI);
+ Assert(ArgType == ParamType,
+ "gc.statepoint call argument does not match wrapped "
+ "function type",
+ &CI);
}
const int EndCallArgsInx = 2+NumCallArgs;
const Value *NumDeoptArgsV = CS.getArgument(EndCallArgsInx+1);
- Assert1(isa<ConstantInt>(NumDeoptArgsV),
- "gc.statepoint number of deoptimization arguments "
- "must be constant integer", &CI);
+ Assert(isa<ConstantInt>(NumDeoptArgsV),
+ "gc.statepoint number of deoptimization arguments "
+ "must be constant integer",
+ &CI);
const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
- Assert1(NumDeoptArgs >= 0,
- "gc.statepoint number of deoptimization arguments "
- "must be positive", &CI);
+ Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
+ "must be positive",
+ &CI);
+
+ Assert(4 + NumCallArgs + NumDeoptArgs <= (int)CS.arg_size(),
+ "gc.statepoint too few arguments according to length fields", &CI);
- Assert1(4 + NumCallArgs + NumDeoptArgs <= (int)CS.arg_size(),
- "gc.statepoint too few arguments according to length fields", &CI);
-
// Check that the only uses of this gc.statepoint are gc.result or
// gc.relocate calls which are tied to this statepoint and thus part
// of the same statepoint sequence
for (const User *U : CI.users()) {
const CallInst *Call = dyn_cast<const CallInst>(U);
- Assert2(Call, "illegal use of statepoint token", &CI, U);
+ Assert(Call, "illegal use of statepoint token", &CI, U);
if (!Call) continue;
- Assert2(isGCRelocate(Call) || isGCResult(Call),
- "gc.result or gc.relocate are the only value uses"
- "of a gc.statepoint", &CI, U);
+ Assert(isGCRelocate(Call) || isGCResult(Call),
+ "gc.result or gc.relocate are the only value uses"
+ "of a gc.statepoint",
+ &CI, U);
if (isGCResult(Call)) {
- Assert2(Call->getArgOperand(0) == &CI,
- "gc.result connected to wrong gc.statepoint",
- &CI, Call);
+ Assert(Call->getArgOperand(0) == &CI,
+ "gc.result connected to wrong gc.statepoint", &CI, Call);
} else if (isGCRelocate(Call)) {
- Assert2(Call->getArgOperand(0) == &CI,
- "gc.relocate connected to wrong gc.statepoint",
- &CI, Call);
+ Assert(Call->getArgOperand(0) == &CI,
+ "gc.relocate connected to wrong gc.statepoint", &CI, Call);
}
}
@@ -1266,6 +1260,19 @@ void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
// about. See example statepoint.ll in the verifier subdirectory
}
+void Verifier::verifyFrameRecoverIndices() {
+ for (auto &Counts : FrameEscapeInfo) {
+ Function *F = Counts.first;
+ unsigned EscapedObjectCount = Counts.second.first;
+ unsigned MaxRecoveredIndex = Counts.second.second;
+ Assert(MaxRecoveredIndex <= EscapedObjectCount,
+ "all indices passed to llvm.framerecover must be less than the "
+ "number of arguments passed ot llvm.frameescape in the parent "
+ "function",
+ F);
+ }
+}
+
// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(const Function &F) {
@@ -1273,25 +1280,24 @@ void Verifier::visitFunction(const Function &F) {
FunctionType *FT = F.getFunctionType();
unsigned NumArgs = F.arg_size();
- Assert1(Context == &F.getContext(),
- "Function context does not match Module context!", &F);
+ Assert(Context == &F.getContext(),
+ "Function context does not match Module context!", &F);
- Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
- Assert2(FT->getNumParams() == NumArgs,
- "# formal arguments must match # of arguments for function type!",
- &F, FT);
- Assert1(F.getReturnType()->isFirstClassType() ||
- F.getReturnType()->isVoidTy() ||
- F.getReturnType()->isStructTy(),
- "Functions cannot return aggregate values!", &F);
+ Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
+ Assert(FT->getNumParams() == NumArgs,
+ "# formal arguments must match # of arguments for function type!", &F,
+ FT);
+ Assert(F.getReturnType()->isFirstClassType() ||
+ F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
+ "Functions cannot return aggregate values!", &F);
- Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
- "Invalid struct return type!", &F);
+ Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
+ "Invalid struct return type!", &F);
AttributeSet Attrs = F.getAttributes();
- Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
- "Attribute after last parameter!", &F);
+ Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
+ "Attribute after last parameter!", &F);
// Check function attributes.
VerifyFunctionAttrs(FT, Attrs, &F);
@@ -1299,9 +1305,8 @@ void Verifier::visitFunction(const Function &F) {
// On function declarations/definitions, we do not support the builtin
// attribute. We do not check this in VerifyFunctionAttrs since that is
// checking for Attributes that can/can not ever be on functions.
- Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::Builtin),
- "Attribute 'builtin' can only be applied to a callsite.", &F);
+ Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
+ "Attribute 'builtin' can only be applied to a callsite.", &F);
// Check that this function meets the restrictions on this calling convention.
// Sometimes varargs is used for perfectly forwarding thunks, so some of these
@@ -1315,8 +1320,9 @@ void Verifier::visitFunction(const Function &F) {
case CallingConv::Intel_OCL_BI:
case CallingConv::PTX_Kernel:
case CallingConv::PTX_Device:
- Assert1(!F.isVarArg(), "Calling convention does not support varargs or "
- "perfect forwarding!", &F);
+ Assert(!F.isVarArg(), "Calling convention does not support varargs or "
+ "perfect forwarding!",
+ &F);
break;
}
@@ -1327,35 +1333,35 @@ void Verifier::visitFunction(const Function &F) {
unsigned i = 0;
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
++I, ++i) {
- Assert2(I->getType() == FT->getParamType(i),
- "Argument value does not match function argument type!",
- I, FT->getParamType(i));
- Assert1(I->getType()->isFirstClassType(),
- "Function arguments must have first-class types!", I);
+ Assert(I->getType() == FT->getParamType(i),
+ "Argument value does not match function argument type!", I,
+ FT->getParamType(i));
+ Assert(I->getType()->isFirstClassType(),
+ "Function arguments must have first-class types!", I);
if (!isLLVMdotName)
- Assert2(!I->getType()->isMetadataTy(),
- "Function takes metadata but isn't an intrinsic", I, &F);
+ Assert(!I->getType()->isMetadataTy(),
+ "Function takes metadata but isn't an intrinsic", I, &F);
}
if (F.isMaterializable()) {
// Function has a body somewhere we can't see.
} else if (F.isDeclaration()) {
- Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
- "invalid linkage type for function declaration", &F);
+ Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
+ "invalid linkage type for function declaration", &F);
} else {
// Verify that this function (which has a body) is not named "llvm.*". It
// is not legal to define intrinsics.
- Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
+ Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
// Check the entry node
const BasicBlock *Entry = &F.getEntryBlock();
- Assert1(pred_empty(Entry),
- "Entry block to function must not have predecessors!", Entry);
+ Assert(pred_empty(Entry),
+ "Entry block to function must not have predecessors!", Entry);
// The address of the entry block cannot be taken, unless it is dead.
if (Entry->hasAddressTaken()) {
- Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(),
- "blockaddress may not be used with the entry block!", Entry);
+ Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
+ "blockaddress may not be used with the entry block!", Entry);
}
}
@@ -1364,13 +1370,13 @@ void Verifier::visitFunction(const Function &F) {
if (F.getIntrinsicID()) {
const User *U;
if (F.hasAddressTaken(&U))
- Assert1(0, "Invalid user of intrinsic instruction!", U);
+ Assert(0, "Invalid user of intrinsic instruction!", U);
}
- Assert1(!F.hasDLLImportStorageClass() ||
- (F.isDeclaration() && F.hasExternalLinkage()) ||
- F.hasAvailableExternallyLinkage(),
- "Function is marked as dllimport, but not external.", &F);
+ Assert(!F.hasDLLImportStorageClass() ||
+ (F.isDeclaration() && F.hasExternalLinkage()) ||
+ F.hasAvailableExternallyLinkage(),
+ "Function is marked as dllimport, but not external.", &F);
}
// verifyBasicBlock - Verify that a basic block is well formed...
@@ -1379,7 +1385,7 @@ void Verifier::visitBasicBlock(BasicBlock &BB) {
InstsInThisBlock.clear();
// Ensure that basic blocks have terminators!
- Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
+ Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
// Check constraints that this basic block imposes on all of the PHI nodes in
// it.
@@ -1390,12 +1396,14 @@ void Verifier::visitBasicBlock(BasicBlock &BB) {
PHINode *PN;
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
// Ensure that PHI nodes have at least one entry!
- Assert1(PN->getNumIncomingValues() != 0,
- "PHI nodes must have at least one entry. If the block is dead, "
- "the PHI should be removed!", PN);
- Assert1(PN->getNumIncomingValues() == Preds.size(),
- "PHINode should have one entry for each predecessor of its "
- "parent basic block!", PN);
+ Assert(PN->getNumIncomingValues() != 0,
+ "PHI nodes must have at least one entry. If the block is dead, "
+ "the PHI should be removed!",
+ PN);
+ Assert(PN->getNumIncomingValues() == Preds.size(),
+ "PHINode should have one entry for each predecessor of its "
+ "parent basic block!",
+ PN);
// Get and sort all incoming values in the PHI node...
Values.clear();
@@ -1410,17 +1418,17 @@ void Verifier::visitBasicBlock(BasicBlock &BB) {
// particular basic block in this PHI node, that the incoming values are
// all identical.
//
- Assert4(i == 0 || Values[i].first != Values[i-1].first ||
- Values[i].second == Values[i-1].second,
- "PHI node has multiple entries for the same basic block with "
- "different incoming values!", PN, Values[i].first,
- Values[i].second, Values[i-1].second);
+ Assert(i == 0 || Values[i].first != Values[i - 1].first ||
+ Values[i].second == Values[i - 1].second,
+ "PHI node has multiple entries for the same basic block with "
+ "different incoming values!",
+ PN, Values[i].first, Values[i].second, Values[i - 1].second);
// Check to make sure that the predecessors and PHI node entries are
// matched up.
- Assert3(Values[i].first == Preds[i],
- "PHI node entries do not match predecessors!", PN,
- Values[i].first, Preds[i]);
+ Assert(Values[i].first == Preds[i],
+ "PHI node entries do not match predecessors!", PN,
+ Values[i].first, Preds[i]);
}
}
}
@@ -1434,15 +1442,15 @@ void Verifier::visitBasicBlock(BasicBlock &BB) {
void Verifier::visitTerminatorInst(TerminatorInst &I) {
// Ensure that terminators only exist at the end of the basic block.
- Assert1(&I == I.getParent()->getTerminator(),
- "Terminator found in the middle of a basic block!", I.getParent());
+ Assert(&I == I.getParent()->getTerminator(),
+ "Terminator found in the middle of a basic block!", I.getParent());
visitInstruction(I);
}
void Verifier::visitBranchInst(BranchInst &BI) {
if (BI.isConditional()) {
- Assert2(BI.getCondition()->getType()->isIntegerTy(1),
- "Branch condition is not 'i1' type!", &BI, BI.getCondition());
+ Assert(BI.getCondition()->getType()->isIntegerTy(1),
+ "Branch condition is not 'i1' type!", &BI, BI.getCondition());
}
visitTerminatorInst(BI);
}
@@ -1451,13 +1459,15 @@ void Verifier::visitReturnInst(ReturnInst &RI) {
Function *F = RI.getParent()->getParent();
unsigned N = RI.getNumOperands();
if (F->getReturnType()->isVoidTy())
- Assert2(N == 0,
- "Found return instr that returns non-void in Function of void "
- "return type!", &RI, F->getReturnType());
+ Assert(N == 0,
+ "Found return instr that returns non-void in Function of void "
+ "return type!",
+ &RI, F->getReturnType());
else
- Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
- "Function return type does not match operand "
- "type of return inst!", &RI, F->getReturnType());
+ Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
+ "Function return type does not match operand "
+ "type of return inst!",
+ &RI, F->getReturnType());
// Check to make sure that the return value has necessary properties for
// terminators...
@@ -1470,32 +1480,32 @@ void Verifier::visitSwitchInst(SwitchInst &SI) {
Type *SwitchTy = SI.getCondition()->getType();
SmallPtrSet<ConstantInt*, 32> Constants;
for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
- Assert1(i.getCaseValue()->getType() == SwitchTy,
- "Switch constants must all be same type as switch value!", &SI);
- Assert2(Constants.insert(i.getCaseValue()).second,
- "Duplicate integer as switch case", &SI, i.getCaseValue());
+ Assert(i.getCaseValue()->getType() == SwitchTy,
+ "Switch constants must all be same type as switch value!", &SI);
+ Assert(Constants.insert(i.getCaseValue()).second,
+ "Duplicate integer as switch case", &SI, i.getCaseValue());
}
visitTerminatorInst(SI);
}
void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
- Assert1(BI.getAddress()->getType()->isPointerTy(),
- "Indirectbr operand must have pointer type!", &BI);
+ Assert(BI.getAddress()->getType()->isPointerTy(),
+ "Indirectbr operand must have pointer type!", &BI);
for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
- Assert1(BI.getDestination(i)->getType()->isLabelTy(),
- "Indirectbr destinations must all have pointer type!", &BI);
+ Assert(BI.getDestination(i)->getType()->isLabelTy(),
+ "Indirectbr destinations must all have pointer type!", &BI);
visitTerminatorInst(BI);
}
void Verifier::visitSelectInst(SelectInst &SI) {
- Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
- SI.getOperand(2)),
- "Invalid operands for select instruction!", &SI);
+ Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
+ SI.getOperand(2)),
+ "Invalid operands for select instruction!", &SI);
- Assert1(SI.getTrueValue()->getType() == SI.getType(),
- "Select values must have same type as select instruction!", &SI);
+ Assert(SI.getTrueValue()->getType() == SI.getType(),
+ "Select values must have same type as select instruction!", &SI);
visitInstruction(SI);
}
@@ -1503,7 +1513,7 @@ void Verifier::visitSelectInst(SelectInst &SI) {
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
- Assert1(0, "User-defined operators should not live outside of a pass!", &I);
+ Assert(0, "User-defined operators should not live outside of a pass!", &I);
}
void Verifier::visitTruncInst(TruncInst &I) {
@@ -1515,11 +1525,11 @@ void Verifier::visitTruncInst(TruncInst &I) {
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
- Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "trunc source and destination must both be a vector or neither", &I);
- Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
+ Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
+ Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "trunc source and destination must both be a vector or neither", &I);
+ Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
visitInstruction(I);
}
@@ -1530,14 +1540,14 @@ void Verifier::visitZExtInst(ZExtInst &I) {
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
- Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
- Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "zext source and destination must both be a vector or neither", &I);
+ Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
+ Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "zext source and destination must both be a vector or neither", &I);
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
+ Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
visitInstruction(I);
}
@@ -1551,11 +1561,11 @@ void Verifier::visitSExtInst(SExtInst &I) {
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
- Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "sext source and destination must both be a vector or neither", &I);
- Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
+ Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
+ Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "sext source and destination must both be a vector or neither", &I);
+ Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
visitInstruction(I);
}
@@ -1568,11 +1578,11 @@ void Verifier::visitFPTruncInst(FPTruncInst &I) {
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
- Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "fptrunc source and destination must both be a vector or neither",&I);
- Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
+ Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
+ Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "fptrunc source and destination must both be a vector or neither", &I);
+ Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
visitInstruction(I);
}
@@ -1586,11 +1596,11 @@ void Verifier::visitFPExtInst(FPExtInst &I) {
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
- Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "fpext source and destination must both be a vector or neither", &I);
- Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
+ Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
+ Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "fpext source and destination must both be a vector or neither", &I);
+ Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
visitInstruction(I);
}
@@ -1603,17 +1613,17 @@ void Verifier::visitUIToFPInst(UIToFPInst &I) {
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
- Assert1(SrcVec == DstVec,
- "UIToFP source and dest must both be vector or scalar", &I);
- Assert1(SrcTy->isIntOrIntVectorTy(),
- "UIToFP source must be integer or integer vector", &I);
- Assert1(DestTy->isFPOrFPVectorTy(),
- "UIToFP result must be FP or FP vector", &I);
+ Assert(SrcVec == DstVec,
+ "UIToFP source and dest must both be vector or scalar", &I);
+ Assert(SrcTy->isIntOrIntVectorTy(),
+ "UIToFP source must be integer or integer vector", &I);
+ Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
+ &I);
if (SrcVec && DstVec)
- Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
- cast<VectorType>(DestTy)->getNumElements(),
- "UIToFP source and dest vector length mismatch", &I);
+ Assert(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "UIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
@@ -1626,17 +1636,17 @@ void Verifier::visitSIToFPInst(SIToFPInst &I) {
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
- Assert1(SrcVec == DstVec,
- "SIToFP source and dest must both be vector or scalar", &I);
- Assert1(SrcTy->isIntOrIntVectorTy(),
- "SIToFP source must be integer or integer vector", &I);
- Assert1(DestTy->isFPOrFPVectorTy(),
- "SIToFP result must be FP or FP vector", &I);
+ Assert(SrcVec == DstVec,
+ "SIToFP source and dest must both be vector or scalar", &I);
+ Assert(SrcTy->isIntOrIntVectorTy(),
+ "SIToFP source must be integer or integer vector", &I);
+ Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
+ &I);
if (SrcVec && DstVec)
- Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
- cast<VectorType>(DestTy)->getNumElements(),
- "SIToFP source and dest vector length mismatch", &I);
+ Assert(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "SIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
@@ -1649,17 +1659,17 @@ void Verifier::visitFPToUIInst(FPToUIInst &I) {
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
- Assert1(SrcVec == DstVec,
- "FPToUI source and dest must both be vector or scalar", &I);
- Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
- &I);
- Assert1(DestTy->isIntOrIntVectorTy(),
- "FPToUI result must be integer or integer vector", &I);
+ Assert(SrcVec == DstVec,
+ "FPToUI source and dest must both be vector or scalar", &I);
+ Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
+ &I);
+ Assert(DestTy->isIntOrIntVectorTy(),
+ "FPToUI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
- Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
- cast<VectorType>(DestTy)->getNumElements(),
- "FPToUI source and dest vector length mismatch", &I);
+ Assert(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "FPToUI source and dest vector length mismatch", &I);
visitInstruction(I);
}
@@ -1672,17 +1682,17 @@ void Verifier::visitFPToSIInst(FPToSIInst &I) {
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
- Assert1(SrcVec == DstVec,
- "FPToSI source and dest must both be vector or scalar", &I);
- Assert1(SrcTy->isFPOrFPVectorTy(),
- "FPToSI source must be FP or FP vector", &I);
- Assert1(DestTy->isIntOrIntVectorTy(),
- "FPToSI result must be integer or integer vector", &I);
+ Assert(SrcVec == DstVec,
+ "FPToSI source and dest must both be vector or scalar", &I);
+ Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
+ &I);
+ Assert(DestTy->isIntOrIntVectorTy(),
+ "FPToSI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
- Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
- cast<VectorType>(DestTy)->getNumElements(),
- "FPToSI source and dest vector length mismatch", &I);
+ Assert(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "FPToSI source and dest vector length mismatch", &I);
visitInstruction(I);
}
@@ -1692,18 +1702,18 @@ void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
- Assert1(SrcTy->getScalarType()->isPointerTy(),
- "PtrToInt source must be pointer", &I);
- Assert1(DestTy->getScalarType()->isIntegerTy(),
- "PtrToInt result must be integral", &I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "PtrToInt type mismatch", &I);
+ Assert(SrcTy->getScalarType()->isPointerTy(),
+ "PtrToInt source must be pointer", &I);
+ Assert(DestTy->getScalarType()->isIntegerTy(),
+ "PtrToInt result must be integral", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
+ &I);
if (SrcTy->isVectorTy()) {
VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
VectorType *VDest = dyn_cast<VectorType>(DestTy);
- Assert1(VSrc->getNumElements() == VDest->getNumElements(),
- "PtrToInt Vector width mismatch", &I);
+ Assert(VSrc->getNumElements() == VDest->getNumElements(),
+ "PtrToInt Vector width mismatch", &I);
}
visitInstruction(I);
@@ -1714,23 +1724,23 @@ void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
- Assert1(SrcTy->getScalarType()->isIntegerTy(),
- "IntToPtr source must be an integral", &I);
- Assert1(DestTy->getScalarType()->isPointerTy(),
- "IntToPtr result must be a pointer",&I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "IntToPtr type mismatch", &I);
+ Assert(SrcTy->getScalarType()->isIntegerTy(),
+ "IntToPtr source must be an integral", &I);
+ Assert(DestTy->getScalarType()->isPointerTy(),
+ "IntToPtr result must be a pointer", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
+ &I);
if (SrcTy->isVectorTy()) {
VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
VectorType *VDest = dyn_cast<VectorType>(DestTy);
- Assert1(VSrc->getNumElements() == VDest->getNumElements(),
- "IntToPtr Vector width mismatch", &I);
+ Assert(VSrc->getNumElements() == VDest->getNumElements(),
+ "IntToPtr Vector width mismatch", &I);
}
visitInstruction(I);
}
void Verifier::visitBitCastInst(BitCastInst &I) {
- Assert1(
+ Assert(
CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
"Invalid bitcast", &I);
visitInstruction(I);
@@ -1740,15 +1750,15 @@ void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
- Assert1(SrcTy->isPtrOrPtrVectorTy(),
- "AddrSpaceCast source must be a pointer", &I);
- Assert1(DestTy->isPtrOrPtrVectorTy(),
- "AddrSpaceCast result must be a pointer", &I);
- Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
- "AddrSpaceCast must be between different address spaces", &I);
+ Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
+ &I);
+ Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
+ &I);
+ Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
+ "AddrSpaceCast must be between different address spaces", &I);
if (SrcTy->isVectorTy())
- Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
- "AddrSpaceCast vector pointer number of elements mismatch", &I);
+ Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
+ "AddrSpaceCast vector pointer number of elements mismatch", &I);
visitInstruction(I);
}
@@ -1759,16 +1769,15 @@ void Verifier::visitPHINode(PHINode &PN) {
// This can be tested by checking whether the instruction before this is
// either nonexistent (because this is begin()) or is a PHI node. If not,
// then there is some other instruction before a PHI.
- Assert2(&PN == &PN.getParent()->front() ||
- isa<PHINode>(--BasicBlock::iterator(&PN)),
- "PHI nodes not grouped at top of basic block!",
- &PN, PN.getParent());
+ Assert(&PN == &PN.getParent()->front() ||
+ isa<PHINode>(--BasicBlock::iterator(&PN)),
+ "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
// Check that all of the values of the PHI node have the same type as the
// result, and that the incoming blocks are really basic blocks.
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
- Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
- "PHI node operands are not the same type as the result!", &PN);
+ Assert(PN.getType() == PN.getIncomingValue(i)->getType(),
+ "PHI node operands are not the same type as the result!", &PN);
}
// All other PHI node constraints are checked in the visitBasicBlock method.
@@ -1779,32 +1788,32 @@ void Verifier::visitPHINode(PHINode &PN) {
void Verifier::VerifyCallSite(CallSite CS) {
Instruction *I = CS.getInstruction();
- Assert1(CS.getCalledValue()->getType()->isPointerTy(),
- "Called function must be a pointer!", I);
+ Assert(CS.getCalledValue()->getType()->isPointerTy(),
+ "Called function must be a pointer!", I);
PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
- Assert1(FPTy->getElementType()->isFunctionTy(),
- "Called function is not pointer to function type!", I);
+ Assert(FPTy->getElementType()->isFunctionTy(),
+ "Called function is not pointer to function type!", I);
FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
// Verify that the correct number of arguments are being passed
if (FTy->isVarArg())
- Assert1(CS.arg_size() >= FTy->getNumParams(),
- "Called function requires more parameters than were provided!",I);
+ Assert(CS.arg_size() >= FTy->getNumParams(),
+ "Called function requires more parameters than were provided!", I);
else
- Assert1(CS.arg_size() == FTy->getNumParams(),
- "Incorrect number of arguments passed to called function!", I);
+ Assert(CS.arg_size() == FTy->getNumParams(),
+ "Incorrect number of arguments passed to called function!", I);
// Verify that all arguments to the call match the function type.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
- Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
- "Call parameter type does not match function signature!",
- CS.getArgument(i), FTy->getParamType(i), I);
+ Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
+ "Call parameter type does not match function signature!",
+ CS.getArgument(i), FTy->getParamType(i), I);
AttributeSet Attrs = CS.getAttributes();
- Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
- "Attribute after last parameter!", I);
+ Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
+ "Attribute after last parameter!", I);
// Verify call attributes.
VerifyFunctionAttrs(FTy, Attrs, I);
@@ -1815,8 +1824,8 @@ void Verifier::VerifyCallSite(CallSite CS) {
if (CS.hasInAllocaArgument()) {
Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
- Assert2(AI->isUsedWithInAlloca(),
- "inalloca argument for call has mismatched alloca", AI, I);
+ Assert(AI->isUsedWithInAlloca(),
+ "inalloca argument for call has mismatched alloca", AI, I);
}
if (FTy->isVarArg()) {
@@ -1837,25 +1846,25 @@ void Verifier::VerifyCallSite(CallSite CS) {
VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
- Assert1(!SawNest, "More than one parameter has attribute nest!", I);
+ Assert(!SawNest, "More than one parameter has attribute nest!", I);
SawNest = true;
}
if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
- Assert1(!SawReturned, "More than one parameter has attribute returned!",
- I);
- Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
- "Incompatible argument and return types for 'returned' "
- "attribute", I);
+ Assert(!SawReturned, "More than one parameter has attribute returned!",
+ I);
+ Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
+ "Incompatible argument and return types for 'returned' "
+ "attribute",
+ I);
SawReturned = true;
}
- Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
- "Attribute 'sret' cannot be used for vararg call arguments!", I);
+ Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
+ "Attribute 'sret' cannot be used for vararg call arguments!", I);
if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
- Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!",
- I);
+ Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
}
}
@@ -1864,8 +1873,8 @@ void Verifier::VerifyCallSite(CallSite CS) {
!CS.getCalledFunction()->getName().startswith("llvm.")) {
for (FunctionType::param_iterator PI = FTy->param_begin(),
PE = FTy->param_end(); PI != PE; ++PI)
- Assert1(!(*PI)->isMetadataTy(),
- "Function has metadata parameter but isn't an intrinsic", I);
+ Assert(!(*PI)->isMetadataTy(),
+ "Function has metadata parameter but isn't an intrinsic", I);
}
visitInstruction(*I);
@@ -1898,7 +1907,7 @@ static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
}
void Verifier::verifyMustTailCall(CallInst &CI) {
- Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
+ Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
// - The caller and callee prototypes must match. Pointer types of
// parameters or return types may differ in pointee type, but not
@@ -1910,21 +1919,21 @@ void Verifier::verifyMustTailCall(CallInst &CI) {
};
FunctionType *CallerTy = GetFnTy(F);
FunctionType *CalleeTy = GetFnTy(CI.getCalledValue());
- Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(),
- "cannot guarantee tail call due to mismatched parameter counts", &CI);
- Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(),
- "cannot guarantee tail call due to mismatched varargs", &CI);
- Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
- "cannot guarantee tail call due to mismatched return types", &CI);
+ Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
+ "cannot guarantee tail call due to mismatched parameter counts", &CI);
+ Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
+ "cannot guarantee tail call due to mismatched varargs", &CI);
+ Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
+ "cannot guarantee tail call due to mismatched return types", &CI);
for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
- Assert1(
+ Assert(
isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
"cannot guarantee tail call due to mismatched parameter types", &CI);
}
// - The calling conventions of the caller and callee must match.
- Assert1(F->getCallingConv() == CI.getCallingConv(),
- "cannot guarantee tail call due to mismatched calling conv", &CI);
+ Assert(F->getCallingConv() == CI.getCallingConv(),
+ "cannot guarantee tail call due to mismatched calling conv", &CI);
// - All ABI-impacting function attributes, such as sret, byval, inreg,
// returned, and inalloca, must match.
@@ -1933,9 +1942,10 @@ void Verifier::verifyMustTailCall(CallInst &CI) {
for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
- Assert2(CallerABIAttrs == CalleeABIAttrs,
- "cannot guarantee tail call due to mismatched ABI impacting "
- "function attributes", &CI, CI.getOperand(I));
+ Assert(CallerABIAttrs == CalleeABIAttrs,
+ "cannot guarantee tail call due to mismatched ABI impacting "
+ "function attributes",
+ &CI, CI.getOperand(I));
}
// - The call must immediately precede a :ref:`ret <i_ret>` instruction,
@@ -1947,18 +1957,18 @@ void Verifier::verifyMustTailCall(CallInst &CI) {
// Handle the optional bitcast.
if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
- Assert1(BI->getOperand(0) == RetVal,
- "bitcast following musttail call must use the call", BI);
+ Assert(BI->getOperand(0) == RetVal,
+ "bitcast following musttail call must use the call", BI);
RetVal = BI;
Next = BI->getNextNode();
}
// Check the return.
ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
- Assert1(Ret, "musttail call must be precede a ret with an optional bitcast",
- &CI);
- Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
- "musttail call result must be returned", Ret);
+ Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
+ &CI);
+ Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
+ "musttail call result must be returned", Ret);
}
void Verifier::visitCallInst(CallInst &CI) {
@@ -1977,8 +1987,8 @@ void Verifier::visitInvokeInst(InvokeInst &II) {
// Verify that there is a landingpad instruction as the first non-PHI
// instruction of the 'unwind' destination.
- Assert1(II.getUnwindDest()->isLandingPad(),
- "The unwind destination does not have a landingpad instruction!",&II);
+ Assert(II.getUnwindDest()->isLandingPad(),
+ "The unwind destination does not have a landingpad instruction!", &II);
if (Function *F = II.getCalledFunction())
// TODO: Ideally we should use visitIntrinsicFunction here. But it uses
@@ -1994,8 +2004,8 @@ void Verifier::visitInvokeInst(InvokeInst &II) {
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
- Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
- "Both operands to a binary operator are not of the same type!", &B);
+ Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
+ "Both operands to a binary operator are not of the same type!", &B);
switch (B.getOpcode()) {
// Check that integer arithmetic operators are only used with
@@ -2007,11 +2017,12 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) {
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
- Assert1(B.getType()->isIntOrIntVectorTy(),
- "Integer arithmetic operators only work with integral types!", &B);
- Assert1(B.getType() == B.getOperand(0)->getType(),
- "Integer arithmetic operators must have same type "
- "for operands and result!", &B);
+ Assert(B.getType()->isIntOrIntVectorTy(),
+ "Integer arithmetic operators only work with integral types!", &B);
+ Assert(B.getType() == B.getOperand(0)->getType(),
+ "Integer arithmetic operators must have same type "
+ "for operands and result!",
+ &B);
break;
// Check that floating-point arithmetic operators are only used with
// floating-point operands.
@@ -2020,30 +2031,32 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) {
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
- Assert1(B.getType()->isFPOrFPVectorTy(),
- "Floating-point arithmetic operators only work with "
- "floating-point types!", &B);
- Assert1(B.getType() == B.getOperand(0)->getType(),
- "Floating-point arithmetic operators must have same type "
- "for operands and result!", &B);
+ Assert(B.getType()->isFPOrFPVectorTy(),
+ "Floating-point arithmetic operators only work with "
+ "floating-point types!",
+ &B);
+ Assert(B.getType() == B.getOperand(0)->getType(),
+ "Floating-point arithmetic operators must have same type "
+ "for operands and result!",
+ &B);
break;
// Check that logical operators are only used with integral operands.
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
- Assert1(B.getType()->isIntOrIntVectorTy(),
- "Logical operators only work with integral types!", &B);
- Assert1(B.getType() == B.getOperand(0)->getType(),
- "Logical operators must have same type for operands and result!",
- &B);
+ Assert(B.getType()->isIntOrIntVectorTy(),
+ "Logical operators only work with integral types!", &B);
+ Assert(B.getType() == B.getOperand(0)->getType(),
+ "Logical operators must have same type for operands and result!",
+ &B);
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
- Assert1(B.getType()->isIntOrIntVectorTy(),
- "Shifts only work with integral types!", &B);
- Assert1(B.getType() == B.getOperand(0)->getType(),
- "Shift return type must be same as operands!", &B);
+ Assert(B.getType()->isIntOrIntVectorTy(),
+ "Shifts only work with integral types!", &B);
+ Assert(B.getType() == B.getOperand(0)->getType(),
+ "Shift return type must be same as operands!", &B);
break;
default:
llvm_unreachable("Unknown BinaryOperator opcode!");
@@ -2056,15 +2069,15 @@ void Verifier::visitICmpInst(ICmpInst &IC) {
// Check that the operands are the same type
Type *Op0Ty = IC.getOperand(0)->getType();
Type *Op1Ty = IC.getOperand(1)->getType();
- Assert1(Op0Ty == Op1Ty,
- "Both operands to ICmp instruction are not of the same type!", &IC);
+ Assert(Op0Ty == Op1Ty,
+ "Both operands to ICmp instruction are not of the same type!", &IC);
// Check that the operands are the right type
- Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
- "Invalid operand types for ICmp instruction", &IC);
+ Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
+ "Invalid operand types for ICmp instruction", &IC);
// Check that the predicate is valid.
- Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
- IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
- "Invalid predicate in ICmp instruction!", &IC);
+ Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
+ IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
+ "Invalid predicate in ICmp instruction!", &IC);
visitInstruction(IC);
}
@@ -2073,72 +2086,72 @@ void Verifier::visitFCmpInst(FCmpInst &FC) {
// Check that the operands are the same type
Type *Op0Ty = FC.getOperand(0)->getType();
Type *Op1Ty = FC.getOperand(1)->getType();
- Assert1(Op0Ty == Op1Ty,
- "Both operands to FCmp instruction are not of the same type!", &FC);
+ Assert(Op0Ty == Op1Ty,
+ "Both operands to FCmp instruction are not of the same type!", &FC);
// Check that the operands are the right type
- Assert1(Op0Ty->isFPOrFPVectorTy(),
- "Invalid operand types for FCmp instruction", &FC);
+ Assert(Op0Ty->isFPOrFPVectorTy(),
+ "Invalid operand types for FCmp instruction", &FC);
// Check that the predicate is valid.
- Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
- FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
- "Invalid predicate in FCmp instruction!", &FC);
+ Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
+ FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
+ "Invalid predicate in FCmp instruction!", &FC);
visitInstruction(FC);
}
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
- Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
- EI.getOperand(1)),
- "Invalid extractelement operands!", &EI);
+ Assert(
+ ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
+ "Invalid extractelement operands!", &EI);
visitInstruction(EI);
}
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
- Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
- IE.getOperand(1),
- IE.getOperand(2)),
- "Invalid insertelement operands!", &IE);
+ Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
+ IE.getOperand(2)),
+ "Invalid insertelement operands!", &IE);
visitInstruction(IE);
}
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
- Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
- SV.getOperand(2)),
- "Invalid shufflevector operands!", &SV);
+ Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
+ SV.getOperand(2)),
+ "Invalid shufflevector operands!", &SV);
visitInstruction(SV);
}
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
- Assert1(isa<PointerType>(TargetTy),
- "GEP base pointer is not a vector or a vector of pointers", &GEP);
- Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
- "GEP into unsized type!", &GEP);
- Assert1(GEP.getPointerOperandType()->isVectorTy() ==
- GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
- &GEP);
+ Assert(isa<PointerType>(TargetTy),
+ "GEP base pointer is not a vector or a vector of pointers", &GEP);
+ Assert(cast<PointerType>(TargetTy)->getElementType()->isSized(),
+ "GEP into unsized type!", &GEP);
+ Assert(GEP.getPointerOperandType()->isVectorTy() ==
+ GEP.getType()->isVectorTy(),
+ "Vector GEP must return a vector value", &GEP);
SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
Type *ElTy =
GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
- Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
+ Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
- Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
- cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
- == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
+ Assert(GEP.getType()->getScalarType()->isPointerTy() &&
+ cast<PointerType>(GEP.getType()->getScalarType())
+ ->getElementType() == ElTy,
+ "GEP is not of right type for indices!", &GEP, ElTy);
if (GEP.getPointerOperandType()->isVectorTy()) {
// Additional checks for vector GEPs.
unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
- Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
- "Vector GEP result width doesn't match operand's", &GEP);
+ Assert(GepWidth == GEP.getType()->getVectorNumElements(),
+ "Vector GEP result width doesn't match operand's", &GEP);
for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
Type *IndexTy = Idxs[i]->getType();
- Assert1(IndexTy->isVectorTy(),
- "Vector GEP must have vector indices!", &GEP);
+ Assert(IndexTy->isVectorTy(), "Vector GEP must have vector indices!",
+ &GEP);
unsigned IndexWidth = IndexTy->getVectorNumElements();
- Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
+ Assert(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
}
}
visitInstruction(GEP);
@@ -2155,34 +2168,33 @@ void Verifier::visitRangeMetadata(Instruction& I,
"precondition violation");
unsigned NumOperands = Range->getNumOperands();
- Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
+ Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
unsigned NumRanges = NumOperands / 2;
- Assert1(NumRanges >= 1, "It should have at least one range!", Range);
-
+ Assert(NumRanges >= 1, "It should have at least one range!", Range);
+
ConstantRange LastRange(1); // Dummy initial value
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Low =
mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
- Assert1(Low, "The lower limit must be an integer!", Low);
+ Assert(Low, "The lower limit must be an integer!", Low);
ConstantInt *High =
mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
- Assert1(High, "The upper limit must be an integer!", High);
- Assert1(High->getType() == Low->getType() &&
- High->getType() == Ty, "Range types must match instruction type!",
- &I);
-
+ Assert(High, "The upper limit must be an integer!", High);
+ Assert(High->getType() == Low->getType() && High->getType() == Ty,
+ "Range types must match instruction type!", &I);
+
APInt HighV = High->getValue();
APInt LowV = Low->getValue();
ConstantRange CurRange(LowV, HighV);
- Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
- "Range must not be empty!", Range);
+ Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
+ "Range must not be empty!", Range);
if (i != 0) {
- Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
- "Intervals are overlapping", Range);
- Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
- Range);
- Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
- Range);
+ Assert(CurRange.intersectWith(LastRange).isEmptySet(),
+ "Intervals are overlapping", Range);
+ Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
+ Range);
+ Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
+ Range);
}
LastRange = ConstantRange(LowV, HighV);
}
@@ -2192,38 +2204,37 @@ void Verifier::visitRangeMetadata(Instruction& I,
APInt FirstHigh =
mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
ConstantRange FirstRange(FirstLow, FirstHigh);
- Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
- "Intervals are overlapping", Range);
- Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
- Range);
+ Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
+ "Intervals are overlapping", Range);
+ Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
+ Range);
}
}
void Verifier::visitLoadInst(LoadInst &LI) {
PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
- Assert1(PTy, "Load operand must be a pointer.", &LI);
+ Assert(PTy, "Load operand must be a pointer.", &LI);
Type *ElTy = PTy->getElementType();
- Assert2(ElTy == LI.getType(),
- "Load result type does not match pointer operand type!", &LI, ElTy);
- Assert1(LI.getAlignment() <= Value::MaximumAlignment,
- "huge alignment values are unsupported", &LI);
+ Assert(ElTy == LI.getType(),
+ "Load result type does not match pointer operand type!", &LI, ElTy);
+ Assert(LI.getAlignment() <= Value::MaximumAlignment,
+ "huge alignment values are unsupported", &LI);
if (LI.isAtomic()) {
- Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
- "Load cannot have Release ordering", &LI);
- Assert1(LI.getAlignment() != 0,
- "Atomic load must specify explicit alignment", &LI);
+ Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
+ "Load cannot have Release ordering", &LI);
+ Assert(LI.getAlignment() != 0,
+ "Atomic load must specify explicit alignment", &LI);
if (!ElTy->isPointerTy()) {
- Assert2(ElTy->isIntegerTy(),
- "atomic load operand must have integer type!",
- &LI, ElTy);
+ Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!",
+ &LI, ElTy);
unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert2(Size >= 8 && !(Size & (Size - 1)),
- "atomic load operand must be power-of-two byte-sized integer",
- &LI, ElTy);
+ Assert(Size >= 8 && !(Size & (Size - 1)),
+ "atomic load operand must be power-of-two byte-sized integer", &LI,
+ ElTy);
}
} else {
- Assert1(LI.getSynchScope() == CrossThread,
- "Non-atomic load cannot have SynchronizationScope specified", &LI);
+ Assert(LI.getSynchScope() == CrossThread,
+ "Non-atomic load cannot have SynchronizationScope specified", &LI);
}
visitInstruction(LI);
@@ -2231,30 +2242,28 @@ void Verifier::visitLoadInst(LoadInst &LI) {
void Verifier::visitStoreInst(StoreInst &SI) {
PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
- Assert1(PTy, "Store operand must be a pointer.", &SI);
+ Assert(PTy, "Store operand must be a pointer.", &SI);
Type *ElTy = PTy->getElementType();
- Assert2(ElTy == SI.getOperand(0)->getType(),
- "Stored value type does not match pointer operand type!",
- &SI, ElTy);
- Assert1(SI.getAlignment() <= Value::MaximumAlignment,
- "huge alignment values are unsupported", &SI);
+ Assert(ElTy == SI.getOperand(0)->getType(),
+ "Stored value type does not match pointer operand type!", &SI, ElTy);
+ Assert(SI.getAlignment() <= Value::MaximumAlignment,
+ "huge alignment values are unsupported", &SI);
if (SI.isAtomic()) {
- Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
- "Store cannot have Acquire ordering", &SI);
- Assert1(SI.getAlignment() != 0,
- "Atomic store must specify explicit alignment", &SI);
+ Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
+ "Store cannot have Acquire ordering", &SI);
+ Assert(SI.getAlignment() != 0,
+ "Atomic store must specify explicit alignment", &SI);
if (!ElTy->isPointerTy()) {
- Assert2(ElTy->isIntegerTy(),
- "atomic store operand must have integer type!",
- &SI, ElTy);
+ Assert(ElTy->isIntegerTy(),
+ "atomic store operand must have integer type!", &SI, ElTy);
unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert2(Size >= 8 && !(Size & (Size - 1)),
- "atomic store operand must be power-of-two byte-sized integer",
- &SI, ElTy);
+ Assert(Size >= 8 && !(Size & (Size - 1)),
+ "atomic store operand must be power-of-two byte-sized integer",
+ &SI, ElTy);
}
} else {
- Assert1(SI.getSynchScope() == CrossThread,
- "Non-atomic store cannot have SynchronizationScope specified", &SI);
+ Assert(SI.getSynchScope() == CrossThread,
+ "Non-atomic store cannot have SynchronizationScope specified", &SI);
}
visitInstruction(SI);
}
@@ -2262,15 +2271,15 @@ void Verifier::visitStoreInst(StoreInst &SI) {
void Verifier::visitAllocaInst(AllocaInst &AI) {
SmallPtrSet<const Type*, 4> Visited;
PointerType *PTy = AI.getType();
- Assert1(PTy->getAddressSpace() == 0,
- "Allocation instruction pointer not in the generic address space!",
- &AI);
- Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type",
- &AI);
- Assert1(AI.getArraySize()->getType()->isIntegerTy(),
- "Alloca array size must have integer type", &AI);
- Assert1(AI.getAlignment() <= Value::MaximumAlignment,
- "huge alignment values are unsupported", &AI);
+ Assert(PTy->getAddressSpace() == 0,
+ "Allocation instruction pointer not in the generic address space!",
+ &AI);
+ Assert(PTy->getElementType()->isSized(&Visited),
+ "Cannot allocate unsized type", &AI);
+ Assert(AI.getArraySize()->getType()->isIntegerTy(),
+ "Alloca array size must have integer type", &AI);
+ Assert(AI.getAlignment() <= Value::MaximumAlignment,
+ "huge alignment values are unsupported", &AI);
visitInstruction(AI);
}
@@ -2278,87 +2287,83 @@ void Verifier::visitAllocaInst(AllocaInst &AI) {
void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
// FIXME: more conditions???
- Assert1(CXI.getSuccessOrdering() != NotAtomic,
- "cmpxchg instructions must be atomic.", &CXI);
- Assert1(CXI.getFailureOrdering() != NotAtomic,
- "cmpxchg instructions must be atomic.", &CXI);
- Assert1(CXI.getSuccessOrdering() != Unordered,
- "cmpxchg instructions cannot be unordered.", &CXI);
- Assert1(CXI.getFailureOrdering() != Unordered,
- "cmpxchg instructions cannot be unordered.", &CXI);
- Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
- "cmpxchg instructions be at least as constrained on success as fail",
- &CXI);
- Assert1(CXI.getFailureOrdering() != Release &&
- CXI.getFailureOrdering() != AcquireRelease,
- "cmpxchg failure ordering cannot include release semantics", &CXI);
+ Assert(CXI.getSuccessOrdering() != NotAtomic,
+ "cmpxchg instructions must be atomic.", &CXI);
+ Assert(CXI.getFailureOrdering() != NotAtomic,
+ "cmpxchg instructions must be atomic.", &CXI);
+ Assert(CXI.getSuccessOrdering() != Unordered,
+ "cmpxchg instructions cannot be unordered.", &CXI);
+ Assert(CXI.getFailureOrdering() != Unordered,
+ "cmpxchg instructions cannot be unordered.", &CXI);
+ Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
+ "cmpxchg instructions be at least as constrained on success as fail",
+ &CXI);
+ Assert(CXI.getFailureOrdering() != Release &&
+ CXI.getFailureOrdering() != AcquireRelease,
+ "cmpxchg failure ordering cannot include release semantics", &CXI);
PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
- Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
+ Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
Type *ElTy = PTy->getElementType();
- Assert2(ElTy->isIntegerTy(),
- "cmpxchg operand must have integer type!",
- &CXI, ElTy);
+ Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
+ ElTy);
unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert2(Size >= 8 && !(Size & (Size - 1)),
- "cmpxchg operand must be power-of-two byte-sized integer",
- &CXI, ElTy);
- Assert2(ElTy == CXI.getOperand(1)->getType(),
- "Expected value type does not match pointer operand type!",
- &CXI, ElTy);
- Assert2(ElTy == CXI.getOperand(2)->getType(),
- "Stored value type does not match pointer operand type!",
- &CXI, ElTy);
+ Assert(Size >= 8 && !(Size & (Size - 1)),
+ "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy);
+ Assert(ElTy == CXI.getOperand(1)->getType(),
+ "Expected value type does not match pointer operand type!", &CXI,
+ ElTy);
+ Assert(ElTy == CXI.getOperand(2)->getType(),
+ "Stored value type does not match pointer operand type!", &CXI, ElTy);
visitInstruction(CXI);
}
void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
- Assert1(RMWI.getOrdering() != NotAtomic,
- "atomicrmw instructions must be atomic.", &RMWI);
- Assert1(RMWI.getOrdering() != Unordered,
- "atomicrmw instructions cannot be unordered.", &RMWI);
+ Assert(RMWI.getOrdering() != NotAtomic,
+ "atomicrmw instructions must be atomic.", &RMWI);
+ Assert(RMWI.getOrdering() != Unordered,
+ "atomicrmw instructions cannot be unordered.", &RMWI);
PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
- Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
+ Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
Type *ElTy = PTy->getElementType();
- Assert2(ElTy->isIntegerTy(),
- "atomicrmw operand must have integer type!",
- &RMWI, ElTy);
+ Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
+ &RMWI, ElTy);
unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert2(Size >= 8 && !(Size & (Size - 1)),
- "atomicrmw operand must be power-of-two byte-sized integer",
- &RMWI, ElTy);
- Assert2(ElTy == RMWI.getOperand(1)->getType(),
- "Argument value type does not match pointer operand type!",
- &RMWI, ElTy);
- Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
- RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
- "Invalid binary operation!", &RMWI);
+ Assert(Size >= 8 && !(Size & (Size - 1)),
+ "atomicrmw operand must be power-of-two byte-sized integer", &RMWI,
+ ElTy);
+ Assert(ElTy == RMWI.getOperand(1)->getType(),
+ "Argument value type does not match pointer operand type!", &RMWI,
+ ElTy);
+ Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
+ RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
+ "Invalid binary operation!", &RMWI);
visitInstruction(RMWI);
}
void Verifier::visitFenceInst(FenceInst &FI) {
const AtomicOrdering Ordering = FI.getOrdering();
- Assert1(Ordering == Acquire || Ordering == Release ||
- Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
- "fence instructions may only have "
- "acquire, release, acq_rel, or seq_cst ordering.", &FI);
+ Assert(Ordering == Acquire || Ordering == Release ||
+ Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
+ "fence instructions may only have "
+ "acquire, release, acq_rel, or seq_cst ordering.",
+ &FI);
visitInstruction(FI);
}
void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
- Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
- EVI.getIndices()) ==
- EVI.getType(),
- "Invalid ExtractValueInst operands!", &EVI);
+ Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
+ EVI.getIndices()) == EVI.getType(),
+ "Invalid ExtractValueInst operands!", &EVI);
visitInstruction(EVI);
}
void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
- Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
- IVI.getIndices()) ==
- IVI.getOperand(1)->getType(),
- "Invalid InsertValueInst operands!", &IVI);
+ Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
+ IVI.getIndices()) ==
+ IVI.getOperand(1)->getType(),
+ "Invalid InsertValueInst operands!", &IVI);
visitInstruction(IVI);
}
@@ -2368,43 +2373,44 @@ void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
// The landingpad instruction is ill-formed if it doesn't have any clauses and
// isn't a cleanup.
- Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
- "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
+ Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
+ "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
// The landingpad instruction defines its parent as a landing pad block. The
// landing pad block may be branched to only by the unwind edge of an invoke.
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
- Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
- "Block containing LandingPadInst must be jumped to "
- "only by the unwind edge of an invoke.", &LPI);
+ Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
+ "Block containing LandingPadInst must be jumped to "
+ "only by the unwind edge of an invoke.",
+ &LPI);
}
// The landingpad instruction must be the first non-PHI instruction in the
// block.
- Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
- "LandingPadInst not the first non-PHI instruction in the block.",
- &LPI);
+ Assert(LPI.getParent()->getLandingPadInst() == &LPI,
+ "LandingPadInst not the first non-PHI instruction in the block.",
+ &LPI);
// The personality functions for all landingpad instructions within the same
// function should match.
if (PersonalityFn)
- Assert1(LPI.getPersonalityFn() == PersonalityFn,
- "Personality function doesn't match others in function", &LPI);
+ Assert(LPI.getPersonalityFn() == PersonalityFn,
+ "Personality function doesn't match others in function", &LPI);
PersonalityFn = LPI.getPersonalityFn();
// All operands must be constants.
- Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
- &LPI);
+ Assert(isa<Constant>(PersonalityFn), "Personality function is not constant!",
+ &LPI);
for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
Constant *Clause = LPI.getClause(i);
if (LPI.isCatch(i)) {
- Assert1(isa<PointerType>(Clause->getType()),
- "Catch operand does not have pointer type!", &LPI);
+ Assert(isa<PointerType>(Clause->getType()),
+ "Catch operand does not have pointer type!", &LPI);
} else {
- Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
- Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
- "Filter operand is not an array of constants!", &LPI);
+ Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
+ Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
+ "Filter operand is not an array of constants!", &LPI);
}
}
@@ -2422,46 +2428,46 @@ void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
}
const Use &U = I.getOperandUse(i);
- Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
- "Instruction does not dominate all uses!", Op, &I);
+ Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
+ "Instruction does not dominate all uses!", Op, &I);
}
/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
BasicBlock *BB = I.getParent();
- Assert1(BB, "Instruction not embedded in basic block!", &I);
+ Assert(BB, "Instruction not embedded in basic block!", &I);
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
for (User *U : I.users()) {
- Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB),
- "Only PHI nodes may reference their own value!", &I);
+ Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
+ "Only PHI nodes may reference their own value!", &I);
}
}
// Check that void typed values don't have names
- Assert1(!I.getType()->isVoidTy() || !I.hasName(),
- "Instruction has a name, but provides a void value!", &I);
+ Assert(!I.getType()->isVoidTy() || !I.hasName(),
+ "Instruction has a name, but provides a void value!", &I);
// Check that the return value of the instruction is either void or a legal
// value type.
- Assert1(I.getType()->isVoidTy() ||
- I.getType()->isFirstClassType(),
- "Instruction returns a non-scalar type!", &I);
+ Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
+ "Instruction returns a non-scalar type!", &I);
// Check that the instruction doesn't produce metadata. Calls are already
// checked against the callee type.
- Assert1(!I.getType()->isMetadataTy() ||
- isa<CallInst>(I) || isa<InvokeInst>(I),
- "Invalid use of metadata!", &I);
+ Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
+ "Invalid use of metadata!", &I);
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks. If the use is not an
// instruction, it is an error!
for (Use &U : I.uses()) {
if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
- Assert2(Used->getParent() != nullptr, "Instruction referencing"
- " instruction not embedded in a basic block!", &I, Used);
+ Assert(Used->getParent() != nullptr,
+ "Instruction referencing"
+ " instruction not embedded in a basic block!",
+ &I, Used);
else {
CheckFailed("Use of instruction is not an instruction!", U);
return;
@@ -2469,44 +2475,46 @@ void Verifier::visitInstruction(Instruction &I) {
}
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
- Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
+ Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
// Check to make sure that only first-class-values are operands to
// instructions.
if (!I.getOperand(i)->getType()->isFirstClassType()) {
- Assert1(0, "Instruction operands must be first-class values!", &I);
+ Assert(0, "Instruction operands must be first-class values!", &I);
}
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
// Check to make sure that the "address of" an intrinsic function is never
// taken.
- Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 :
- isa<InvokeInst>(I) ? e-3 : 0),
- "Cannot take the address of an intrinsic!", &I);
- Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
+ Assert(
+ !F->isIntrinsic() ||
+ i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
+ "Cannot take the address of an intrinsic!", &I);
+ Assert(
+ !F->isIntrinsic() || isa<CallInst>(I) ||
F->getIntrinsicID() == Intrinsic::donothing ||
F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
- "Cannot invoke an intrinsinc other than"
- " donothing or patchpoint", &I);
- Assert1(F->getParent() == M, "Referencing function in another module!",
- &I);
+ "Cannot invoke an intrinsinc other than"
+ " donothing or patchpoint",
+ &I);
+ Assert(F->getParent() == M, "Referencing function in another module!",
+ &I);
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
- Assert1(OpBB->getParent() == BB->getParent(),
- "Referring to a basic block in another function!", &I);
+ Assert(OpBB->getParent() == BB->getParent(),
+ "Referring to a basic block in another function!", &I);
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
- Assert1(OpArg->getParent() == BB->getParent(),
- "Referring to an argument in another function!", &I);
+ Assert(OpArg->getParent() == BB->getParent(),
+ "Referring to an argument in another function!", &I);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
- Assert1(GV->getParent() == M, "Referencing global in another module!",
- &I);
+ Assert(GV->getParent() == M, "Referencing global in another module!", &I);
} else if (isa<Instruction>(I.getOperand(i))) {
verifyDominatesUse(I, i);
} else if (isa<InlineAsm>(I.getOperand(i))) {
- Assert1((i + 1 == e && isa<CallInst>(I)) ||
- (i + 3 == e && isa<InvokeInst>(I)),
- "Cannot take the address of an inline asm!", &I);
+ Assert((i + 1 == e && isa<CallInst>(I)) ||
+ (i + 3 == e && isa<InvokeInst>(I)),
+ "Cannot take the address of an inline asm!", &I);
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
if (CE->getType()->isPtrOrPtrVectorTy()) {
// If we have a ConstantExpr pointer, we need to see if it came from an
@@ -2532,31 +2540,37 @@ void Verifier::visitInstruction(Instruction &I) {
}
if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
- Assert1(I.getType()->isFPOrFPVectorTy(),
- "fpmath requires a floating point result!", &I);
- Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
+ Assert(I.getType()->isFPOrFPVectorTy(),
+ "fpmath requires a floating point result!", &I);
+ Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
if (ConstantFP *CFP0 =
mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
APFloat Accuracy = CFP0->getValueAPF();
- Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
- "fpmath accuracy not a positive number!", &I);
+ Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
+ "fpmath accuracy not a positive number!", &I);
} else {
- Assert1(false, "invalid fpmath accuracy!", &I);
+ Assert(false, "invalid fpmath accuracy!", &I);
}
}
if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
- Assert1(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
- "Ranges are only for loads, calls and invokes!", &I);
+ Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
+ "Ranges are only for loads, calls and invokes!", &I);
visitRangeMetadata(I, Range, I.getType());
}
if (I.getMetadata(LLVMContext::MD_nonnull)) {
- Assert1(I.getType()->isPointerTy(),
- "nonnull applies only to pointer types", &I);
- Assert1(isa<LoadInst>(I),
- "nonnull applies only to load instructions, use attributes"
- " for calls or invokes", &I);
+ Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
+ &I);
+ Assert(isa<LoadInst>(I),
+ "nonnull applies only to load instructions, use attributes"
+ " for calls or invokes",
+ &I);
+ }
+
+ if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
+ Assert(isa<MDLocation>(N), "invalid !dbg metadata attachment", &I, N);
+ visitMDNode(*N);
}
InstsInThisBlock.insert(&I);
@@ -2717,7 +2731,7 @@ Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
// If there are no descriptors left, then it can't be a vararg.
if (Infos.empty())
- return isVarArg ? true : false;
+ return isVarArg;
// There should be only one descriptor remaining at this point.
if (Infos.size() != 1)
@@ -2727,7 +2741,7 @@ Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
if (D.Kind == IITDescriptor::VarArg)
- return isVarArg ? false : true;
+ return !isVarArg;
return true;
}
@@ -2736,8 +2750,8 @@ Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
///
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
Function *IF = CI.getCalledFunction();
- Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
- IF);
+ Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
+ IF);
// Verify that the intrinsic prototype lines up with what the .td files
// describe.
@@ -2749,31 +2763,33 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
SmallVector<Type *, 4> ArgTys;
- Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
- "Intrinsic has incorrect return type!", IF);
+ Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
+ "Intrinsic has incorrect return type!", IF);
for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
- Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
- "Intrinsic has incorrect argument type!", IF);
+ Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
+ "Intrinsic has incorrect argument type!", IF);
// Verify if the intrinsic call matches the vararg property.
if (IsVarArg)
- Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
- "Intrinsic was not defined with variable arguments!", IF);
+ Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
+ "Intrinsic was not defined with variable arguments!", IF);
else
- Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
- "Callsite was not defined with variable arguments!", IF);
+ Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
+ "Callsite was not defined with variable arguments!", IF);
// All descriptors should be absorbed by now.
- Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
+ Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
// Now that we have the intrinsic ID and the actual argument types (and we
// know they are legal for the intrinsic!) get the intrinsic name through the
// usual means. This allows us to verify the mangling of argument types into
// the name.
const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
- Assert1(ExpectedName == IF->getName(),
- "Intrinsic name not mangled correctly for type arguments! "
- "Should be: " + ExpectedName, IF);
+ Assert(ExpectedName == IF->getName(),
+ "Intrinsic name not mangled correctly for type arguments! "
+ "Should be: " +
+ ExpectedName,
+ IF);
// If the intrinsic takes MDNode arguments, verify that they are either global
// or are local to *this* function.
@@ -2786,95 +2802,123 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
break;
case Intrinsic::ctlz: // llvm.ctlz
case Intrinsic::cttz: // llvm.cttz
- Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
- "is_zero_undef argument of bit counting intrinsics must be a "
- "constant int", &CI);
+ Assert(isa<ConstantInt>(CI.getArgOperand(1)),
+ "is_zero_undef argument of bit counting intrinsics must be a "
+ "constant int",
+ &CI);
+ break;
+ case Intrinsic::dbg_declare: // llvm.dbg.declare
+ Assert(isa<MetadataAsValue>(CI.getArgOperand(0)),
+ "invalid llvm.dbg.declare intrinsic call 1", &CI);
+ visitDbgIntrinsic("declare", cast<DbgDeclareInst>(CI));
+ break;
+ case Intrinsic::dbg_value: // llvm.dbg.value
+ visitDbgIntrinsic("value", cast<DbgValueInst>(CI));
break;
- case Intrinsic::dbg_declare: { // llvm.dbg.declare
- Assert1(CI.getArgOperand(0) && isa<MetadataAsValue>(CI.getArgOperand(0)),
- "invalid llvm.dbg.declare intrinsic call 1", &CI);
- } break;
case Intrinsic::memcpy:
case Intrinsic::memmove:
- case Intrinsic::memset:
- Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
- "alignment argument of memory intrinsics must be a constant int",
- &CI);
- Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
- "isvolatile argument of memory intrinsics must be a constant int",
- &CI);
+ case Intrinsic::memset: {
+ ConstantInt *AlignCI = dyn_cast<ConstantInt>(CI.getArgOperand(3));
+ Assert(AlignCI,
+ "alignment argument of memory intrinsics must be a constant int",
+ &CI);
+ const APInt &AlignVal = AlignCI->getValue();
+ Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
+ "alignment argument of memory intrinsics must be a power of 2", &CI);
+ Assert(isa<ConstantInt>(CI.getArgOperand(4)),
+ "isvolatile argument of memory intrinsics must be a constant int",
+ &CI);
break;
+ }
case Intrinsic::gcroot:
case Intrinsic::gcwrite:
case Intrinsic::gcread:
if (ID == Intrinsic::gcroot) {
AllocaInst *AI =
dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
- Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
- Assert1(isa<Constant>(CI.getArgOperand(1)),
- "llvm.gcroot parameter #2 must be a constant.", &CI);
+ Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
+ Assert(isa<Constant>(CI.getArgOperand(1)),
+ "llvm.gcroot parameter #2 must be a constant.", &CI);
if (!AI->getType()->getElementType()->isPointerTy()) {
- Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
- "llvm.gcroot parameter #1 must either be a pointer alloca, "
- "or argument #2 must be a non-null constant.", &CI);
+ Assert(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
+ "llvm.gcroot parameter #1 must either be a pointer alloca, "
+ "or argument #2 must be a non-null constant.",
+ &CI);
}
}
- Assert1(CI.getParent()->getParent()->hasGC(),
- "Enclosing function does not use GC.", &CI);
+ Assert(CI.getParent()->getParent()->hasGC(),
+ "Enclosing function does not use GC.", &CI);
break;
case Intrinsic::init_trampoline:
- Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
- "llvm.init_trampoline parameter #2 must resolve to a function.",
- &CI);
+ Assert(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
+ "llvm.init_trampoline parameter #2 must resolve to a function.",
+ &CI);
break;
case Intrinsic::prefetch:
- Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
- isa<ConstantInt>(CI.getArgOperand(2)) &&
- cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
- cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
- "invalid arguments to llvm.prefetch",
- &CI);
+ Assert(isa<ConstantInt>(CI.getArgOperand(1)) &&
+ isa<ConstantInt>(CI.getArgOperand(2)) &&
+ cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
+ cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
+ "invalid arguments to llvm.prefetch", &CI);
break;
case Intrinsic::stackprotector:
- Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
- "llvm.stackprotector parameter #2 must resolve to an alloca.",
- &CI);
+ Assert(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
+ "llvm.stackprotector parameter #2 must resolve to an alloca.", &CI);
break;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
- Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
- "size argument of memory use markers must be a constant integer",
- &CI);
+ Assert(isa<ConstantInt>(CI.getArgOperand(0)),
+ "size argument of memory use markers must be a constant integer",
+ &CI);
break;
case Intrinsic::invariant_end:
- Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
- "llvm.invariant.end parameter #2 must be a constant integer", &CI);
+ Assert(isa<ConstantInt>(CI.getArgOperand(1)),
+ "llvm.invariant.end parameter #2 must be a constant integer", &CI);
break;
- case Intrinsic::frameallocate: {
+ case Intrinsic::frameescape: {
BasicBlock *BB = CI.getParent();
- Assert1(BB == &BB->getParent()->front(),
- "llvm.frameallocate used outside of entry block", &CI);
- Assert1(!SawFrameAllocate,
- "multiple calls to llvm.frameallocate in one function", &CI);
- SawFrameAllocate = true;
- Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
- "llvm.frameallocate argument must be constant integer size", &CI);
+ Assert(BB == &BB->getParent()->front(),
+ "llvm.frameescape used outside of entry block", &CI);
+ Assert(!SawFrameEscape,
+ "multiple calls to llvm.frameescape in one function", &CI);
+ for (Value *Arg : CI.arg_operands()) {
+ auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
+ Assert(AI && AI->isStaticAlloca(),
+ "llvm.frameescape only accepts static allocas", &CI);
+ }
+ FrameEscapeInfo[BB->getParent()].first = CI.getNumArgOperands();
+ SawFrameEscape = true;
break;
}
case Intrinsic::framerecover: {
Value *FnArg = CI.getArgOperand(0)->stripPointerCasts();
Function *Fn = dyn_cast<Function>(FnArg);
- Assert1(Fn && !Fn->isDeclaration(), "llvm.framerecover first "
- "argument must be function defined in this module", &CI);
+ Assert(Fn && !Fn->isDeclaration(),
+ "llvm.framerecover first "
+ "argument must be function defined in this module",
+ &CI);
+ auto *IdxArg = dyn_cast<ConstantInt>(CI.getArgOperand(2));
+ Assert(IdxArg, "idx argument of llvm.framerecover must be a constant int",
+ &CI);
+ auto &Entry = FrameEscapeInfo[Fn];
+ Entry.second = unsigned(
+ std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
+ break;
+ }
+
+ case Intrinsic::eh_unwindhelp: {
+ auto *AI = dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
+ Assert(AI && AI->isStaticAlloca(),
+ "llvm.eh.unwindhelp requires a static alloca", &CI);
break;
}
case Intrinsic::experimental_gc_statepoint:
- Assert1(!CI.isInlineAsm(),
- "gc.statepoint support for inline assembly unimplemented", &CI);
+ Assert(!CI.isInlineAsm(),
+ "gc.statepoint support for inline assembly unimplemented", &CI);
VerifyStatepoint(ImmutableCallSite(&CI));
break;
@@ -2886,56 +2930,52 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
CallSite StatepointCS(CI.getArgOperand(0));
const Function *StatepointFn =
StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
- Assert2(StatepointFn && StatepointFn->isDeclaration() &&
- StatepointFn->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
- "gc.result operand #1 must be from a statepoint",
- &CI, CI.getArgOperand(0));
+ Assert(StatepointFn && StatepointFn->isDeclaration() &&
+ StatepointFn->getIntrinsicID() ==
+ Intrinsic::experimental_gc_statepoint,
+ "gc.result operand #1 must be from a statepoint", &CI,
+ CI.getArgOperand(0));
// Assert that result type matches wrapped callee.
const Value *Target = StatepointCS.getArgument(0);
const PointerType *PT = cast<PointerType>(Target->getType());
const FunctionType *TargetFuncType =
cast<FunctionType>(PT->getElementType());
- Assert1(CI.getType() == TargetFuncType->getReturnType(),
- "gc.result result type does not match wrapped callee",
- &CI);
+ Assert(CI.getType() == TargetFuncType->getReturnType(),
+ "gc.result result type does not match wrapped callee", &CI);
break;
}
case Intrinsic::experimental_gc_relocate: {
- Assert1(CI.getNumArgOperands() == 3, "wrong number of arguments", &CI);
+ Assert(CI.getNumArgOperands() == 3, "wrong number of arguments", &CI);
// Check that this relocate is correctly tied to the statepoint
// This is case for relocate on the unwinding path of an invoke statepoint
if (ExtractValueInst *ExtractValue =
dyn_cast<ExtractValueInst>(CI.getArgOperand(0))) {
- Assert1(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
- "gc relocate on unwind path incorrectly linked to the statepoint",
- &CI);
+ Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
+ "gc relocate on unwind path incorrectly linked to the statepoint",
+ &CI);
const BasicBlock *invokeBB =
ExtractValue->getParent()->getUniquePredecessor();
// Landingpad relocates should have only one predecessor with invoke
// statepoint terminator
- Assert1(invokeBB,
- "safepoints should have unique landingpads",
- ExtractValue->getParent());
- Assert1(invokeBB->getTerminator(),
- "safepoint block should be well formed",
- invokeBB);
- Assert1(isStatepoint(invokeBB->getTerminator()),
- "gc relocate should be linked to a statepoint",
- invokeBB);
+ Assert(invokeBB, "safepoints should have unique landingpads",
+ ExtractValue->getParent());
+ Assert(invokeBB->getTerminator(), "safepoint block should be well formed",
+ invokeBB);
+ Assert(isStatepoint(invokeBB->getTerminator()),
+ "gc relocate should be linked to a statepoint", invokeBB);
}
else {
// In all other cases relocate should be tied to the statepoint directly.
// This covers relocates on a normal return path of invoke statepoint and
// relocates of a call statepoint
auto Token = CI.getArgOperand(0);
- Assert2(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
- "gc relocate is incorrectly tied to the statepoint",
- &CI, Token);
+ Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
+ "gc relocate is incorrectly tied to the statepoint", &CI, Token);
}
// Verify rest of the relocate arguments
@@ -2945,53 +2985,74 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
// Both the base and derived must be piped through the safepoint
Value* Base = CI.getArgOperand(1);
- Assert1(isa<ConstantInt>(Base),
- "gc.relocate operand #2 must be integer offset", &CI);
-
+ Assert(isa<ConstantInt>(Base),
+ "gc.relocate operand #2 must be integer offset", &CI);
+
Value* Derived = CI.getArgOperand(2);
- Assert1(isa<ConstantInt>(Derived),
- "gc.relocate operand #3 must be integer offset", &CI);
+ Assert(isa<ConstantInt>(Derived),
+ "gc.relocate operand #3 must be integer offset", &CI);
const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
// Check the bounds
- Assert1(0 <= BaseIndex &&
- BaseIndex < (int)StatepointCS.arg_size(),
- "gc.relocate: statepoint base index out of bounds", &CI);
- Assert1(0 <= DerivedIndex &&
- DerivedIndex < (int)StatepointCS.arg_size(),
- "gc.relocate: statepoint derived index out of bounds", &CI);
+ Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
+ "gc.relocate: statepoint base index out of bounds", &CI);
+ Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
+ "gc.relocate: statepoint derived index out of bounds", &CI);
// Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
// section of the statepoint's argument
- const int NumCallArgs =
+ Assert(StatepointCS.arg_size() > 0,
+ "gc.statepoint: insufficient arguments");
+ Assert(isa<ConstantInt>(StatepointCS.getArgument(1)),
+ "gc.statement: number of call arguments must be constant integer");
+ const unsigned NumCallArgs =
cast<ConstantInt>(StatepointCS.getArgument(1))->getZExtValue();
+ Assert(StatepointCS.arg_size() > NumCallArgs+3,
+ "gc.statepoint: mismatch in number of call arguments");
+ Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs+3)),
+ "gc.statepoint: number of deoptimization arguments must be "
+ "a constant integer");
const int NumDeoptArgs =
cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 3))->getZExtValue();
const int GCParamArgsStart = NumCallArgs + NumDeoptArgs + 4;
const int GCParamArgsEnd = StatepointCS.arg_size();
- Assert1(GCParamArgsStart <= BaseIndex &&
- BaseIndex < GCParamArgsEnd,
- "gc.relocate: statepoint base index doesn't fall within the "
- "'gc parameters' section of the statepoint call", &CI);
- Assert1(GCParamArgsStart <= DerivedIndex &&
- DerivedIndex < GCParamArgsEnd,
- "gc.relocate: statepoint derived index doesn't fall within the "
- "'gc parameters' section of the statepoint call", &CI);
-
+ Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
+ "gc.relocate: statepoint base index doesn't fall within the "
+ "'gc parameters' section of the statepoint call",
+ &CI);
+ Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
+ "gc.relocate: statepoint derived index doesn't fall within the "
+ "'gc parameters' section of the statepoint call",
+ &CI);
// Assert that the result type matches the type of the relocated pointer
GCRelocateOperands Operands(&CI);
- Assert1(Operands.derivedPtr()->getType() == CI.getType(),
- "gc.relocate: relocating a pointer shouldn't change its type",
- &CI);
+ Assert(Operands.derivedPtr()->getType() == CI.getType(),
+ "gc.relocate: relocating a pointer shouldn't change its type", &CI);
break;
}
};
}
-void DebugInfoVerifier::verifyDebugInfo() {
- if (!VerifyDebugInfo)
+template <class DbgIntrinsicTy>
+void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
+ auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
+ Assert(isa<ValueAsMetadata>(MD) ||
+ (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
+ "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
+ Assert(isa<MDLocalVariable>(DII.getRawVariable()),
+ "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
+ DII.getRawVariable());
+ Assert(isa<MDExpression>(DII.getRawExpression()),
+ "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
+ DII.getRawExpression());
+}
+
+void Verifier::verifyDebugInfo() {
+ // Run the debug info verifier only if the regular verifier succeeds, since
+ // sometimes checks that have already failed will cause crashes here.
+ if (EverBroken || !VerifyDebugInfo)
return;
DebugInfoFinder Finder;
@@ -3002,23 +3063,23 @@ void DebugInfoVerifier::verifyDebugInfo() {
//
// NOTE: The loud braces are necessary for MSVC compatibility.
for (DICompileUnit CU : Finder.compile_units()) {
- Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU);
+ Assert(CU.Verify(), "DICompileUnit does not Verify!", CU);
}
for (DISubprogram S : Finder.subprograms()) {
- Assert1(S.Verify(), "DISubprogram does not Verify!", S);
+ Assert(S.Verify(), "DISubprogram does not Verify!", S);
}
for (DIGlobalVariable GV : Finder.global_variables()) {
- Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV);
+ Assert(GV.Verify(), "DIGlobalVariable does not Verify!", GV);
}
for (DIType T : Finder.types()) {
- Assert1(T.Verify(), "DIType does not Verify!", T);
+ Assert(T.Verify(), "DIType does not Verify!", T);
}
for (DIScope S : Finder.scopes()) {
- Assert1(S.Verify(), "DIScope does not Verify!", S);
+ Assert(S.Verify(), "DIScope does not Verify!", S);
}
}
-void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) {
+void Verifier::processInstructions(DebugInfoFinder &Finder) {
for (const Function &F : *M)
for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg))
@@ -3028,25 +3089,16 @@ void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) {
}
}
-void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder,
- const CallInst &CI) {
+void Verifier::processCallInst(DebugInfoFinder &Finder, const CallInst &CI) {
if (Function *F = CI.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
switch (ID) {
- case Intrinsic::dbg_declare: {
- auto *DDI = cast<DbgDeclareInst>(&CI);
- Finder.processDeclare(*M, DDI);
- if (auto E = DDI->getExpression())
- Assert1(DIExpression(E).Verify(), "DIExpression does not Verify!", E);
+ case Intrinsic::dbg_declare:
+ Finder.processDeclare(*M, cast<DbgDeclareInst>(&CI));
break;
- }
- case Intrinsic::dbg_value: {
- auto *DVI = cast<DbgValueInst>(&CI);
- Finder.processValue(*M, DVI);
- if (auto E = DVI->getExpression())
- Assert1(DIExpression(E).Verify(), "DIExpression does not Verify!", E);
+ case Intrinsic::dbg_value:
+ Finder.processValue(*M, cast<DbgValueInst>(&CI));
break;
- }
default:
break;
}
@@ -3079,8 +3131,7 @@ bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
// Note that this function's return value is inverted from what you would
// expect of a function called "verify".
- DebugInfoVerifier DIV(OS ? *OS : NullStr);
- return !V.verify(M) || !DIV.verify(M) || Broken;
+ return !V.verify(M) || Broken;
}
namespace {
@@ -3090,7 +3141,7 @@ struct VerifierLegacyPass : public FunctionPass {
Verifier V;
bool FatalErrors;
- VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) {
+ VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
}
explicit VerifierLegacyPass(bool FatalErrors)
@@ -3116,48 +3167,15 @@ struct VerifierLegacyPass : public FunctionPass {
AU.setPreservesAll();
}
};
-struct DebugInfoVerifierLegacyPass : public ModulePass {
- static char ID;
-
- DebugInfoVerifier V;
- bool FatalErrors;
-
- DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) {
- initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- explicit DebugInfoVerifierLegacyPass(bool FatalErrors)
- : ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) {
- initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnModule(Module &M) override {
- if (!V.verify(M) && FatalErrors)
- report_fatal_error("Broken debug info found, compilation aborted!");
-
- return false;
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- }
-};
}
char VerifierLegacyPass::ID = 0;
INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
-char DebugInfoVerifierLegacyPass::ID = 0;
-INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier",
- false, false)
-
FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
return new VerifierLegacyPass(FatalErrors);
}
-ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) {
- return new DebugInfoVerifierLegacyPass(FatalErrors);
-}
-
PreservedAnalyses VerifierPass::run(Module &M) {
if (verifyModule(M, &dbgs()) && FatalErrors)
report_fatal_error("Broken module found, compilation aborted!");