diff options
Diffstat (limited to 'lib/IR')
-rw-r--r-- | lib/IR/AsmWriter.cpp | 975 | ||||
-rw-r--r-- | lib/IR/AsmWriter.h | 129 | ||||
-rw-r--r-- | lib/IR/AutoUpgrade.cpp | 152 | ||||
-rw-r--r-- | lib/IR/BasicBlock.cpp | 24 | ||||
-rw-r--r-- | lib/IR/ConstantFold.cpp | 59 | ||||
-rw-r--r-- | lib/IR/ConstantRange.cpp | 45 | ||||
-rw-r--r-- | lib/IR/Constants.cpp | 25 | ||||
-rw-r--r-- | lib/IR/Core.cpp | 2 | ||||
-rw-r--r-- | lib/IR/DIBuilder.cpp | 707 | ||||
-rw-r--r-- | lib/IR/DataLayout.cpp | 134 | ||||
-rw-r--r-- | lib/IR/DebugInfo.cpp | 833 | ||||
-rw-r--r-- | lib/IR/DiagnosticInfo.cpp | 2 | ||||
-rw-r--r-- | lib/IR/GCOV.cpp | 7 | ||||
-rw-r--r-- | lib/IR/Globals.cpp | 4 | ||||
-rw-r--r-- | lib/IR/InlineAsm.cpp | 2 | ||||
-rw-r--r-- | lib/IR/Instruction.cpp | 8 | ||||
-rw-r--r-- | lib/IR/Instructions.cpp | 253 | ||||
-rw-r--r-- | lib/IR/LLVMContextImpl.h | 6 | ||||
-rw-r--r-- | lib/IR/LegacyPassManager.cpp | 2 | ||||
-rw-r--r-- | lib/IR/Mangler.cpp | 6 | ||||
-rw-r--r-- | lib/IR/Module.cpp | 30 | ||||
-rw-r--r-- | lib/IR/TypeFinder.cpp | 2 | ||||
-rw-r--r-- | lib/IR/Value.cpp | 46 | ||||
-rw-r--r-- | lib/IR/Verifier.cpp | 2012 |
24 files changed, 2140 insertions, 3325 deletions
diff --git a/lib/IR/AsmWriter.cpp b/lib/IR/AsmWriter.cpp index de0e614..ae0beba 100644 --- a/lib/IR/AsmWriter.cpp +++ b/lib/IR/AsmWriter.cpp @@ -14,9 +14,9 @@ // //===----------------------------------------------------------------------===// -#include "AsmWriter.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/AssemblyAnnotationWriter.h" @@ -32,12 +32,14 @@ #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/TypeFinder.h" +#include "llvm/IR/UseListOrder.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cctype> using namespace llvm; @@ -275,6 +277,15 @@ static const Module *getModuleFromVal(const Value *V) { if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV->getParent(); + + if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { + for (const User *U : MAV->users()) + if (isa<Instruction>(U)) + if (const Module *M = getModuleFromVal(U)) + return M; + return nullptr; + } + return nullptr; } @@ -378,7 +389,29 @@ static void PrintLLVMName(raw_ostream &OS, const Value *V) { } -namespace llvm { +namespace { +class TypePrinting { + TypePrinting(const TypePrinting &) = delete; + void operator=(const TypePrinting&) = delete; +public: + + /// NamedTypes - The named types that are used by the current module. + TypeFinder NamedTypes; + + /// NumberedTypes - The numbered types, along with their value. + DenseMap<StructType*, unsigned> NumberedTypes; + + + TypePrinting() {} + ~TypePrinting() {} + + void incorporateTypes(const Module &M); + + void print(Type *Ty, raw_ostream &OS); + + void printStructBody(StructType *Ty, raw_ostream &OS); +}; +} // namespace void TypePrinting::incorporateTypes(const Module &M) { NamedTypes.run(M, false); @@ -508,6 +541,7 @@ void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { OS << '>'; } +namespace { //===----------------------------------------------------------------------===// // SlotTracker Class: Enumerate slot numbers for unnamed values //===----------------------------------------------------------------------===// @@ -525,6 +559,7 @@ private: /// TheFunction - The function for which we are holding slot numbers. const Function* TheFunction; bool FunctionProcessed; + bool ShouldInitializeAllMetadata; /// mMap - The slot map for the module level data. ValueMap mMap; @@ -542,10 +577,20 @@ private: DenseMap<AttributeSet, unsigned> asMap; unsigned asNext; public: - /// Construct from a module - explicit SlotTracker(const Module *M); + /// Construct from a module. + /// + /// If \c ShouldInitializeAllMetadata, initializes all metadata in all + /// functions, giving correct numbering for metadata referenced only from + /// within a function (even if no functions have been initialized). + explicit SlotTracker(const Module *M, + bool ShouldInitializeAllMetadata = false); /// Construct from a function, starting out in incorp state. - explicit SlotTracker(const Function *F); + /// + /// If \c ShouldInitializeAllMetadata, initializes all metadata in all + /// functions, giving correct numbering for metadata referenced only from + /// within a function (even if no functions have been initialized). + explicit SlotTracker(const Function *F, + bool ShouldInitializeAllMetadata = false); /// Return the slot number of the specified value in it's type /// plane. If something is not in the SlotTracker, return -1. @@ -606,11 +651,18 @@ private: /// Add all of the functions arguments, basic blocks, and instructions. void processFunction(); + /// Add all of the metadata from a function. + void processFunctionMetadata(const Function &F); + + /// Add all of the metadata from an instruction. + void processInstructionMetadata(const Instruction &I); + SlotTracker(const SlotTracker &) = delete; void operator=(const SlotTracker &) = delete; }; +} // namespace -SlotTracker *createSlotTracker(const Module *M) { +static SlotTracker *createSlotTracker(const Module *M) { return new SlotTracker(M); } @@ -645,15 +697,18 @@ static SlotTracker *createSlotTracker(const Value *V) { // Module level constructor. Causes the contents of the Module (sans functions) // to be added to the slot table. -SlotTracker::SlotTracker(const Module *M) - : TheModule(M), TheFunction(nullptr), FunctionProcessed(false), mNext(0), +SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata) + : TheModule(M), TheFunction(nullptr), FunctionProcessed(false), + ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0), fNext(0), mdnNext(0), asNext(0) {} // Function level constructor. Causes the contents of the Module and the one // function provided to be added to the slot table. -SlotTracker::SlotTracker(const Function *F) +SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata) : TheModule(F ? F->getParent() : nullptr), TheFunction(F), - FunctionProcessed(false), mNext(0), fNext(0), mdnNext(0), asNext(0) {} + FunctionProcessed(false), + ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0), + fNext(0), mdnNext(0), asNext(0) {} inline void SlotTracker::initialize() { if (TheModule) { @@ -692,6 +747,9 @@ void SlotTracker::processModule() { // Add all the unnamed functions to the table. CreateModuleSlot(I); + if (ShouldInitializeAllMetadata) + processFunctionMetadata(*I); + // Add all the function attributes to the table. // FIXME: Add attributes of other objects? AttributeSet FnAttrs = I->getAttributes().getFnAttributes(); @@ -715,46 +773,30 @@ void SlotTracker::processFunction() { ST_DEBUG("Inserting Instructions:\n"); - SmallVector<std::pair<unsigned, MDNode *>, 4> MDForInst; - // Add all of the basic blocks and instructions with no names. - for (Function::const_iterator BB = TheFunction->begin(), - E = TheFunction->end(); BB != E; ++BB) { - if (!BB->hasName()) - CreateFunctionSlot(BB); - - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; - ++I) { - if (!I->getType()->isVoidTy() && !I->hasName()) - CreateFunctionSlot(I); - - // Intrinsics can directly use metadata. We allow direct calls to any - // llvm.foo function here, because the target may not be linked into the - // optimizer. - if (const CallInst *CI = dyn_cast<CallInst>(I)) { - if (Function *F = CI->getCalledFunction()) - if (F->isIntrinsic()) - for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) - if (auto *V = dyn_cast_or_null<MetadataAsValue>(I->getOperand(i))) - if (MDNode *N = dyn_cast<MDNode>(V->getMetadata())) - CreateMetadataSlot(N); + for (auto &BB : *TheFunction) { + if (!BB.hasName()) + CreateFunctionSlot(&BB); + + for (auto &I : BB) { + if (!I.getType()->isVoidTy() && !I.hasName()) + CreateFunctionSlot(&I); + + processInstructionMetadata(I); + // We allow direct calls to any llvm.foo function here, because the + // target may not be linked into the optimizer. + if (const CallInst *CI = dyn_cast<CallInst>(&I)) { // Add all the call attributes to the table. AttributeSet Attrs = CI->getAttributes().getFnAttributes(); if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) CreateAttributeSetSlot(Attrs); - } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) { + } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { // Add all the call attributes to the table. AttributeSet Attrs = II->getAttributes().getFnAttributes(); if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) CreateAttributeSetSlot(Attrs); } - - // Process metadata attached with this instruction. - I->getAllMetadata(MDForInst); - for (unsigned i = 0, e = MDForInst.size(); i != e; ++i) - CreateMetadataSlot(MDForInst[i].second); - MDForInst.clear(); } } @@ -763,6 +805,29 @@ void SlotTracker::processFunction() { ST_DEBUG("end processFunction!\n"); } +void SlotTracker::processFunctionMetadata(const Function &F) { + for (auto &BB : F) + for (auto &I : BB) + processInstructionMetadata(I); +} + +void SlotTracker::processInstructionMetadata(const Instruction &I) { + // Process metadata used directly by intrinsics. + if (const CallInst *CI = dyn_cast<CallInst>(&I)) + if (Function *F = CI->getCalledFunction()) + if (F->isIntrinsic()) + for (auto &Op : I.operands()) + if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) + if (MDNode *N = dyn_cast<MDNode>(V->getMetadata())) + CreateMetadataSlot(N); + + // Process metadata attached to this instruction. + SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; + I.getAllMetadata(MDs); + for (auto &MD : MDs) + CreateMetadataSlot(MD.second); +} + /// Clean up after incorporating a function. This is the only way to get out of /// the function incorporation state that affects get*Slot/Create*Slot. Function /// incorporation state is indicated by TheFunction != 0. @@ -1010,7 +1075,7 @@ static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, (StrVal[1] >= '0' && StrVal[1] <= '9'))) { // Reparse stringized version! if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) { - Out << StrVal.str(); + Out << StrVal; return; } } @@ -1223,6 +1288,14 @@ static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, Out << ' ' << getPredicateText(CE->getPredicate()); Out << " ("; + if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) { + TypePrinter.print( + cast<PointerType>(GEP->getPointerOperandType()->getScalarType()) + ->getElementType(), + Out); + Out << ", "; + } + for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { TypePrinter.print((*OI)->getType(), Out); Out << ' '; @@ -1285,8 +1358,52 @@ raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) { } return OS << FS.Sep; } +struct MDFieldPrinter { + raw_ostream &Out; + FieldSeparator FS; + TypePrinting *TypePrinter; + SlotTracker *Machine; + const Module *Context; + + explicit MDFieldPrinter(raw_ostream &Out) + : Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {} + MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter, + SlotTracker *Machine, const Module *Context) + : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) { + } + void printTag(const DebugNode *N); + void printString(StringRef Name, StringRef Value, + bool ShouldSkipEmpty = true); + void printMetadata(StringRef Name, const Metadata *MD, + bool ShouldSkipNull = true); + template <class IntTy> + void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true); + void printBool(StringRef Name, bool Value); + void printDIFlags(StringRef Name, unsigned Flags); + template <class IntTy, class Stringifier> + void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString, + bool ShouldSkipZero = true); +}; } // end namespace +void MDFieldPrinter::printTag(const DebugNode *N) { + Out << FS << "tag: "; + if (const char *Tag = dwarf::TagString(N->getTag())) + Out << Tag; + else + Out << N->getTag(); +} + +void MDFieldPrinter::printString(StringRef Name, StringRef Value, + bool ShouldSkipEmpty) { + if (ShouldSkipEmpty && Value.empty()) + return; + + Out << FS << Name << ": \""; + PrintEscapedString(Value, Out); + Out << "\""; +} + static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, TypePrinting *TypePrinter, SlotTracker *Machine, @@ -1298,27 +1415,68 @@ static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); } -static void writeTag(raw_ostream &Out, FieldSeparator &FS, const DebugNode *N) { - Out << FS << "tag: "; - if (const char *Tag = dwarf::TagString(N->getTag())) - Out << Tag; +void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD, + bool ShouldSkipNull) { + if (ShouldSkipNull && !MD) + return; + + Out << FS << Name << ": "; + writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context); +} + +template <class IntTy> +void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) { + if (ShouldSkipZero && !Int) + return; + + Out << FS << Name << ": " << Int; +} + +void MDFieldPrinter::printBool(StringRef Name, bool Value) { + Out << FS << Name << ": " << (Value ? "true" : "false"); +} + +void MDFieldPrinter::printDIFlags(StringRef Name, unsigned Flags) { + if (!Flags) + return; + + Out << FS << Name << ": "; + + SmallVector<unsigned, 8> SplitFlags; + unsigned Extra = DIDescriptor::splitFlags(Flags, SplitFlags); + + FieldSeparator FlagsFS(" | "); + for (unsigned F : SplitFlags) { + const char *StringF = DIDescriptor::getFlagString(F); + assert(StringF && "Expected valid flag"); + Out << FlagsFS << StringF; + } + if (Extra || SplitFlags.empty()) + Out << FlagsFS << Extra; +} + +template <class IntTy, class Stringifier> +void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value, + Stringifier toString, bool ShouldSkipZero) { + if (!Value) + return; + + Out << FS << Name << ": "; + if (const char *S = toString(Value)) + Out << S; else - Out << N->getTag(); + Out << Value; } static void writeGenericDebugNode(raw_ostream &Out, const GenericDebugNode *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!GenericDebugNode("; - FieldSeparator FS; - writeTag(Out, FS, N); - if (!N->getHeader().empty()) { - Out << FS << "header: \""; - PrintEscapedString(N->getHeader(), Out); - Out << "\""; - } + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printTag(N); + Printer.printString("header", N->getHeader()); if (N->getNumDwarfOperands()) { - Out << FS << "operands: {"; + Out << Printer.FS << "operands: {"; FieldSeparator IFS; for (auto &I : N->dwarf_operands()) { Out << IFS; @@ -1333,111 +1491,64 @@ static void writeMDLocation(raw_ostream &Out, const MDLocation *DL, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!MDLocation("; - FieldSeparator FS; + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); // Always output the line, since 0 is a relevant and important value for it. - Out << FS << "line: " << DL->getLine(); - if (DL->getColumn()) - Out << FS << "column: " << DL->getColumn(); - Out << FS << "scope: "; - WriteAsOperandInternal(Out, DL->getScope(), TypePrinter, Machine, Context); - if (DL->getInlinedAt()) { - Out << FS << "inlinedAt: "; - WriteAsOperandInternal(Out, DL->getInlinedAt(), TypePrinter, Machine, - Context); - } + Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false); + Printer.printInt("column", DL->getColumn()); + Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false); + Printer.printMetadata("inlinedAt", DL->getRawInlinedAt()); Out << ")"; } static void writeMDSubrange(raw_ostream &Out, const MDSubrange *N, TypePrinting *, SlotTracker *, const Module *) { Out << "!MDSubrange("; - FieldSeparator FS; - Out << FS << "count: " << N->getCount(); - if (N->getLo()) - Out << FS << "lowerBound: " << N->getLo(); + MDFieldPrinter Printer(Out); + Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false); + Printer.printInt("lowerBound", N->getLo()); Out << ")"; } static void writeMDEnumerator(raw_ostream &Out, const MDEnumerator *N, TypePrinting *, SlotTracker *, const Module *) { Out << "!MDEnumerator("; - FieldSeparator FS; - Out << FS << "name: \"" << N->getName() << "\""; - Out << FS << "value: " << N->getValue(); + MDFieldPrinter Printer(Out); + Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false); + Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false); Out << ")"; } static void writeMDBasicType(raw_ostream &Out, const MDBasicType *N, TypePrinting *, SlotTracker *, const Module *) { Out << "!MDBasicType("; - FieldSeparator FS; - writeTag(Out, FS, N); - if (!N->getName().empty()) - Out << FS << "name: \"" << N->getName() << "\""; - if (N->getSizeInBits()) - Out << FS << "size: " << N->getSizeInBits(); - if (N->getAlignInBits()) - Out << FS << "align: " << N->getAlignInBits(); - if (unsigned Encoding = N->getEncoding()) { - Out << FS << "encoding: "; - if (const char *S = dwarf::AttributeEncodingString(Encoding)) - Out << S; - else - Out << Encoding; - } + MDFieldPrinter Printer(Out); + if (N->getTag() != dwarf::DW_TAG_base_type) + Printer.printTag(N); + Printer.printString("name", N->getName()); + Printer.printInt("size", N->getSizeInBits()); + Printer.printInt("align", N->getAlignInBits()); + Printer.printDwarfEnum("encoding", N->getEncoding(), + dwarf::AttributeEncodingString); Out << ")"; } -static void writeDIFlags(raw_ostream &Out, unsigned Flags) { - SmallVector<unsigned, 8> SplitFlags; - unsigned Extra = DIDescriptor::splitFlags(Flags, SplitFlags); - - FieldSeparator FS(" | "); - for (unsigned F : SplitFlags) { - const char *StringF = DIDescriptor::getFlagString(F); - assert(StringF && "Expected valid flag"); - Out << FS << StringF; - } - if (Extra || SplitFlags.empty()) - Out << FS << Extra; -} - static void writeMDDerivedType(raw_ostream &Out, const MDDerivedType *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!MDDerivedType("; - FieldSeparator FS; - writeTag(Out, FS, N); - if (!N->getName().empty()) - Out << FS << "name: \"" << N->getName() << "\""; - if (N->getFile()) { - Out << FS << "file: "; - writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine, - Context); - } - if (N->getLine()) - Out << FS << "line: " << N->getLine(); - if (N->getScope()) { - Out << FS << "scope: "; - writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context); - } - Out << FS << "baseType: "; - writeMetadataAsOperand(Out, N->getBaseType(), TypePrinter, Machine, Context); - if (N->getSizeInBits()) - Out << FS << "size: " << N->getSizeInBits(); - if (N->getAlignInBits()) - Out << FS << "align: " << N->getAlignInBits(); - if (N->getOffsetInBits()) - Out << FS << "offset: " << N->getOffsetInBits(); - if (auto Flags = N->getFlags()) { - Out << FS << "flags: "; - writeDIFlags(Out, Flags); - } - if (N->getExtraData()) { - Out << FS << "extraData: "; - writeMetadataAsOperand(Out, N->getExtraData(), TypePrinter, Machine, - Context); - } + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printTag(N); + Printer.printString("name", N->getName()); + Printer.printMetadata("scope", N->getScope()); + Printer.printMetadata("file", N->getFile()); + Printer.printInt("line", N->getLine()); + Printer.printMetadata("baseType", N->getBaseType(), + /* ShouldSkipNull */ false); + Printer.printInt("size", N->getSizeInBits()); + Printer.printInt("align", N->getAlignInBits()); + Printer.printInt("offset", N->getOffsetInBits()); + Printer.printDIFlags("flags", N->getFlags()); + Printer.printMetadata("extraData", N->getExtraData()); Out << ")"; } @@ -1445,61 +1556,23 @@ static void writeMDCompositeType(raw_ostream &Out, const MDCompositeType *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!MDCompositeType("; - FieldSeparator FS; - writeTag(Out, FS, N); - if (!N->getName().empty()) - Out << FS << "name: \"" << N->getName() << "\""; - if (N->getFile()) { - Out << FS << "file: "; - writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine, - Context); - } - if (N->getLine()) - Out << FS << "line: " << N->getLine(); - if (N->getScope()) { - Out << FS << "scope: "; - writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context); - } - if (N->getBaseType()) { - Out << FS << "baseType: "; - writeMetadataAsOperand(Out, N->getBaseType(), TypePrinter, Machine, - Context); - } - if (N->getSizeInBits()) - Out << FS << "size: " << N->getSizeInBits(); - if (N->getAlignInBits()) - Out << FS << "align: " << N->getAlignInBits(); - if (N->getOffsetInBits()) - Out << FS << "offset: " << N->getOffsetInBits(); - if (auto Flags = N->getFlags()) { - Out << FS << "flags: "; - writeDIFlags(Out, Flags); - } - if (N->getElements()) { - Out << FS << "elements: "; - writeMetadataAsOperand(Out, N->getElements(), TypePrinter, Machine, - Context); - } - if (unsigned Lang = N->getRuntimeLang()) { - Out << FS << "runtimeLang: "; - if (const char *S = dwarf::LanguageString(Lang)) - Out << S; - else - Out << Lang; - } - - if (N->getVTableHolder()) { - Out << FS << "vtableHolder: "; - writeMetadataAsOperand(Out, N->getVTableHolder(), TypePrinter, Machine, - Context); - } - if (N->getTemplateParams()) { - Out << FS << "templateParams: "; - writeMetadataAsOperand(Out, N->getTemplateParams(), TypePrinter, Machine, - Context); - } - if (!N->getIdentifier().empty()) - Out << FS << "identifier: \"" << N->getIdentifier() << "\""; + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printTag(N); + Printer.printString("name", N->getName()); + Printer.printMetadata("scope", N->getScope()); + Printer.printMetadata("file", N->getFile()); + Printer.printInt("line", N->getLine()); + Printer.printMetadata("baseType", N->getBaseType()); + Printer.printInt("size", N->getSizeInBits()); + Printer.printInt("align", N->getAlignInBits()); + Printer.printInt("offset", N->getOffsetInBits()); + Printer.printDIFlags("flags", N->getFlags()); + Printer.printMetadata("elements", N->getElements()); + Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(), + dwarf::LanguageString); + Printer.printMetadata("vtableHolder", N->getVTableHolder()); + Printer.printMetadata("templateParams", N->getTemplateParams()); + Printer.printString("identifier", N->getIdentifier()); Out << ")"; } @@ -1507,22 +1580,20 @@ static void writeMDSubroutineType(raw_ostream &Out, const MDSubroutineType *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!MDSubroutineType("; - FieldSeparator FS; - if (auto Flags = N->getFlags()) { - Out << FS << "flags: "; - writeDIFlags(Out, Flags); - } - Out << FS << "types: "; - writeMetadataAsOperand(Out, N->getTypeArray(), TypePrinter, Machine, Context); + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printDIFlags("flags", N->getFlags()); + Printer.printMetadata("types", N->getTypeArray(), /* ShouldSkipNull */ false); Out << ")"; } static void writeMDFile(raw_ostream &Out, const MDFile *N, TypePrinting *, SlotTracker *, const Module *) { Out << "!MDFile("; - FieldSeparator FS; - Out << FS << "filename: \"" << N->getFilename() << "\""; - Out << FS << "directory: \"" << N->getDirectory() << "\""; + MDFieldPrinter Printer(Out); + Printer.printString("filename", N->getFilename(), + /* ShouldSkipEmpty */ false); + Printer.printString("directory", N->getDirectory(), + /* ShouldSkipEmpty */ false); Out << ")"; } @@ -1530,48 +1601,23 @@ static void writeMDCompileUnit(raw_ostream &Out, const MDCompileUnit *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!MDCompileUnit("; - FieldSeparator FS; - Out << FS << "language: "; - if (const char *Lang = dwarf::LanguageString(N->getSourceLanguage())) - Out << Lang; - else - Out << N->getSourceLanguage(); - Out << FS << "file: "; - writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine, Context); - if (!N->getProducer().empty()) - Out << FS << "producer: \"" << N->getProducer() << "\""; - Out << FS << "isOptimized: " << (N->isOptimized() ? "true" : "false"); - if (!N->getFlags().empty()) - Out << FS << "flags: \"" << N->getFlags() << "\""; - Out << FS << "runtimeVersion: " << N->getRuntimeVersion(); - if (!N->getSplitDebugFilename().empty()) - Out << FS << "splitDebugFilename: \"" << N->getSplitDebugFilename() << "\""; - Out << FS << "emissionKind: " << N->getEmissionKind(); - if (N->getEnumTypes()) { - Out << FS << "enums: "; - writeMetadataAsOperand(Out, N->getEnumTypes(), TypePrinter, Machine, - Context); - } - if (N->getRetainedTypes()) { - Out << FS << "retainedTypes: "; - writeMetadataAsOperand(Out, N->getRetainedTypes(), TypePrinter, Machine, - Context); - } - if (N->getSubprograms()) { - Out << FS << "subprograms: "; - writeMetadataAsOperand(Out, N->getSubprograms(), TypePrinter, Machine, - Context); - } - if (N->getGlobalVariables()) { - Out << FS << "globals: "; - writeMetadataAsOperand(Out, N->getGlobalVariables(), TypePrinter, Machine, - Context); - } - if (N->getImportedEntities()) { - Out << FS << "imports: "; - writeMetadataAsOperand(Out, N->getImportedEntities(), TypePrinter, Machine, - Context); - } + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printDwarfEnum("language", N->getSourceLanguage(), + dwarf::LanguageString, /* ShouldSkipZero */ false); + Printer.printMetadata("file", N->getFile(), /* ShouldSkipNull */ false); + Printer.printString("producer", N->getProducer()); + Printer.printBool("isOptimized", N->isOptimized()); + Printer.printString("flags", N->getFlags()); + Printer.printInt("runtimeVersion", N->getRuntimeVersion(), + /* ShouldSkipZero */ false); + Printer.printString("splitDebugFilename", N->getSplitDebugFilename()); + Printer.printInt("emissionKind", N->getEmissionKind(), + /* ShouldSkipZero */ false); + Printer.printMetadata("enums", N->getEnumTypes()); + Printer.printMetadata("retainedTypes", N->getRetainedTypes()); + Printer.printMetadata("subprograms", N->getSubprograms()); + Printer.printMetadata("globals", N->getGlobalVariables()); + Printer.printMetadata("imports", N->getImportedEntities()); Out << ")"; } @@ -1579,67 +1625,26 @@ static void writeMDSubprogram(raw_ostream &Out, const MDSubprogram *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!MDSubprogram("; - FieldSeparator FS; - Out << FS << "scope: "; - writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context); - Out << FS << "name: \"" << N->getName() << "\""; - if (!N->getLinkageName().empty()) - Out << FS << "linkageName: \"" << N->getLinkageName() << "\""; - if (N->getFile()) { - Out << FS << "file: "; - writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine, - Context); - } - if (N->getLine()) - Out << FS << "line: " << N->getLine(); - if (N->getType()) { - Out << FS << "type: "; - writeMetadataAsOperand(Out, N->getType(), TypePrinter, Machine, - Context); - } - Out << FS << "isLocal: " << (N->isLocalToUnit() ? "true" : "false"); - Out << FS << "isDefinition: " << (N->isDefinition() ? "true" : "false"); - if (N->getScopeLine()) - Out << FS << "scopeLine: " << N->getScopeLine(); - if (N->getContainingType()) { - Out << FS << "containingType: "; - writeMetadataAsOperand(Out, N->getContainingType(), TypePrinter, Machine, - Context); - } - if (unsigned V = N->getVirtuality()) { - Out << FS << "virtuality: "; - if (const char *S = dwarf::VirtualityString(V)) - Out << S; - else - Out << V; - } - if (N->getVirtualIndex()) - Out << FS << "virtualIndex: " << N->getVirtualIndex(); - if (auto Flags = N->getFlags()) { - Out << FS << "flags: "; - writeDIFlags(Out, Flags); - } - Out << FS << "isOptimized: " << (N->isOptimized() ? "true" : "false"); - if (N->getFunction()) { - Out << FS << "function: "; - writeMetadataAsOperand(Out, N->getFunction(), TypePrinter, Machine, - Context); - } - if (N->getTemplateParams()) { - Out << FS << "templateParams: "; - writeMetadataAsOperand(Out, N->getTemplateParams(), TypePrinter, Machine, - Context); - } - if (N->getDeclaration()) { - Out << FS << "declaration: "; - writeMetadataAsOperand(Out, N->getDeclaration(), TypePrinter, Machine, - Context); - } - if (N->getVariables()) { - Out << FS << "variables: "; - writeMetadataAsOperand(Out, N->getVariables(), TypePrinter, Machine, - Context); - } + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printString("name", N->getName()); + Printer.printString("linkageName", N->getLinkageName()); + Printer.printMetadata("scope", N->getScope(), /* ShouldSkipNull */ false); + Printer.printMetadata("file", N->getFile()); + Printer.printInt("line", N->getLine()); + Printer.printMetadata("type", N->getType()); + Printer.printBool("isLocal", N->isLocalToUnit()); + Printer.printBool("isDefinition", N->isDefinition()); + Printer.printInt("scopeLine", N->getScopeLine()); + Printer.printMetadata("containingType", N->getContainingType()); + Printer.printDwarfEnum("virtuality", N->getVirtuality(), + dwarf::VirtualityString); + Printer.printInt("virtualIndex", N->getVirtualIndex()); + Printer.printDIFlags("flags", N->getFlags()); + Printer.printBool("isOptimized", N->isOptimized()); + Printer.printMetadata("function", N->getFunction()); + Printer.printMetadata("templateParams", N->getTemplateParams()); + Printer.printMetadata("declaration", N->getDeclaration()); + Printer.printMetadata("variables", N->getVariables()); Out << ")"; } @@ -1647,18 +1652,11 @@ static void writeMDLexicalBlock(raw_ostream &Out, const MDLexicalBlock *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!MDLexicalBlock("; - FieldSeparator FS; - Out << FS << "scope: "; - writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context); - if (N->getFile()) { - Out << FS << "file: "; - writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine, - Context); - } - if (N->getLine()) - Out << FS << "line: " << N->getLine(); - if (N->getColumn()) - Out << FS << "column: " << N->getColumn(); + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printMetadata("scope", N->getScope(), /* ShouldSkipNull */ false); + Printer.printMetadata("file", N->getFile()); + Printer.printInt("line", N->getLine()); + Printer.printInt("column", N->getColumn()); Out << ")"; } @@ -1668,15 +1666,11 @@ static void writeMDLexicalBlockFile(raw_ostream &Out, SlotTracker *Machine, const Module *Context) { Out << "!MDLexicalBlockFile("; - FieldSeparator FS; - Out << FS << "scope: "; - writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context); - if (N->getFile()) { - Out << FS << "file: "; - writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine, - Context); - } - Out << FS << "discriminator: " << N->getDiscriminator(); + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printMetadata("scope", N->getScope(), /* ShouldSkipNull */ false); + Printer.printMetadata("file", N->getFile()); + Printer.printInt("discriminator", N->getDiscriminator(), + /* ShouldSkipZero */ false); Out << ")"; } @@ -1684,17 +1678,11 @@ static void writeMDNamespace(raw_ostream &Out, const MDNamespace *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!MDNamespace("; - FieldSeparator FS; - Out << FS << "scope: "; - writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context); - if (N->getFile()) { - Out << FS << "file: "; - writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine, Context); - } - if (!N->getName().empty()) - Out << FS << "name: \"" << N->getName() << "\""; - if (N->getLine()) - Out << FS << "line: " << N->getLine(); + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printString("name", N->getName()); + Printer.printMetadata("scope", N->getScope(), /* ShouldSkipNull */ false); + Printer.printMetadata("file", N->getFile()); + Printer.printInt("line", N->getLine()); Out << ")"; } @@ -1704,10 +1692,9 @@ static void writeMDTemplateTypeParameter(raw_ostream &Out, SlotTracker *Machine, const Module *Context) { Out << "!MDTemplateTypeParameter("; - FieldSeparator FS; - Out << FS << "name: \"" << N->getName() << "\""; - Out << FS << "type: "; - writeMetadataAsOperand(Out, N->getType(), TypePrinter, Machine, Context); + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printString("name", N->getName()); + Printer.printMetadata("type", N->getType(), /* ShouldSkipNull */ false); Out << ")"; } @@ -1717,13 +1704,12 @@ static void writeMDTemplateValueParameter(raw_ostream &Out, SlotTracker *Machine, const Module *Context) { Out << "!MDTemplateValueParameter("; - FieldSeparator FS; - writeTag(Out, FS, N); - Out << FS << "name: \"" << N->getName() << "\""; - Out << FS << "type: "; - writeMetadataAsOperand(Out, N->getType(), TypePrinter, Machine, Context); - Out << FS << "value: "; - writeMetadataAsOperand(Out, N->getValue(), TypePrinter, Machine, Context); + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + if (N->getTag() != dwarf::DW_TAG_template_value_parameter) + Printer.printTag(N); + Printer.printString("name", N->getName()); + Printer.printMetadata("type", N->getType()); + Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false); Out << ")"; } @@ -1731,36 +1717,17 @@ static void writeMDGlobalVariable(raw_ostream &Out, const MDGlobalVariable *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!MDGlobalVariable("; - FieldSeparator FS; - Out << FS << "scope: "; - writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context); - Out << FS << "name: \"" << N->getName() << "\""; - if (!N->getLinkageName().empty()) - Out << FS << "linkageName: \"" << N->getLinkageName() << "\""; - if (N->getFile()) { - Out << FS << "file: "; - writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine, - Context); - } - if (N->getLine()) - Out << FS << "line: " << N->getLine(); - if (N->getType()) { - Out << FS << "type: "; - writeMetadataAsOperand(Out, N->getType(), TypePrinter, Machine, - Context); - } - Out << FS << "isLocal: " << (N->isLocalToUnit() ? "true" : "false"); - Out << FS << "isDefinition: " << (N->isDefinition() ? "true" : "false"); - if (N->getVariable()) { - Out << FS << "variable: "; - writeMetadataAsOperand(Out, N->getVariable(), TypePrinter, Machine, - Context); - } - if (N->getStaticDataMemberDeclaration()) { - Out << FS << "declaration: "; - writeMetadataAsOperand(Out, N->getStaticDataMemberDeclaration(), - TypePrinter, Machine, Context); - } + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printString("name", N->getName()); + Printer.printString("linkageName", N->getLinkageName()); + Printer.printMetadata("scope", N->getScope(), /* ShouldSkipNull */ false); + Printer.printMetadata("file", N->getFile()); + Printer.printInt("line", N->getLine()); + Printer.printMetadata("type", N->getType()); + Printer.printBool("isLocal", N->isLocalToUnit()); + Printer.printBool("isDefinition", N->isDefinition()); + Printer.printMetadata("variable", N->getVariable()); + Printer.printMetadata("declaration", N->getStaticDataMemberDeclaration()); Out << ")"; } @@ -1768,34 +1735,18 @@ static void writeMDLocalVariable(raw_ostream &Out, const MDLocalVariable *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!MDLocalVariable("; - FieldSeparator FS; - writeTag(Out, FS, N); - Out << FS << "scope: "; - writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context); - Out << FS << "name: \"" << N->getName() << "\""; - if (N->getFile()) { - Out << FS << "file: "; - writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine, - Context); - } - if (N->getLine()) - Out << FS << "line: " << N->getLine(); - if (N->getType()) { - Out << FS << "type: "; - writeMetadataAsOperand(Out, N->getType(), TypePrinter, Machine, - Context); - } - if (N->getTag() == dwarf::DW_TAG_arg_variable || N->getArg()) - Out << FS << "arg: " << N->getArg(); - if (auto Flags = N->getFlags()) { - Out << FS << "flags: "; - writeDIFlags(Out, Flags); - } - if (N->getInlinedAt()) { - Out << FS << "inlinedAt: "; - writeMetadataAsOperand(Out, N->getInlinedAt(), TypePrinter, Machine, - Context); - } + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printTag(N); + Printer.printString("name", N->getName()); + Printer.printInt("arg", N->getArg(), + /* ShouldSkipZero */ + N->getTag() == dwarf::DW_TAG_auto_variable); + Printer.printMetadata("scope", N->getScope(), /* ShouldSkipNull */ false); + Printer.printMetadata("file", N->getFile()); + Printer.printInt("line", N->getLine()); + Printer.printMetadata("type", N->getType()); + Printer.printDIFlags("flags", N->getFlags()); + Printer.printMetadata("inlinedAt", N->getInlinedAt()); Out << ")"; } @@ -1824,24 +1775,14 @@ static void writeMDObjCProperty(raw_ostream &Out, const MDObjCProperty *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!MDObjCProperty("; - FieldSeparator FS; - Out << FS << "name: \"" << N->getName() << "\""; - if (N->getFile()) { - Out << FS << "file: "; - writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine, Context); - } - if (N->getLine()) - Out << FS << "line: " << N->getLine(); - if (!N->getSetterName().empty()) - Out << FS << "setter: \"" << N->getSetterName() << "\""; - if (!N->getGetterName().empty()) - Out << FS << "getter: \"" << N->getGetterName() << "\""; - if (N->getAttributes()) - Out << FS << "attributes: " << N->getAttributes(); - if (N->getType()) { - Out << FS << "type: "; - writeMetadataAsOperand(Out, N->getType(), TypePrinter, Machine, Context); - } + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printString("name", N->getName()); + Printer.printMetadata("file", N->getFile()); + Printer.printInt("line", N->getLine()); + Printer.printString("setter", N->getSetterName()); + Printer.printString("getter", N->getGetterName()); + Printer.printInt("attributes", N->getAttributes()); + Printer.printMetadata("type", N->getType()); Out << ")"; } @@ -1849,17 +1790,12 @@ static void writeMDImportedEntity(raw_ostream &Out, const MDImportedEntity *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!MDImportedEntity("; - FieldSeparator FS; - writeTag(Out, FS, N); - Out << FS << "scope: "; - writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context); - if (N->getEntity()) { - Out << FS << "entity: "; - writeMetadataAsOperand(Out, N->getEntity(), TypePrinter, Machine, Context); - } - if (N->getLine()) - Out << FS << "line: " << N->getLine(); - Out << FS << "name: \"" << N->getName() << "\""; + MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); + Printer.printTag(N); + Printer.printString("name", N->getName()); + Printer.printMetadata("scope", N->getScope(), /* ShouldSkipNull */ false); + Printer.printMetadata("entity", N->getEntity()); + Printer.printInt("line", N->getLine()); Out << ")"; } @@ -1868,10 +1804,10 @@ static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { - assert(!Node->isTemporary() && "Unexpected forward declaration"); - if (Node->isDistinct()) Out << "distinct "; + else if (Node->isTemporary()) + Out << "<temporary!> "; // Handle broken code. switch (Node->getMetadataID()) { default: @@ -1998,6 +1934,64 @@ static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context); } +namespace { +class AssemblyWriter { + formatted_raw_ostream &Out; + const Module *TheModule; + std::unique_ptr<SlotTracker> ModuleSlotTracker; + SlotTracker &Machine; + TypePrinting TypePrinter; + AssemblyAnnotationWriter *AnnotationWriter; + SetVector<const Comdat *> Comdats; + UseListOrderStack UseListOrders; + +public: + /// Construct an AssemblyWriter with an external SlotTracker + AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, + const Module *M, AssemblyAnnotationWriter *AAW); + + /// Construct an AssemblyWriter with an internally allocated SlotTracker + AssemblyWriter(formatted_raw_ostream &o, const Module *M, + AssemblyAnnotationWriter *AAW); + + void printMDNodeBody(const MDNode *MD); + void printNamedMDNode(const NamedMDNode *NMD); + + void printModule(const Module *M); + + void writeOperand(const Value *Op, bool PrintType); + void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx); + void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope); + void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering, + AtomicOrdering FailureOrdering, + SynchronizationScope SynchScope); + + void writeAllMDNodes(); + void writeMDNode(unsigned Slot, const MDNode *Node); + void writeAllAttributeGroups(); + + void printTypeIdentities(); + void printGlobal(const GlobalVariable *GV); + void printAlias(const GlobalAlias *GV); + void printComdat(const Comdat *C); + void printFunction(const Function *F); + void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx); + void printBasicBlock(const BasicBlock *BB); + void printInstructionLine(const Instruction &I); + void printInstruction(const Instruction &I); + + void printUseListOrder(const UseListOrder &Order); + void printUseLists(const Function *F); + +private: + void init(); + + // printInfoComment - Print a little comment after the instruction indicating + // which slot it occupies. + void printInfoComment(const Value &V); +}; +} // namespace + void AssemblyWriter::init() { if (!TheModule) return; @@ -2025,8 +2019,6 @@ AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M, init(); } -AssemblyWriter::~AssemblyWriter() { } - void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { if (!Operand) { Out << "<null operand!>"; @@ -2876,7 +2868,13 @@ void AssemblyWriter::printInstruction(const Instruction &I) { if (AI->isUsedWithInAlloca()) Out << "inalloca "; TypePrinter.print(AI->getAllocatedType(), Out); - if (!AI->getArraySize() || AI->isArrayAllocation()) { + + // Explicitly write the array size if the code is broken, if it's an array + // allocation, or if the type is not canonical for scalar allocations. The + // latter case prevents the type from mutating when round-tripping through + // assembly. + if (!AI->getArraySize() || AI->isArrayAllocation() || + !AI->getArraySize()->getType()->isIntegerTy(32)) { Out << ", "; writeOperand(AI->getArraySize(), true); } @@ -2898,6 +2896,15 @@ void AssemblyWriter::printInstruction(const Instruction &I) { Out << ", "; TypePrinter.print(I.getType(), Out); } else if (Operand) { // Print the normal way. + if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { + Out << ' '; + TypePrinter.print(GEP->getSourceElementType(), Out); + Out << ','; + } else if (const auto *LI = dyn_cast<LoadInst>(&I)) { + Out << ' '; + TypePrinter.print(LI->getType(), Out); + Out << ','; + } // PrintAllTypes - Instructions who have operands of all the same type // omit the type from all but the first operand. If the instruction has @@ -2974,29 +2981,6 @@ void AssemblyWriter::printInstruction(const Instruction &I) { printInfoComment(I); } -static void WriteMDNodeComment(const MDNode *Node, - formatted_raw_ostream &Out) { - if (Node->getNumOperands() < 1) - return; - - Metadata *Op = Node->getOperand(0); - if (!Op || !isa<MDString>(Op)) - return; - - DIDescriptor Desc(Node); - if (!Desc.Verify()) - return; - - unsigned Tag = Desc.getTag(); - Out.PadToColumn(50); - if (dwarf::TagString(Tag)) { - Out << "; "; - Desc.print(Out); - } else if (Tag == dwarf::DW_TAG_user_base) { - Out << "; [ DW_TAG_user_base ]"; - } -} - void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) { Out << '!' << Slot << " = "; printMDNodeBody(Node); @@ -3017,7 +3001,6 @@ void AssemblyWriter::writeAllMDNodes() { void AssemblyWriter::printMDNodeBody(const MDNode *Node) { WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); - WriteMDNodeComment(Node, Out); } void AssemblyWriter::writeAllAttributeGroups() { @@ -3034,8 +3017,6 @@ void AssemblyWriter::writeAllAttributeGroups() { << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n"; } -} // namespace llvm - void AssemblyWriter::printUseListOrder(const UseListOrder &Order) { bool IsInFunction = Machine.getFunction(); if (IsInFunction) @@ -3130,11 +3111,24 @@ void Type::print(raw_ostream &OS) const { } } +static bool isReferencingMDNode(const Instruction &I) { + if (const auto *CI = dyn_cast<CallInst>(&I)) + if (Function *F = CI->getCalledFunction()) + if (F->isIntrinsic()) + for (auto &Op : I.operands()) + if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) + if (isa<MDNode>(V->getMetadata())) + return true; + return false; +} + void Value::print(raw_ostream &ROS) const { formatted_raw_ostream OS(ROS); if (const Instruction *I = dyn_cast<Instruction>(this)) { const Function *F = I->getParent() ? I->getParent()->getParent() : nullptr; - SlotTracker SlotTable(F); + SlotTracker SlotTable( + F, + /* ShouldInitializeAllMetadata */ isReferencingMDNode(*I)); AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr); W.printInstruction(*I); } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { @@ -3142,7 +3136,8 @@ void Value::print(raw_ostream &ROS) const { AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr); W.printBasicBlock(BB); } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { - SlotTracker SlotTable(GV->getParent()); + SlotTracker SlotTable(GV->getParent(), + /* ShouldInitializeAllMetadata */ isa<Function>(GV)); AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr); if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) W.printGlobal(V); @@ -3151,7 +3146,7 @@ void Value::print(raw_ostream &ROS) const { else W.printAlias(cast<GlobalAlias>(GV)); } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) { - V->getMetadata()->print(ROS); + V->getMetadata()->print(ROS, getModuleFromVal(V)); } else if (const Constant *C = dyn_cast<Constant>(this)) { TypePrinting TypePrinter; TypePrinter.print(C->getType(), OS); @@ -3167,8 +3162,9 @@ void Value::print(raw_ostream &ROS) const { void Value::printAsOperand(raw_ostream &O, bool PrintType, const Module *M) const { // Fast path: Don't construct and populate a TypePrinting object if we // won't be needing any types printed. - if (!PrintType && ((!isa<Constant>(this) && !isa<MetadataAsValue>(this)) || - hasName() || isa<GlobalValue>(this))) { + bool IsMetadata = isa<MetadataAsValue>(this); + if (!PrintType && ((!isa<Constant>(this) && !IsMetadata) || hasName() || + isa<GlobalValue>(this))) { WriteAsOperandInternal(O, this, nullptr, nullptr, M); return; } @@ -3184,33 +3180,35 @@ void Value::printAsOperand(raw_ostream &O, bool PrintType, const Module *M) cons O << ' '; } - WriteAsOperandInternal(O, this, &TypePrinter, nullptr, M); + SlotTracker Machine(M, /* ShouldInitializeAllMetadata */ IsMetadata); + WriteAsOperandInternal(O, this, &TypePrinter, &Machine, M); } -void Metadata::print(raw_ostream &ROS) const { +static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, + const Module *M, bool OnlyAsOperand) { formatted_raw_ostream OS(ROS); - if (auto *N = dyn_cast<MDNode>(this)) { - SlotTracker SlotTable(static_cast<Function *>(nullptr)); - AssemblyWriter W(OS, SlotTable, nullptr, nullptr); - W.printMDNodeBody(N); + auto *N = dyn_cast<MDNode>(&MD); + TypePrinting TypePrinter; + SlotTracker Machine(M, /* ShouldInitializeAllMetadata */ N); + if (M) + TypePrinter.incorporateTypes(*M); + + WriteAsOperandInternal(OS, &MD, &TypePrinter, &Machine, M, + /* FromValue */ true); + if (OnlyAsOperand || !N) return; - } - printAsOperand(OS); + + OS << " = "; + WriteMDNodeBodyInternal(OS, N, &TypePrinter, &Machine, M); } -void Metadata::printAsOperand(raw_ostream &ROS, bool PrintType, - const Module *M) const { - formatted_raw_ostream OS(ROS); +void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const { + printMetadataImpl(OS, *this, M, /* OnlyAsOperand */ true); +} - std::unique_ptr<TypePrinting> TypePrinter; - if (PrintType) { - TypePrinter.reset(new TypePrinting); - if (M) - TypePrinter->incorporateTypes(*M); - } - WriteAsOperandInternal(OS, this, TypePrinter.get(), nullptr, M, - /* FromValue */ true); +void Metadata::print(raw_ostream &OS, const Module *M) const { + printMetadataImpl(OS, *this, M, /* OnlyAsOperand */ false); } // Value::dump - allow easy printing of Values from the debugger. @@ -3234,7 +3232,10 @@ LLVM_DUMP_METHOD void NamedMDNode::dump() const { print(dbgs()); } LLVM_DUMP_METHOD -void Metadata::dump() const { - print(dbgs()); +void Metadata::dump() const { dump(nullptr); } + +LLVM_DUMP_METHOD +void Metadata::dump(const Module *M) const { + print(dbgs(), M); dbgs() << '\n'; } diff --git a/lib/IR/AsmWriter.h b/lib/IR/AsmWriter.h deleted file mode 100644 index 7716fa6..0000000 --- a/lib/IR/AsmWriter.h +++ /dev/null @@ -1,129 +0,0 @@ -//===-- llvm/IR/AsmWriter.h - Printing LLVM IR as an assembly file - C++ --===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This files defines the interface for the AssemblyWriter class used to print -// LLVM IR and various helper classes that are used in printing. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_LIB_IR_ASMWRITER_H -#define LLVM_LIB_IR_ASMWRITER_H - -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/TypeFinder.h" -#include "llvm/IR/UseListOrder.h" -#include "llvm/Support/FormattedStream.h" - -namespace llvm { - -class BasicBlock; -class Function; -class GlobalValue; -class Comdat; -class Module; -class NamedMDNode; -class Value; -class SlotTracker; - -/// Create a new SlotTracker for a Module -SlotTracker *createSlotTracker(const Module *M); - -//===----------------------------------------------------------------------===// -// TypePrinting Class: Type printing machinery -//===----------------------------------------------------------------------===// - -class TypePrinting { - TypePrinting(const TypePrinting &) = delete; - void operator=(const TypePrinting&) = delete; -public: - - /// NamedTypes - The named types that are used by the current module. - TypeFinder NamedTypes; - - /// NumberedTypes - The numbered types, along with their value. - DenseMap<StructType*, unsigned> NumberedTypes; - - - TypePrinting() {} - ~TypePrinting() {} - - void incorporateTypes(const Module &M); - - void print(Type *Ty, raw_ostream &OS); - - void printStructBody(StructType *Ty, raw_ostream &OS); -}; - -class AssemblyWriter { -protected: - formatted_raw_ostream &Out; - const Module *TheModule; - -private: - std::unique_ptr<SlotTracker> ModuleSlotTracker; - SlotTracker &Machine; - TypePrinting TypePrinter; - AssemblyAnnotationWriter *AnnotationWriter; - SetVector<const Comdat *> Comdats; - UseListOrderStack UseListOrders; - -public: - /// Construct an AssemblyWriter with an external SlotTracker - AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, - const Module *M, AssemblyAnnotationWriter *AAW); - - /// Construct an AssemblyWriter with an internally allocated SlotTracker - AssemblyWriter(formatted_raw_ostream &o, const Module *M, - AssemblyAnnotationWriter *AAW); - - virtual ~AssemblyWriter(); - - void printMDNodeBody(const MDNode *MD); - void printNamedMDNode(const NamedMDNode *NMD); - - void printModule(const Module *M); - - void writeOperand(const Value *Op, bool PrintType); - void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx); - void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope); - void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering, - AtomicOrdering FailureOrdering, - SynchronizationScope SynchScope); - - void writeAllMDNodes(); - void writeMDNode(unsigned Slot, const MDNode *Node); - void writeAllAttributeGroups(); - - void printTypeIdentities(); - void printGlobal(const GlobalVariable *GV); - void printAlias(const GlobalAlias *GV); - void printComdat(const Comdat *C); - void printFunction(const Function *F); - void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx); - void printBasicBlock(const BasicBlock *BB); - void printInstructionLine(const Instruction &I); - void printInstruction(const Instruction &I); - - void printUseListOrder(const UseListOrder &Order); - void printUseLists(const Function *F); - -private: - void init(); - - // printInfoComment - Print a little comment after the instruction indicating - // which slot it occupies. - void printInfoComment(const Value &V); -}; - -} // namespace llvm - -#endif diff --git a/lib/IR/AutoUpgrade.cpp b/lib/IR/AutoUpgrade.cpp index 0da7784..d2dfeaa 100644 --- a/lib/IR/AutoUpgrade.cpp +++ b/lib/IR/AutoUpgrade.cpp @@ -7,7 +7,9 @@ // //===----------------------------------------------------------------------===// // -// This file implements the auto-upgrade helper functions +// This file implements the auto-upgrade helper functions. +// This is where deprecated IR intrinsics and other IR features are updated to +// current specifications. // //===----------------------------------------------------------------------===// @@ -156,6 +158,14 @@ static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) { Name.startswith("x86.avx2.pcmpeq.") || Name.startswith("x86.avx2.pcmpgt.") || Name.startswith("x86.avx.vpermil.") || + Name == "x86.avx.vinsertf128.pd.256" || + Name == "x86.avx.vinsertf128.ps.256" || + Name == "x86.avx.vinsertf128.si.256" || + Name == "x86.avx2.vinserti128" || + Name == "x86.avx.vextractf128.pd.256" || + Name == "x86.avx.vextractf128.ps.256" || + Name == "x86.avx.vextractf128.si.256" || + Name == "x86.avx2.vextracti128" || Name == "x86.avx.movnt.dq.256" || Name == "x86.avx.movnt.pd.256" || Name == "x86.avx.movnt.ps.256" || @@ -171,6 +181,15 @@ static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) { Name == "x86.sse2.psrl.dq.bs" || Name == "x86.avx2.psll.dq.bs" || Name == "x86.avx2.psrl.dq.bs" || + Name == "x86.sse41.pblendw" || + Name == "x86.sse41.blendpd" || + Name == "x86.sse41.blendps" || + Name == "x86.avx.blend.pd.256" || + Name == "x86.avx.blend.ps.256" || + Name == "x86.avx2.pblendw" || + Name == "x86.avx2.pblendd.128" || + Name == "x86.avx2.pblendd.256" || + Name == "x86.avx2.vbroadcasti128" || (Name.startswith("x86.xop.vpcom") && F->arg_size() == 2)) { NewFn = nullptr; return true; @@ -184,17 +203,8 @@ static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) { if (Name == "x86.sse41.ptestnzc") return UpgradeSSE41Function(F, Intrinsic::x86_sse41_ptestnzc, NewFn); } - // Several blend and other instructions with maskes used the wrong number of + // Several blend and other instructions with masks used the wrong number of // bits. - if (Name == "x86.sse41.pblendw") - return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_pblendw, - NewFn); - if (Name == "x86.sse41.blendpd") - return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_blendpd, - NewFn); - if (Name == "x86.sse41.blendps") - return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_blendps, - NewFn); if (Name == "x86.sse41.insertps") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_insertps, NewFn); @@ -207,24 +217,9 @@ static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) { if (Name == "x86.sse41.mpsadbw") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_mpsadbw, NewFn); - if (Name == "x86.avx.blend.pd.256") - return UpgradeX86IntrinsicsWith8BitMask( - F, Intrinsic::x86_avx_blend_pd_256, NewFn); - if (Name == "x86.avx.blend.ps.256") - return UpgradeX86IntrinsicsWith8BitMask( - F, Intrinsic::x86_avx_blend_ps_256, NewFn); if (Name == "x86.avx.dp.ps.256") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_avx_dp_ps_256, NewFn); - if (Name == "x86.avx2.pblendw") - return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_avx2_pblendw, - NewFn); - if (Name == "x86.avx2.pblendd.128") - return UpgradeX86IntrinsicsWith8BitMask( - F, Intrinsic::x86_avx2_pblendd_128, NewFn); - if (Name == "x86.avx2.pblendd.256") - return UpgradeX86IntrinsicsWith8BitMask( - F, Intrinsic::x86_avx2_pblendd_256, NewFn); if (Name == "x86.avx2.mpsadbw") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_avx2_mpsadbw, NewFn); @@ -569,6 +564,15 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) { for (unsigned I = 0; I < EltNum; ++I) Rep = Builder.CreateInsertElement(Rep, Load, ConstantInt::get(I32Ty, I)); + } else if (Name == "llvm.x86.avx2.vbroadcasti128") { + // Replace vbroadcasts with a vector shuffle. + Value *Op = Builder.CreatePointerCast( + CI->getArgOperand(0), + PointerType::getUnqual(VectorType::get(Type::getInt64Ty(C), 2))); + Value *Load = Builder.CreateLoad(Op); + const int Idxs[4] = { 0, 1, 0, 1 }; + Rep = Builder.CreateShuffleVector(Load, UndefValue::get(Load->getType()), + Idxs); } else if (Name == "llvm.x86.sse2.psll.dq") { // 128-bit shift left specified in bits. unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); @@ -609,6 +613,94 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) { unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSRLDQIntrinsics(Builder, C, CI->getArgOperand(0), 2, Shift); + } else if (Name == "llvm.x86.sse41.pblendw" || + Name == "llvm.x86.sse41.blendpd" || + Name == "llvm.x86.sse41.blendps" || + Name == "llvm.x86.avx.blend.pd.256" || + Name == "llvm.x86.avx.blend.ps.256" || + Name == "llvm.x86.avx2.pblendw" || + Name == "llvm.x86.avx2.pblendd.128" || + Name == "llvm.x86.avx2.pblendd.256") { + Value *Op0 = CI->getArgOperand(0); + Value *Op1 = CI->getArgOperand(1); + unsigned Imm = cast <ConstantInt>(CI->getArgOperand(2))->getZExtValue(); + VectorType *VecTy = cast<VectorType>(CI->getType()); + unsigned NumElts = VecTy->getNumElements(); + + SmallVector<Constant*, 16> Idxs; + for (unsigned i = 0; i != NumElts; ++i) { + unsigned Idx = ((Imm >> (i%8)) & 1) ? i + NumElts : i; + Idxs.push_back(Builder.getInt32(Idx)); + } + + Rep = Builder.CreateShuffleVector(Op0, Op1, ConstantVector::get(Idxs)); + } else if (Name == "llvm.x86.avx.vinsertf128.pd.256" || + Name == "llvm.x86.avx.vinsertf128.ps.256" || + Name == "llvm.x86.avx.vinsertf128.si.256" || + Name == "llvm.x86.avx2.vinserti128") { + Value *Op0 = CI->getArgOperand(0); + Value *Op1 = CI->getArgOperand(1); + unsigned Imm = cast<ConstantInt>(CI->getArgOperand(2))->getZExtValue(); + VectorType *VecTy = cast<VectorType>(CI->getType()); + unsigned NumElts = VecTy->getNumElements(); + + // Mask off the high bits of the immediate value; hardware ignores those. + Imm = Imm & 1; + + // Extend the second operand into a vector that is twice as big. + Value *UndefV = UndefValue::get(Op1->getType()); + SmallVector<Constant*, 8> Idxs; + for (unsigned i = 0; i != NumElts; ++i) { + Idxs.push_back(Builder.getInt32(i)); + } + Rep = Builder.CreateShuffleVector(Op1, UndefV, ConstantVector::get(Idxs)); + + // Insert the second operand into the first operand. + + // Note that there is no guarantee that instruction lowering will actually + // produce a vinsertf128 instruction for the created shuffles. In + // particular, the 0 immediate case involves no lane changes, so it can + // be handled as a blend. + + // Example of shuffle mask for 32-bit elements: + // Imm = 1 <i32 0, i32 1, i32 2, i32 3, i32 8, i32 9, i32 10, i32 11> + // Imm = 0 <i32 8, i32 9, i32 10, i32 11, i32 4, i32 5, i32 6, i32 7 > + + SmallVector<Constant*, 8> Idxs2; + // The low half of the result is either the low half of the 1st operand + // or the low half of the 2nd operand (the inserted vector). + for (unsigned i = 0; i != NumElts / 2; ++i) { + unsigned Idx = Imm ? i : (i + NumElts); + Idxs2.push_back(Builder.getInt32(Idx)); + } + // The high half of the result is either the low half of the 2nd operand + // (the inserted vector) or the high half of the 1st operand. + for (unsigned i = NumElts / 2; i != NumElts; ++i) { + unsigned Idx = Imm ? (i + NumElts / 2) : i; + Idxs2.push_back(Builder.getInt32(Idx)); + } + Rep = Builder.CreateShuffleVector(Op0, Rep, ConstantVector::get(Idxs2)); + } else if (Name == "llvm.x86.avx.vextractf128.pd.256" || + Name == "llvm.x86.avx.vextractf128.ps.256" || + Name == "llvm.x86.avx.vextractf128.si.256" || + Name == "llvm.x86.avx2.vextracti128") { + Value *Op0 = CI->getArgOperand(0); + unsigned Imm = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); + VectorType *VecTy = cast<VectorType>(CI->getType()); + unsigned NumElts = VecTy->getNumElements(); + + // Mask off the high bits of the immediate value; hardware ignores those. + Imm = Imm & 1; + + // Get indexes for either the high half or low half of the input vector. + SmallVector<Constant*, 4> Idxs(NumElts); + for (unsigned i = 0; i != NumElts; ++i) { + unsigned Idx = Imm ? (i + NumElts) : i; + Idxs[i] = Builder.getInt32(Idx); + } + + Value *UndefV = UndefValue::get(Op0->getType()); + Rep = Builder.CreateShuffleVector(Op0, UndefV, ConstantVector::get(Idxs)); } else { bool PD128 = false, PD256 = false, PS128 = false, PS256 = false; if (Name == "llvm.x86.avx.vpermil.pd.256") @@ -739,19 +831,11 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) { return; } - case Intrinsic::x86_sse41_pblendw: - case Intrinsic::x86_sse41_blendpd: - case Intrinsic::x86_sse41_blendps: case Intrinsic::x86_sse41_insertps: case Intrinsic::x86_sse41_dppd: case Intrinsic::x86_sse41_dpps: case Intrinsic::x86_sse41_mpsadbw: - case Intrinsic::x86_avx_blend_pd_256: - case Intrinsic::x86_avx_blend_ps_256: case Intrinsic::x86_avx_dp_ps_256: - case Intrinsic::x86_avx2_pblendw: - case Intrinsic::x86_avx2_pblendd_128: - case Intrinsic::x86_avx2_pblendd_256: case Intrinsic::x86_avx2_mpsadbw: { // Need to truncate the last argument from i32 to i8 -- this argument models // an inherently 8-bit immediate operand to these x86 instructions. diff --git a/lib/IR/BasicBlock.cpp b/lib/IR/BasicBlock.cpp index b3b3cbf..fe38385 100644 --- a/lib/IR/BasicBlock.cpp +++ b/lib/IR/BasicBlock.cpp @@ -29,10 +29,6 @@ ValueSymbolTable *BasicBlock::getValueSymbolTable() { return nullptr; } -const DataLayout *BasicBlock::getDataLayout() const { - return getParent()->getDataLayout(); -} - LLVMContext &BasicBlock::getContext() const { return getType()->getContext(); } @@ -102,14 +98,14 @@ void BasicBlock::eraseFromParent() { getParent()->getBasicBlockList().erase(this); } -/// moveBefore - Unlink this basic block from its current function and +/// Unlink this basic block from its current function and /// insert it into the function that MovePos lives in, right before MovePos. void BasicBlock::moveBefore(BasicBlock *MovePos) { MovePos->getParent()->getBasicBlockList().splice(MovePos, getParent()->getBasicBlockList(), this); } -/// moveAfter - Unlink this basic block from its current function and +/// Unlink this basic block from its current function and /// insert it into the function that MovePos lives in, right after MovePos. void BasicBlock::moveAfter(BasicBlock *MovePos) { Function::iterator I = MovePos; @@ -117,6 +113,9 @@ void BasicBlock::moveAfter(BasicBlock *MovePos) { getParent()->getBasicBlockList(), this); } +const Module *BasicBlock::getModule() const { + return getParent()->getParent(); +} TerminatorInst *BasicBlock::getTerminator() { if (InstList.empty()) return nullptr; @@ -210,7 +209,7 @@ void BasicBlock::dropAllReferences() { I->dropAllReferences(); } -/// getSinglePredecessor - If this basic block has a single predecessor block, +/// If this basic block has a single predecessor block, /// return the block, otherwise return a null pointer. BasicBlock *BasicBlock::getSinglePredecessor() { pred_iterator PI = pred_begin(this), E = pred_end(this); @@ -220,7 +219,7 @@ BasicBlock *BasicBlock::getSinglePredecessor() { return (PI == E) ? ThePred : nullptr /*multiple preds*/; } -/// getUniquePredecessor - If this basic block has a unique predecessor block, +/// If this basic block has a unique predecessor block, /// return the block, otherwise return a null pointer. /// Note that unique predecessor doesn't mean single edge, there can be /// multiple edges from the unique predecessor to this block (for example @@ -253,7 +252,7 @@ BasicBlock *BasicBlock::getUniqueSuccessor() { return SuccBB; } -/// removePredecessor - This method is used to notify a BasicBlock that the +/// This method is used to notify a BasicBlock that the /// specified Predecessor of the block is no longer able to reach it. This is /// actually not used to update the Predecessor list, but is actually used to /// update the PHI nodes that reside in the block. Note that this should be @@ -330,7 +329,7 @@ void BasicBlock::removePredecessor(BasicBlock *Pred, } -/// splitBasicBlock - This splits a basic block into two at the specified +/// This splits a basic block into two at the specified /// instruction. Note that all instructions BEFORE the specified iterator stay /// as part of the original basic block, an unconditional branch is added to /// the new BB, and the rest of the instructions in the BB are moved to the new @@ -401,14 +400,13 @@ void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { } } -/// isLandingPad - Return true if this basic block is a landing pad. I.e., it's +/// Return true if this basic block is a landing pad. I.e., it's /// the destination of the 'unwind' edge of an invoke instruction. bool BasicBlock::isLandingPad() const { return isa<LandingPadInst>(getFirstNonPHI()); } -/// getLandingPadInst() - Return the landingpad instruction associated with -/// the landing pad. +/// Return the landingpad instruction associated with the landing pad. LandingPadInst *BasicBlock::getLandingPadInst() { return dyn_cast<LandingPadInst>(getFirstNonPHI()); } diff --git a/lib/IR/ConstantFold.cpp b/lib/IR/ConstantFold.cpp index a915d28..d97d2c4 100644 --- a/lib/IR/ConstantFold.cpp +++ b/lib/IR/ConstantFold.cpp @@ -1120,27 +1120,18 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, return ConstantInt::get(CI1->getContext(), C1V | C2V); case Instruction::Xor: return ConstantInt::get(CI1->getContext(), C1V ^ C2V); - case Instruction::Shl: { - uint32_t shiftAmt = C2V.getZExtValue(); - if (shiftAmt < C1V.getBitWidth()) - return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt)); - else - return UndefValue::get(C1->getType()); // too big shift is undef - } - case Instruction::LShr: { - uint32_t shiftAmt = C2V.getZExtValue(); - if (shiftAmt < C1V.getBitWidth()) - return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt)); - else - return UndefValue::get(C1->getType()); // too big shift is undef - } - case Instruction::AShr: { - uint32_t shiftAmt = C2V.getZExtValue(); - if (shiftAmt < C1V.getBitWidth()) - return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt)); - else - return UndefValue::get(C1->getType()); // too big shift is undef - } + case Instruction::Shl: + if (C2V.ult(C1V.getBitWidth())) + return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); + return UndefValue::get(C1->getType()); // too big shift is undef + case Instruction::LShr: + if (C2V.ult(C1V.getBitWidth())) + return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); + return UndefValue::get(C1->getType()); // too big shift is undef + case Instruction::AShr: + if (C2V.ult(C1V.getBitWidth())) + return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); + return UndefValue::get(C1->getType()); // too big shift is undef } } @@ -1327,7 +1318,7 @@ static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) { if (!isa<ConstantExpr>(V1)) { if (!isa<ConstantExpr>(V2)) { - // We distilled thisUse the standard constant folder for a few cases + // Simple case, use the standard constant folder. ConstantInt *R = nullptr; R = dyn_cast<ConstantInt>( ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2)); @@ -1665,15 +1656,22 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, // Handle some degenerate cases first if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { + CmpInst::Predicate Predicate = CmpInst::Predicate(pred); + bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); // For EQ and NE, we can always pick a value for the undef to make the // predicate pass or fail, so we can return undef. - // Also, if both operands are undef, we can return undef. - if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) || - (isa<UndefValue>(C1) && isa<UndefValue>(C2))) + // Also, if both operands are undef, we can return undef for int comparison. + if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) return UndefValue::get(ResultTy); - // Otherwise, pick the same value as the non-undef operand, and fold - // it to true or false. - return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred)); + + // Otherwise, for integer compare, pick the same value as the non-undef + // operand, and fold it to true or false. + if (isIntegerPredicate) + return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred)); + + // Choosing NaN for the undef will always make unordered comparison succeed + // and ordered comparison fails. + return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); } // icmp eq/ne(null,GV) -> false/true @@ -1789,7 +1787,10 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, return ConstantVector::get(ResElts); } - if (C1->getType()->isFloatingPointTy()) { + if (C1->getType()->isFloatingPointTy() && + // Only call evaluateFCmpRelation if we have a constant expr to avoid + // infinite recursive loop + (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) { int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. switch (evaluateFCmpRelation(C1, C2)) { default: llvm_unreachable("Unknown relation!"); diff --git a/lib/IR/ConstantRange.cpp b/lib/IR/ConstantRange.cpp index f8e9ba4..91095cf 100644 --- a/lib/IR/ConstantRange.cpp +++ b/lib/IR/ConstantRange.cpp @@ -49,14 +49,15 @@ ConstantRange::ConstantRange(APIntMoveTy L, APIntMoveTy U) "Lower == Upper, but they aren't min or max value!"); } -ConstantRange ConstantRange::makeICmpRegion(unsigned Pred, - const ConstantRange &CR) { +ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, + const ConstantRange &CR) { if (CR.isEmptySet()) return CR; uint32_t W = CR.getBitWidth(); switch (Pred) { - default: llvm_unreachable("Invalid ICmp predicate to makeICmpRegion()"); + default: + llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); case CmpInst::ICMP_EQ: return CR; case CmpInst::ICMP_NE: @@ -114,6 +115,16 @@ ConstantRange ConstantRange::makeICmpRegion(unsigned Pred, } } +ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, + const ConstantRange &CR) { + // Follows from De-Morgan's laws: + // + // ~(~A union ~B) == A intersect B. + // + return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) + .inverse(); +} + /// isFullSet - Return true if this set contains all of the elements possible /// for this data-type bool ConstantRange::isFullSet() const { @@ -587,6 +598,13 @@ ConstantRange::multiply(const ConstantRange &Other) const { if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); + // Multiplication is signedness-independent. However different ranges can be + // obtained depending on how the input ranges are treated. These different + // ranges are all conservatively correct, but one might be better than the + // other. We calculate two ranges; one treating the inputs as unsigned + // and the other signed, then return the smallest of these ranges. + + // Unsigned range first. APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); @@ -594,7 +612,26 @@ ConstantRange::multiply(const ConstantRange &Other) const { ConstantRange Result_zext = ConstantRange(this_min * Other_min, this_max * Other_max + 1); - return Result_zext.truncate(getBitWidth()); + ConstantRange UR = Result_zext.truncate(getBitWidth()); + + // Now the signed range. Because we could be dealing with negative numbers + // here, the lower bound is the smallest of the cartesian product of the + // lower and upper ranges; for example: + // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. + // Similarly for the upper bound, swapping min for max. + + this_min = getSignedMin().sext(getBitWidth() * 2); + this_max = getSignedMax().sext(getBitWidth() * 2); + Other_min = Other.getSignedMin().sext(getBitWidth() * 2); + Other_max = Other.getSignedMax().sext(getBitWidth() * 2); + + auto L = {this_min * Other_min, this_min * Other_max, + this_max * Other_min, this_max * Other_max}; + auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; + ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); + ConstantRange SR = Result_sext.truncate(getBitWidth()); + + return UR.getSetSize().ult(SR.getSetSize()) ? UR : SR; } ConstantRange diff --git a/lib/IR/Constants.cpp b/lib/IR/Constants.cpp index 0bf61a7..e51a396 100644 --- a/lib/IR/Constants.cpp +++ b/lib/IR/Constants.cpp @@ -1215,11 +1215,9 @@ ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, bool OnlyIfReduced) const { assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); - bool AnyChange = Ty != getType(); - for (unsigned i = 0; i != Ops.size(); ++i) - AnyChange |= Ops[i] != getOperand(i); - if (!AnyChange) // No operands changed, return self. + // If no operands changed return self. + if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) return const_cast<ConstantExpr*>(this); Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; @@ -2971,10 +2969,7 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, } Instruction *ConstantExpr::getAsInstruction() { - SmallVector<Value*,4> ValueOperands; - for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) - ValueOperands.push_back(cast<Value>(I)); - + SmallVector<Value *, 4> ValueOperands(op_begin(), op_end()); ArrayRef<Value*> Ops(ValueOperands); switch (getOpcode()) { @@ -3006,12 +3001,14 @@ Instruction *ConstantExpr::getAsInstruction() { case Instruction::ShuffleVector: return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]); - case Instruction::GetElementPtr: - if (cast<GEPOperator>(this)->isInBounds()) - return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1)); - else - return GetElementPtrInst::Create(Ops[0], Ops.slice(1)); - + case Instruction::GetElementPtr: { + const auto *GO = cast<GEPOperator>(this); + if (GO->isInBounds()) + return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(), + Ops[0], Ops.slice(1)); + return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], + Ops.slice(1)); + } case Instruction::ICmp: case Instruction::FCmp: return CmpInst::Create((Instruction::OtherOps)getOpcode(), diff --git a/lib/IR/Core.cpp b/lib/IR/Core.cpp index f007616..613147e 100644 --- a/lib/IR/Core.cpp +++ b/lib/IR/Core.cpp @@ -2506,7 +2506,7 @@ LLVMValueRef LLVMBuildGEP(LLVMBuilderRef B, LLVMValueRef Pointer, LLVMValueRef *Indices, unsigned NumIndices, const char *Name) { ArrayRef<Value *> IdxList(unwrap(Indices), NumIndices); - return wrap(unwrap(B)->CreateGEP(unwrap(Pointer), IdxList, Name)); + return wrap(unwrap(B)->CreateGEP(nullptr, unwrap(Pointer), IdxList, Name)); } LLVMValueRef LLVMBuildInBoundsGEP(LLVMBuilderRef B, LLVMValueRef Pointer, diff --git a/lib/IR/DIBuilder.cpp b/lib/IR/DIBuilder.cpp index 2cb27ca..9677de4 100644 --- a/lib/IR/DIBuilder.cpp +++ b/lib/IR/DIBuilder.cpp @@ -121,18 +121,10 @@ void DIBuilder::finalize() { } /// If N is compile unit return NULL otherwise return N. -static MDNode *getNonCompileUnitScope(MDNode *N) { - if (DIDescriptor(N).isCompileUnit()) +static MDScope *getNonCompileUnitScope(MDNode *N) { + if (!N || isa<MDCompileUnit>(N)) return nullptr; - return N; -} - -static MDNode *createFilePathPair(LLVMContext &VMContext, StringRef Filename, - StringRef Directory) { - assert(!Filename.empty() && "Unable to create file without name"); - Metadata *Pair[] = {MDString::get(VMContext, Filename), - MDString::get(VMContext, Directory)}; - return MDNode::get(VMContext, Pair); + return cast<MDScope>(N); } DICompileUnit DIBuilder::createCompileUnit(unsigned Lang, StringRef Filename, @@ -157,22 +149,12 @@ DICompileUnit DIBuilder::createCompileUnit(unsigned Lang, StringRef Filename, TempGVs = MDTuple::getTemporary(VMContext, None).release(); TempImportedModules = MDTuple::getTemporary(VMContext, None).release(); - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_compile_unit) - .concat(Lang) - .concat(Producer) - .concat(isOptimized) - .concat(Flags) - .concat(RunTimeVer) - .concat(SplitName) - .concat(Kind) - .get(VMContext), - createFilePathPair(VMContext, Filename, Directory), - TempEnumTypes, TempRetainTypes, TempSubprograms, TempGVs, - TempImportedModules}; - // TODO: Switch to getDistinct(). We never want to merge compile units based // on contents. - MDNode *CUNode = MDNode::get(VMContext, Elts); + MDNode *CUNode = MDCompileUnit::get( + VMContext, Lang, MDFile::get(VMContext, Filename, Directory), Producer, + isOptimized, Flags, RunTimeVer, SplitName, Kind, TempEnumTypes, + TempRetainTypes, TempSubprograms, TempGVs, TempImportedModules); // Create a named metadata so that it is easier to find cu in a module. // Note that we only generate this when the caller wants to actually @@ -192,11 +174,7 @@ static DIImportedEntity createImportedModule(LLVMContext &C, dwarf::Tag Tag, DIScope Context, Metadata *NS, unsigned Line, StringRef Name, SmallVectorImpl<TrackingMDNodeRef> &AllImportedModules) { - const MDNode *R; - Metadata *Elts[] = {HeaderBuilder::get(Tag).concat(Line).concat(Name).get(C), - Context, NS}; - R = MDNode::get(C, Elts); - DIImportedEntity M(R); + DIImportedEntity M = MDImportedEntity::get(C, Tag, Context, NS, Line, Name); assert(M.Verify() && "Imported module should be valid"); AllImportedModules.emplace_back(M.get()); return M; @@ -236,39 +214,17 @@ DIImportedEntity DIBuilder::createImportedDeclaration(DIScope Context, } DIFile DIBuilder::createFile(StringRef Filename, StringRef Directory) { - Metadata *Elts[] = { - HeaderBuilder::get(dwarf::DW_TAG_file_type).get(VMContext), - createFilePathPair(VMContext, Filename, Directory)}; - return DIFile(MDNode::get(VMContext, Elts)); + return MDFile::get(VMContext, Filename, Directory); } DIEnumerator DIBuilder::createEnumerator(StringRef Name, int64_t Val) { assert(!Name.empty() && "Unable to create enumerator without name"); - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_enumerator) - .concat(Name) - .concat(Val) - .get(VMContext)}; - return DIEnumerator(MDNode::get(VMContext, Elts)); + return MDEnumerator::get(VMContext, Val, Name); } DIBasicType DIBuilder::createUnspecifiedType(StringRef Name) { assert(!Name.empty() && "Unable to create type without name"); - // Unspecified types are encoded in DIBasicType format. Line number, filename, - // size, alignment, offset and flags are always empty here. - Metadata *Elts[] = { - HeaderBuilder::get(dwarf::DW_TAG_unspecified_type) - .concat(Name) - .concat(0) - .concat(0) - .concat(0) - .concat(0) - .concat(0) - .concat(0) - .get(VMContext), - nullptr, // Filename - nullptr // Unused - }; - return DIBasicType(MDNode::get(VMContext, Elts)); + return MDBasicType::get(VMContext, dwarf::DW_TAG_unspecified_type, Name); } DIBasicType DIBuilder::createNullPtrType() { @@ -279,142 +235,61 @@ DIBasicType DIBuilder::createBasicType(StringRef Name, uint64_t SizeInBits, uint64_t AlignInBits, unsigned Encoding) { assert(!Name.empty() && "Unable to create type without name"); - // Basic types are encoded in DIBasicType format. Line number, filename, - // offset and flags are always empty here. - Metadata *Elts[] = { - HeaderBuilder::get(dwarf::DW_TAG_base_type) - .concat(Name) - .concat(0) // Line - .concat(SizeInBits) - .concat(AlignInBits) - .concat(0) // Offset - .concat(0) // Flags - .concat(Encoding) - .get(VMContext), - nullptr, // Filename - nullptr // Unused - }; - return DIBasicType(MDNode::get(VMContext, Elts)); + return MDBasicType::get(VMContext, dwarf::DW_TAG_base_type, Name, SizeInBits, + AlignInBits, Encoding); } DIDerivedType DIBuilder::createQualifiedType(unsigned Tag, DIType FromTy) { - // Qualified types are encoded in DIDerivedType format. - Metadata *Elts[] = {HeaderBuilder::get(Tag) - .concat(StringRef()) // Name - .concat(0) // Line - .concat(0) // Size - .concat(0) // Align - .concat(0) // Offset - .concat(0) // Flags - .get(VMContext), - nullptr, // Filename - nullptr, // Unused - FromTy.getRef()}; - return DIDerivedType(MDNode::get(VMContext, Elts)); + return MDDerivedType::get(VMContext, Tag, "", nullptr, 0, nullptr, + FromTy.getRef(), 0, 0, 0, 0); } DIDerivedType DIBuilder::createPointerType(DIType PointeeTy, uint64_t SizeInBits, uint64_t AlignInBits, StringRef Name) { - // Pointer types are encoded in DIDerivedType format. - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_pointer_type) - .concat(Name) - .concat(0) // Line - .concat(SizeInBits) - .concat(AlignInBits) - .concat(0) // Offset - .concat(0) // Flags - .get(VMContext), - nullptr, // Filename - nullptr, // Unused - PointeeTy.getRef()}; - return DIDerivedType(MDNode::get(VMContext, Elts)); + // FIXME: Why is there a name here? + return MDDerivedType::get(VMContext, dwarf::DW_TAG_pointer_type, Name, + nullptr, 0, nullptr, PointeeTy.getRef(), SizeInBits, + AlignInBits, 0, 0); } DIDerivedType DIBuilder::createMemberPointerType(DIType PointeeTy, DIType Base, uint64_t SizeInBits, uint64_t AlignInBits) { - // Pointer types are encoded in DIDerivedType format. - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_ptr_to_member_type) - .concat(StringRef()) - .concat(0) // Line - .concat(SizeInBits) // Size - .concat(AlignInBits) // Align - .concat(0) // Offset - .concat(0) // Flags - .get(VMContext), - nullptr, // Filename - nullptr, // Unused - PointeeTy.getRef(), Base.getRef()}; - return DIDerivedType(MDNode::get(VMContext, Elts)); + return MDDerivedType::get(VMContext, dwarf::DW_TAG_ptr_to_member_type, "", + nullptr, 0, nullptr, PointeeTy.getRef(), SizeInBits, + AlignInBits, 0, 0, Base.getRef()); } DIDerivedType DIBuilder::createReferenceType(unsigned Tag, DIType RTy) { assert(RTy.isType() && "Unable to create reference type"); - // References are encoded in DIDerivedType format. - Metadata *Elts[] = {HeaderBuilder::get(Tag) - .concat(StringRef()) // Name - .concat(0) // Line - .concat(0) // Size - .concat(0) // Align - .concat(0) // Offset - .concat(0) // Flags - .get(VMContext), - nullptr, // Filename - nullptr, // TheCU, - RTy.getRef()}; - return DIDerivedType(MDNode::get(VMContext, Elts)); + return MDDerivedType::get(VMContext, Tag, "", nullptr, 0, nullptr, + RTy.getRef(), 0, 0, 0, 0); } DIDerivedType DIBuilder::createTypedef(DIType Ty, StringRef Name, DIFile File, unsigned LineNo, DIDescriptor Context) { - // typedefs are encoded in DIDerivedType format. - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_typedef) - .concat(Name) - .concat(LineNo) - .concat(0) // Size - .concat(0) // Align - .concat(0) // Offset - .concat(0) // Flags - .get(VMContext), - File.getFileNode(), - DIScope(getNonCompileUnitScope(Context)).getRef(), - Ty.getRef()}; - return DIDerivedType(MDNode::get(VMContext, Elts)); + return MDDerivedType::get(VMContext, dwarf::DW_TAG_typedef, Name, + File.getFileNode(), LineNo, + DIScope(getNonCompileUnitScope(Context)).getRef(), + Ty.getRef(), 0, 0, 0, 0); } DIDerivedType DIBuilder::createFriend(DIType Ty, DIType FriendTy) { // typedefs are encoded in DIDerivedType format. assert(Ty.isType() && "Invalid type!"); assert(FriendTy.isType() && "Invalid friend type!"); - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_friend) - .concat(StringRef()) // Name - .concat(0) // Line - .concat(0) // Size - .concat(0) // Align - .concat(0) // Offset - .concat(0) // Flags - .get(VMContext), - nullptr, Ty.getRef(), FriendTy.getRef()}; - return DIDerivedType(MDNode::get(VMContext, Elts)); + return MDDerivedType::get(VMContext, dwarf::DW_TAG_friend, "", nullptr, 0, + Ty.getRef(), FriendTy.getRef(), 0, 0, 0, 0); } DIDerivedType DIBuilder::createInheritance(DIType Ty, DIType BaseTy, uint64_t BaseOffset, unsigned Flags) { assert(Ty.isType() && "Unable to create inheritance"); - // TAG_inheritance is encoded in DIDerivedType format. - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_inheritance) - .concat(StringRef()) // Name - .concat(0) // Line - .concat(0) // Size - .concat(0) // Align - .concat(BaseOffset) - .concat(Flags) - .get(VMContext), - nullptr, Ty.getRef(), BaseTy.getRef()}; - auto R = DIDerivedType(MDNode::get(VMContext, Elts)); - return R; + return MDDerivedType::get(VMContext, dwarf::DW_TAG_inheritance, "", nullptr, + 0, Ty.getRef(), BaseTy.getRef(), 0, 0, BaseOffset, + Flags); } DIDerivedType DIBuilder::createMemberType(DIDescriptor Scope, StringRef Name, @@ -423,22 +298,13 @@ DIDerivedType DIBuilder::createMemberType(DIDescriptor Scope, StringRef Name, uint64_t AlignInBits, uint64_t OffsetInBits, unsigned Flags, DIType Ty) { - // TAG_member is encoded in DIDerivedType format. - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_member) - .concat(Name) - .concat(LineNumber) - .concat(SizeInBits) - .concat(AlignInBits) - .concat(OffsetInBits) - .concat(Flags) - .get(VMContext), - File.getFileNode(), - DIScope(getNonCompileUnitScope(Scope)).getRef(), - Ty.getRef()}; - return DIDerivedType(MDNode::get(VMContext, Elts)); -} - -static Metadata *getConstantOrNull(Constant *C) { + return MDDerivedType::get( + VMContext, dwarf::DW_TAG_member, Name, File, LineNumber, + DIScope(getNonCompileUnitScope(Scope)).getRef(), Ty.getRef(), SizeInBits, + AlignInBits, OffsetInBits, Flags); +} + +static ConstantAsMetadata *getConstantOrNull(Constant *C) { if (C) return ConstantAsMetadata::get(C); return nullptr; @@ -451,18 +317,10 @@ DIDerivedType DIBuilder::createStaticMemberType(DIDescriptor Scope, llvm::Constant *Val) { // TAG_member is encoded in DIDerivedType format. Flags |= DIDescriptor::FlagStaticMember; - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_member) - .concat(Name) - .concat(LineNumber) - .concat(0) // Size - .concat(0) // Align - .concat(0) // Offset - .concat(Flags) - .get(VMContext), - File.getFileNode(), - DIScope(getNonCompileUnitScope(Scope)).getRef(), - Ty.getRef(), getConstantOrNull(Val)}; - return DIDerivedType(MDNode::get(VMContext, Elts)); + return MDDerivedType::get( + VMContext, dwarf::DW_TAG_member, Name, File, LineNumber, + DIScope(getNonCompileUnitScope(Scope)).getRef(), Ty.getRef(), 0, 0, 0, + Flags, getConstantOrNull(Val)); } DIDerivedType DIBuilder::createObjCIVar(StringRef Name, DIFile File, @@ -471,33 +329,18 @@ DIDerivedType DIBuilder::createObjCIVar(StringRef Name, DIFile File, uint64_t AlignInBits, uint64_t OffsetInBits, unsigned Flags, DIType Ty, MDNode *PropertyNode) { - // TAG_member is encoded in DIDerivedType format. - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_member) - .concat(Name) - .concat(LineNumber) - .concat(SizeInBits) - .concat(AlignInBits) - .concat(OffsetInBits) - .concat(Flags) - .get(VMContext), - File.getFileNode(), getNonCompileUnitScope(File), Ty, - PropertyNode}; - return DIDerivedType(MDNode::get(VMContext, Elts)); + return MDDerivedType::get(VMContext, dwarf::DW_TAG_member, Name, File, + LineNumber, getNonCompileUnitScope(File), + Ty.getRef(), SizeInBits, AlignInBits, OffsetInBits, + Flags, PropertyNode); } DIObjCProperty DIBuilder::createObjCProperty(StringRef Name, DIFile File, unsigned LineNumber, StringRef GetterName, StringRef SetterName, unsigned PropertyAttributes, DIType Ty) { - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_APPLE_property) - .concat(Name) - .concat(LineNumber) - .concat(GetterName) - .concat(SetterName) - .concat(PropertyAttributes) - .get(VMContext), - File, Ty}; - return DIObjCProperty(MDNode::get(VMContext, Elts)); + return MDObjCProperty::get(VMContext, Name, File, LineNumber, GetterName, + SetterName, PropertyAttributes, Ty); } DITemplateTypeParameter @@ -505,13 +348,7 @@ DIBuilder::createTemplateTypeParameter(DIDescriptor Context, StringRef Name, DIType Ty) { assert(!DIScope(getNonCompileUnitScope(Context)).getRef() && "Expected compile unit"); - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_template_type_parameter) - .concat(Name) - .concat(0) - .concat(0) - .get(VMContext), - nullptr, Ty.getRef(), nullptr}; - return DITemplateTypeParameter(MDNode::get(VMContext, Elts)); + return MDTemplateTypeParameter::get(VMContext, Name, Ty.getRef()); } static DITemplateValueParameter @@ -520,10 +357,7 @@ createTemplateValueParameterHelper(LLVMContext &VMContext, unsigned Tag, DIType Ty, Metadata *MD) { assert(!DIScope(getNonCompileUnitScope(Context)).getRef() && "Expected compile unit"); - Metadata *Elts[] = { - HeaderBuilder::get(Tag).concat(Name).concat(0).concat(0).get(VMContext), - nullptr, Ty.getRef(), MD, nullptr}; - return DITemplateValueParameter(MDNode::get(VMContext, Elts)); + return MDTemplateValueParameter::get(VMContext, Tag, Name, Ty.getRef(), MD); } DITemplateValueParameter @@ -563,23 +397,11 @@ DICompositeType DIBuilder::createClassType(DIDescriptor Context, StringRef Name, assert((!Context || Context.isScope() || Context.isType()) && "createClassType should be called with a valid Context"); // TAG_class_type is encoded in DICompositeType format. - Metadata *Elts[] = { - HeaderBuilder::get(dwarf::DW_TAG_class_type) - .concat(Name) - .concat(LineNumber) - .concat(SizeInBits) - .concat(AlignInBits) - .concat(OffsetInBits) - .concat(Flags) - .concat(0) - .get(VMContext), - File.getFileNode(), DIScope(getNonCompileUnitScope(Context)).getRef(), - DerivedFrom.getRef(), Elements, VTableHolder.getRef(), TemplateParams, - UniqueIdentifier.empty() ? nullptr - : MDString::get(VMContext, UniqueIdentifier)}; - DICompositeType R(MDNode::get(VMContext, Elts)); - assert(R.isCompositeType() && - "createClassType should return a DICompositeType"); + DICompositeType R = MDCompositeType::get( + VMContext, dwarf::DW_TAG_structure_type, Name, File, LineNumber, + DIScope(getNonCompileUnitScope(Context)).getRef(), DerivedFrom.getRef(), + SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, 0, + VTableHolder.getRef(), TemplateParams, UniqueIdentifier); if (!UniqueIdentifier.empty()) retainType(R); trackIfUnresolved(R); @@ -596,24 +418,11 @@ DICompositeType DIBuilder::createStructType(DIDescriptor Context, unsigned RunTimeLang, DIType VTableHolder, StringRef UniqueIdentifier) { - // TAG_structure_type is encoded in DICompositeType format. - Metadata *Elts[] = { - HeaderBuilder::get(dwarf::DW_TAG_structure_type) - .concat(Name) - .concat(LineNumber) - .concat(SizeInBits) - .concat(AlignInBits) - .concat(0) - .concat(Flags) - .concat(RunTimeLang) - .get(VMContext), - File.getFileNode(), DIScope(getNonCompileUnitScope(Context)).getRef(), - DerivedFrom.getRef(), Elements, VTableHolder.getRef(), nullptr, - UniqueIdentifier.empty() ? nullptr - : MDString::get(VMContext, UniqueIdentifier)}; - DICompositeType R(MDNode::get(VMContext, Elts)); - assert(R.isCompositeType() && - "createStructType should return a DICompositeType"); + DICompositeType R = MDCompositeType::get( + VMContext, dwarf::DW_TAG_structure_type, Name, File, LineNumber, + DIScope(getNonCompileUnitScope(Context)).getRef(), DerivedFrom.getRef(), + SizeInBits, AlignInBits, 0, Flags, Elements, RunTimeLang, + VTableHolder.getRef(), nullptr, UniqueIdentifier); if (!UniqueIdentifier.empty()) retainType(R); trackIfUnresolved(R); @@ -627,22 +436,11 @@ DICompositeType DIBuilder::createUnionType(DIDescriptor Scope, StringRef Name, DIArray Elements, unsigned RunTimeLang, StringRef UniqueIdentifier) { - // TAG_union_type is encoded in DICompositeType format. - Metadata *Elts[] = { - HeaderBuilder::get(dwarf::DW_TAG_union_type) - .concat(Name) - .concat(LineNumber) - .concat(SizeInBits) - .concat(AlignInBits) - .concat(0) // Offset - .concat(Flags) - .concat(RunTimeLang) - .get(VMContext), - File.getFileNode(), DIScope(getNonCompileUnitScope(Scope)).getRef(), - nullptr, Elements, nullptr, nullptr, - UniqueIdentifier.empty() ? nullptr - : MDString::get(VMContext, UniqueIdentifier)}; - DICompositeType R(MDNode::get(VMContext, Elts)); + DICompositeType R = MDCompositeType::get( + VMContext, dwarf::DW_TAG_union_type, Name, File, LineNumber, + DIScope(getNonCompileUnitScope(Scope)).getRef(), nullptr, SizeInBits, + AlignInBits, 0, Flags, Elements, RunTimeLang, nullptr, nullptr, + UniqueIdentifier); if (!UniqueIdentifier.empty()) retainType(R); trackIfUnresolved(R); @@ -652,43 +450,18 @@ DICompositeType DIBuilder::createUnionType(DIDescriptor Scope, StringRef Name, DISubroutineType DIBuilder::createSubroutineType(DIFile File, DITypeArray ParameterTypes, unsigned Flags) { - // TAG_subroutine_type is encoded in DICompositeType format. - Metadata *Elts[] = { - HeaderBuilder::get(dwarf::DW_TAG_subroutine_type) - .concat(StringRef()) - .concat(0) // Line - .concat(0) // Size - .concat(0) // Align - .concat(0) // Offset - .concat(Flags) // Flags - .concat(0) - .get(VMContext), - nullptr, nullptr, nullptr, ParameterTypes, nullptr, nullptr, - nullptr // Type Identifer - }; - return DISubroutineType(MDNode::get(VMContext, Elts)); + return MDSubroutineType::get(VMContext, Flags, ParameterTypes); } DICompositeType DIBuilder::createEnumerationType( DIDescriptor Scope, StringRef Name, DIFile File, unsigned LineNumber, uint64_t SizeInBits, uint64_t AlignInBits, DIArray Elements, DIType UnderlyingType, StringRef UniqueIdentifier) { - // TAG_enumeration_type is encoded in DICompositeType format. - Metadata *Elts[] = { - HeaderBuilder::get(dwarf::DW_TAG_enumeration_type) - .concat(Name) - .concat(LineNumber) - .concat(SizeInBits) - .concat(AlignInBits) - .concat(0) // Offset - .concat(0) // Flags - .concat(0) - .get(VMContext), - File.getFileNode(), DIScope(getNonCompileUnitScope(Scope)).getRef(), - UnderlyingType.getRef(), Elements, nullptr, nullptr, - UniqueIdentifier.empty() ? nullptr - : MDString::get(VMContext, UniqueIdentifier)}; - DICompositeType CTy(MDNode::get(VMContext, Elts)); + DICompositeType CTy = MDCompositeType::get( + VMContext, dwarf::DW_TAG_enumeration_type, Name, File, LineNumber, + DIScope(getNonCompileUnitScope(Scope)).getRef(), UnderlyingType.getRef(), + SizeInBits, AlignInBits, 0, 0, Elements, 0, nullptr, nullptr, + UniqueIdentifier); AllEnumTypes.push_back(CTy); if (!UniqueIdentifier.empty()) retainType(CTy); @@ -698,85 +471,38 @@ DICompositeType DIBuilder::createEnumerationType( DICompositeType DIBuilder::createArrayType(uint64_t Size, uint64_t AlignInBits, DIType Ty, DIArray Subscripts) { - // TAG_array_type is encoded in DICompositeType format. - Metadata *Elts[] = { - HeaderBuilder::get(dwarf::DW_TAG_array_type) - .concat(StringRef()) - .concat(0) // Line - .concat(Size) - .concat(AlignInBits) - .concat(0) // Offset - .concat(0) // Flags - .concat(0) - .get(VMContext), - nullptr, // Filename/Directory, - nullptr, // Unused - Ty.getRef(), Subscripts, nullptr, nullptr, - nullptr // Type Identifer - }; - DICompositeType R(MDNode::get(VMContext, Elts)); + auto *R = MDCompositeType::get(VMContext, dwarf::DW_TAG_array_type, "", + nullptr, 0, nullptr, Ty.getRef(), Size, + AlignInBits, 0, 0, Subscripts, 0, nullptr); trackIfUnresolved(R); return R; } DICompositeType DIBuilder::createVectorType(uint64_t Size, uint64_t AlignInBits, DIType Ty, DIArray Subscripts) { - // A vector is an array type with the FlagVector flag applied. - Metadata *Elts[] = { - HeaderBuilder::get(dwarf::DW_TAG_array_type) - .concat("") - .concat(0) // Line - .concat(Size) - .concat(AlignInBits) - .concat(0) // Offset - .concat(DIType::FlagVector) - .concat(0) - .get(VMContext), - nullptr, // Filename/Directory, - nullptr, // Unused - Ty.getRef(), Subscripts, nullptr, nullptr, - nullptr // Type Identifer - }; - DICompositeType R(MDNode::get(VMContext, Elts)); + auto *R = MDCompositeType::get( + VMContext, dwarf::DW_TAG_array_type, "", nullptr, 0, nullptr, Ty.getRef(), + Size, AlignInBits, 0, DIType::FlagVector, Subscripts, 0, nullptr); trackIfUnresolved(R); return R; } -static HeaderBuilder setTypeFlagsInHeader(StringRef Header, - unsigned FlagsToSet) { - DIHeaderFieldIterator I(Header); - std::advance(I, 6); - - unsigned Flags; - if (I->getAsInteger(0, Flags)) - Flags = 0; - Flags |= FlagsToSet; - - return HeaderBuilder() - .concat(I.getPrefix()) - .concat(Flags) - .concat(I.getSuffix()); -} - static DIType createTypeWithFlags(LLVMContext &Context, DIType Ty, unsigned FlagsToSet) { - SmallVector<Metadata *, 9> Elts; - MDNode *N = Ty; - assert(N && "Unexpected input DIType!"); - // Update header field. - Elts.push_back(setTypeFlagsInHeader(Ty.getHeader(), FlagsToSet).get(Context)); - Elts.append(N->op_begin() + 1, N->op_end()); - - return DIType(MDNode::get(Context, Elts)); + TempMDType NewTy = cast<MDType>(static_cast<MDNode *>(Ty))->clone(); + NewTy->setFlags(NewTy->getFlags() | FlagsToSet); + return MDNode::replaceWithUniqued(std::move(NewTy)); } DIType DIBuilder::createArtificialType(DIType Ty) { + // FIXME: Restrict this to the nodes where it's valid. if (Ty.isArtificial()) return Ty; return createTypeWithFlags(VMContext, Ty, DIType::FlagArtificial); } DIType DIBuilder::createObjectPointerType(DIType Ty) { + // FIXME: Restrict this to the nodes where it's valid. if (Ty.isObjectPointer()) return Ty; unsigned Flags = DIType::FlagObjectPointer | DIType::FlagArtificial; @@ -794,26 +520,13 @@ DIBuilder::createForwardDecl(unsigned Tag, StringRef Name, DIDescriptor Scope, DIFile F, unsigned Line, unsigned RuntimeLang, uint64_t SizeInBits, uint64_t AlignInBits, StringRef UniqueIdentifier) { - // Create a temporary MDNode. - Metadata *Elts[] = { - HeaderBuilder::get(Tag) - .concat(Name) - .concat(Line) - .concat(SizeInBits) - .concat(AlignInBits) - .concat(0) // Offset - .concat(DIDescriptor::FlagFwdDecl) - .concat(RuntimeLang) - .get(VMContext), - F.getFileNode(), DIScope(getNonCompileUnitScope(Scope)).getRef(), nullptr, - DIArray(), nullptr, - nullptr, // TemplateParams - UniqueIdentifier.empty() ? nullptr - : MDString::get(VMContext, UniqueIdentifier)}; - MDNode *Node = MDNode::get(VMContext, Elts); - DICompositeType RetTy(Node); - assert(RetTy.isCompositeType() && - "createForwardDecl result should be a DIType"); + // FIXME: Define in terms of createReplaceableForwardDecl() by calling + // replaceWithUniqued(). + DICompositeType RetTy = MDCompositeType::get( + VMContext, Tag, Name, F.getFileNode(), Line, + DIScope(getNonCompileUnitScope(Scope)).getRef(), nullptr, SizeInBits, + AlignInBits, 0, DIDescriptor::FlagFwdDecl, nullptr, RuntimeLang, nullptr, + nullptr, UniqueIdentifier); if (!UniqueIdentifier.empty()) retainType(RetTy); trackIfUnresolved(RetTy); @@ -824,25 +537,12 @@ DICompositeType DIBuilder::createReplaceableCompositeType( unsigned Tag, StringRef Name, DIDescriptor Scope, DIFile F, unsigned Line, unsigned RuntimeLang, uint64_t SizeInBits, uint64_t AlignInBits, unsigned Flags, StringRef UniqueIdentifier) { - // Create a temporary MDNode. - Metadata *Elts[] = { - HeaderBuilder::get(Tag) - .concat(Name) - .concat(Line) - .concat(SizeInBits) - .concat(AlignInBits) - .concat(0) // Offset - .concat(Flags) - .concat(RuntimeLang) - .get(VMContext), - F.getFileNode(), DIScope(getNonCompileUnitScope(Scope)).getRef(), nullptr, - DIArray(), nullptr, - nullptr, // TemplateParams - UniqueIdentifier.empty() ? nullptr - : MDString::get(VMContext, UniqueIdentifier)}; - DICompositeType RetTy(MDNode::getTemporary(VMContext, Elts).release()); - assert(RetTy.isCompositeType() && - "createReplaceableForwardDecl result should be a DIType"); + DICompositeType RetTy = + MDCompositeType::getTemporary( + VMContext, Tag, Name, F.getFileNode(), Line, + DIScope(getNonCompileUnitScope(Scope)).getRef(), nullptr, SizeInBits, + AlignInBits, 0, Flags, nullptr, RuntimeLang, + nullptr, nullptr, UniqueIdentifier).release(); if (!UniqueIdentifier.empty()) retainType(RetTy); trackIfUnresolved(RetTy); @@ -865,62 +565,39 @@ DITypeArray DIBuilder::getOrCreateTypeArray(ArrayRef<Metadata *> Elements) { } DISubrange DIBuilder::getOrCreateSubrange(int64_t Lo, int64_t Count) { - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_subrange_type) - .concat(Lo) - .concat(Count) - .get(VMContext)}; - - return DISubrange(MDNode::get(VMContext, Elts)); + return MDSubrange::get(VMContext, Count, Lo); } -static DIGlobalVariable createGlobalVariableHelper( - LLVMContext &VMContext, DIDescriptor Context, StringRef Name, - StringRef LinkageName, DIFile F, unsigned LineNumber, DITypeRef Ty, - bool isLocalToUnit, Constant *Val, MDNode *Decl, bool isDefinition, - std::function<MDNode *(ArrayRef<Metadata *>)> CreateFunc) { - +static void checkGlobalVariableScope(DIDescriptor Context) { MDNode *TheCtx = getNonCompileUnitScope(Context); if (DIScope(TheCtx).isCompositeType()) { assert(!DICompositeType(TheCtx).getIdentifier() && "Context of a global variable should not be a type with identifier"); } - - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_variable) - .concat(Name) - .concat(Name) - .concat(LinkageName) - .concat(LineNumber) - .concat(isLocalToUnit) - .concat(isDefinition) - .get(VMContext), - TheCtx, F, Ty, getConstantOrNull(Val), - DIDescriptor(Decl)}; - - return DIGlobalVariable(CreateFunc(Elts)); } DIGlobalVariable DIBuilder::createGlobalVariable( DIDescriptor Context, StringRef Name, StringRef LinkageName, DIFile F, unsigned LineNumber, DITypeRef Ty, bool isLocalToUnit, Constant *Val, MDNode *Decl) { - return createGlobalVariableHelper( - VMContext, Context, Name, LinkageName, F, LineNumber, Ty, isLocalToUnit, - Val, Decl, true, [&](ArrayRef<Metadata *> Elts) -> MDNode *{ - MDNode *Node = MDNode::get(VMContext, Elts); - AllGVs.push_back(Node); - return Node; - }); + checkGlobalVariableScope(Context); + + auto *N = MDGlobalVariable::get(VMContext, Context, Name, LinkageName, F, + LineNumber, Ty, isLocalToUnit, true, + getConstantOrNull(Val), Decl); + AllGVs.push_back(N); + return N; } DIGlobalVariable DIBuilder::createTempGlobalVariableFwdDecl( DIDescriptor Context, StringRef Name, StringRef LinkageName, DIFile F, unsigned LineNumber, DITypeRef Ty, bool isLocalToUnit, Constant *Val, MDNode *Decl) { - return createGlobalVariableHelper(VMContext, Context, Name, LinkageName, F, - LineNumber, Ty, isLocalToUnit, Val, Decl, - false, [&](ArrayRef<Metadata *> Elts) { - return MDNode::getTemporary(VMContext, Elts).release(); - }); + checkGlobalVariableScope(Context); + + return MDGlobalVariable::getTemporary(VMContext, Context, Name, LinkageName, + F, LineNumber, Ty, isLocalToUnit, false, + getConstantOrNull(Val), Decl).release(); } DIVariable DIBuilder::createLocalVariable(unsigned Tag, DIDescriptor Scope, @@ -928,16 +605,17 @@ DIVariable DIBuilder::createLocalVariable(unsigned Tag, DIDescriptor Scope, unsigned LineNo, DITypeRef Ty, bool AlwaysPreserve, unsigned Flags, unsigned ArgNo) { + // FIXME: Why getNonCompileUnitScope()? + // FIXME: Why is "!Context" okay here? + // FIXME: WHy doesn't this check for a subprogram or lexical block (AFAICT + // the only valid scopes)? DIDescriptor Context(getNonCompileUnitScope(Scope)); assert((!Context || Context.isScope()) && "createLocalVariable should be called with a valid Context"); - Metadata *Elts[] = {HeaderBuilder::get(Tag) - .concat(Name) - .concat(LineNo | (ArgNo << 24)) - .concat(Flags) - .get(VMContext), - getNonCompileUnitScope(Scope), File, Ty}; - MDNode *Node = MDNode::get(VMContext, Elts); + + auto *Node = + MDLocalVariable::get(VMContext, Tag, getNonCompileUnitScope(Scope), Name, + File, LineNo, Ty, ArgNo, Flags); if (AlwaysPreserve) { // The optimizer may remove local variable. If there is an interest // to preserve variable info in such situation then stash it in a @@ -946,18 +624,11 @@ DIVariable DIBuilder::createLocalVariable(unsigned Tag, DIDescriptor Scope, assert(Fn && "Missing subprogram for local variable"); PreservedVariables[Fn].emplace_back(Node); } - DIVariable RetVar(Node); - assert(RetVar.isVariable() && - "createLocalVariable should return a valid DIVariable"); - return RetVar; + return Node; } DIExpression DIBuilder::createExpression(ArrayRef<uint64_t> Addr) { - auto Header = HeaderBuilder::get(DW_TAG_expression); - for (uint64_t I : Addr) - Header.concat(I); - Metadata *Elts[] = {Header.get(VMContext)}; - return DIExpression(MDNode::get(VMContext, Elts)); + return MDExpression::get(VMContext, Addr); } DIExpression DIBuilder::createExpression(ArrayRef<int64_t> Signed) { @@ -966,10 +637,10 @@ DIExpression DIBuilder::createExpression(ArrayRef<int64_t> Signed) { return createExpression(Addr); } -DIExpression DIBuilder::createBitPieceExpression(unsigned OffsetInBits, - unsigned SizeInBits) { - int64_t Addr[] = {dwarf::DW_OP_bit_piece, OffsetInBits, SizeInBits}; - return createExpression(Addr); +DIExpression DIBuilder::createBitPieceExpression(unsigned OffsetInBytes, + unsigned SizeInBytes) { + uint64_t Addr[] = {dwarf::DW_OP_bit_piece, OffsetInBytes, SizeInBytes}; + return MDExpression::get(VMContext, Addr); } DISubprogram DIBuilder::createFunction(DIScopeRef Context, StringRef Name, @@ -987,38 +658,6 @@ DISubprogram DIBuilder::createFunction(DIScopeRef Context, StringRef Name, Flags, isOptimized, Fn, TParams, Decl); } -static DISubprogram createFunctionHelper( - LLVMContext &VMContext, DIDescriptor Context, StringRef Name, - StringRef LinkageName, DIFile File, unsigned LineNo, DICompositeType Ty, - bool isLocalToUnit, bool isDefinition, unsigned ScopeLine, unsigned Flags, - bool isOptimized, Function *Fn, MDNode *TParams, MDNode *Decl, MDNode *Vars, - std::function<MDNode *(ArrayRef<Metadata *>)> CreateFunc) { - assert(Ty.getTag() == dwarf::DW_TAG_subroutine_type && - "function types should be subroutines"); - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_subprogram) - .concat(Name) - .concat(Name) - .concat(LinkageName) - .concat(LineNo) - .concat(isLocalToUnit) - .concat(isDefinition) - .concat(0) - .concat(0) - .concat(Flags) - .concat(isOptimized) - .concat(ScopeLine) - .get(VMContext), - File.getFileNode(), - DIScope(getNonCompileUnitScope(Context)).getRef(), Ty, - nullptr, getConstantOrNull(Fn), TParams, Decl, Vars}; - - DISubprogram S(CreateFunc(Elts)); - assert(S.isSubprogram() && - "createFunction should return a valid DISubprogram"); - return S; -} - - DISubprogram DIBuilder::createFunction(DIDescriptor Context, StringRef Name, StringRef LinkageName, DIFile File, unsigned LineNo, DICompositeType Ty, @@ -1026,19 +665,18 @@ DISubprogram DIBuilder::createFunction(DIDescriptor Context, StringRef Name, unsigned ScopeLine, unsigned Flags, bool isOptimized, Function *Fn, MDNode *TParams, MDNode *Decl) { - return createFunctionHelper(VMContext, Context, Name, LinkageName, File, - LineNo, Ty, isLocalToUnit, isDefinition, - ScopeLine, Flags, isOptimized, Fn, TParams, Decl, - MDNode::getTemporary(VMContext, None).release(), - [&](ArrayRef<Metadata *> Elts) -> MDNode *{ - MDNode *Node = MDNode::get(VMContext, Elts); - // Create a named metadata so that we - // do not lose this mdnode. - if (isDefinition) - AllSubprograms.push_back(Node); - trackIfUnresolved(Node); - return Node; - }); + assert(Ty.getTag() == dwarf::DW_TAG_subroutine_type && + "function types should be subroutines"); + auto *Node = MDSubprogram::get( + VMContext, DIScope(getNonCompileUnitScope(Context)).getRef(), Name, + LinkageName, File.getFileNode(), LineNo, Ty, isLocalToUnit, isDefinition, + ScopeLine, nullptr, 0, 0, Flags, isOptimized, getConstantOrNull(Fn), + TParams, Decl, MDNode::getTemporary(VMContext, None).release()); + + if (isDefinition) + AllSubprograms.push_back(Node); + trackIfUnresolved(Node); + return Node; } DISubprogram @@ -1049,12 +687,11 @@ DIBuilder::createTempFunctionFwdDecl(DIDescriptor Context, StringRef Name, unsigned ScopeLine, unsigned Flags, bool isOptimized, Function *Fn, MDNode *TParams, MDNode *Decl) { - return createFunctionHelper(VMContext, Context, Name, LinkageName, File, - LineNo, Ty, isLocalToUnit, isDefinition, - ScopeLine, Flags, isOptimized, Fn, TParams, Decl, - nullptr, [&](ArrayRef<Metadata *> Elts) { - return MDNode::getTemporary(VMContext, Elts).release(); - }); + return MDSubprogram::getTemporary( + VMContext, DIScope(getNonCompileUnitScope(Context)).getRef(), Name, + LinkageName, File.getFileNode(), LineNo, Ty, isLocalToUnit, + isDefinition, ScopeLine, nullptr, 0, 0, Flags, isOptimized, + getConstantOrNull(Fn), TParams, Decl, nullptr).release(); } DISubprogram DIBuilder::createMethod(DIDescriptor Context, StringRef Name, @@ -1070,24 +707,13 @@ DISubprogram DIBuilder::createMethod(DIDescriptor Context, StringRef Name, assert(getNonCompileUnitScope(Context) && "Methods should have both a Context and a context that isn't " "the compile unit."); - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_subprogram) - .concat(Name) - .concat(Name) - .concat(LinkageName) - .concat(LineNo) - .concat(isLocalToUnit) - .concat(isDefinition) - .concat(VK) - .concat(VIndex) - .concat(Flags) - .concat(isOptimized) - .concat(LineNo) - // FIXME: Do we want to use different scope/lines? - .get(VMContext), - F.getFileNode(), DIScope(Context).getRef(), Ty, - VTableHolder.getRef(), getConstantOrNull(Fn), TParam, - nullptr, nullptr}; - MDNode *Node = MDNode::get(VMContext, Elts); + // FIXME: Do we want to use different scope/lines? + auto *Node = MDSubprogram::get( + VMContext, DIScope(Context).getRef(), Name, LinkageName, F.getFileNode(), + LineNo, Ty, isLocalToUnit, isDefinition, LineNo, VTableHolder.getRef(), + VK, VIndex, Flags, isOptimized, getConstantOrNull(Fn), TParam, nullptr, + nullptr); + if (isDefinition) AllSubprograms.push_back(Node); DISubprogram S(Node); @@ -1098,12 +724,8 @@ DISubprogram DIBuilder::createMethod(DIDescriptor Context, StringRef Name, DINameSpace DIBuilder::createNameSpace(DIDescriptor Scope, StringRef Name, DIFile File, unsigned LineNo) { - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_namespace) - .concat(Name) - .concat(LineNo) - .get(VMContext), - File.getFileNode(), getNonCompileUnitScope(Scope)}; - DINameSpace R(MDNode::get(VMContext, Elts)); + DINameSpace R = MDNamespace::get(VMContext, getNonCompileUnitScope(Scope), + File.getFileNode(), Name, LineNo); assert(R.Verify() && "createNameSpace should return a verifiable DINameSpace"); return R; @@ -1112,11 +734,8 @@ DINameSpace DIBuilder::createNameSpace(DIDescriptor Scope, StringRef Name, DILexicalBlockFile DIBuilder::createLexicalBlockFile(DIDescriptor Scope, DIFile File, unsigned Discriminator) { - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_lexical_block) - .concat(Discriminator) - .get(VMContext), - File.getFileNode(), Scope}; - DILexicalBlockFile R(MDNode::get(VMContext, Elts)); + DILexicalBlockFile R = MDLexicalBlockFile::get( + VMContext, Scope, File.getFileNode(), Discriminator); assert( R.Verify() && "createLexicalBlockFile should return a verifiable DILexicalBlockFile"); @@ -1125,22 +744,10 @@ DILexicalBlockFile DIBuilder::createLexicalBlockFile(DIDescriptor Scope, DILexicalBlock DIBuilder::createLexicalBlock(DIDescriptor Scope, DIFile File, unsigned Line, unsigned Col) { - // FIXME: This isn't thread safe nor the right way to defeat MDNode uniquing. - // I believe the right way is to have a self-referential element in the node. - // Also: why do we bother with line/column - they're not used and the - // documentation (SourceLevelDebugging.rst) claims the line/col are necessary - // for uniquing, yet then we have this other solution (because line/col were - // inadequate) anyway. Remove all 3 and replace them with a self-reference. - - // Defeat MDNode uniquing for lexical blocks by using unique id. - static unsigned int unique_id = 0; - Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_lexical_block) - .concat(Line) - .concat(Col) - .concat(unique_id++) - .get(VMContext), - File.getFileNode(), getNonCompileUnitScope(Scope)}; - DILexicalBlock R(MDNode::get(VMContext, Elts)); + // Make these distinct, to avoid merging two lexical blocks on the same + // file/line/column. + DILexicalBlock R = MDLexicalBlock::getDistinct( + VMContext, getNonCompileUnitScope(Scope), File.getFileNode(), Line, Col); assert(R.Verify() && "createLexicalBlock should return a verifiable DILexicalBlock"); return R; diff --git a/lib/IR/DataLayout.cpp b/lib/IR/DataLayout.cpp index 9c1dee0..4d867ef 100644 --- a/lib/IR/DataLayout.cpp +++ b/lib/IR/DataLayout.cpp @@ -33,11 +33,6 @@ #include <cstdlib> using namespace llvm; -// Handle the Pass registration stuff necessary to use DataLayout's. - -INITIALIZE_PASS(DataLayoutPass, "datalayout", "Data Layout", false, true) -char DataLayoutPass::ID = 0; - //===----------------------------------------------------------------------===// // Support for StructLayout //===----------------------------------------------------------------------===// @@ -155,8 +150,8 @@ DataLayout::InvalidPointerElem = { 0U, 0U, 0U, ~0U }; const char *DataLayout::getManglingComponent(const Triple &T) { if (T.isOSBinFormatMachO()) return "-m:o"; - if (T.isOSWindows() && T.getArch() == Triple::x86 && T.isOSBinFormatCOFF()) - return "-m:w"; + if (T.isOSWindows() && T.isOSBinFormatCOFF()) + return T.getArch() == Triple::x86 ? "-m:x" : "-m:w"; return "-m:e"; } @@ -221,6 +216,7 @@ static unsigned inBytes(unsigned Bits) { } void DataLayout::parseSpecifier(StringRef Desc) { + StringRepresentation = Desc; while (!Desc.empty()) { // Split at '-'. std::pair<StringRef, StringRef> Split = split(Desc, '-'); @@ -259,6 +255,8 @@ void DataLayout::parseSpecifier(StringRef Desc) { "Missing size specification for pointer in datalayout string"); Split = split(Rest, ':'); unsigned PointerMemSize = inBytes(getInt(Tok)); + if (!PointerMemSize) + report_fatal_error("Invalid pointer size of 0 bytes"); // ABI alignment. if (Rest.empty()) @@ -266,12 +264,18 @@ void DataLayout::parseSpecifier(StringRef Desc) { "Missing alignment specification for pointer in datalayout string"); Split = split(Rest, ':'); unsigned PointerABIAlign = inBytes(getInt(Tok)); + if (!isPowerOf2_64(PointerABIAlign)) + report_fatal_error( + "Pointer ABI alignment must be a power of 2"); // Preferred alignment. unsigned PointerPrefAlign = PointerABIAlign; if (!Rest.empty()) { Split = split(Rest, ':'); PointerPrefAlign = inBytes(getInt(Tok)); + if (!isPowerOf2_64(PointerPrefAlign)) + report_fatal_error( + "Pointer preferred alignment must be a power of 2"); } setPointerAlignment(AddrSpace, PointerABIAlign, PointerPrefAlign, @@ -304,6 +308,9 @@ void DataLayout::parseSpecifier(StringRef Desc) { "Missing alignment specification in datalayout string"); Split = split(Rest, ':'); unsigned ABIAlign = inBytes(getInt(Tok)); + if (AlignType != AGGREGATE_ALIGN && !ABIAlign) + report_fatal_error( + "ABI alignment specification must be >0 for non-aggregate types"); // Preferred alignment. unsigned PrefAlign = ABIAlign; @@ -352,7 +359,10 @@ void DataLayout::parseSpecifier(StringRef Desc) { ManglingMode = MM_Mips; break; case 'w': - ManglingMode = MM_WINCOFF; + ManglingMode = MM_WinCOFF; + break; + case 'x': + ManglingMode = MM_WinCOFFX86; break; } break; @@ -367,13 +377,7 @@ DataLayout::DataLayout(const Module *M) : LayoutMap(nullptr) { init(M); } -void DataLayout::init(const Module *M) { - const DataLayout *Other = M->getDataLayout(); - if (Other) - *this = *Other; - else - reset(""); -} +void DataLayout::init(const Module *M) { *this = M->getDataLayout(); } bool DataLayout::operator==(const DataLayout &Other) const { bool Ret = BigEndian == Other.BigEndian && @@ -381,7 +385,7 @@ bool DataLayout::operator==(const DataLayout &Other) const { ManglingMode == Other.ManglingMode && LegalIntWidths == Other.LegalIntWidths && Alignments == Other.Alignments && Pointers == Other.Pointers; - assert(Ret == (getStringRepresentation() == Other.getStringRepresentation())); + // Note: getStringRepresentation() might differs, it is not canonicalized return Ret; } @@ -394,6 +398,10 @@ DataLayout::setAlignment(AlignTypeEnum align_type, unsigned abi_align, report_fatal_error("Invalid ABI alignment, must be a 16bit integer"); if (!isUInt<16>(pref_align)) report_fatal_error("Invalid preferred alignment, must be a 16bit integer"); + if (abi_align != 0 && !isPowerOf2_64(abi_align)) + report_fatal_error("Invalid ABI alignment, must be a power of 2"); + if (pref_align != 0 && !isPowerOf2_64(pref_align)) + report_fatal_error("Invalid preferred alignment, must be a power of 2"); if (pref_align < abi_align) report_fatal_error( @@ -474,9 +482,7 @@ unsigned DataLayout::getAlignmentInfo(AlignTypeEnum AlignType, // If we didn't find an integer alignment, fall back on most conservative. if (AlignType == INTEGER_ALIGN) { BestMatchIdx = LargestInt; - } else { - assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); - + } else if (AlignType == VECTOR_ALIGN) { // By default, use natural alignment for vector types. This is consistent // with what clang and llvm-gcc do. unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType()); @@ -489,6 +495,19 @@ unsigned DataLayout::getAlignmentInfo(AlignTypeEnum AlignType, } } + // If we still couldn't find a reasonable default alignment, fall back + // to a simple heuristic that the alignment is the first power of two + // greater-or-equal to the store size of the type. This is a reasonable + // approximation of reality, and if the user wanted something less + // less conservative, they should have specified it explicitly in the data + // layout. + if (BestMatchIdx == -1) { + unsigned Align = getTypeStoreSize(Ty); + if (Align & (Align-1)) + Align = NextPowerOf2(Align); + return Align; + } + // Since we got a "best match" index, just return it. return ABIInfo ? Alignments[BestMatchIdx].ABIAlign : Alignments[BestMatchIdx].PrefAlign; @@ -552,68 +571,6 @@ const StructLayout *DataLayout::getStructLayout(StructType *Ty) const { return L; } -std::string DataLayout::getStringRepresentation() const { - std::string Result; - raw_string_ostream OS(Result); - - OS << (BigEndian ? "E" : "e"); - - switch (ManglingMode) { - case MM_None: - break; - case MM_ELF: - OS << "-m:e"; - break; - case MM_MachO: - OS << "-m:o"; - break; - case MM_WINCOFF: - OS << "-m:w"; - break; - case MM_Mips: - OS << "-m:m"; - break; - } - - for (const PointerAlignElem &PI : Pointers) { - // Skip default. - if (PI.AddressSpace == 0 && PI.ABIAlign == 8 && PI.PrefAlign == 8 && - PI.TypeByteWidth == 8) - continue; - - OS << "-p"; - if (PI.AddressSpace) { - OS << PI.AddressSpace; - } - OS << ":" << PI.TypeByteWidth*8 << ':' << PI.ABIAlign*8; - if (PI.PrefAlign != PI.ABIAlign) - OS << ':' << PI.PrefAlign*8; - } - - for (const LayoutAlignElem &AI : Alignments) { - if (std::find(std::begin(DefaultAlignments), std::end(DefaultAlignments), - AI) != std::end(DefaultAlignments)) - continue; - OS << '-' << (char)AI.AlignType; - if (AI.TypeBitWidth) - OS << AI.TypeBitWidth; - OS << ':' << AI.ABIAlign*8; - if (AI.ABIAlign != AI.PrefAlign) - OS << ':' << AI.PrefAlign*8; - } - - if (!LegalIntWidths.empty()) { - OS << "-n" << (unsigned)LegalIntWidths[0]; - - for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i) - OS << ':' << (unsigned)LegalIntWidths[i]; - } - - if (StackNaturalAlign) - OS << "-S" << StackNaturalAlign*8; - - return OS.str(); -} unsigned DataLayout::getPointerABIAlignment(unsigned AS) const { PointersTy::const_iterator I = findPointerLowerBound(AS); @@ -829,18 +786,3 @@ unsigned DataLayout::getPreferredAlignmentLog(const GlobalVariable *GV) const { return Log2_32(getPreferredAlignment(GV)); } -DataLayoutPass::DataLayoutPass() : ImmutablePass(ID), DL("") { - initializeDataLayoutPassPass(*PassRegistry::getPassRegistry()); -} - -DataLayoutPass::~DataLayoutPass() {} - -bool DataLayoutPass::doInitialization(Module &M) { - DL.init(&M); - return false; -} - -bool DataLayoutPass::doFinalization(Module &M) { - DL.reset(""); - return false; -} diff --git a/lib/IR/DebugInfo.cpp b/lib/IR/DebugInfo.cpp index 6590661..9a6b953 100644 --- a/lib/IR/DebugInfo.cpp +++ b/lib/IR/DebugInfo.cpp @@ -92,7 +92,7 @@ bool DIDescriptor::Verify() const { DIObjCProperty(DbgNode).Verify() || DITemplateTypeParameter(DbgNode).Verify() || DITemplateValueParameter(DbgNode).Verify() || - DIImportedEntity(DbgNode).Verify() || DIExpression(DbgNode).Verify()); + DIImportedEntity(DbgNode).Verify()); } static Metadata *getField(const MDNode *DbgNode, unsigned Elt) { @@ -155,21 +155,6 @@ Function *DIDescriptor::getFunctionField(unsigned Elt) const { return dyn_cast_or_null<Function>(getConstantField(Elt)); } -void DIDescriptor::replaceFunctionField(unsigned Elt, Function *F) { - if (!DbgNode) - return; - - if (Elt < DbgNode->getNumOperands()) { - MDNode *Node = const_cast<MDNode *>(DbgNode); - Node->replaceOperandWith(Elt, F ? ConstantAsMetadata::get(F) : nullptr); - } -} - -static unsigned DIVariableInlinedAtIndex = 4; -MDNode *DIVariable::getInlinedAt() const { - return getNodeField(DbgNode, DIVariableInlinedAtIndex); -} - /// \brief Return the size reported by the variable's type. unsigned DIVariable::getSizeInBits(const DITypeIdentifierMap &Map) { DIType Ty = getType().resolve(Map); @@ -183,13 +168,6 @@ unsigned DIVariable::getSizeInBits(const DITypeIdentifierMap &Map) { return Ty.getSizeInBits(); } -uint64_t DIExpression::getElement(unsigned Idx) const { - unsigned I = Idx + 1; - assert(I < getNumHeaderFields() && - "non-existing complex address element requested"); - return getHeaderFieldAs<int64_t>(I); -} - bool DIExpression::isBitPiece() const { unsigned N = getNumElements(); return N >=3 && getElement(N-3) == dwarf::DW_OP_bit_piece; @@ -205,206 +183,40 @@ uint64_t DIExpression::getBitPieceSize() const { return getElement(getNumElements()-1); } -DIExpression::iterator DIExpression::begin() const { - return DIExpression::iterator(*this); -} - -DIExpression::iterator DIExpression::end() const { - return DIExpression::iterator(); -} - -DIExpression::Operand DIExpression::Operand::getNext() const { +DIExpression::iterator DIExpression::Operand::getNext() const { iterator it(I); - return *(++it); -} - -//===----------------------------------------------------------------------===// -// Predicates -//===----------------------------------------------------------------------===// - -bool DIDescriptor::isSubroutineType() const { - return DbgNode && getTag() == dwarf::DW_TAG_subroutine_type; -} - -bool DIDescriptor::isBasicType() const { - if (!DbgNode) - return false; - switch (getTag()) { - case dwarf::DW_TAG_base_type: - case dwarf::DW_TAG_unspecified_type: - return true; - default: - return false; - } -} - -bool DIDescriptor::isDerivedType() const { - if (!DbgNode) - return false; - switch (getTag()) { - case dwarf::DW_TAG_typedef: - case dwarf::DW_TAG_pointer_type: - case dwarf::DW_TAG_ptr_to_member_type: - case dwarf::DW_TAG_reference_type: - case dwarf::DW_TAG_rvalue_reference_type: - case dwarf::DW_TAG_const_type: - case dwarf::DW_TAG_volatile_type: - case dwarf::DW_TAG_restrict_type: - case dwarf::DW_TAG_member: - case dwarf::DW_TAG_inheritance: - case dwarf::DW_TAG_friend: - return true; - default: - // CompositeTypes are currently modelled as DerivedTypes. - return isCompositeType(); - } -} - -bool DIDescriptor::isCompositeType() const { - if (!DbgNode) - return false; - switch (getTag()) { - case dwarf::DW_TAG_array_type: - case dwarf::DW_TAG_structure_type: - case dwarf::DW_TAG_union_type: - case dwarf::DW_TAG_enumeration_type: - case dwarf::DW_TAG_subroutine_type: - case dwarf::DW_TAG_class_type: - return true; - default: - return false; - } -} - -bool DIDescriptor::isVariable() const { - if (!DbgNode) - return false; - switch (getTag()) { - case dwarf::DW_TAG_auto_variable: - case dwarf::DW_TAG_arg_variable: - return true; - default: - return false; - } -} - -bool DIDescriptor::isType() const { - return isBasicType() || isCompositeType() || isDerivedType(); -} - -bool DIDescriptor::isSubprogram() const { - return DbgNode && getTag() == dwarf::DW_TAG_subprogram; -} - -bool DIDescriptor::isGlobalVariable() const { - return DbgNode && getTag() == dwarf::DW_TAG_variable; -} - -bool DIDescriptor::isScope() const { - if (!DbgNode) - return false; - switch (getTag()) { - case dwarf::DW_TAG_compile_unit: - case dwarf::DW_TAG_lexical_block: - case dwarf::DW_TAG_subprogram: - case dwarf::DW_TAG_namespace: - case dwarf::DW_TAG_file_type: - return true; - default: - break; - } - return isType(); -} - -bool DIDescriptor::isTemplateTypeParameter() const { - return DbgNode && getTag() == dwarf::DW_TAG_template_type_parameter; -} - -bool DIDescriptor::isTemplateValueParameter() const { - return DbgNode && (getTag() == dwarf::DW_TAG_template_value_parameter || - getTag() == dwarf::DW_TAG_GNU_template_template_param || - getTag() == dwarf::DW_TAG_GNU_template_parameter_pack); -} - -bool DIDescriptor::isCompileUnit() const { - return DbgNode && getTag() == dwarf::DW_TAG_compile_unit; -} - -bool DIDescriptor::isFile() const { - return DbgNode && getTag() == dwarf::DW_TAG_file_type; -} - -bool DIDescriptor::isNameSpace() const { - return DbgNode && getTag() == dwarf::DW_TAG_namespace; -} - -bool DIDescriptor::isLexicalBlockFile() const { - return DbgNode && getTag() == dwarf::DW_TAG_lexical_block && - DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 2; -} - -bool DIDescriptor::isLexicalBlock() const { - // FIXME: There are always exactly 4 header fields in DILexicalBlock, but - // something relies on this returning true for DILexicalBlockFile. - return DbgNode && getTag() == dwarf::DW_TAG_lexical_block && - DbgNode->getNumOperands() == 3 && - (getNumHeaderFields() == 2 || getNumHeaderFields() == 4); -} - -bool DIDescriptor::isSubrange() const { - return DbgNode && getTag() == dwarf::DW_TAG_subrange_type; -} - -bool DIDescriptor::isEnumerator() const { - return DbgNode && getTag() == dwarf::DW_TAG_enumerator; -} - -bool DIDescriptor::isObjCProperty() const { - return DbgNode && getTag() == dwarf::DW_TAG_APPLE_property; -} - -bool DIDescriptor::isImportedEntity() const { - return DbgNode && (getTag() == dwarf::DW_TAG_imported_module || - getTag() == dwarf::DW_TAG_imported_declaration); -} - -bool DIDescriptor::isExpression() const { - return DbgNode && (getTag() == dwarf::DW_TAG_expression); + return ++it; } //===----------------------------------------------------------------------===// // Simple Descriptor Constructors and other Methods //===----------------------------------------------------------------------===// -void DIDescriptor::replaceAllUsesWith(LLVMContext &VMContext, DIDescriptor D) { - +void DIDescriptor::replaceAllUsesWith(LLVMContext &, DIDescriptor D) { assert(DbgNode && "Trying to replace an unverified type!"); + assert(DbgNode->isTemporary() && "Expected temporary node"); + TempMDNode Temp(get()); // Since we use a TrackingVH for the node, its easy for clients to manufacture // legitimate situations where they want to replaceAllUsesWith() on something // which, due to uniquing, has merged with the source. We shield clients from // this detail by allowing a value to be replaced with replaceAllUsesWith() // itself. - const MDNode *DN = D; - if (DbgNode == DN) { - SmallVector<Metadata *, 10> Ops(DbgNode->op_begin(), DbgNode->op_end()); - DN = MDNode::get(VMContext, Ops); + if (Temp.get() == D.get()) { + DbgNode = MDNode::replaceWithUniqued(std::move(Temp)); + return; } - assert(DbgNode->isTemporary() && "Expected temporary node"); - auto *Node = const_cast<MDNode *>(DbgNode); - Node->replaceAllUsesWith(const_cast<MDNode *>(DN)); - MDNode::deleteTemporary(Node); - DbgNode = DN; + Temp->replaceAllUsesWith(D.get()); + DbgNode = D.get(); } void DIDescriptor::replaceAllUsesWith(MDNode *D) { assert(DbgNode && "Trying to replace an unverified type!"); assert(DbgNode != D && "This replacement should always happen"); assert(DbgNode->isTemporary() && "Expected temporary node"); - auto *Node = const_cast<MDNode *>(DbgNode); + TempMDNode Node(get()); Node->replaceAllUsesWith(D); - MDNode::deleteTemporary(Node); } bool DICompileUnit::Verify() const { @@ -413,31 +225,10 @@ bool DICompileUnit::Verify() const { // Don't bother verifying the compilation directory or producer string // as those could be empty. - if (getFilename().empty()) - return false; - - return DbgNode->getNumOperands() == 7 && getNumHeaderFields() == 8; -} - -bool DIObjCProperty::Verify() const { - if (!isObjCProperty()) - return false; - - // Don't worry about the rest of the strings for now. - return DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 6; -} - -/// \brief Check if a field at position Elt of a MDNode is a MDNode. -static bool fieldIsMDNode(const MDNode *DbgNode, unsigned Elt) { - Metadata *Fld = getField(DbgNode, Elt); - return !Fld || isa<MDNode>(Fld); + return !getFilename().empty(); } -/// \brief Check if a field at position Elt of a MDNode is a MDString. -static bool fieldIsMDString(const MDNode *DbgNode, unsigned Elt) { - Metadata *Fld = getField(DbgNode, Elt); - return !Fld || isa<MDString>(Fld); -} +bool DIObjCProperty::Verify() const { return isObjCProperty(); } /// \brief Check if a value can be a reference to a type. static bool isTypeRef(const Metadata *MD) { @@ -445,14 +236,7 @@ static bool isTypeRef(const Metadata *MD) { return true; if (auto *S = dyn_cast<MDString>(MD)) return !S->getString().empty(); - if (auto *N = dyn_cast<MDNode>(MD)) - return DIType(N).isType(); - return false; -} - -/// \brief Check if referenced field might be a type. -static bool fieldIsTypeRef(const MDNode *DbgNode, unsigned Elt) { - return isTypeRef(dyn_cast_or_null<Metadata>(getField(DbgNode, Elt))); + return isa<MDType>(MD); } /// \brief Check if a value can be a ScopeRef. @@ -461,14 +245,7 @@ static bool isScopeRef(const Metadata *MD) { return true; if (auto *S = dyn_cast<MDString>(MD)) return !S->getString().empty(); - if (auto *N = dyn_cast<MDNode>(MD)) - return DIScope(N).isScope(); - return false; -} - -/// \brief Check if a field at position Elt of a MDNode can be a ScopeRef. -static bool fieldIsScopeRef(const MDNode *DbgNode, unsigned Elt) { - return isScopeRef(dyn_cast_or_null<Metadata>(getField(DbgNode, Elt))); + return isa<MDScope>(MD); } #ifndef NDEBUG @@ -483,92 +260,81 @@ static bool isDescriptorRef(const Metadata *MD) { #endif bool DIType::Verify() const { - if (!isType()) + auto *N = dyn_cast_or_null<MDType>(DbgNode); + if (!N) return false; - // Make sure Context @ field 2 is MDNode. - if (!fieldIsScopeRef(DbgNode, 2)) - return false; - - // FIXME: Sink this into the various subclass verifies. - uint16_t Tag = getTag(); - if (!isBasicType() && Tag != dwarf::DW_TAG_const_type && - Tag != dwarf::DW_TAG_volatile_type && Tag != dwarf::DW_TAG_pointer_type && - Tag != dwarf::DW_TAG_ptr_to_member_type && - Tag != dwarf::DW_TAG_reference_type && - Tag != dwarf::DW_TAG_rvalue_reference_type && - Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_array_type && - Tag != dwarf::DW_TAG_enumeration_type && - Tag != dwarf::DW_TAG_subroutine_type && - Tag != dwarf::DW_TAG_inheritance && Tag != dwarf::DW_TAG_friend && - getFilename().empty()) + if (!isScopeRef(N->getScope())) return false; // DIType is abstract, it should be a BasicType, a DerivedType or // a CompositeType. if (isBasicType()) return DIBasicType(DbgNode).Verify(); - else if (isCompositeType()) + + // FIXME: Sink this into the various subclass verifies. + if (getFilename().empty()) { + // Check whether the filename is allowed to be empty. + uint16_t Tag = getTag(); + if (Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && + Tag != dwarf::DW_TAG_pointer_type && + Tag != dwarf::DW_TAG_ptr_to_member_type && + Tag != dwarf::DW_TAG_reference_type && + Tag != dwarf::DW_TAG_rvalue_reference_type && + Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_array_type && + Tag != dwarf::DW_TAG_enumeration_type && + Tag != dwarf::DW_TAG_subroutine_type && + Tag != dwarf::DW_TAG_inheritance && Tag != dwarf::DW_TAG_friend && + Tag != dwarf::DW_TAG_structure_type && Tag != dwarf::DW_TAG_member && + Tag != dwarf::DW_TAG_typedef) + return false; + } + + if (isCompositeType()) return DICompositeType(DbgNode).Verify(); - else if (isDerivedType()) + if (isDerivedType()) return DIDerivedType(DbgNode).Verify(); - else - return false; + return false; } bool DIBasicType::Verify() const { - return isBasicType() && DbgNode->getNumOperands() == 3 && - getNumHeaderFields() == 8; + return dyn_cast_or_null<MDBasicType>(DbgNode); } bool DIDerivedType::Verify() const { - // Make sure DerivedFrom @ field 3 is TypeRef. - if (!fieldIsTypeRef(DbgNode, 3)) + auto *N = dyn_cast_or_null<MDDerivedTypeBase>(DbgNode); + if (!N) return false; - if (getTag() == dwarf::DW_TAG_ptr_to_member_type) - // Make sure ClassType @ field 4 is a TypeRef. - if (!fieldIsTypeRef(DbgNode, 4)) + if (getTag() == dwarf::DW_TAG_ptr_to_member_type) { + auto *D = dyn_cast<MDDerivedType>(N); + if (!D) return false; - - return isDerivedType() && DbgNode->getNumOperands() >= 4 && - DbgNode->getNumOperands() <= 8 && getNumHeaderFields() >= 7 && - getNumHeaderFields() <= 8; + if (!isTypeRef(D->getExtraData())) + return false; + } + return isTypeRef(N->getBaseType()); } bool DICompositeType::Verify() const { - if (!isCompositeType()) - return false; - - // Make sure DerivedFrom @ field 3 and ContainingType @ field 5 are TypeRef. - if (!fieldIsTypeRef(DbgNode, 3)) - return false; - if (!fieldIsTypeRef(DbgNode, 5)) - return false; - - // Make sure the type identifier at field 7 is MDString, it can be null. - if (!fieldIsMDString(DbgNode, 7)) - return false; - - // A subroutine type can't be both & and &&. - if (isLValueReference() && isRValueReference()) - return false; - - return DbgNode->getNumOperands() == 8 && getNumHeaderFields() == 8; + auto *N = dyn_cast_or_null<MDCompositeTypeBase>(DbgNode); + return N && isTypeRef(N->getBaseType()) && isTypeRef(N->getVTableHolder()) && + !(isLValueReference() && isRValueReference()); } bool DISubprogram::Verify() const { - if (!isSubprogram()) + auto *N = dyn_cast_or_null<MDSubprogram>(DbgNode); + if (!N) return false; - // Make sure context @ field 2 is a ScopeRef and type @ field 3 is a MDNode. - if (!fieldIsScopeRef(DbgNode, 2)) + if (!isScopeRef(N->getScope())) return false; - if (!fieldIsMDNode(DbgNode, 3)) - return false; - // Containing type @ field 4. - if (!fieldIsTypeRef(DbgNode, 4)) + + if (auto *Op = N->getType()) + if (!isa<MDNode>(Op)) + return false; + + if (!isTypeRef(getContainingType())) return false; - // A subprogram can't be both & and &&. if (isLValueReference() && isRValueReference()) return false; @@ -603,164 +369,78 @@ bool DISubprogram::Verify() const { } } } - return DbgNode->getNumOperands() == 9 && getNumHeaderFields() == 12; + + return true; } bool DIGlobalVariable::Verify() const { - if (!isGlobalVariable()) - return false; + auto *N = dyn_cast_or_null<MDGlobalVariable>(DbgNode); - if (getDisplayName().empty()) - return false; - // Make sure context @ field 1 is an MDNode. - if (!fieldIsMDNode(DbgNode, 1)) - return false; - // Make sure that type @ field 3 is a DITypeRef. - if (!fieldIsTypeRef(DbgNode, 3)) - return false; - // Make sure StaticDataMemberDeclaration @ field 5 is MDNode. - if (!fieldIsMDNode(DbgNode, 5)) - return false; - - return DbgNode->getNumOperands() == 6 && getNumHeaderFields() == 7; -} - -bool DIVariable::Verify() const { - if (!isVariable()) + if (!N) return false; - // Make sure context @ field 1 is an MDNode. - if (!fieldIsMDNode(DbgNode, 1)) - return false; - // Make sure that type @ field 3 is a DITypeRef. - if (!fieldIsTypeRef(DbgNode, 3)) + if (N->getDisplayName().empty()) return false; - // Check the number of header fields, which is common between complex and - // simple variables. - if (getNumHeaderFields() != 4) - return false; + if (auto *Op = N->getScope()) + if (!isa<MDNode>(Op)) + return false; - // Variable without an inline location. - if (DbgNode->getNumOperands() == 4) - return true; + if (auto *Op = N->getStaticDataMemberDeclaration()) + if (!isa<MDNode>(Op)) + return false; - // Variable with an inline location. - return getInlinedAt() != nullptr && DbgNode->getNumOperands() == 5; + return isTypeRef(N->getType()); } -bool DIExpression::Verify() const { - // Empty DIExpressions may be represented as a nullptr. - if (!DbgNode) - return true; +bool DIVariable::Verify() const { + auto *N = dyn_cast_or_null<MDLocalVariable>(DbgNode); - if (!(isExpression() && DbgNode->getNumOperands() == 1)) + if (!N) return false; - for (auto Op : *this) - switch (Op) { - case DW_OP_bit_piece: - // Must be the last element of the expression. - return std::distance(Op.getBase(), DIHeaderFieldIterator()) == 3; - case DW_OP_plus: - if (std::distance(Op.getBase(), DIHeaderFieldIterator()) < 2) - return false; - break; - case DW_OP_deref: - break; - default: - // Other operators are not yet supported by the backend. + if (auto *Op = N->getScope()) + if (!isa<MDNode>(Op)) return false; - } - return true; + + return isTypeRef(N->getType()); } bool DILocation::Verify() const { - return DbgNode && isa<MDLocation>(DbgNode); + return dyn_cast_or_null<MDLocation>(DbgNode); } - bool DINameSpace::Verify() const { - if (!isNameSpace()) - return false; - return DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 3; -} - -MDNode *DIFile::getFileNode() const { return getNodeField(DbgNode, 1); } - -bool DIFile::Verify() const { - return isFile() && DbgNode->getNumOperands() == 2; + return dyn_cast_or_null<MDNamespace>(DbgNode); } - +bool DIFile::Verify() const { return dyn_cast_or_null<MDFile>(DbgNode); } bool DIEnumerator::Verify() const { - return isEnumerator() && DbgNode->getNumOperands() == 1 && - getNumHeaderFields() == 3; + return dyn_cast_or_null<MDEnumerator>(DbgNode); } - bool DISubrange::Verify() const { - return isSubrange() && DbgNode->getNumOperands() == 1 && - getNumHeaderFields() == 3; + return dyn_cast_or_null<MDSubrange>(DbgNode); } - bool DILexicalBlock::Verify() const { - return isLexicalBlock() && DbgNode->getNumOperands() == 3 && - getNumHeaderFields() == 4; + return dyn_cast_or_null<MDLexicalBlock>(DbgNode); } - bool DILexicalBlockFile::Verify() const { - return isLexicalBlockFile() && DbgNode->getNumOperands() == 3 && - getNumHeaderFields() == 2; + return dyn_cast_or_null<MDLexicalBlockFile>(DbgNode); } - bool DITemplateTypeParameter::Verify() const { - return isTemplateTypeParameter() && DbgNode->getNumOperands() == 4 && - getNumHeaderFields() == 4; + return dyn_cast_or_null<MDTemplateTypeParameter>(DbgNode); } - bool DITemplateValueParameter::Verify() const { - return isTemplateValueParameter() && DbgNode->getNumOperands() == 5 && - getNumHeaderFields() == 4; + return dyn_cast_or_null<MDTemplateValueParameter>(DbgNode); } - bool DIImportedEntity::Verify() const { - return isImportedEntity() && DbgNode->getNumOperands() == 3 && - getNumHeaderFields() == 3; -} - -MDNode *DIDerivedType::getObjCProperty() const { - return getNodeField(DbgNode, 4); + return dyn_cast_or_null<MDImportedEntity>(DbgNode); } -MDString *DICompositeType::getIdentifier() const { - return cast_or_null<MDString>(getField(DbgNode, 7)); -} - -#ifndef NDEBUG -static void VerifySubsetOf(const MDNode *LHS, const MDNode *RHS) { - for (unsigned i = 0; i != LHS->getNumOperands(); ++i) { - // Skip the 'empty' list (that's a single i32 0, rather than truly empty). - if (i == 0 && mdconst::hasa<ConstantInt>(LHS->getOperand(i))) - continue; - const MDNode *E = cast<MDNode>(LHS->getOperand(i)); - bool found = false; - for (unsigned j = 0; !found && j != RHS->getNumOperands(); ++j) - found = (E == cast<MDNode>(RHS->getOperand(j))); - assert(found && "Losing a member during member list replacement"); - } -} -#endif - void DICompositeType::setArraysHelper(MDNode *Elements, MDNode *TParams) { - TrackingMDNodeRef N(*this); - if (Elements) { -#ifndef NDEBUG - // Check that the new list of members contains all the old members as well. - if (const MDNode *El = cast_or_null<MDNode>(N->getOperand(4))) - VerifySubsetOf(El, Elements); -#endif - N->replaceOperandWith(4, Elements); - } + TypedTrackingMDRef<MDCompositeTypeBase> N(get()); + if (Elements) + N->replaceElements(cast<MDTuple>(Elements)); if (TParams) - N->replaceOperandWith(6, TParams); + N->replaceTemplateParams(cast<MDTuple>(TParams)); DbgNode = N; } @@ -774,8 +454,8 @@ DIScopeRef DIScope::getRef() const { } void DICompositeType::setContainingType(DICompositeType ContainingType) { - TrackingMDNodeRef N(*this); - N->replaceOperandWith(5, ContainingType.getRef()); + TypedTrackingMDRef<MDCompositeTypeBase> N(get()); + N->replaceVTableHolder(ContainingType.getRef()); DbgNode = N; } @@ -788,6 +468,13 @@ bool DIVariable::isInlinedFnArgument(const Function *CurFn) { return !DISubprogram(getContext()).describes(CurFn); } +Function *DISubprogram::getFunction() const { + if (auto *N = get()) + if (auto *C = dyn_cast_or_null<ConstantAsMetadata>(N->getFunction())) + return dyn_cast<Function>(C->getValue()); + return nullptr; +} + bool DISubprogram::describes(const Function *F) { assert(F && "Invalid function"); if (F == getFunction()) @@ -800,16 +487,8 @@ bool DISubprogram::describes(const Function *F) { return false; } -MDNode *DISubprogram::getVariablesNodes() const { - return getNodeField(DbgNode, 8); -} - -DIArray DISubprogram::getVariables() const { - return DIArray(getNodeField(DbgNode, 8)); -} - -Metadata *DITemplateValueParameter::getValue() const { - return DbgNode->getOperand(3); +GlobalVariable *DIGlobalVariable::getGlobal() const { + return dyn_cast_or_null<GlobalVariable>(getConstant()); } DIScopeRef DIScope::getContext() const { @@ -847,66 +526,25 @@ StringRef DIScope::getName() const { } StringRef DIScope::getFilename() const { - if (!DbgNode) - return StringRef(); - return ::getStringField(getNodeField(DbgNode, 1), 0); + if (auto *N = get()) + return ::getStringField(dyn_cast_or_null<MDNode>(N->getFile()), 0); + return ""; } StringRef DIScope::getDirectory() const { - if (!DbgNode) - return StringRef(); - return ::getStringField(getNodeField(DbgNode, 1), 1); -} - -DIArray DICompileUnit::getEnumTypes() const { - if (!DbgNode || DbgNode->getNumOperands() < 7) - return DIArray(); - - return DIArray(getNodeField(DbgNode, 2)); -} - -DIArray DICompileUnit::getRetainedTypes() const { - if (!DbgNode || DbgNode->getNumOperands() < 7) - return DIArray(); - - return DIArray(getNodeField(DbgNode, 3)); -} - -DIArray DICompileUnit::getSubprograms() const { - if (!DbgNode || DbgNode->getNumOperands() < 7) - return DIArray(); - - return DIArray(getNodeField(DbgNode, 4)); -} - -DIArray DICompileUnit::getGlobalVariables() const { - if (!DbgNode || DbgNode->getNumOperands() < 7) - return DIArray(); - - return DIArray(getNodeField(DbgNode, 5)); -} - -DIArray DICompileUnit::getImportedEntities() const { - if (!DbgNode || DbgNode->getNumOperands() < 7) - return DIArray(); - - return DIArray(getNodeField(DbgNode, 6)); + if (auto *N = get()) + return ::getStringField(dyn_cast_or_null<MDNode>(N->getFile()), 1); + return ""; } void DICompileUnit::replaceSubprograms(DIArray Subprograms) { assert(Verify() && "Expected compile unit"); - if (Subprograms == getSubprograms()) - return; - - const_cast<MDNode *>(DbgNode)->replaceOperandWith(4, Subprograms); + get()->replaceSubprograms(cast_or_null<MDTuple>(Subprograms.get())); } void DICompileUnit::replaceGlobalVariables(DIArray GlobalVariables) { assert(Verify() && "Expected compile unit"); - if (GlobalVariables == getGlobalVariables()) - return; - - const_cast<MDNode *>(DbgNode)->replaceOperandWith(5, GlobalVariables); + get()->replaceGlobalVariables(cast_or_null<MDTuple>(GlobalVariables.get())); } DILocation DILocation::copyWithNewScope(LLVMContext &Ctx, @@ -927,31 +565,13 @@ unsigned DILocation::computeNewDiscriminator(LLVMContext &Ctx) { DIVariable llvm::createInlinedVariable(MDNode *DV, MDNode *InlinedScope, LLVMContext &VMContext) { assert(DIVariable(DV).Verify() && "Expected a DIVariable"); - if (!InlinedScope) - return cleanseInlinedVariable(DV, VMContext); - - // Insert inlined scope. - SmallVector<Metadata *, 8> Elts(DV->op_begin(), - DV->op_begin() + DIVariableInlinedAtIndex); - Elts.push_back(InlinedScope); - - DIVariable Inlined(MDNode::get(VMContext, Elts)); - assert(Inlined.Verify() && "Expected to create a DIVariable"); - return Inlined; + return cast<MDLocalVariable>(DV) + ->withInline(cast_or_null<MDLocation>(InlinedScope)); } DIVariable llvm::cleanseInlinedVariable(MDNode *DV, LLVMContext &VMContext) { assert(DIVariable(DV).Verify() && "Expected a DIVariable"); - if (!DIVariable(DV).getInlinedAt()) - return DIVariable(DV); - - // Remove inlined scope. - SmallVector<Metadata *, 8> Elts(DV->op_begin(), - DV->op_begin() + DIVariableInlinedAtIndex); - - DIVariable Cleansed(MDNode::get(VMContext, Elts)); - assert(Cleansed.Verify() && "Expected to create a DIVariable"); - return Cleansed; + return cast<MDLocalVariable>(DV)->withoutInline(); } DISubprogram llvm::getDISubprogram(const MDNode *Scope) { @@ -1075,6 +695,8 @@ void DebugInfoFinder::processModule(const Module &M) { DIArray Imports = CU.getImportedEntities(); for (unsigned i = 0, e = Imports.getNumElements(); i != e; ++i) { DIImportedEntity Import = DIImportedEntity(Imports.getElement(i)); + if (!Import) + continue; DIDescriptor Entity = Import.getEntity().resolve(TypeIdentifierMap); if (Entity.isType()) processType(DIType(Entity)); @@ -1267,220 +889,9 @@ void DIDescriptor::dump() const { } void DIDescriptor::print(raw_ostream &OS) const { - if (!DbgNode) - return; - - if (const char *Tag = dwarf::TagString(getTag())) - OS << "[ " << Tag << " ]"; - - if (this->isSubrange()) { - DISubrange(DbgNode).printInternal(OS); - } else if (this->isCompileUnit()) { - DICompileUnit(DbgNode).printInternal(OS); - } else if (this->isFile()) { - DIFile(DbgNode).printInternal(OS); - } else if (this->isEnumerator()) { - DIEnumerator(DbgNode).printInternal(OS); - } else if (this->isBasicType()) { - DIType(DbgNode).printInternal(OS); - } else if (this->isDerivedType()) { - DIDerivedType(DbgNode).printInternal(OS); - } else if (this->isCompositeType()) { - DICompositeType(DbgNode).printInternal(OS); - } else if (this->isSubprogram()) { - DISubprogram(DbgNode).printInternal(OS); - } else if (this->isGlobalVariable()) { - DIGlobalVariable(DbgNode).printInternal(OS); - } else if (this->isVariable()) { - DIVariable(DbgNode).printInternal(OS); - } else if (this->isObjCProperty()) { - DIObjCProperty(DbgNode).printInternal(OS); - } else if (this->isNameSpace()) { - DINameSpace(DbgNode).printInternal(OS); - } else if (this->isScope()) { - DIScope(DbgNode).printInternal(OS); - } else if (this->isExpression()) { - DIExpression(DbgNode).printInternal(OS); - } -} - -void DISubrange::printInternal(raw_ostream &OS) const { - int64_t Count = getCount(); - if (Count != -1) - OS << " [" << getLo() << ", " << Count - 1 << ']'; - else - OS << " [unbounded]"; -} - -void DIScope::printInternal(raw_ostream &OS) const { - OS << " [" << getDirectory() << "/" << getFilename() << ']'; -} - -void DICompileUnit::printInternal(raw_ostream &OS) const { - DIScope::printInternal(OS); - OS << " ["; - unsigned Lang = getLanguage(); - if (const char *LangStr = dwarf::LanguageString(Lang)) - OS << LangStr; - else - (OS << "lang 0x").write_hex(Lang); - OS << ']'; -} - -void DIEnumerator::printInternal(raw_ostream &OS) const { - OS << " [" << getName() << " :: " << getEnumValue() << ']'; -} - -void DIType::printInternal(raw_ostream &OS) const { - if (!DbgNode) + if (!get()) return; - - StringRef Res = getName(); - if (!Res.empty()) - OS << " [" << Res << "]"; - - // TODO: Print context? - - OS << " [line " << getLineNumber() << ", size " << getSizeInBits() - << ", align " << getAlignInBits() << ", offset " << getOffsetInBits(); - if (isBasicType()) - if (const char *Enc = - dwarf::AttributeEncodingString(DIBasicType(DbgNode).getEncoding())) - OS << ", enc " << Enc; - OS << "]"; - - if (isPrivate()) - OS << " [private]"; - else if (isProtected()) - OS << " [protected]"; - else if (isPublic()) - OS << " [public]"; - - if (isArtificial()) - OS << " [artificial]"; - - if (isForwardDecl()) - OS << " [decl]"; - else if (getTag() == dwarf::DW_TAG_structure_type || - getTag() == dwarf::DW_TAG_union_type || - getTag() == dwarf::DW_TAG_enumeration_type || - getTag() == dwarf::DW_TAG_class_type) - OS << " [def]"; - if (isVector()) - OS << " [vector]"; - if (isStaticMember()) - OS << " [static]"; - - if (isLValueReference()) - OS << " [reference]"; - - if (isRValueReference()) - OS << " [rvalue reference]"; -} - -void DIDerivedType::printInternal(raw_ostream &OS) const { - DIType::printInternal(OS); - OS << " [from " << getTypeDerivedFrom().getName() << ']'; -} - -void DICompositeType::printInternal(raw_ostream &OS) const { - DIType::printInternal(OS); - DIArray A = getElements(); - OS << " [" << A.getNumElements() << " elements]"; -} - -void DINameSpace::printInternal(raw_ostream &OS) const { - StringRef Name = getName(); - if (!Name.empty()) - OS << " [" << Name << ']'; - - OS << " [line " << getLineNumber() << ']'; -} - -void DISubprogram::printInternal(raw_ostream &OS) const { - // TODO : Print context - OS << " [line " << getLineNumber() << ']'; - - if (isLocalToUnit()) - OS << " [local]"; - - if (isDefinition()) - OS << " [def]"; - - if (getScopeLineNumber() != getLineNumber()) - OS << " [scope " << getScopeLineNumber() << "]"; - - if (isPrivate()) - OS << " [private]"; - else if (isProtected()) - OS << " [protected]"; - else if (isPublic()) - OS << " [public]"; - - if (isLValueReference()) - OS << " [reference]"; - - if (isRValueReference()) - OS << " [rvalue reference]"; - - StringRef Res = getName(); - if (!Res.empty()) - OS << " [" << Res << ']'; -} - -void DIGlobalVariable::printInternal(raw_ostream &OS) const { - StringRef Res = getName(); - if (!Res.empty()) - OS << " [" << Res << ']'; - - OS << " [line " << getLineNumber() << ']'; - - // TODO : Print context - - if (isLocalToUnit()) - OS << " [local]"; - - if (isDefinition()) - OS << " [def]"; -} - -void DIVariable::printInternal(raw_ostream &OS) const { - StringRef Res = getName(); - if (!Res.empty()) - OS << " [" << Res << ']'; - - OS << " [line " << getLineNumber() << ']'; -} - -void DIExpression::printInternal(raw_ostream &OS) const { - for (auto Op : *this) { - OS << " [" << OperationEncodingString(Op); - switch (Op) { - case DW_OP_plus: { - OS << " " << Op.getArg(1); - break; - } - case DW_OP_bit_piece: { - OS << " offset=" << Op.getArg(1) << ", size=" << Op.getArg(2); - break; - } - case DW_OP_deref: - // No arguments. - break; - default: - llvm_unreachable("unhandled operation"); - } - OS << "]"; - } -} - -void DIObjCProperty::printInternal(raw_ostream &OS) const { - StringRef Name = getObjCPropertyName(); - if (!Name.empty()) - OS << " [" << Name << ']'; - - OS << " [line " << getLineNumber() << ", properties " << getUnsignedField(6) - << ']'; + get()->print(OS); } static void printDebugLoc(DebugLoc DL, raw_ostream &CommentOS, diff --git a/lib/IR/DiagnosticInfo.cpp b/lib/IR/DiagnosticInfo.cpp index cfb699a..5608589 100644 --- a/lib/IR/DiagnosticInfo.cpp +++ b/lib/IR/DiagnosticInfo.cpp @@ -129,7 +129,7 @@ void DiagnosticInfoSampleProfile::print(DiagnosticPrinter &DP) const { } bool DiagnosticInfoOptimizationBase::isLocationAvailable() const { - return getDebugLoc().isUnknown() == false; + return !getDebugLoc().isUnknown(); } void DiagnosticInfoOptimizationBase::getLocation(StringRef *Filename, diff --git a/lib/IR/GCOV.cpp b/lib/IR/GCOV.cpp index 08f44e0..7010ceb 100644 --- a/lib/IR/GCOV.cpp +++ b/lib/IR/GCOV.cpp @@ -19,6 +19,7 @@ #include "llvm/Support/Format.h" #include "llvm/Support/MemoryObject.h" #include "llvm/Support/Path.h" +#include "llvm/Support/raw_ostream.h" #include <algorithm> #include <system_error> using namespace llvm; @@ -302,10 +303,12 @@ bool GCOVFunction::readGCDA(GCOVBuffer &Buff, GCOV::GCOVVersion Version) { // required to combine the edge counts that are contained in the GCDA file. for (uint32_t BlockNo = 0; Count > 0; ++BlockNo) { // The last block is always reserved for exit block - if (BlockNo >= Blocks.size() - 1) { + if (BlockNo >= Blocks.size()) { errs() << "Unexpected number of edges (in " << Name << ").\n"; return false; } + if (BlockNo == Blocks.size() - 1) + errs() << "(" << Name << ") has arcs from exit block.\n"; GCOVBlock &Block = *Blocks[BlockNo]; for (size_t EdgeNo = 0, End = Block.getNumDstEdges(); EdgeNo < End; ++EdgeNo) { @@ -443,6 +446,7 @@ static uint32_t branchDiv(uint64_t Numerator, uint64_t Divisor) { return Res; } +namespace { struct formatBranchInfo { formatBranchInfo(const GCOVOptions &Options, uint64_t Count, uint64_t Total) : Options(Options), Count(Count), Total(Total) {} @@ -466,7 +470,6 @@ static raw_ostream &operator<<(raw_ostream &OS, const formatBranchInfo &FBI) { return OS; } -namespace { class LineConsumer { std::unique_ptr<MemoryBuffer> Buffer; StringRef Remaining; diff --git a/lib/IR/Globals.cpp b/lib/IR/Globals.cpp index 54197d9..5a6adb3 100644 --- a/lib/IR/Globals.cpp +++ b/lib/IR/Globals.cpp @@ -42,10 +42,6 @@ void GlobalValue::Dematerialize() { getParent()->Dematerialize(this); } -const DataLayout *GlobalValue::getDataLayout() const { - return getParent()->getDataLayout(); -} - /// Override destroyConstant to make sure it doesn't get called on /// GlobalValue's because they shouldn't be treated like other constants. void GlobalValue::destroyConstant() { diff --git a/lib/IR/InlineAsm.cpp b/lib/IR/InlineAsm.cpp index 5b73561..b456d9f 100644 --- a/lib/IR/InlineAsm.cpp +++ b/lib/IR/InlineAsm.cpp @@ -75,7 +75,7 @@ bool InlineAsm::ConstraintInfo::Parse(StringRef Str, ConstraintCodeVector *pCodes = &Codes; // Initialize - isMultipleAlternative = (multipleAlternativeCount > 1 ? true : false); + isMultipleAlternative = multipleAlternativeCount > 1; if (isMultipleAlternative) { multipleAlternatives.resize(multipleAlternativeCount); pCodes = &multipleAlternatives[0].Codes; diff --git a/lib/IR/Instruction.cpp b/lib/IR/Instruction.cpp index 92c6e9f..7d9bd7e 100644 --- a/lib/IR/Instruction.cpp +++ b/lib/IR/Instruction.cpp @@ -32,10 +32,6 @@ Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps, } } -const DataLayout *Instruction::getDataLayout() const { - return getParent()->getDataLayout(); -} - Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd) : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) { @@ -58,6 +54,10 @@ void Instruction::setParent(BasicBlock *P) { Parent = P; } +const Module *Instruction::getModule() const { + return getParent()->getModule(); +} + void Instruction::removeFromParent() { getParent()->getInstList().remove(this); } diff --git a/lib/IR/Instructions.cpp b/lib/IR/Instructions.cpp index 7136923..af2aeb9 100644 --- a/lib/IR/Instructions.cpp +++ b/lib/IR/Instructions.cpp @@ -841,41 +841,19 @@ static Value *getAISize(LLVMContext &Context, Value *Amt) { return Amt; } -AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, - const Twine &Name, Instruction *InsertBefore) - : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, - getAISize(Ty->getContext(), ArraySize), InsertBefore) { - setAlignment(0); - assert(!Ty->isVoidTy() && "Cannot allocate void!"); - setName(Name); -} +AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore) + : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertBefore) {} -AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, - const Twine &Name, BasicBlock *InsertAtEnd) - : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, - getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { - setAlignment(0); - assert(!Ty->isVoidTy() && "Cannot allocate void!"); - setName(Name); -} +AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) + : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} -AllocaInst::AllocaInst(Type *Ty, const Twine &Name, +AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, Instruction *InsertBefore) - : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, - getAISize(Ty->getContext(), nullptr), InsertBefore) { - setAlignment(0); - assert(!Ty->isVoidTy() && "Cannot allocate void!"); - setName(Name); -} + : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertBefore) {} -AllocaInst::AllocaInst(Type *Ty, const Twine &Name, +AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, BasicBlock *InsertAtEnd) - : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, - getAISize(Ty->getContext(), nullptr), InsertAtEnd) { - setAlignment(0); - assert(!Ty->isVoidTy() && "Cannot allocate void!"); - setName(Name); -} + : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertAtEnd) {} AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, const Twine &Name, Instruction *InsertBefore) @@ -942,67 +920,27 @@ void LoadInst::AssertOK() { } LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) - : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), - Load, Ptr, InsertBef) { - setVolatile(false); - setAlignment(0); - setAtomic(NotAtomic); - AssertOK(); - setName(Name); -} + : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {} LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) - : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), - Load, Ptr, InsertAE) { - setVolatile(false); - setAlignment(0); - setAtomic(NotAtomic); - AssertOK(); - setName(Name); -} + : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {} LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, Instruction *InsertBef) - : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), - Load, Ptr, InsertBef) { - setVolatile(isVolatile); - setAlignment(0); - setAtomic(NotAtomic); - AssertOK(); - setName(Name); -} + : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {} LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, BasicBlock *InsertAE) - : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), - Load, Ptr, InsertAE) { - setVolatile(isVolatile); - setAlignment(0); - setAtomic(NotAtomic); - AssertOK(); - setName(Name); -} + : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {} -LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, +LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, unsigned Align, Instruction *InsertBef) - : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), - Load, Ptr, InsertBef) { - setVolatile(isVolatile); - setAlignment(Align); - setAtomic(NotAtomic); - AssertOK(); - setName(Name); -} + : LoadInst(Ptr, Name, isVolatile, Align, NotAtomic, CrossThread, + InsertBef) {} -LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, +LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, unsigned Align, BasicBlock *InsertAE) - : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), - Load, Ptr, InsertAE) { - setVolatile(isVolatile); - setAlignment(Align); - setAtomic(NotAtomic); - AssertOK(); - setName(Name); + : LoadInst(Ptr, Name, isVolatile, Align, NotAtomic, CrossThread, InsertAE) { } LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, @@ -1097,60 +1035,29 @@ void StoreInst::AssertOK() { "Alignment required for atomic store"); } - StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) - : Instruction(Type::getVoidTy(val->getContext()), Store, - OperandTraits<StoreInst>::op_begin(this), - OperandTraits<StoreInst>::operands(this), - InsertBefore) { - Op<0>() = val; - Op<1>() = addr; - setVolatile(false); - setAlignment(0); - setAtomic(NotAtomic); - AssertOK(); -} + : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) - : Instruction(Type::getVoidTy(val->getContext()), Store, - OperandTraits<StoreInst>::op_begin(this), - OperandTraits<StoreInst>::operands(this), - InsertAtEnd) { - Op<0>() = val; - Op<1>() = addr; - setVolatile(false); - setAlignment(0); - setAtomic(NotAtomic); - AssertOK(); -} + : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Instruction *InsertBefore) - : Instruction(Type::getVoidTy(val->getContext()), Store, - OperandTraits<StoreInst>::op_begin(this), - OperandTraits<StoreInst>::operands(this), - InsertBefore) { - Op<0>() = val; - Op<1>() = addr; - setVolatile(isVolatile); - setAlignment(0); - setAtomic(NotAtomic); - AssertOK(); -} + : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {} StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, - unsigned Align, Instruction *InsertBefore) - : Instruction(Type::getVoidTy(val->getContext()), Store, - OperandTraits<StoreInst>::op_begin(this), - OperandTraits<StoreInst>::operands(this), - InsertBefore) { - Op<0>() = val; - Op<1>() = addr; - setVolatile(isVolatile); - setAlignment(Align); - setAtomic(NotAtomic); - AssertOK(); -} + BasicBlock *InsertAtEnd) + : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, + Instruction *InsertBefore) + : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread, + InsertBefore) {} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, + BasicBlock *InsertAtEnd) + : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread, + InsertAtEnd) {} StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, AtomicOrdering Order, @@ -1169,34 +1076,6 @@ StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, - BasicBlock *InsertAtEnd) - : Instruction(Type::getVoidTy(val->getContext()), Store, - OperandTraits<StoreInst>::op_begin(this), - OperandTraits<StoreInst>::operands(this), - InsertAtEnd) { - Op<0>() = val; - Op<1>() = addr; - setVolatile(isVolatile); - setAlignment(0); - setAtomic(NotAtomic); - AssertOK(); -} - -StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, - unsigned Align, BasicBlock *InsertAtEnd) - : Instruction(Type::getVoidTy(val->getContext()), Store, - OperandTraits<StoreInst>::op_begin(this), - OperandTraits<StoreInst>::operands(this), - InsertAtEnd) { - Op<0>() = val; - Op<1>() = addr; - setVolatile(isVolatile); - setAlignment(Align); - setAtomic(NotAtomic); - AssertOK(); -} - -StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd) @@ -2169,21 +2048,15 @@ bool CastInst::isNoopCast(Type *IntPtrTy) const { return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); } -bool CastInst::isNoopCast(const DataLayout *DL) const { - if (!DL) { - // Assume maximum pointer size. - return isNoopCast(Type::getInt64Ty(getContext())); - } - +bool CastInst::isNoopCast(const DataLayout &DL) const { Type *PtrOpTy = nullptr; if (getOpcode() == Instruction::PtrToInt) PtrOpTy = getOperand(0)->getType(); else if (getOpcode() == Instruction::IntToPtr) PtrOpTy = getType(); - Type *IntPtrTy = PtrOpTy - ? DL->getIntPtrType(PtrOpTy) - : DL->getIntPtrType(getContext(), 0); + Type *IntPtrTy = + PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0); return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); } @@ -2656,44 +2529,38 @@ bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { // Run through the possibilities ... if (DestTy->isIntegerTy()) { // Casting to integral - if (SrcTy->isIntegerTy()) { // Casting from integral + if (SrcTy->isIntegerTy()) // Casting from integral return true; - } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt + if (SrcTy->isFloatingPointTy()) // Casting from floating pt return true; - } else if (SrcTy->isVectorTy()) { // Casting from vector + if (SrcTy->isVectorTy()) // Casting from vector return DestBits == SrcBits; - } else { // Casting from something else - return SrcTy->isPointerTy(); - } - } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt - if (SrcTy->isIntegerTy()) { // Casting from integral + // Casting from something else + return SrcTy->isPointerTy(); + } + if (DestTy->isFloatingPointTy()) { // Casting to floating pt + if (SrcTy->isIntegerTy()) // Casting from integral return true; - } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt + if (SrcTy->isFloatingPointTy()) // Casting from floating pt return true; - } else if (SrcTy->isVectorTy()) { // Casting from vector + if (SrcTy->isVectorTy()) // Casting from vector return DestBits == SrcBits; - } else { // Casting from something else - return false; - } - } else if (DestTy->isVectorTy()) { // Casting to vector + // Casting from something else + return false; + } + if (DestTy->isVectorTy()) // Casting to vector return DestBits == SrcBits; - } else if (DestTy->isPointerTy()) { // Casting to pointer - if (SrcTy->isPointerTy()) { // Casting from pointer + if (DestTy->isPointerTy()) { // Casting to pointer + if (SrcTy->isPointerTy()) // Casting from pointer return true; - } else if (SrcTy->isIntegerTy()) { // Casting from integral - return true; - } else { // Casting from something else - return false; - } - } else if (DestTy->isX86_MMXTy()) { - if (SrcTy->isVectorTy()) { + return SrcTy->isIntegerTy(); // Casting from integral + } + if (DestTy->isX86_MMXTy()) { + if (SrcTy->isVectorTy()) return DestBits == SrcBits; // 64-bit vector to MMX - } else { - return false; - } - } else { // Casting to something else return false; - } + } // Casting to something else + return false; } bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { @@ -2737,13 +2604,13 @@ bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { } bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, - const DataLayout *DL) { + const DataLayout &DL) { if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) - return DL && IntTy->getBitWidth() == DL->getPointerTypeSizeInBits(PtrTy); + return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy); if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) - return DL && IntTy->getBitWidth() == DL->getPointerTypeSizeInBits(PtrTy); + return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy); return isBitCastable(SrcTy, DestTy); } diff --git a/lib/IR/LLVMContextImpl.h b/lib/IR/LLVMContextImpl.h index 4631246..e380665 100644 --- a/lib/IR/LLVMContextImpl.h +++ b/lib/IR/LLVMContextImpl.h @@ -240,12 +240,12 @@ template <> struct MDNodeKeyImpl<MDLocation> { : Line(Line), Column(Column), Scope(Scope), InlinedAt(InlinedAt) {} MDNodeKeyImpl(const MDLocation *L) - : Line(L->getLine()), Column(L->getColumn()), Scope(L->getScope()), - InlinedAt(L->getInlinedAt()) {} + : Line(L->getLine()), Column(L->getColumn()), Scope(L->getRawScope()), + InlinedAt(L->getRawInlinedAt()) {} bool isKeyOf(const MDLocation *RHS) const { return Line == RHS->getLine() && Column == RHS->getColumn() && - Scope == RHS->getScope() && InlinedAt == RHS->getInlinedAt(); + Scope == RHS->getRawScope() && InlinedAt == RHS->getRawInlinedAt(); } unsigned getHashValue() const { return hash_combine(Line, Column, Scope, InlinedAt); diff --git a/lib/IR/LegacyPassManager.cpp b/lib/IR/LegacyPassManager.cpp index fa8d50e..9a365d1 100644 --- a/lib/IR/LegacyPassManager.cpp +++ b/lib/IR/LegacyPassManager.cpp @@ -652,7 +652,7 @@ void PMTopLevelManager::schedulePass(Pass *P) { // are already checked are still available. checkAnalysis = true; } else - // Do not schedule this analysis. Lower level analsyis + // Do not schedule this analysis. Lower level analysis // passes are run on the fly. delete AnalysisPass; } diff --git a/lib/IR/Mangler.cpp b/lib/IR/Mangler.cpp index 5eeb797..a0e1b25 100644 --- a/lib/IR/Mangler.cpp +++ b/lib/IR/Mangler.cpp @@ -73,7 +73,7 @@ static bool hasByteCountSuffix(CallingConv::ID CC) { /// Microsoft fastcall and stdcall functions require a suffix on their name /// indicating the number of words of arguments they take. static void addByteCountSuffix(raw_ostream &OS, const Function *F, - const DataLayout &TD) { + const DataLayout &DL) { // Calculate arguments size total. unsigned ArgWords = 0; for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); @@ -83,8 +83,8 @@ static void addByteCountSuffix(raw_ostream &OS, const Function *F, if (AI->hasByValOrInAllocaAttr()) Ty = cast<PointerType>(Ty)->getElementType(); // Size should be aligned to pointer size. - unsigned PtrSize = TD.getPointerSize(); - ArgWords += RoundUpToAlignment(TD.getTypeAllocSize(Ty), PtrSize); + unsigned PtrSize = DL.getPointerSize(); + ArgWords += RoundUpToAlignment(DL.getTypeAllocSize(Ty), PtrSize); } OS << '@' << ArgWords; diff --git a/lib/IR/Module.cpp b/lib/IR/Module.cpp index b0abe8c..3e8f91f 100644 --- a/lib/IR/Module.cpp +++ b/lib/IR/Module.cpp @@ -365,31 +365,11 @@ void Module::addModuleFlag(MDNode *Node) { void Module::setDataLayout(StringRef Desc) { DL.reset(Desc); - - if (Desc.empty()) { - DataLayoutStr = ""; - } else { - DataLayoutStr = DL.getStringRepresentation(); - // DataLayoutStr is now equivalent to Desc, but since the representation - // is not unique, they may not be identical. - } } -void Module::setDataLayout(const DataLayout *Other) { - if (!Other) { - DataLayoutStr = ""; - DL.reset(""); - } else { - DL = *Other; - DataLayoutStr = DL.getStringRepresentation(); - } -} +void Module::setDataLayout(const DataLayout &Other) { DL = Other; } -const DataLayout *Module::getDataLayout() const { - if (DataLayoutStr.empty()) - return nullptr; - return &DL; -} +const DataLayout &Module::getDataLayout() const { return DL; } //===----------------------------------------------------------------------===// // Methods to control the materialization of GlobalValues in the Module. @@ -433,6 +413,12 @@ std::error_code Module::materializeAllPermanently() { return std::error_code(); } +std::error_code Module::materializeMetadata() { + if (!Materializer) + return std::error_code(); + return Materializer->materializeMetadata(); +} + //===----------------------------------------------------------------------===// // Other module related stuff. // diff --git a/lib/IR/TypeFinder.cpp b/lib/IR/TypeFinder.cpp index e2fb8f8..1d2b808 100644 --- a/lib/IR/TypeFinder.cpp +++ b/lib/IR/TypeFinder.cpp @@ -68,7 +68,7 @@ void TypeFinder::run(const Module &M, bool onlyNamed) { // instructions with this loop.) for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) - if (!isa<Instruction>(OI)) + if (*OI && !isa<Instruction>(OI)) incorporateValue(*OI); // Incorporate types hiding in metadata. diff --git a/lib/IR/Value.cpp b/lib/IR/Value.cpp index 7d205f9..78bfca4 100644 --- a/lib/IR/Value.cpp +++ b/lib/IR/Value.cpp @@ -32,6 +32,7 @@ #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/raw_ostream.h" #include <algorithm> using namespace llvm; @@ -69,15 +70,13 @@ Value::~Value() { #ifndef NDEBUG // Only in -g mode... // Check to make sure that there are no uses of this value that are still // around when the value is destroyed. If there are, then we have a dangling - // reference and something is wrong. This code is here to print out what is - // still being referenced. The value in question should be printed as - // a <badref> + // reference and something is wrong. This code is here to print out where + // the value is still being referenced. // if (!use_empty()) { dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; - for (use_iterator I = use_begin(), E = use_end(); I != E; ++I) - dbgs() << "Use still stuck around after Def is destroyed:" - << **I << "\n"; + for (auto *U : users()) + dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; } #endif assert(use_empty() && "Uses remain when a value is destroyed!"); @@ -482,7 +481,7 @@ Value *Value::stripInBoundsOffsets() { /// /// Test if V is always a pointer to allocated and suitably aligned memory for /// a simple load or store. -static bool isDereferenceablePointer(const Value *V, const DataLayout *DL, +static bool isDereferenceablePointer(const Value *V, const DataLayout &DL, SmallPtrSetImpl<const Value *> &Visited) { // Note that it is not safe to speculate into a malloc'd region because // malloc may return null. @@ -497,17 +496,14 @@ static bool isDereferenceablePointer(const Value *V, const DataLayout *DL, // to a type of smaller size (or the same size), and the alignment // is at least as large as for the resulting pointer type, then // we can look through the bitcast. - if (DL) - if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { - Type *STy = BC->getSrcTy()->getPointerElementType(), - *DTy = BC->getDestTy()->getPointerElementType(); - if (STy->isSized() && DTy->isSized() && - (DL->getTypeStoreSize(STy) >= - DL->getTypeStoreSize(DTy)) && - (DL->getABITypeAlignment(STy) >= - DL->getABITypeAlignment(DTy))) - return isDereferenceablePointer(BC->getOperand(0), DL, Visited); - } + if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { + Type *STy = BC->getSrcTy()->getPointerElementType(), + *DTy = BC->getDestTy()->getPointerElementType(); + if (STy->isSized() && DTy->isSized() && + (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && + (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) + return isDereferenceablePointer(BC->getOperand(0), DL, Visited); + } // Global variables which can't collapse to null are ok. if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) @@ -520,7 +516,7 @@ static bool isDereferenceablePointer(const Value *V, const DataLayout *DL, return true; else if (uint64_t Bytes = A->getDereferenceableBytes()) { Type *Ty = V->getType()->getPointerElementType(); - if (Ty->isSized() && DL && DL->getTypeStoreSize(Ty) <= Bytes) + if (Ty->isSized() && DL.getTypeStoreSize(Ty) <= Bytes) return true; } @@ -532,7 +528,7 @@ static bool isDereferenceablePointer(const Value *V, const DataLayout *DL, if (ImmutableCallSite CS = V) { if (uint64_t Bytes = CS.getDereferenceableBytes(0)) { Type *Ty = V->getType()->getPointerElementType(); - if (Ty->isSized() && DL && DL->getTypeStoreSize(Ty) <= Bytes) + if (Ty->isSized() && DL.getTypeStoreSize(Ty) <= Bytes) return true; } } @@ -586,15 +582,15 @@ static bool isDereferenceablePointer(const Value *V, const DataLayout *DL, return false; } -bool Value::isDereferenceablePointer(const DataLayout *DL) const { +bool Value::isDereferenceablePointer(const DataLayout &DL) const { // When dereferenceability information is provided by a dereferenceable // attribute, we know exactly how many bytes are dereferenceable. If we can // determine the exact offset to the attributed variable, we can use that // information here. Type *Ty = getType()->getPointerElementType(); - if (Ty->isSized() && DL) { - APInt Offset(DL->getTypeStoreSizeInBits(getType()), 0); - const Value *BV = stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); + if (Ty->isSized()) { + APInt Offset(DL.getTypeStoreSizeInBits(getType()), 0); + const Value *BV = stripAndAccumulateInBoundsConstantOffsets(DL, Offset); APInt DerefBytes(Offset.getBitWidth(), 0); if (const Argument *A = dyn_cast<Argument>(BV)) @@ -603,7 +599,7 @@ bool Value::isDereferenceablePointer(const DataLayout *DL) const { DerefBytes = CS.getDereferenceableBytes(0); if (DerefBytes.getBoolValue() && Offset.isNonNegative()) { - if (DerefBytes.uge(Offset + DL->getTypeStoreSize(Ty))) + if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) return true; } } diff --git a/lib/IR/Verifier.cpp b/lib/IR/Verifier.cpp index d01e138..fcf48c4 100644 --- a/lib/IR/Verifier.cpp +++ b/lib/IR/Verifier.cpp @@ -78,7 +78,7 @@ #include <cstdarg> using namespace llvm; -static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(false)); +static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true)); namespace { struct VerifierSupport { @@ -87,11 +87,13 @@ struct VerifierSupport { /// \brief Track the brokenness of the module while recursively visiting. bool Broken; + bool EverBroken; explicit VerifierSupport(raw_ostream &OS) - : OS(OS), M(nullptr), Broken(false) {} + : OS(OS), M(nullptr), Broken(false), EverBroken(false) {} - void WriteValue(const Value *V) { +private: + void Write(const Value *V) { if (!V) return; if (isa<Instruction>(V)) { @@ -102,81 +104,61 @@ struct VerifierSupport { } } - void WriteMetadata(const Metadata *MD) { + void Write(const Metadata *MD) { if (!MD) return; - MD->printAsOperand(OS, true, M); + MD->print(OS, M); + OS << '\n'; + } + + void Write(const NamedMDNode *NMD) { + if (!NMD) + return; + NMD->print(OS); OS << '\n'; } - void WriteType(Type *T) { + void Write(Type *T) { if (!T) return; OS << ' ' << *T; } - void WriteComdat(const Comdat *C) { + void Write(const Comdat *C) { if (!C) return; OS << *C; } - // CheckFailed - A check failed, so print out the condition and the message - // that failed. This provides a nice place to put a breakpoint if you want - // to see why something is not correct. - void CheckFailed(const Twine &Message, const Value *V1 = nullptr, - const Value *V2 = nullptr, const Value *V3 = nullptr, - const Value *V4 = nullptr) { - OS << Message.str() << "\n"; - WriteValue(V1); - WriteValue(V2); - WriteValue(V3); - WriteValue(V4); - Broken = true; - } - - void CheckFailed(const Twine &Message, const Metadata *V1, const Metadata *V2, - const Metadata *V3 = nullptr, const Metadata *V4 = nullptr) { - OS << Message.str() << "\n"; - WriteMetadata(V1); - WriteMetadata(V2); - WriteMetadata(V3); - WriteMetadata(V4); - Broken = true; - } - - void CheckFailed(const Twine &Message, const Metadata *V1, - const Value *V2 = nullptr) { - OS << Message.str() << "\n"; - WriteMetadata(V1); - WriteValue(V2); - Broken = true; - } - - void CheckFailed(const Twine &Message, const Value *V1, Type *T2, - const Value *V3 = nullptr) { - OS << Message.str() << "\n"; - WriteValue(V1); - WriteType(T2); - WriteValue(V3); - Broken = true; - } - - void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr, - Type *T3 = nullptr) { - OS << Message.str() << "\n"; - WriteType(T1); - WriteType(T2); - WriteType(T3); - Broken = true; - } - - void CheckFailed(const Twine &Message, const Comdat *C) { - OS << Message.str() << "\n"; - WriteComdat(C); - Broken = true; + template <typename T1, typename... Ts> + void WriteTs(const T1 &V1, const Ts &... Vs) { + Write(V1); + WriteTs(Vs...); + } + + template <typename... Ts> void WriteTs() {} + +public: + /// \brief A check failed, so printout out the condition and the message. + /// + /// This provides a nice place to put a breakpoint if you want to see why + /// something is not correct. + void CheckFailed(const Twine &Message) { + OS << Message << '\n'; + EverBroken = Broken = true; + } + + /// \brief A check failed (with values to print). + /// + /// This calls the Message-only version so that the above is easier to set a + /// breakpoint on. + template <typename T1, typename... Ts> + void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { + CheckFailed(Message); + WriteTs(V1, Vs...); } }; + class Verifier : public InstVisitor<Verifier>, VerifierSupport { friend class InstVisitor<Verifier>; @@ -198,14 +180,18 @@ class Verifier : public InstVisitor<Verifier>, VerifierSupport { /// personality function. const Value *PersonalityFn; - /// \brief Whether we've seen a call to @llvm.frameallocate in this function + /// \brief Whether we've seen a call to @llvm.frameescape in this function /// already. - bool SawFrameAllocate; + bool SawFrameEscape; + + /// Stores the count of how many objects were passed to llvm.frameescape for a + /// given function and the largest index passed to llvm.framerecover. + DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; public: - explicit Verifier(raw_ostream &OS = dbgs()) + explicit Verifier(raw_ostream &OS) : VerifierSupport(OS), Context(nullptr), PersonalityFn(nullptr), - SawFrameAllocate(false) {} + SawFrameEscape(false) {} bool verify(const Function &F) { M = F.getParent(); @@ -240,7 +226,7 @@ public: visit(const_cast<Function &>(F)); InstsInThisBlock.clear(); PersonalityFn = nullptr; - SawFrameAllocate = false; + SawFrameEscape = false; return !Broken; } @@ -259,6 +245,10 @@ public: visitFunction(*I); } + // Now that we've visited every function, verify that we never asked to + // recover a frame index that wasn't escaped. + verifyFrameRecoverIndices(); + for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) visitGlobalVariable(*I); @@ -278,6 +268,9 @@ public: visitModuleFlags(M); visitModuleIdents(M); + // Verify debug info last. + verifyDebugInfo(); + return !Broken; } @@ -347,6 +340,8 @@ private: void visitUserOp1(Instruction &I); void visitUserOp2(Instruction &I) { visitUserOp1(I); } void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); + template <class DbgIntrinsicTy> + void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII); void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); void visitAtomicRMWInst(AtomicRMWInst &RMWI); void visitFenceInst(FenceInst &FI); @@ -373,18 +368,9 @@ private: void VerifyConstantExprBitcastType(const ConstantExpr *CE); void VerifyStatepoint(ImmutableCallSite CS); -}; -class DebugInfoVerifier : public VerifierSupport { -public: - explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {} + void verifyFrameRecoverIndices(); - bool verify(const Module &M) { - this->M = &M; - verifyDebugInfo(); - return !Broken; - } - -private: + // Module-level debug info verification... void verifyDebugInfo(); void processInstructions(DebugInfoFinder &Finder); void processCallInst(DebugInfoFinder &Finder, const CallInst &CI); @@ -392,66 +378,58 @@ private: } // End anonymous namespace // Assert - We know that cond should be true, if not print an error message. -#define Assert(C, M) \ - do { if (!(C)) { CheckFailed(M); return; } } while (0) -#define Assert1(C, M, V1) \ - do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) -#define Assert2(C, M, V1, V2) \ - do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) -#define Assert3(C, M, V1, V2, V3) \ - do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) -#define Assert4(C, M, V1, V2, V3, V4) \ - do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) +#define Assert(C, ...) \ + do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0) void Verifier::visit(Instruction &I) { for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) - Assert1(I.getOperand(i) != nullptr, "Operand is null", &I); + Assert(I.getOperand(i) != nullptr, "Operand is null", &I); InstVisitor<Verifier>::visit(I); } void Verifier::visitGlobalValue(const GlobalValue &GV) { - Assert1(!GV.isDeclaration() || GV.hasExternalLinkage() || - GV.hasExternalWeakLinkage(), - "Global is external, but doesn't have external or weak linkage!", - &GV); + Assert(!GV.isDeclaration() || GV.hasExternalLinkage() || + GV.hasExternalWeakLinkage(), + "Global is external, but doesn't have external or weak linkage!", &GV); - Assert1(GV.getAlignment() <= Value::MaximumAlignment, - "huge alignment values are unsupported", &GV); - Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), - "Only global variables can have appending linkage!", &GV); + Assert(GV.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &GV); + Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), + "Only global variables can have appending linkage!", &GV); if (GV.hasAppendingLinkage()) { const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); - Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(), - "Only global arrays can have appending linkage!", GVar); + Assert(GVar && GVar->getType()->getElementType()->isArrayTy(), + "Only global arrays can have appending linkage!", GVar); } } void Verifier::visitGlobalVariable(const GlobalVariable &GV) { if (GV.hasInitializer()) { - Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), - "Global variable initializer type does not match global " - "variable type!", &GV); + Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(), + "Global variable initializer type does not match global " + "variable type!", + &GV); // If the global has common linkage, it must have a zero initializer and // cannot be constant. if (GV.hasCommonLinkage()) { - Assert1(GV.getInitializer()->isNullValue(), - "'common' global must have a zero initializer!", &GV); - Assert1(!GV.isConstant(), "'common' global may not be marked constant!", - &GV); - Assert1(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); + Assert(GV.getInitializer()->isNullValue(), + "'common' global must have a zero initializer!", &GV); + Assert(!GV.isConstant(), "'common' global may not be marked constant!", + &GV); + Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); } } else { - Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), - "invalid linkage type for global declaration", &GV); + Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), + "invalid linkage type for global declaration", &GV); } if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || GV.getName() == "llvm.global_dtors")) { - Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), - "invalid linkage for intrinsic global variable", &GV); + Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), + "invalid linkage for intrinsic global variable", &GV); // Don't worry about emitting an error for it not being an array, // visitGlobalValue will complain on appending non-array. if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) { @@ -459,48 +437,48 @@ void Verifier::visitGlobalVariable(const GlobalVariable &GV) { PointerType *FuncPtrTy = FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo(); // FIXME: Reject the 2-field form in LLVM 4.0. - Assert1(STy && (STy->getNumElements() == 2 || - STy->getNumElements() == 3) && - STy->getTypeAtIndex(0u)->isIntegerTy(32) && - STy->getTypeAtIndex(1) == FuncPtrTy, - "wrong type for intrinsic global variable", &GV); + Assert(STy && + (STy->getNumElements() == 2 || STy->getNumElements() == 3) && + STy->getTypeAtIndex(0u)->isIntegerTy(32) && + STy->getTypeAtIndex(1) == FuncPtrTy, + "wrong type for intrinsic global variable", &GV); if (STy->getNumElements() == 3) { Type *ETy = STy->getTypeAtIndex(2); - Assert1(ETy->isPointerTy() && - cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), - "wrong type for intrinsic global variable", &GV); + Assert(ETy->isPointerTy() && + cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), + "wrong type for intrinsic global variable", &GV); } } } if (GV.hasName() && (GV.getName() == "llvm.used" || GV.getName() == "llvm.compiler.used")) { - Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), - "invalid linkage for intrinsic global variable", &GV); + Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), + "invalid linkage for intrinsic global variable", &GV); Type *GVType = GV.getType()->getElementType(); if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); - Assert1(PTy, "wrong type for intrinsic global variable", &GV); + Assert(PTy, "wrong type for intrinsic global variable", &GV); if (GV.hasInitializer()) { const Constant *Init = GV.getInitializer(); const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); - Assert1(InitArray, "wrong initalizer for intrinsic global variable", - Init); + Assert(InitArray, "wrong initalizer for intrinsic global variable", + Init); for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) { Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases(); - Assert1( - isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V), - "invalid llvm.used member", V); - Assert1(V->hasName(), "members of llvm.used must be named", V); + Assert(isa<GlobalVariable>(V) || isa<Function>(V) || + isa<GlobalAlias>(V), + "invalid llvm.used member", V); + Assert(V->hasName(), "members of llvm.used must be named", V); } } } } - Assert1(!GV.hasDLLImportStorageClass() || - (GV.isDeclaration() && GV.hasExternalLinkage()) || - GV.hasAvailableExternallyLinkage(), - "Global is marked as dllimport, but not external", &GV); + Assert(!GV.hasDLLImportStorageClass() || + (GV.isDeclaration() && GV.hasExternalLinkage()) || + GV.hasAvailableExternallyLinkage(), + "Global is marked as dllimport, but not external", &GV); if (!GV.hasInitializer()) { visitGlobalValue(GV); @@ -540,13 +518,13 @@ void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, const GlobalAlias &GA, const Constant &C) { if (const auto *GV = dyn_cast<GlobalValue>(&C)) { - Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA); + Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA); if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { - Assert1(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); + Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); - Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias", - &GA); + Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias", + &GA); } else { // Only continue verifying subexpressions of GlobalAliases. // Do not recurse into global initializers. @@ -567,19 +545,18 @@ void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, } void Verifier::visitGlobalAlias(const GlobalAlias &GA) { - Assert1(!GA.getName().empty(), - "Alias name cannot be empty!", &GA); - Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()), - "Alias should have private, internal, linkonce, weak, linkonce_odr, " - "weak_odr, or external linkage!", - &GA); + Assert(!GA.getName().empty(), "Alias name cannot be empty!", &GA); + Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), + "Alias should have private, internal, linkonce, weak, linkonce_odr, " + "weak_odr, or external linkage!", + &GA); const Constant *Aliasee = GA.getAliasee(); - Assert1(Aliasee, "Aliasee cannot be NULL!", &GA); - Assert1(GA.getType() == Aliasee->getType(), - "Alias and aliasee types should match!", &GA); + Assert(Aliasee, "Aliasee cannot be NULL!", &GA); + Assert(GA.getType() == Aliasee->getType(), + "Alias and aliasee types should match!", &GA); - Assert1(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), - "Aliasee should be either GlobalValue or ConstantExpr", &GA); + Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), + "Aliasee should be either GlobalValue or ConstantExpr", &GA); visitAliaseeSubExpr(GA, *Aliasee); @@ -592,6 +569,10 @@ void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { if (!MD) continue; + if (NMD.getName() == "llvm.dbg.cu") { + Assert(isa<MDCompileUnit>(MD), "invalid compile unit", &NMD, MD); + } + visitMDNode(*MD); } } @@ -618,8 +599,8 @@ void Verifier::visitMDNode(const MDNode &MD) { Metadata *Op = MD.getOperand(i); if (!Op) continue; - Assert2(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", - &MD, Op); + Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", + &MD, Op); if (auto *N = dyn_cast<MDNode>(Op)) { visitMDNode(*N); continue; @@ -631,26 +612,26 @@ void Verifier::visitMDNode(const MDNode &MD) { } // Check these last, so we diagnose problems in operands first. - Assert1(!MD.isTemporary(), "Expected no forward declarations!", &MD); - Assert1(MD.isResolved(), "All nodes should be resolved!", &MD); + Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); + Assert(MD.isResolved(), "All nodes should be resolved!", &MD); } void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { - Assert1(MD.getValue(), "Expected valid value", &MD); - Assert2(!MD.getValue()->getType()->isMetadataTy(), - "Unexpected metadata round-trip through values", &MD, MD.getValue()); + Assert(MD.getValue(), "Expected valid value", &MD); + Assert(!MD.getValue()->getType()->isMetadataTy(), + "Unexpected metadata round-trip through values", &MD, MD.getValue()); auto *L = dyn_cast<LocalAsMetadata>(&MD); if (!L) return; - Assert1(F, "function-local metadata used outside a function", L); + Assert(F, "function-local metadata used outside a function", L); // If this was an instruction, bb, or argument, verify that it is in the // function that we expect. Function *ActualF = nullptr; if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { - Assert2(I->getParent(), "function-local metadata not in basic block", L, I); + Assert(I->getParent(), "function-local metadata not in basic block", L, I); ActualF = I->getParent()->getParent(); } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) ActualF = BB->getParent(); @@ -658,7 +639,7 @@ void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { ActualF = A->getParent(); assert(ActualF && "Unimplemented function local metadata case!"); - Assert1(ActualF == F, "function-local metadata used in wrong function", L); + Assert(ActualF == F, "function-local metadata used in wrong function", L); } void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { @@ -678,126 +659,126 @@ void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { } void Verifier::visitMDLocation(const MDLocation &N) { - Assert1(N.getScope(), "location requires a valid scope", &N); - if (auto *IA = N.getInlinedAt()) - Assert2(isa<MDLocation>(IA), "inlined-at should be a location", &N, IA); + Assert(N.getRawScope() && isa<MDLocalScope>(N.getRawScope()), + "location requires a valid scope", &N, N.getRawScope()); + if (auto *IA = N.getRawInlinedAt()) + Assert(isa<MDLocation>(IA), "inlined-at should be a location", &N, IA); } void Verifier::visitGenericDebugNode(const GenericDebugNode &N) { - Assert1(N.getTag(), "invalid tag", &N); + Assert(N.getTag(), "invalid tag", &N); } void Verifier::visitMDSubrange(const MDSubrange &N) { - Assert1(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); } void Verifier::visitMDEnumerator(const MDEnumerator &N) { - Assert1(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); } void Verifier::visitMDBasicType(const MDBasicType &N) { - Assert1(N.getTag() == dwarf::DW_TAG_base_type || - N.getTag() == dwarf::DW_TAG_unspecified_type, - "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_base_type || + N.getTag() == dwarf::DW_TAG_unspecified_type, + "invalid tag", &N); } void Verifier::visitMDDerivedType(const MDDerivedType &N) { - Assert1(N.getTag() == dwarf::DW_TAG_typedef || - N.getTag() == dwarf::DW_TAG_pointer_type || - N.getTag() == dwarf::DW_TAG_ptr_to_member_type || - N.getTag() == dwarf::DW_TAG_reference_type || - N.getTag() == dwarf::DW_TAG_rvalue_reference_type || - N.getTag() == dwarf::DW_TAG_const_type || - N.getTag() == dwarf::DW_TAG_volatile_type || - N.getTag() == dwarf::DW_TAG_restrict_type || - N.getTag() == dwarf::DW_TAG_member || - N.getTag() == dwarf::DW_TAG_inheritance || - N.getTag() == dwarf::DW_TAG_friend, - "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_typedef || + N.getTag() == dwarf::DW_TAG_pointer_type || + N.getTag() == dwarf::DW_TAG_ptr_to_member_type || + N.getTag() == dwarf::DW_TAG_reference_type || + N.getTag() == dwarf::DW_TAG_rvalue_reference_type || + N.getTag() == dwarf::DW_TAG_const_type || + N.getTag() == dwarf::DW_TAG_volatile_type || + N.getTag() == dwarf::DW_TAG_restrict_type || + N.getTag() == dwarf::DW_TAG_member || + N.getTag() == dwarf::DW_TAG_inheritance || + N.getTag() == dwarf::DW_TAG_friend, + "invalid tag", &N); } void Verifier::visitMDCompositeType(const MDCompositeType &N) { - Assert1(N.getTag() == dwarf::DW_TAG_array_type || - N.getTag() == dwarf::DW_TAG_structure_type || - N.getTag() == dwarf::DW_TAG_union_type || - N.getTag() == dwarf::DW_TAG_enumeration_type || - N.getTag() == dwarf::DW_TAG_subroutine_type || - N.getTag() == dwarf::DW_TAG_class_type, - "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_array_type || + N.getTag() == dwarf::DW_TAG_structure_type || + N.getTag() == dwarf::DW_TAG_union_type || + N.getTag() == dwarf::DW_TAG_enumeration_type || + N.getTag() == dwarf::DW_TAG_subroutine_type || + N.getTag() == dwarf::DW_TAG_class_type, + "invalid tag", &N); } void Verifier::visitMDSubroutineType(const MDSubroutineType &N) { - Assert1(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); } void Verifier::visitMDFile(const MDFile &N) { - Assert1(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); } void Verifier::visitMDCompileUnit(const MDCompileUnit &N) { - Assert1(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); } void Verifier::visitMDSubprogram(const MDSubprogram &N) { - Assert1(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); } void Verifier::visitMDLexicalBlock(const MDLexicalBlock &N) { - Assert1(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); } void Verifier::visitMDLexicalBlockFile(const MDLexicalBlockFile &N) { - Assert1(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); } void Verifier::visitMDNamespace(const MDNamespace &N) { - Assert1(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); } void Verifier::visitMDTemplateTypeParameter(const MDTemplateTypeParameter &N) { - Assert1(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", - &N); + Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", + &N); } void Verifier::visitMDTemplateValueParameter( const MDTemplateValueParameter &N) { - Assert1(N.getTag() == dwarf::DW_TAG_template_value_parameter || - N.getTag() == dwarf::DW_TAG_GNU_template_template_param || - N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, - "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter || + N.getTag() == dwarf::DW_TAG_GNU_template_template_param || + N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, + "invalid tag", &N); } void Verifier::visitMDGlobalVariable(const MDGlobalVariable &N) { - Assert1(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); } void Verifier::visitMDLocalVariable(const MDLocalVariable &N) { - Assert1(N.getTag() == dwarf::DW_TAG_auto_variable || - N.getTag() == dwarf::DW_TAG_arg_variable, - "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_auto_variable || + N.getTag() == dwarf::DW_TAG_arg_variable, + "invalid tag", &N); } void Verifier::visitMDExpression(const MDExpression &N) { - Assert1(N.getTag() == dwarf::DW_TAG_expression, "invalid tag", &N); - Assert1(N.isValid(), "invalid expression", &N); + Assert(N.isValid(), "invalid expression", &N); } void Verifier::visitMDObjCProperty(const MDObjCProperty &N) { - Assert1(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); } void Verifier::visitMDImportedEntity(const MDImportedEntity &N) { - Assert1(N.getTag() == dwarf::DW_TAG_imported_module || - N.getTag() == dwarf::DW_TAG_imported_declaration, - "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_imported_module || + N.getTag() == dwarf::DW_TAG_imported_declaration, + "invalid tag", &N); } void Verifier::visitComdat(const Comdat &C) { // The Module is invalid if the GlobalValue has private linkage. Entities // with private linkage don't have entries in the symbol table. if (const GlobalValue *GV = M->getNamedValue(C.getName())) - Assert1(!GV->hasPrivateLinkage(), "comdat global value has private linkage", - GV); + Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", + GV); } void Verifier::visitModuleIdents(const Module &M) { @@ -809,12 +790,12 @@ void Verifier::visitModuleIdents(const Module &M) { // Scan each llvm.ident entry and make sure that this requirement is met. for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) { const MDNode *N = Idents->getOperand(i); - Assert1(N->getNumOperands() == 1, - "incorrect number of operands in llvm.ident metadata", N); - Assert1(dyn_cast_or_null<MDString>(N->getOperand(0)), - ("invalid value for llvm.ident metadata entry operand" - "(the operand should be a string)"), - N->getOperand(0)); + Assert(N->getNumOperands() == 1, + "incorrect number of operands in llvm.ident metadata", N); + Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), + ("invalid value for llvm.ident metadata entry operand" + "(the operand should be a string)"), + N->getOperand(0)); } } @@ -857,22 +838,21 @@ Verifier::visitModuleFlag(const MDNode *Op, SmallVectorImpl<const MDNode *> &Requirements) { // Each module flag should have three arguments, the merge behavior (a // constant int), the flag ID (an MDString), and the value. - Assert1(Op->getNumOperands() == 3, - "incorrect number of operands in module flag", Op); + Assert(Op->getNumOperands() == 3, + "incorrect number of operands in module flag", Op); Module::ModFlagBehavior MFB; if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { - Assert1( + Assert( mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), "invalid behavior operand in module flag (expected constant integer)", Op->getOperand(0)); - Assert1(false, - "invalid behavior operand in module flag (unexpected constant)", - Op->getOperand(0)); + Assert(false, + "invalid behavior operand in module flag (unexpected constant)", + Op->getOperand(0)); } MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); - Assert1(ID, - "invalid ID operand in module flag (expected metadata string)", - Op->getOperand(1)); + Assert(ID, "invalid ID operand in module flag (expected metadata string)", + Op->getOperand(1)); // Sanity check the values for behaviors with additional requirements. switch (MFB) { @@ -886,13 +866,13 @@ Verifier::visitModuleFlag(const MDNode *Op, // The value should itself be an MDNode with two operands, a flag ID (an // MDString), and a value. MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); - Assert1(Value && Value->getNumOperands() == 2, - "invalid value for 'require' module flag (expected metadata pair)", - Op->getOperand(2)); - Assert1(isa<MDString>(Value->getOperand(0)), - ("invalid value for 'require' module flag " - "(first value operand should be a string)"), - Value->getOperand(0)); + Assert(Value && Value->getNumOperands() == 2, + "invalid value for 'require' module flag (expected metadata pair)", + Op->getOperand(2)); + Assert(isa<MDString>(Value->getOperand(0)), + ("invalid value for 'require' module flag " + "(first value operand should be a string)"), + Value->getOperand(0)); // Append it to the list of requirements, to check once all module flags are // scanned. @@ -903,9 +883,10 @@ Verifier::visitModuleFlag(const MDNode *Op, case Module::Append: case Module::AppendUnique: { // These behavior types require the operand be an MDNode. - Assert1(isa<MDNode>(Op->getOperand(2)), - "invalid value for 'append'-type module flag " - "(expected a metadata node)", Op->getOperand(2)); + Assert(isa<MDNode>(Op->getOperand(2)), + "invalid value for 'append'-type module flag " + "(expected a metadata node)", + Op->getOperand(2)); break; } } @@ -913,9 +894,8 @@ Verifier::visitModuleFlag(const MDNode *Op, // Unless this is a "requires" flag, check the ID is unique. if (MFB != Module::Require) { bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; - Assert1(Inserted, - "module flag identifiers must be unique (or of 'require' type)", - ID); + Assert(Inserted, + "module flag identifiers must be unique (or of 'require' type)", ID); } } @@ -991,14 +971,15 @@ void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, VerifyAttributeTypes(Attrs, Idx, false, V); if (isReturnValue) - Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) && - !Attrs.hasAttribute(Idx, Attribute::Nest) && - !Attrs.hasAttribute(Idx, Attribute::StructRet) && - !Attrs.hasAttribute(Idx, Attribute::NoCapture) && - !Attrs.hasAttribute(Idx, Attribute::Returned) && - !Attrs.hasAttribute(Idx, Attribute::InAlloca), - "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and " - "'returned' do not apply to return values!", V); + Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && + !Attrs.hasAttribute(Idx, Attribute::Nest) && + !Attrs.hasAttribute(Idx, Attribute::StructRet) && + !Attrs.hasAttribute(Idx, Attribute::NoCapture) && + !Attrs.hasAttribute(Idx, Attribute::Returned) && + !Attrs.hasAttribute(Idx, Attribute::InAlloca), + "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and " + "'returned' do not apply to return values!", + V); // Check for mutually incompatible attributes. Only inreg is compatible with // sret. @@ -1008,45 +989,58 @@ void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) || Attrs.hasAttribute(Idx, Attribute::InReg); AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest); - Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " - "and 'sret' are incompatible!", V); - - Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) && - Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes " - "'inalloca and readonly' are incompatible!", V); - - Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && - Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes " - "'sret and returned' are incompatible!", V); - - Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && - Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes " - "'zeroext and signext' are incompatible!", V); - - Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && - Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes " - "'readnone and readonly' are incompatible!", V); - - Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && - Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes " - "'noinline and alwaysinline' are incompatible!", V); - - Assert1(!AttrBuilder(Attrs, Idx). - hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx), - "Wrong types for attribute: " + - AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V); + Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " + "and 'sret' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) && + Attrs.hasAttribute(Idx, Attribute::ReadOnly)), + "Attributes " + "'inalloca and readonly' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && + Attrs.hasAttribute(Idx, Attribute::Returned)), + "Attributes " + "'sret and returned' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && + Attrs.hasAttribute(Idx, Attribute::SExt)), + "Attributes " + "'zeroext and signext' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && + Attrs.hasAttribute(Idx, Attribute::ReadOnly)), + "Attributes " + "'readnone and readonly' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && + Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), + "Attributes " + "'noinline and alwaysinline' are incompatible!", + V); + + Assert(!AttrBuilder(Attrs, Idx) + .hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx), + "Wrong types for attribute: " + + AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), + V); if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { - if (!PTy->getElementType()->isSized()) { - Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) && - !Attrs.hasAttribute(Idx, Attribute::InAlloca), - "Attributes 'byval' and 'inalloca' do not support unsized types!", - V); + SmallPtrSet<const Type*, 4> Visited; + if (!PTy->getElementType()->isSized(&Visited)) { + Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && + !Attrs.hasAttribute(Idx, Attribute::InAlloca), + "Attributes 'byval' and 'inalloca' do not support unsized types!", + V); } } else { - Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal), - "Attribute 'byval' only applies to parameters with pointer type!", - V); + Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal), + "Attribute 'byval' only applies to parameters with pointer type!", + V); } } @@ -1078,28 +1072,30 @@ void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, continue; if (Attrs.hasAttribute(Idx, Attribute::Nest)) { - Assert1(!SawNest, "More than one parameter has attribute nest!", V); + Assert(!SawNest, "More than one parameter has attribute nest!", V); SawNest = true; } if (Attrs.hasAttribute(Idx, Attribute::Returned)) { - Assert1(!SawReturned, "More than one parameter has attribute returned!", - V); - Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible " - "argument and return types for 'returned' attribute", V); + Assert(!SawReturned, "More than one parameter has attribute returned!", + V); + Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), + "Incompatible " + "argument and return types for 'returned' attribute", + V); SawReturned = true; } if (Attrs.hasAttribute(Idx, Attribute::StructRet)) { - Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V); - Assert1(Idx == 1 || Idx == 2, - "Attribute 'sret' is not on first or second parameter!", V); + Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); + Assert(Idx == 1 || Idx == 2, + "Attribute 'sret' is not on first or second parameter!", V); SawSRet = true; } if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) { - Assert1(Idx == FT->getNumParams(), - "inalloca isn't on the last parameter!", V); + Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!", + V); } } @@ -1108,39 +1104,35 @@ void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V); - Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::ReadNone) && - Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::ReadOnly)), - "Attributes 'readnone and readonly' are incompatible!", V); + Assert( + !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && + Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)), + "Attributes 'readnone and readonly' are incompatible!", V); - Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::NoInline) && - Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::AlwaysInline)), - "Attributes 'noinline and alwaysinline' are incompatible!", V); + Assert( + !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) && + Attrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::AlwaysInline)), + "Attributes 'noinline and alwaysinline' are incompatible!", V); if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeNone)) { - Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::NoInline), - "Attribute 'optnone' requires 'noinline'!", V); + Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline), + "Attribute 'optnone' requires 'noinline'!", V); - Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::OptimizeForSize), - "Attributes 'optsize and optnone' are incompatible!", V); + Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::OptimizeForSize), + "Attributes 'optsize and optnone' are incompatible!", V); - Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::MinSize), - "Attributes 'minsize and optnone' are incompatible!", V); + Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize), + "Attributes 'minsize and optnone' are incompatible!", V); } if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::JumpTable)) { const GlobalValue *GV = cast<GlobalValue>(V); - Assert1(GV->hasUnnamedAddr(), - "Attribute 'jumptable' requires 'unnamed_addr'", V); - + Assert(GV->hasUnnamedAddr(), + "Attribute 'jumptable' requires 'unnamed_addr'", V); } } @@ -1148,9 +1140,9 @@ void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) { if (CE->getOpcode() != Instruction::BitCast) return; - Assert1(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), - CE->getType()), - "Invalid bitcast", CE); + Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), + CE->getType()), + "Invalid bitcast", CE); } bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) { @@ -1175,84 +1167,86 @@ void Verifier::VerifyStatepoint(ImmutableCallSite CS) { const Instruction &CI = *CS.getInstruction(); - Assert1(!CS.doesNotAccessMemory() && - !CS.onlyReadsMemory(), - "gc.statepoint must read and write memory to preserve " - "reordering restrictions required by safepoint semantics", &CI); - + Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory(), + "gc.statepoint must read and write memory to preserve " + "reordering restrictions required by safepoint semantics", + &CI); + const Value *Target = CS.getArgument(0); const PointerType *PT = dyn_cast<PointerType>(Target->getType()); - Assert2(PT && PT->getElementType()->isFunctionTy(), - "gc.statepoint callee must be of function pointer type", - &CI, Target); + Assert(PT && PT->getElementType()->isFunctionTy(), + "gc.statepoint callee must be of function pointer type", &CI, Target); FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); const Value *NumCallArgsV = CS.getArgument(1); - Assert1(isa<ConstantInt>(NumCallArgsV), - "gc.statepoint number of arguments to underlying call " - "must be constant integer", &CI); + Assert(isa<ConstantInt>(NumCallArgsV), + "gc.statepoint number of arguments to underlying call " + "must be constant integer", + &CI); const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue(); - Assert1(NumCallArgs >= 0, - "gc.statepoint number of arguments to underlying call " - "must be positive", &CI); + Assert(NumCallArgs >= 0, + "gc.statepoint number of arguments to underlying call " + "must be positive", + &CI); const int NumParams = (int)TargetFuncType->getNumParams(); if (TargetFuncType->isVarArg()) { - Assert1(NumCallArgs >= NumParams, - "gc.statepoint mismatch in number of vararg call args", &CI); + Assert(NumCallArgs >= NumParams, + "gc.statepoint mismatch in number of vararg call args", &CI); // TODO: Remove this limitation - Assert1(TargetFuncType->getReturnType()->isVoidTy(), - "gc.statepoint doesn't support wrapping non-void " - "vararg functions yet", &CI); + Assert(TargetFuncType->getReturnType()->isVoidTy(), + "gc.statepoint doesn't support wrapping non-void " + "vararg functions yet", + &CI); } else - Assert1(NumCallArgs == NumParams, - "gc.statepoint mismatch in number of call args", &CI); + Assert(NumCallArgs == NumParams, + "gc.statepoint mismatch in number of call args", &CI); const Value *Unused = CS.getArgument(2); - Assert1(isa<ConstantInt>(Unused) && - cast<ConstantInt>(Unused)->isNullValue(), - "gc.statepoint parameter #3 must be zero", &CI); + Assert(isa<ConstantInt>(Unused) && cast<ConstantInt>(Unused)->isNullValue(), + "gc.statepoint parameter #3 must be zero", &CI); // Verify that the types of the call parameter arguments match // the type of the wrapped callee. for (int i = 0; i < NumParams; i++) { Type *ParamType = TargetFuncType->getParamType(i); Type *ArgType = CS.getArgument(3+i)->getType(); - Assert1(ArgType == ParamType, - "gc.statepoint call argument does not match wrapped " - "function type", &CI); + Assert(ArgType == ParamType, + "gc.statepoint call argument does not match wrapped " + "function type", + &CI); } const int EndCallArgsInx = 2+NumCallArgs; const Value *NumDeoptArgsV = CS.getArgument(EndCallArgsInx+1); - Assert1(isa<ConstantInt>(NumDeoptArgsV), - "gc.statepoint number of deoptimization arguments " - "must be constant integer", &CI); + Assert(isa<ConstantInt>(NumDeoptArgsV), + "gc.statepoint number of deoptimization arguments " + "must be constant integer", + &CI); const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); - Assert1(NumDeoptArgs >= 0, - "gc.statepoint number of deoptimization arguments " - "must be positive", &CI); + Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments " + "must be positive", + &CI); + + Assert(4 + NumCallArgs + NumDeoptArgs <= (int)CS.arg_size(), + "gc.statepoint too few arguments according to length fields", &CI); - Assert1(4 + NumCallArgs + NumDeoptArgs <= (int)CS.arg_size(), - "gc.statepoint too few arguments according to length fields", &CI); - // Check that the only uses of this gc.statepoint are gc.result or // gc.relocate calls which are tied to this statepoint and thus part // of the same statepoint sequence for (const User *U : CI.users()) { const CallInst *Call = dyn_cast<const CallInst>(U); - Assert2(Call, "illegal use of statepoint token", &CI, U); + Assert(Call, "illegal use of statepoint token", &CI, U); if (!Call) continue; - Assert2(isGCRelocate(Call) || isGCResult(Call), - "gc.result or gc.relocate are the only value uses" - "of a gc.statepoint", &CI, U); + Assert(isGCRelocate(Call) || isGCResult(Call), + "gc.result or gc.relocate are the only value uses" + "of a gc.statepoint", + &CI, U); if (isGCResult(Call)) { - Assert2(Call->getArgOperand(0) == &CI, - "gc.result connected to wrong gc.statepoint", - &CI, Call); + Assert(Call->getArgOperand(0) == &CI, + "gc.result connected to wrong gc.statepoint", &CI, Call); } else if (isGCRelocate(Call)) { - Assert2(Call->getArgOperand(0) == &CI, - "gc.relocate connected to wrong gc.statepoint", - &CI, Call); + Assert(Call->getArgOperand(0) == &CI, + "gc.relocate connected to wrong gc.statepoint", &CI, Call); } } @@ -1266,6 +1260,19 @@ void Verifier::VerifyStatepoint(ImmutableCallSite CS) { // about. See example statepoint.ll in the verifier subdirectory } +void Verifier::verifyFrameRecoverIndices() { + for (auto &Counts : FrameEscapeInfo) { + Function *F = Counts.first; + unsigned EscapedObjectCount = Counts.second.first; + unsigned MaxRecoveredIndex = Counts.second.second; + Assert(MaxRecoveredIndex <= EscapedObjectCount, + "all indices passed to llvm.framerecover must be less than the " + "number of arguments passed ot llvm.frameescape in the parent " + "function", + F); + } +} + // visitFunction - Verify that a function is ok. // void Verifier::visitFunction(const Function &F) { @@ -1273,25 +1280,24 @@ void Verifier::visitFunction(const Function &F) { FunctionType *FT = F.getFunctionType(); unsigned NumArgs = F.arg_size(); - Assert1(Context == &F.getContext(), - "Function context does not match Module context!", &F); + Assert(Context == &F.getContext(), + "Function context does not match Module context!", &F); - Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); - Assert2(FT->getNumParams() == NumArgs, - "# formal arguments must match # of arguments for function type!", - &F, FT); - Assert1(F.getReturnType()->isFirstClassType() || - F.getReturnType()->isVoidTy() || - F.getReturnType()->isStructTy(), - "Functions cannot return aggregate values!", &F); + Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); + Assert(FT->getNumParams() == NumArgs, + "# formal arguments must match # of arguments for function type!", &F, + FT); + Assert(F.getReturnType()->isFirstClassType() || + F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), + "Functions cannot return aggregate values!", &F); - Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), - "Invalid struct return type!", &F); + Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), + "Invalid struct return type!", &F); AttributeSet Attrs = F.getAttributes(); - Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), - "Attribute after last parameter!", &F); + Assert(VerifyAttributeCount(Attrs, FT->getNumParams()), + "Attribute after last parameter!", &F); // Check function attributes. VerifyFunctionAttrs(FT, Attrs, &F); @@ -1299,9 +1305,8 @@ void Verifier::visitFunction(const Function &F) { // On function declarations/definitions, we do not support the builtin // attribute. We do not check this in VerifyFunctionAttrs since that is // checking for Attributes that can/can not ever be on functions. - Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::Builtin), - "Attribute 'builtin' can only be applied to a callsite.", &F); + Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin), + "Attribute 'builtin' can only be applied to a callsite.", &F); // Check that this function meets the restrictions on this calling convention. // Sometimes varargs is used for perfectly forwarding thunks, so some of these @@ -1315,8 +1320,9 @@ void Verifier::visitFunction(const Function &F) { case CallingConv::Intel_OCL_BI: case CallingConv::PTX_Kernel: case CallingConv::PTX_Device: - Assert1(!F.isVarArg(), "Calling convention does not support varargs or " - "perfect forwarding!", &F); + Assert(!F.isVarArg(), "Calling convention does not support varargs or " + "perfect forwarding!", + &F); break; } @@ -1327,35 +1333,35 @@ void Verifier::visitFunction(const Function &F) { unsigned i = 0; for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I, ++i) { - Assert2(I->getType() == FT->getParamType(i), - "Argument value does not match function argument type!", - I, FT->getParamType(i)); - Assert1(I->getType()->isFirstClassType(), - "Function arguments must have first-class types!", I); + Assert(I->getType() == FT->getParamType(i), + "Argument value does not match function argument type!", I, + FT->getParamType(i)); + Assert(I->getType()->isFirstClassType(), + "Function arguments must have first-class types!", I); if (!isLLVMdotName) - Assert2(!I->getType()->isMetadataTy(), - "Function takes metadata but isn't an intrinsic", I, &F); + Assert(!I->getType()->isMetadataTy(), + "Function takes metadata but isn't an intrinsic", I, &F); } if (F.isMaterializable()) { // Function has a body somewhere we can't see. } else if (F.isDeclaration()) { - Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(), - "invalid linkage type for function declaration", &F); + Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(), + "invalid linkage type for function declaration", &F); } else { // Verify that this function (which has a body) is not named "llvm.*". It // is not legal to define intrinsics. - Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); + Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); // Check the entry node const BasicBlock *Entry = &F.getEntryBlock(); - Assert1(pred_empty(Entry), - "Entry block to function must not have predecessors!", Entry); + Assert(pred_empty(Entry), + "Entry block to function must not have predecessors!", Entry); // The address of the entry block cannot be taken, unless it is dead. if (Entry->hasAddressTaken()) { - Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(), - "blockaddress may not be used with the entry block!", Entry); + Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), + "blockaddress may not be used with the entry block!", Entry); } } @@ -1364,13 +1370,13 @@ void Verifier::visitFunction(const Function &F) { if (F.getIntrinsicID()) { const User *U; if (F.hasAddressTaken(&U)) - Assert1(0, "Invalid user of intrinsic instruction!", U); + Assert(0, "Invalid user of intrinsic instruction!", U); } - Assert1(!F.hasDLLImportStorageClass() || - (F.isDeclaration() && F.hasExternalLinkage()) || - F.hasAvailableExternallyLinkage(), - "Function is marked as dllimport, but not external.", &F); + Assert(!F.hasDLLImportStorageClass() || + (F.isDeclaration() && F.hasExternalLinkage()) || + F.hasAvailableExternallyLinkage(), + "Function is marked as dllimport, but not external.", &F); } // verifyBasicBlock - Verify that a basic block is well formed... @@ -1379,7 +1385,7 @@ void Verifier::visitBasicBlock(BasicBlock &BB) { InstsInThisBlock.clear(); // Ensure that basic blocks have terminators! - Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); + Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); // Check constraints that this basic block imposes on all of the PHI nodes in // it. @@ -1390,12 +1396,14 @@ void Verifier::visitBasicBlock(BasicBlock &BB) { PHINode *PN; for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { // Ensure that PHI nodes have at least one entry! - Assert1(PN->getNumIncomingValues() != 0, - "PHI nodes must have at least one entry. If the block is dead, " - "the PHI should be removed!", PN); - Assert1(PN->getNumIncomingValues() == Preds.size(), - "PHINode should have one entry for each predecessor of its " - "parent basic block!", PN); + Assert(PN->getNumIncomingValues() != 0, + "PHI nodes must have at least one entry. If the block is dead, " + "the PHI should be removed!", + PN); + Assert(PN->getNumIncomingValues() == Preds.size(), + "PHINode should have one entry for each predecessor of its " + "parent basic block!", + PN); // Get and sort all incoming values in the PHI node... Values.clear(); @@ -1410,17 +1418,17 @@ void Verifier::visitBasicBlock(BasicBlock &BB) { // particular basic block in this PHI node, that the incoming values are // all identical. // - Assert4(i == 0 || Values[i].first != Values[i-1].first || - Values[i].second == Values[i-1].second, - "PHI node has multiple entries for the same basic block with " - "different incoming values!", PN, Values[i].first, - Values[i].second, Values[i-1].second); + Assert(i == 0 || Values[i].first != Values[i - 1].first || + Values[i].second == Values[i - 1].second, + "PHI node has multiple entries for the same basic block with " + "different incoming values!", + PN, Values[i].first, Values[i].second, Values[i - 1].second); // Check to make sure that the predecessors and PHI node entries are // matched up. - Assert3(Values[i].first == Preds[i], - "PHI node entries do not match predecessors!", PN, - Values[i].first, Preds[i]); + Assert(Values[i].first == Preds[i], + "PHI node entries do not match predecessors!", PN, + Values[i].first, Preds[i]); } } } @@ -1434,15 +1442,15 @@ void Verifier::visitBasicBlock(BasicBlock &BB) { void Verifier::visitTerminatorInst(TerminatorInst &I) { // Ensure that terminators only exist at the end of the basic block. - Assert1(&I == I.getParent()->getTerminator(), - "Terminator found in the middle of a basic block!", I.getParent()); + Assert(&I == I.getParent()->getTerminator(), + "Terminator found in the middle of a basic block!", I.getParent()); visitInstruction(I); } void Verifier::visitBranchInst(BranchInst &BI) { if (BI.isConditional()) { - Assert2(BI.getCondition()->getType()->isIntegerTy(1), - "Branch condition is not 'i1' type!", &BI, BI.getCondition()); + Assert(BI.getCondition()->getType()->isIntegerTy(1), + "Branch condition is not 'i1' type!", &BI, BI.getCondition()); } visitTerminatorInst(BI); } @@ -1451,13 +1459,15 @@ void Verifier::visitReturnInst(ReturnInst &RI) { Function *F = RI.getParent()->getParent(); unsigned N = RI.getNumOperands(); if (F->getReturnType()->isVoidTy()) - Assert2(N == 0, - "Found return instr that returns non-void in Function of void " - "return type!", &RI, F->getReturnType()); + Assert(N == 0, + "Found return instr that returns non-void in Function of void " + "return type!", + &RI, F->getReturnType()); else - Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), - "Function return type does not match operand " - "type of return inst!", &RI, F->getReturnType()); + Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), + "Function return type does not match operand " + "type of return inst!", + &RI, F->getReturnType()); // Check to make sure that the return value has necessary properties for // terminators... @@ -1470,32 +1480,32 @@ void Verifier::visitSwitchInst(SwitchInst &SI) { Type *SwitchTy = SI.getCondition()->getType(); SmallPtrSet<ConstantInt*, 32> Constants; for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { - Assert1(i.getCaseValue()->getType() == SwitchTy, - "Switch constants must all be same type as switch value!", &SI); - Assert2(Constants.insert(i.getCaseValue()).second, - "Duplicate integer as switch case", &SI, i.getCaseValue()); + Assert(i.getCaseValue()->getType() == SwitchTy, + "Switch constants must all be same type as switch value!", &SI); + Assert(Constants.insert(i.getCaseValue()).second, + "Duplicate integer as switch case", &SI, i.getCaseValue()); } visitTerminatorInst(SI); } void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { - Assert1(BI.getAddress()->getType()->isPointerTy(), - "Indirectbr operand must have pointer type!", &BI); + Assert(BI.getAddress()->getType()->isPointerTy(), + "Indirectbr operand must have pointer type!", &BI); for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) - Assert1(BI.getDestination(i)->getType()->isLabelTy(), - "Indirectbr destinations must all have pointer type!", &BI); + Assert(BI.getDestination(i)->getType()->isLabelTy(), + "Indirectbr destinations must all have pointer type!", &BI); visitTerminatorInst(BI); } void Verifier::visitSelectInst(SelectInst &SI) { - Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), - SI.getOperand(2)), - "Invalid operands for select instruction!", &SI); + Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), + SI.getOperand(2)), + "Invalid operands for select instruction!", &SI); - Assert1(SI.getTrueValue()->getType() == SI.getType(), - "Select values must have same type as select instruction!", &SI); + Assert(SI.getTrueValue()->getType() == SI.getType(), + "Select values must have same type as select instruction!", &SI); visitInstruction(SI); } @@ -1503,7 +1513,7 @@ void Verifier::visitSelectInst(SelectInst &SI) { /// a pass, if any exist, it's an error. /// void Verifier::visitUserOp1(Instruction &I) { - Assert1(0, "User-defined operators should not live outside of a pass!", &I); + Assert(0, "User-defined operators should not live outside of a pass!", &I); } void Verifier::visitTruncInst(TruncInst &I) { @@ -1515,11 +1525,11 @@ void Verifier::visitTruncInst(TruncInst &I) { unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); - Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "trunc source and destination must both be a vector or neither", &I); - Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); + Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); + Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "trunc source and destination must both be a vector or neither", &I); + Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); visitInstruction(I); } @@ -1530,14 +1540,14 @@ void Verifier::visitZExtInst(ZExtInst &I) { Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); - Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "zext source and destination must both be a vector or neither", &I); + Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); + Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "zext source and destination must both be a vector or neither", &I); unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); + Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); visitInstruction(I); } @@ -1551,11 +1561,11 @@ void Verifier::visitSExtInst(SExtInst &I) { unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); - Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "sext source and destination must both be a vector or neither", &I); - Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); + Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); + Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "sext source and destination must both be a vector or neither", &I); + Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); visitInstruction(I); } @@ -1568,11 +1578,11 @@ void Verifier::visitFPTruncInst(FPTruncInst &I) { unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I); - Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "fptrunc source and destination must both be a vector or neither",&I); - Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); + Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); + Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "fptrunc source and destination must both be a vector or neither", &I); + Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); visitInstruction(I); } @@ -1586,11 +1596,11 @@ void Verifier::visitFPExtInst(FPExtInst &I) { unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I); - Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "fpext source and destination must both be a vector or neither", &I); - Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); + Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); + Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "fpext source and destination must both be a vector or neither", &I); + Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); visitInstruction(I); } @@ -1603,17 +1613,17 @@ void Verifier::visitUIToFPInst(UIToFPInst &I) { bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); - Assert1(SrcVec == DstVec, - "UIToFP source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isIntOrIntVectorTy(), - "UIToFP source must be integer or integer vector", &I); - Assert1(DestTy->isFPOrFPVectorTy(), - "UIToFP result must be FP or FP vector", &I); + Assert(SrcVec == DstVec, + "UIToFP source and dest must both be vector or scalar", &I); + Assert(SrcTy->isIntOrIntVectorTy(), + "UIToFP source must be integer or integer vector", &I); + Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", + &I); if (SrcVec && DstVec) - Assert1(cast<VectorType>(SrcTy)->getNumElements() == - cast<VectorType>(DestTy)->getNumElements(), - "UIToFP source and dest vector length mismatch", &I); + Assert(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "UIToFP source and dest vector length mismatch", &I); visitInstruction(I); } @@ -1626,17 +1636,17 @@ void Verifier::visitSIToFPInst(SIToFPInst &I) { bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); - Assert1(SrcVec == DstVec, - "SIToFP source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isIntOrIntVectorTy(), - "SIToFP source must be integer or integer vector", &I); - Assert1(DestTy->isFPOrFPVectorTy(), - "SIToFP result must be FP or FP vector", &I); + Assert(SrcVec == DstVec, + "SIToFP source and dest must both be vector or scalar", &I); + Assert(SrcTy->isIntOrIntVectorTy(), + "SIToFP source must be integer or integer vector", &I); + Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", + &I); if (SrcVec && DstVec) - Assert1(cast<VectorType>(SrcTy)->getNumElements() == - cast<VectorType>(DestTy)->getNumElements(), - "SIToFP source and dest vector length mismatch", &I); + Assert(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "SIToFP source and dest vector length mismatch", &I); visitInstruction(I); } @@ -1649,17 +1659,17 @@ void Verifier::visitFPToUIInst(FPToUIInst &I) { bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); - Assert1(SrcVec == DstVec, - "FPToUI source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", - &I); - Assert1(DestTy->isIntOrIntVectorTy(), - "FPToUI result must be integer or integer vector", &I); + Assert(SrcVec == DstVec, + "FPToUI source and dest must both be vector or scalar", &I); + Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", + &I); + Assert(DestTy->isIntOrIntVectorTy(), + "FPToUI result must be integer or integer vector", &I); if (SrcVec && DstVec) - Assert1(cast<VectorType>(SrcTy)->getNumElements() == - cast<VectorType>(DestTy)->getNumElements(), - "FPToUI source and dest vector length mismatch", &I); + Assert(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "FPToUI source and dest vector length mismatch", &I); visitInstruction(I); } @@ -1672,17 +1682,17 @@ void Verifier::visitFPToSIInst(FPToSIInst &I) { bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); - Assert1(SrcVec == DstVec, - "FPToSI source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isFPOrFPVectorTy(), - "FPToSI source must be FP or FP vector", &I); - Assert1(DestTy->isIntOrIntVectorTy(), - "FPToSI result must be integer or integer vector", &I); + Assert(SrcVec == DstVec, + "FPToSI source and dest must both be vector or scalar", &I); + Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", + &I); + Assert(DestTy->isIntOrIntVectorTy(), + "FPToSI result must be integer or integer vector", &I); if (SrcVec && DstVec) - Assert1(cast<VectorType>(SrcTy)->getNumElements() == - cast<VectorType>(DestTy)->getNumElements(), - "FPToSI source and dest vector length mismatch", &I); + Assert(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "FPToSI source and dest vector length mismatch", &I); visitInstruction(I); } @@ -1692,18 +1702,18 @@ void Verifier::visitPtrToIntInst(PtrToIntInst &I) { Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); - Assert1(SrcTy->getScalarType()->isPointerTy(), - "PtrToInt source must be pointer", &I); - Assert1(DestTy->getScalarType()->isIntegerTy(), - "PtrToInt result must be integral", &I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "PtrToInt type mismatch", &I); + Assert(SrcTy->getScalarType()->isPointerTy(), + "PtrToInt source must be pointer", &I); + Assert(DestTy->getScalarType()->isIntegerTy(), + "PtrToInt result must be integral", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", + &I); if (SrcTy->isVectorTy()) { VectorType *VSrc = dyn_cast<VectorType>(SrcTy); VectorType *VDest = dyn_cast<VectorType>(DestTy); - Assert1(VSrc->getNumElements() == VDest->getNumElements(), - "PtrToInt Vector width mismatch", &I); + Assert(VSrc->getNumElements() == VDest->getNumElements(), + "PtrToInt Vector width mismatch", &I); } visitInstruction(I); @@ -1714,23 +1724,23 @@ void Verifier::visitIntToPtrInst(IntToPtrInst &I) { Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); - Assert1(SrcTy->getScalarType()->isIntegerTy(), - "IntToPtr source must be an integral", &I); - Assert1(DestTy->getScalarType()->isPointerTy(), - "IntToPtr result must be a pointer",&I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "IntToPtr type mismatch", &I); + Assert(SrcTy->getScalarType()->isIntegerTy(), + "IntToPtr source must be an integral", &I); + Assert(DestTy->getScalarType()->isPointerTy(), + "IntToPtr result must be a pointer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", + &I); if (SrcTy->isVectorTy()) { VectorType *VSrc = dyn_cast<VectorType>(SrcTy); VectorType *VDest = dyn_cast<VectorType>(DestTy); - Assert1(VSrc->getNumElements() == VDest->getNumElements(), - "IntToPtr Vector width mismatch", &I); + Assert(VSrc->getNumElements() == VDest->getNumElements(), + "IntToPtr Vector width mismatch", &I); } visitInstruction(I); } void Verifier::visitBitCastInst(BitCastInst &I) { - Assert1( + Assert( CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), "Invalid bitcast", &I); visitInstruction(I); @@ -1740,15 +1750,15 @@ void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); - Assert1(SrcTy->isPtrOrPtrVectorTy(), - "AddrSpaceCast source must be a pointer", &I); - Assert1(DestTy->isPtrOrPtrVectorTy(), - "AddrSpaceCast result must be a pointer", &I); - Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), - "AddrSpaceCast must be between different address spaces", &I); + Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", + &I); + Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", + &I); + Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), + "AddrSpaceCast must be between different address spaces", &I); if (SrcTy->isVectorTy()) - Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), - "AddrSpaceCast vector pointer number of elements mismatch", &I); + Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), + "AddrSpaceCast vector pointer number of elements mismatch", &I); visitInstruction(I); } @@ -1759,16 +1769,15 @@ void Verifier::visitPHINode(PHINode &PN) { // This can be tested by checking whether the instruction before this is // either nonexistent (because this is begin()) or is a PHI node. If not, // then there is some other instruction before a PHI. - Assert2(&PN == &PN.getParent()->front() || - isa<PHINode>(--BasicBlock::iterator(&PN)), - "PHI nodes not grouped at top of basic block!", - &PN, PN.getParent()); + Assert(&PN == &PN.getParent()->front() || + isa<PHINode>(--BasicBlock::iterator(&PN)), + "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); // Check that all of the values of the PHI node have the same type as the // result, and that the incoming blocks are really basic blocks. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { - Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), - "PHI node operands are not the same type as the result!", &PN); + Assert(PN.getType() == PN.getIncomingValue(i)->getType(), + "PHI node operands are not the same type as the result!", &PN); } // All other PHI node constraints are checked in the visitBasicBlock method. @@ -1779,32 +1788,32 @@ void Verifier::visitPHINode(PHINode &PN) { void Verifier::VerifyCallSite(CallSite CS) { Instruction *I = CS.getInstruction(); - Assert1(CS.getCalledValue()->getType()->isPointerTy(), - "Called function must be a pointer!", I); + Assert(CS.getCalledValue()->getType()->isPointerTy(), + "Called function must be a pointer!", I); PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); - Assert1(FPTy->getElementType()->isFunctionTy(), - "Called function is not pointer to function type!", I); + Assert(FPTy->getElementType()->isFunctionTy(), + "Called function is not pointer to function type!", I); FunctionType *FTy = cast<FunctionType>(FPTy->getElementType()); // Verify that the correct number of arguments are being passed if (FTy->isVarArg()) - Assert1(CS.arg_size() >= FTy->getNumParams(), - "Called function requires more parameters than were provided!",I); + Assert(CS.arg_size() >= FTy->getNumParams(), + "Called function requires more parameters than were provided!", I); else - Assert1(CS.arg_size() == FTy->getNumParams(), - "Incorrect number of arguments passed to called function!", I); + Assert(CS.arg_size() == FTy->getNumParams(), + "Incorrect number of arguments passed to called function!", I); // Verify that all arguments to the call match the function type. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) - Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i), - "Call parameter type does not match function signature!", - CS.getArgument(i), FTy->getParamType(i), I); + Assert(CS.getArgument(i)->getType() == FTy->getParamType(i), + "Call parameter type does not match function signature!", + CS.getArgument(i), FTy->getParamType(i), I); AttributeSet Attrs = CS.getAttributes(); - Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), - "Attribute after last parameter!", I); + Assert(VerifyAttributeCount(Attrs, CS.arg_size()), + "Attribute after last parameter!", I); // Verify call attributes. VerifyFunctionAttrs(FTy, Attrs, I); @@ -1815,8 +1824,8 @@ void Verifier::VerifyCallSite(CallSite CS) { if (CS.hasInAllocaArgument()) { Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) - Assert2(AI->isUsedWithInAlloca(), - "inalloca argument for call has mismatched alloca", AI, I); + Assert(AI->isUsedWithInAlloca(), + "inalloca argument for call has mismatched alloca", AI, I); } if (FTy->isVarArg()) { @@ -1837,25 +1846,25 @@ void Verifier::VerifyCallSite(CallSite CS) { VerifyParameterAttrs(Attrs, Idx, Ty, false, I); if (Attrs.hasAttribute(Idx, Attribute::Nest)) { - Assert1(!SawNest, "More than one parameter has attribute nest!", I); + Assert(!SawNest, "More than one parameter has attribute nest!", I); SawNest = true; } if (Attrs.hasAttribute(Idx, Attribute::Returned)) { - Assert1(!SawReturned, "More than one parameter has attribute returned!", - I); - Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), - "Incompatible argument and return types for 'returned' " - "attribute", I); + Assert(!SawReturned, "More than one parameter has attribute returned!", + I); + Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), + "Incompatible argument and return types for 'returned' " + "attribute", + I); SawReturned = true; } - Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet), - "Attribute 'sret' cannot be used for vararg call arguments!", I); + Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet), + "Attribute 'sret' cannot be used for vararg call arguments!", I); if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) - Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!", - I); + Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I); } } @@ -1864,8 +1873,8 @@ void Verifier::VerifyCallSite(CallSite CS) { !CS.getCalledFunction()->getName().startswith("llvm.")) { for (FunctionType::param_iterator PI = FTy->param_begin(), PE = FTy->param_end(); PI != PE; ++PI) - Assert1(!(*PI)->isMetadataTy(), - "Function has metadata parameter but isn't an intrinsic", I); + Assert(!(*PI)->isMetadataTy(), + "Function has metadata parameter but isn't an intrinsic", I); } visitInstruction(*I); @@ -1898,7 +1907,7 @@ static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) { } void Verifier::verifyMustTailCall(CallInst &CI) { - Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); + Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); // - The caller and callee prototypes must match. Pointer types of // parameters or return types may differ in pointee type, but not @@ -1910,21 +1919,21 @@ void Verifier::verifyMustTailCall(CallInst &CI) { }; FunctionType *CallerTy = GetFnTy(F); FunctionType *CalleeTy = GetFnTy(CI.getCalledValue()); - Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(), - "cannot guarantee tail call due to mismatched parameter counts", &CI); - Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(), - "cannot guarantee tail call due to mismatched varargs", &CI); - Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), - "cannot guarantee tail call due to mismatched return types", &CI); + Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), + "cannot guarantee tail call due to mismatched parameter counts", &CI); + Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), + "cannot guarantee tail call due to mismatched varargs", &CI); + Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), + "cannot guarantee tail call due to mismatched return types", &CI); for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { - Assert1( + Assert( isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), "cannot guarantee tail call due to mismatched parameter types", &CI); } // - The calling conventions of the caller and callee must match. - Assert1(F->getCallingConv() == CI.getCallingConv(), - "cannot guarantee tail call due to mismatched calling conv", &CI); + Assert(F->getCallingConv() == CI.getCallingConv(), + "cannot guarantee tail call due to mismatched calling conv", &CI); // - All ABI-impacting function attributes, such as sret, byval, inreg, // returned, and inalloca, must match. @@ -1933,9 +1942,10 @@ void Verifier::verifyMustTailCall(CallInst &CI) { for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); - Assert2(CallerABIAttrs == CalleeABIAttrs, - "cannot guarantee tail call due to mismatched ABI impacting " - "function attributes", &CI, CI.getOperand(I)); + Assert(CallerABIAttrs == CalleeABIAttrs, + "cannot guarantee tail call due to mismatched ABI impacting " + "function attributes", + &CI, CI.getOperand(I)); } // - The call must immediately precede a :ref:`ret <i_ret>` instruction, @@ -1947,18 +1957,18 @@ void Verifier::verifyMustTailCall(CallInst &CI) { // Handle the optional bitcast. if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { - Assert1(BI->getOperand(0) == RetVal, - "bitcast following musttail call must use the call", BI); + Assert(BI->getOperand(0) == RetVal, + "bitcast following musttail call must use the call", BI); RetVal = BI; Next = BI->getNextNode(); } // Check the return. ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); - Assert1(Ret, "musttail call must be precede a ret with an optional bitcast", - &CI); - Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, - "musttail call result must be returned", Ret); + Assert(Ret, "musttail call must be precede a ret with an optional bitcast", + &CI); + Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, + "musttail call result must be returned", Ret); } void Verifier::visitCallInst(CallInst &CI) { @@ -1977,8 +1987,8 @@ void Verifier::visitInvokeInst(InvokeInst &II) { // Verify that there is a landingpad instruction as the first non-PHI // instruction of the 'unwind' destination. - Assert1(II.getUnwindDest()->isLandingPad(), - "The unwind destination does not have a landingpad instruction!",&II); + Assert(II.getUnwindDest()->isLandingPad(), + "The unwind destination does not have a landingpad instruction!", &II); if (Function *F = II.getCalledFunction()) // TODO: Ideally we should use visitIntrinsicFunction here. But it uses @@ -1994,8 +2004,8 @@ void Verifier::visitInvokeInst(InvokeInst &II) { /// of the same type! /// void Verifier::visitBinaryOperator(BinaryOperator &B) { - Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), - "Both operands to a binary operator are not of the same type!", &B); + Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), + "Both operands to a binary operator are not of the same type!", &B); switch (B.getOpcode()) { // Check that integer arithmetic operators are only used with @@ -2007,11 +2017,12 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: - Assert1(B.getType()->isIntOrIntVectorTy(), - "Integer arithmetic operators only work with integral types!", &B); - Assert1(B.getType() == B.getOperand(0)->getType(), - "Integer arithmetic operators must have same type " - "for operands and result!", &B); + Assert(B.getType()->isIntOrIntVectorTy(), + "Integer arithmetic operators only work with integral types!", &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Integer arithmetic operators must have same type " + "for operands and result!", + &B); break; // Check that floating-point arithmetic operators are only used with // floating-point operands. @@ -2020,30 +2031,32 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: - Assert1(B.getType()->isFPOrFPVectorTy(), - "Floating-point arithmetic operators only work with " - "floating-point types!", &B); - Assert1(B.getType() == B.getOperand(0)->getType(), - "Floating-point arithmetic operators must have same type " - "for operands and result!", &B); + Assert(B.getType()->isFPOrFPVectorTy(), + "Floating-point arithmetic operators only work with " + "floating-point types!", + &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Floating-point arithmetic operators must have same type " + "for operands and result!", + &B); break; // Check that logical operators are only used with integral operands. case Instruction::And: case Instruction::Or: case Instruction::Xor: - Assert1(B.getType()->isIntOrIntVectorTy(), - "Logical operators only work with integral types!", &B); - Assert1(B.getType() == B.getOperand(0)->getType(), - "Logical operators must have same type for operands and result!", - &B); + Assert(B.getType()->isIntOrIntVectorTy(), + "Logical operators only work with integral types!", &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Logical operators must have same type for operands and result!", + &B); break; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: - Assert1(B.getType()->isIntOrIntVectorTy(), - "Shifts only work with integral types!", &B); - Assert1(B.getType() == B.getOperand(0)->getType(), - "Shift return type must be same as operands!", &B); + Assert(B.getType()->isIntOrIntVectorTy(), + "Shifts only work with integral types!", &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Shift return type must be same as operands!", &B); break; default: llvm_unreachable("Unknown BinaryOperator opcode!"); @@ -2056,15 +2069,15 @@ void Verifier::visitICmpInst(ICmpInst &IC) { // Check that the operands are the same type Type *Op0Ty = IC.getOperand(0)->getType(); Type *Op1Ty = IC.getOperand(1)->getType(); - Assert1(Op0Ty == Op1Ty, - "Both operands to ICmp instruction are not of the same type!", &IC); + Assert(Op0Ty == Op1Ty, + "Both operands to ICmp instruction are not of the same type!", &IC); // Check that the operands are the right type - Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), - "Invalid operand types for ICmp instruction", &IC); + Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), + "Invalid operand types for ICmp instruction", &IC); // Check that the predicate is valid. - Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && - IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, - "Invalid predicate in ICmp instruction!", &IC); + Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && + IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, + "Invalid predicate in ICmp instruction!", &IC); visitInstruction(IC); } @@ -2073,72 +2086,72 @@ void Verifier::visitFCmpInst(FCmpInst &FC) { // Check that the operands are the same type Type *Op0Ty = FC.getOperand(0)->getType(); Type *Op1Ty = FC.getOperand(1)->getType(); - Assert1(Op0Ty == Op1Ty, - "Both operands to FCmp instruction are not of the same type!", &FC); + Assert(Op0Ty == Op1Ty, + "Both operands to FCmp instruction are not of the same type!", &FC); // Check that the operands are the right type - Assert1(Op0Ty->isFPOrFPVectorTy(), - "Invalid operand types for FCmp instruction", &FC); + Assert(Op0Ty->isFPOrFPVectorTy(), + "Invalid operand types for FCmp instruction", &FC); // Check that the predicate is valid. - Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && - FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, - "Invalid predicate in FCmp instruction!", &FC); + Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && + FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, + "Invalid predicate in FCmp instruction!", &FC); visitInstruction(FC); } void Verifier::visitExtractElementInst(ExtractElementInst &EI) { - Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), - EI.getOperand(1)), - "Invalid extractelement operands!", &EI); + Assert( + ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), + "Invalid extractelement operands!", &EI); visitInstruction(EI); } void Verifier::visitInsertElementInst(InsertElementInst &IE) { - Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), - IE.getOperand(1), - IE.getOperand(2)), - "Invalid insertelement operands!", &IE); + Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), + IE.getOperand(2)), + "Invalid insertelement operands!", &IE); visitInstruction(IE); } void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { - Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), - SV.getOperand(2)), - "Invalid shufflevector operands!", &SV); + Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), + SV.getOperand(2)), + "Invalid shufflevector operands!", &SV); visitInstruction(SV); } void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); - Assert1(isa<PointerType>(TargetTy), - "GEP base pointer is not a vector or a vector of pointers", &GEP); - Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(), - "GEP into unsized type!", &GEP); - Assert1(GEP.getPointerOperandType()->isVectorTy() == - GEP.getType()->isVectorTy(), "Vector GEP must return a vector value", - &GEP); + Assert(isa<PointerType>(TargetTy), + "GEP base pointer is not a vector or a vector of pointers", &GEP); + Assert(cast<PointerType>(TargetTy)->getElementType()->isSized(), + "GEP into unsized type!", &GEP); + Assert(GEP.getPointerOperandType()->isVectorTy() == + GEP.getType()->isVectorTy(), + "Vector GEP must return a vector value", &GEP); SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); Type *ElTy = GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs); - Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); + Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); - Assert2(GEP.getType()->getScalarType()->isPointerTy() && - cast<PointerType>(GEP.getType()->getScalarType())->getElementType() - == ElTy, "GEP is not of right type for indices!", &GEP, ElTy); + Assert(GEP.getType()->getScalarType()->isPointerTy() && + cast<PointerType>(GEP.getType()->getScalarType()) + ->getElementType() == ElTy, + "GEP is not of right type for indices!", &GEP, ElTy); if (GEP.getPointerOperandType()->isVectorTy()) { // Additional checks for vector GEPs. unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements(); - Assert1(GepWidth == GEP.getType()->getVectorNumElements(), - "Vector GEP result width doesn't match operand's", &GEP); + Assert(GepWidth == GEP.getType()->getVectorNumElements(), + "Vector GEP result width doesn't match operand's", &GEP); for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { Type *IndexTy = Idxs[i]->getType(); - Assert1(IndexTy->isVectorTy(), - "Vector GEP must have vector indices!", &GEP); + Assert(IndexTy->isVectorTy(), "Vector GEP must have vector indices!", + &GEP); unsigned IndexWidth = IndexTy->getVectorNumElements(); - Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP); + Assert(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP); } } visitInstruction(GEP); @@ -2155,34 +2168,33 @@ void Verifier::visitRangeMetadata(Instruction& I, "precondition violation"); unsigned NumOperands = Range->getNumOperands(); - Assert1(NumOperands % 2 == 0, "Unfinished range!", Range); + Assert(NumOperands % 2 == 0, "Unfinished range!", Range); unsigned NumRanges = NumOperands / 2; - Assert1(NumRanges >= 1, "It should have at least one range!", Range); - + Assert(NumRanges >= 1, "It should have at least one range!", Range); + ConstantRange LastRange(1); // Dummy initial value for (unsigned i = 0; i < NumRanges; ++i) { ConstantInt *Low = mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); - Assert1(Low, "The lower limit must be an integer!", Low); + Assert(Low, "The lower limit must be an integer!", Low); ConstantInt *High = mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); - Assert1(High, "The upper limit must be an integer!", High); - Assert1(High->getType() == Low->getType() && - High->getType() == Ty, "Range types must match instruction type!", - &I); - + Assert(High, "The upper limit must be an integer!", High); + Assert(High->getType() == Low->getType() && High->getType() == Ty, + "Range types must match instruction type!", &I); + APInt HighV = High->getValue(); APInt LowV = Low->getValue(); ConstantRange CurRange(LowV, HighV); - Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(), - "Range must not be empty!", Range); + Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), + "Range must not be empty!", Range); if (i != 0) { - Assert1(CurRange.intersectWith(LastRange).isEmptySet(), - "Intervals are overlapping", Range); - Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order", - Range); - Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous", - Range); + Assert(CurRange.intersectWith(LastRange).isEmptySet(), + "Intervals are overlapping", Range); + Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", + Range); + Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", + Range); } LastRange = ConstantRange(LowV, HighV); } @@ -2192,38 +2204,37 @@ void Verifier::visitRangeMetadata(Instruction& I, APInt FirstHigh = mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); ConstantRange FirstRange(FirstLow, FirstHigh); - Assert1(FirstRange.intersectWith(LastRange).isEmptySet(), - "Intervals are overlapping", Range); - Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", - Range); + Assert(FirstRange.intersectWith(LastRange).isEmptySet(), + "Intervals are overlapping", Range); + Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", + Range); } } void Verifier::visitLoadInst(LoadInst &LI) { PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); - Assert1(PTy, "Load operand must be a pointer.", &LI); + Assert(PTy, "Load operand must be a pointer.", &LI); Type *ElTy = PTy->getElementType(); - Assert2(ElTy == LI.getType(), - "Load result type does not match pointer operand type!", &LI, ElTy); - Assert1(LI.getAlignment() <= Value::MaximumAlignment, - "huge alignment values are unsupported", &LI); + Assert(ElTy == LI.getType(), + "Load result type does not match pointer operand type!", &LI, ElTy); + Assert(LI.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &LI); if (LI.isAtomic()) { - Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease, - "Load cannot have Release ordering", &LI); - Assert1(LI.getAlignment() != 0, - "Atomic load must specify explicit alignment", &LI); + Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease, + "Load cannot have Release ordering", &LI); + Assert(LI.getAlignment() != 0, + "Atomic load must specify explicit alignment", &LI); if (!ElTy->isPointerTy()) { - Assert2(ElTy->isIntegerTy(), - "atomic load operand must have integer type!", - &LI, ElTy); + Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!", + &LI, ElTy); unsigned Size = ElTy->getPrimitiveSizeInBits(); - Assert2(Size >= 8 && !(Size & (Size - 1)), - "atomic load operand must be power-of-two byte-sized integer", - &LI, ElTy); + Assert(Size >= 8 && !(Size & (Size - 1)), + "atomic load operand must be power-of-two byte-sized integer", &LI, + ElTy); } } else { - Assert1(LI.getSynchScope() == CrossThread, - "Non-atomic load cannot have SynchronizationScope specified", &LI); + Assert(LI.getSynchScope() == CrossThread, + "Non-atomic load cannot have SynchronizationScope specified", &LI); } visitInstruction(LI); @@ -2231,30 +2242,28 @@ void Verifier::visitLoadInst(LoadInst &LI) { void Verifier::visitStoreInst(StoreInst &SI) { PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); - Assert1(PTy, "Store operand must be a pointer.", &SI); + Assert(PTy, "Store operand must be a pointer.", &SI); Type *ElTy = PTy->getElementType(); - Assert2(ElTy == SI.getOperand(0)->getType(), - "Stored value type does not match pointer operand type!", - &SI, ElTy); - Assert1(SI.getAlignment() <= Value::MaximumAlignment, - "huge alignment values are unsupported", &SI); + Assert(ElTy == SI.getOperand(0)->getType(), + "Stored value type does not match pointer operand type!", &SI, ElTy); + Assert(SI.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &SI); if (SI.isAtomic()) { - Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease, - "Store cannot have Acquire ordering", &SI); - Assert1(SI.getAlignment() != 0, - "Atomic store must specify explicit alignment", &SI); + Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease, + "Store cannot have Acquire ordering", &SI); + Assert(SI.getAlignment() != 0, + "Atomic store must specify explicit alignment", &SI); if (!ElTy->isPointerTy()) { - Assert2(ElTy->isIntegerTy(), - "atomic store operand must have integer type!", - &SI, ElTy); + Assert(ElTy->isIntegerTy(), + "atomic store operand must have integer type!", &SI, ElTy); unsigned Size = ElTy->getPrimitiveSizeInBits(); - Assert2(Size >= 8 && !(Size & (Size - 1)), - "atomic store operand must be power-of-two byte-sized integer", - &SI, ElTy); + Assert(Size >= 8 && !(Size & (Size - 1)), + "atomic store operand must be power-of-two byte-sized integer", + &SI, ElTy); } } else { - Assert1(SI.getSynchScope() == CrossThread, - "Non-atomic store cannot have SynchronizationScope specified", &SI); + Assert(SI.getSynchScope() == CrossThread, + "Non-atomic store cannot have SynchronizationScope specified", &SI); } visitInstruction(SI); } @@ -2262,15 +2271,15 @@ void Verifier::visitStoreInst(StoreInst &SI) { void Verifier::visitAllocaInst(AllocaInst &AI) { SmallPtrSet<const Type*, 4> Visited; PointerType *PTy = AI.getType(); - Assert1(PTy->getAddressSpace() == 0, - "Allocation instruction pointer not in the generic address space!", - &AI); - Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type", - &AI); - Assert1(AI.getArraySize()->getType()->isIntegerTy(), - "Alloca array size must have integer type", &AI); - Assert1(AI.getAlignment() <= Value::MaximumAlignment, - "huge alignment values are unsupported", &AI); + Assert(PTy->getAddressSpace() == 0, + "Allocation instruction pointer not in the generic address space!", + &AI); + Assert(PTy->getElementType()->isSized(&Visited), + "Cannot allocate unsized type", &AI); + Assert(AI.getArraySize()->getType()->isIntegerTy(), + "Alloca array size must have integer type", &AI); + Assert(AI.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &AI); visitInstruction(AI); } @@ -2278,87 +2287,83 @@ void Verifier::visitAllocaInst(AllocaInst &AI) { void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { // FIXME: more conditions??? - Assert1(CXI.getSuccessOrdering() != NotAtomic, - "cmpxchg instructions must be atomic.", &CXI); - Assert1(CXI.getFailureOrdering() != NotAtomic, - "cmpxchg instructions must be atomic.", &CXI); - Assert1(CXI.getSuccessOrdering() != Unordered, - "cmpxchg instructions cannot be unordered.", &CXI); - Assert1(CXI.getFailureOrdering() != Unordered, - "cmpxchg instructions cannot be unordered.", &CXI); - Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(), - "cmpxchg instructions be at least as constrained on success as fail", - &CXI); - Assert1(CXI.getFailureOrdering() != Release && - CXI.getFailureOrdering() != AcquireRelease, - "cmpxchg failure ordering cannot include release semantics", &CXI); + Assert(CXI.getSuccessOrdering() != NotAtomic, + "cmpxchg instructions must be atomic.", &CXI); + Assert(CXI.getFailureOrdering() != NotAtomic, + "cmpxchg instructions must be atomic.", &CXI); + Assert(CXI.getSuccessOrdering() != Unordered, + "cmpxchg instructions cannot be unordered.", &CXI); + Assert(CXI.getFailureOrdering() != Unordered, + "cmpxchg instructions cannot be unordered.", &CXI); + Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(), + "cmpxchg instructions be at least as constrained on success as fail", + &CXI); + Assert(CXI.getFailureOrdering() != Release && + CXI.getFailureOrdering() != AcquireRelease, + "cmpxchg failure ordering cannot include release semantics", &CXI); PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); - Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI); + Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); Type *ElTy = PTy->getElementType(); - Assert2(ElTy->isIntegerTy(), - "cmpxchg operand must have integer type!", - &CXI, ElTy); + Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI, + ElTy); unsigned Size = ElTy->getPrimitiveSizeInBits(); - Assert2(Size >= 8 && !(Size & (Size - 1)), - "cmpxchg operand must be power-of-two byte-sized integer", - &CXI, ElTy); - Assert2(ElTy == CXI.getOperand(1)->getType(), - "Expected value type does not match pointer operand type!", - &CXI, ElTy); - Assert2(ElTy == CXI.getOperand(2)->getType(), - "Stored value type does not match pointer operand type!", - &CXI, ElTy); + Assert(Size >= 8 && !(Size & (Size - 1)), + "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy); + Assert(ElTy == CXI.getOperand(1)->getType(), + "Expected value type does not match pointer operand type!", &CXI, + ElTy); + Assert(ElTy == CXI.getOperand(2)->getType(), + "Stored value type does not match pointer operand type!", &CXI, ElTy); visitInstruction(CXI); } void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { - Assert1(RMWI.getOrdering() != NotAtomic, - "atomicrmw instructions must be atomic.", &RMWI); - Assert1(RMWI.getOrdering() != Unordered, - "atomicrmw instructions cannot be unordered.", &RMWI); + Assert(RMWI.getOrdering() != NotAtomic, + "atomicrmw instructions must be atomic.", &RMWI); + Assert(RMWI.getOrdering() != Unordered, + "atomicrmw instructions cannot be unordered.", &RMWI); PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); - Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI); + Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); Type *ElTy = PTy->getElementType(); - Assert2(ElTy->isIntegerTy(), - "atomicrmw operand must have integer type!", - &RMWI, ElTy); + Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!", + &RMWI, ElTy); unsigned Size = ElTy->getPrimitiveSizeInBits(); - Assert2(Size >= 8 && !(Size & (Size - 1)), - "atomicrmw operand must be power-of-two byte-sized integer", - &RMWI, ElTy); - Assert2(ElTy == RMWI.getOperand(1)->getType(), - "Argument value type does not match pointer operand type!", - &RMWI, ElTy); - Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && - RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, - "Invalid binary operation!", &RMWI); + Assert(Size >= 8 && !(Size & (Size - 1)), + "atomicrmw operand must be power-of-two byte-sized integer", &RMWI, + ElTy); + Assert(ElTy == RMWI.getOperand(1)->getType(), + "Argument value type does not match pointer operand type!", &RMWI, + ElTy); + Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && + RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, + "Invalid binary operation!", &RMWI); visitInstruction(RMWI); } void Verifier::visitFenceInst(FenceInst &FI) { const AtomicOrdering Ordering = FI.getOrdering(); - Assert1(Ordering == Acquire || Ordering == Release || - Ordering == AcquireRelease || Ordering == SequentiallyConsistent, - "fence instructions may only have " - "acquire, release, acq_rel, or seq_cst ordering.", &FI); + Assert(Ordering == Acquire || Ordering == Release || + Ordering == AcquireRelease || Ordering == SequentiallyConsistent, + "fence instructions may only have " + "acquire, release, acq_rel, or seq_cst ordering.", + &FI); visitInstruction(FI); } void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { - Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), - EVI.getIndices()) == - EVI.getType(), - "Invalid ExtractValueInst operands!", &EVI); + Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), + EVI.getIndices()) == EVI.getType(), + "Invalid ExtractValueInst operands!", &EVI); visitInstruction(EVI); } void Verifier::visitInsertValueInst(InsertValueInst &IVI) { - Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), - IVI.getIndices()) == - IVI.getOperand(1)->getType(), - "Invalid InsertValueInst operands!", &IVI); + Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), + IVI.getIndices()) == + IVI.getOperand(1)->getType(), + "Invalid InsertValueInst operands!", &IVI); visitInstruction(IVI); } @@ -2368,43 +2373,44 @@ void Verifier::visitLandingPadInst(LandingPadInst &LPI) { // The landingpad instruction is ill-formed if it doesn't have any clauses and // isn't a cleanup. - Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(), - "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); + Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), + "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); // The landingpad instruction defines its parent as a landing pad block. The // landing pad block may be branched to only by the unwind edge of an invoke. for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()); - Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, - "Block containing LandingPadInst must be jumped to " - "only by the unwind edge of an invoke.", &LPI); + Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, + "Block containing LandingPadInst must be jumped to " + "only by the unwind edge of an invoke.", + &LPI); } // The landingpad instruction must be the first non-PHI instruction in the // block. - Assert1(LPI.getParent()->getLandingPadInst() == &LPI, - "LandingPadInst not the first non-PHI instruction in the block.", - &LPI); + Assert(LPI.getParent()->getLandingPadInst() == &LPI, + "LandingPadInst not the first non-PHI instruction in the block.", + &LPI); // The personality functions for all landingpad instructions within the same // function should match. if (PersonalityFn) - Assert1(LPI.getPersonalityFn() == PersonalityFn, - "Personality function doesn't match others in function", &LPI); + Assert(LPI.getPersonalityFn() == PersonalityFn, + "Personality function doesn't match others in function", &LPI); PersonalityFn = LPI.getPersonalityFn(); // All operands must be constants. - Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!", - &LPI); + Assert(isa<Constant>(PersonalityFn), "Personality function is not constant!", + &LPI); for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { Constant *Clause = LPI.getClause(i); if (LPI.isCatch(i)) { - Assert1(isa<PointerType>(Clause->getType()), - "Catch operand does not have pointer type!", &LPI); + Assert(isa<PointerType>(Clause->getType()), + "Catch operand does not have pointer type!", &LPI); } else { - Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); - Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), - "Filter operand is not an array of constants!", &LPI); + Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); + Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), + "Filter operand is not an array of constants!", &LPI); } } @@ -2422,46 +2428,46 @@ void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { } const Use &U = I.getOperandUse(i); - Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U), - "Instruction does not dominate all uses!", Op, &I); + Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U), + "Instruction does not dominate all uses!", Op, &I); } /// verifyInstruction - Verify that an instruction is well formed. /// void Verifier::visitInstruction(Instruction &I) { BasicBlock *BB = I.getParent(); - Assert1(BB, "Instruction not embedded in basic block!", &I); + Assert(BB, "Instruction not embedded in basic block!", &I); if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential for (User *U : I.users()) { - Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB), - "Only PHI nodes may reference their own value!", &I); + Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), + "Only PHI nodes may reference their own value!", &I); } } // Check that void typed values don't have names - Assert1(!I.getType()->isVoidTy() || !I.hasName(), - "Instruction has a name, but provides a void value!", &I); + Assert(!I.getType()->isVoidTy() || !I.hasName(), + "Instruction has a name, but provides a void value!", &I); // Check that the return value of the instruction is either void or a legal // value type. - Assert1(I.getType()->isVoidTy() || - I.getType()->isFirstClassType(), - "Instruction returns a non-scalar type!", &I); + Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), + "Instruction returns a non-scalar type!", &I); // Check that the instruction doesn't produce metadata. Calls are already // checked against the callee type. - Assert1(!I.getType()->isMetadataTy() || - isa<CallInst>(I) || isa<InvokeInst>(I), - "Invalid use of metadata!", &I); + Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), + "Invalid use of metadata!", &I); // Check that all uses of the instruction, if they are instructions // themselves, actually have parent basic blocks. If the use is not an // instruction, it is an error! for (Use &U : I.uses()) { if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) - Assert2(Used->getParent() != nullptr, "Instruction referencing" - " instruction not embedded in a basic block!", &I, Used); + Assert(Used->getParent() != nullptr, + "Instruction referencing" + " instruction not embedded in a basic block!", + &I, Used); else { CheckFailed("Use of instruction is not an instruction!", U); return; @@ -2469,44 +2475,46 @@ void Verifier::visitInstruction(Instruction &I) { } for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { - Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); + Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); // Check to make sure that only first-class-values are operands to // instructions. if (!I.getOperand(i)->getType()->isFirstClassType()) { - Assert1(0, "Instruction operands must be first-class values!", &I); + Assert(0, "Instruction operands must be first-class values!", &I); } if (Function *F = dyn_cast<Function>(I.getOperand(i))) { // Check to make sure that the "address of" an intrinsic function is never // taken. - Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : - isa<InvokeInst>(I) ? e-3 : 0), - "Cannot take the address of an intrinsic!", &I); - Assert1(!F->isIntrinsic() || isa<CallInst>(I) || + Assert( + !F->isIntrinsic() || + i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0), + "Cannot take the address of an intrinsic!", &I); + Assert( + !F->isIntrinsic() || isa<CallInst>(I) || F->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, - "Cannot invoke an intrinsinc other than" - " donothing or patchpoint", &I); - Assert1(F->getParent() == M, "Referencing function in another module!", - &I); + "Cannot invoke an intrinsinc other than" + " donothing or patchpoint", + &I); + Assert(F->getParent() == M, "Referencing function in another module!", + &I); } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { - Assert1(OpBB->getParent() == BB->getParent(), - "Referring to a basic block in another function!", &I); + Assert(OpBB->getParent() == BB->getParent(), + "Referring to a basic block in another function!", &I); } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { - Assert1(OpArg->getParent() == BB->getParent(), - "Referring to an argument in another function!", &I); + Assert(OpArg->getParent() == BB->getParent(), + "Referring to an argument in another function!", &I); } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { - Assert1(GV->getParent() == M, "Referencing global in another module!", - &I); + Assert(GV->getParent() == M, "Referencing global in another module!", &I); } else if (isa<Instruction>(I.getOperand(i))) { verifyDominatesUse(I, i); } else if (isa<InlineAsm>(I.getOperand(i))) { - Assert1((i + 1 == e && isa<CallInst>(I)) || - (i + 3 == e && isa<InvokeInst>(I)), - "Cannot take the address of an inline asm!", &I); + Assert((i + 1 == e && isa<CallInst>(I)) || + (i + 3 == e && isa<InvokeInst>(I)), + "Cannot take the address of an inline asm!", &I); } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { if (CE->getType()->isPtrOrPtrVectorTy()) { // If we have a ConstantExpr pointer, we need to see if it came from an @@ -2532,31 +2540,37 @@ void Verifier::visitInstruction(Instruction &I) { } if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { - Assert1(I.getType()->isFPOrFPVectorTy(), - "fpmath requires a floating point result!", &I); - Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); + Assert(I.getType()->isFPOrFPVectorTy(), + "fpmath requires a floating point result!", &I); + Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); if (ConstantFP *CFP0 = mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { APFloat Accuracy = CFP0->getValueAPF(); - Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), - "fpmath accuracy not a positive number!", &I); + Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), + "fpmath accuracy not a positive number!", &I); } else { - Assert1(false, "invalid fpmath accuracy!", &I); + Assert(false, "invalid fpmath accuracy!", &I); } } if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { - Assert1(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), - "Ranges are only for loads, calls and invokes!", &I); + Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), + "Ranges are only for loads, calls and invokes!", &I); visitRangeMetadata(I, Range, I.getType()); } if (I.getMetadata(LLVMContext::MD_nonnull)) { - Assert1(I.getType()->isPointerTy(), - "nonnull applies only to pointer types", &I); - Assert1(isa<LoadInst>(I), - "nonnull applies only to load instructions, use attributes" - " for calls or invokes", &I); + Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", + &I); + Assert(isa<LoadInst>(I), + "nonnull applies only to load instructions, use attributes" + " for calls or invokes", + &I); + } + + if (MDNode *N = I.getDebugLoc().getAsMDNode()) { + Assert(isa<MDLocation>(N), "invalid !dbg metadata attachment", &I, N); + visitMDNode(*N); } InstsInThisBlock.insert(&I); @@ -2717,7 +2731,7 @@ Verifier::VerifyIntrinsicIsVarArg(bool isVarArg, // If there are no descriptors left, then it can't be a vararg. if (Infos.empty()) - return isVarArg ? true : false; + return isVarArg; // There should be only one descriptor remaining at this point. if (Infos.size() != 1) @@ -2727,7 +2741,7 @@ Verifier::VerifyIntrinsicIsVarArg(bool isVarArg, IITDescriptor D = Infos.front(); Infos = Infos.slice(1); if (D.Kind == IITDescriptor::VarArg) - return isVarArg ? false : true; + return !isVarArg; return true; } @@ -2736,8 +2750,8 @@ Verifier::VerifyIntrinsicIsVarArg(bool isVarArg, /// void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { Function *IF = CI.getCalledFunction(); - Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", - IF); + Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", + IF); // Verify that the intrinsic prototype lines up with what the .td files // describe. @@ -2749,31 +2763,33 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; SmallVector<Type *, 4> ArgTys; - Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys), - "Intrinsic has incorrect return type!", IF); + Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys), + "Intrinsic has incorrect return type!", IF); for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) - Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys), - "Intrinsic has incorrect argument type!", IF); + Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys), + "Intrinsic has incorrect argument type!", IF); // Verify if the intrinsic call matches the vararg property. if (IsVarArg) - Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), - "Intrinsic was not defined with variable arguments!", IF); + Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), + "Intrinsic was not defined with variable arguments!", IF); else - Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), - "Callsite was not defined with variable arguments!", IF); + Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), + "Callsite was not defined with variable arguments!", IF); // All descriptors should be absorbed by now. - Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF); + Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); // Now that we have the intrinsic ID and the actual argument types (and we // know they are legal for the intrinsic!) get the intrinsic name through the // usual means. This allows us to verify the mangling of argument types into // the name. const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); - Assert1(ExpectedName == IF->getName(), - "Intrinsic name not mangled correctly for type arguments! " - "Should be: " + ExpectedName, IF); + Assert(ExpectedName == IF->getName(), + "Intrinsic name not mangled correctly for type arguments! " + "Should be: " + + ExpectedName, + IF); // If the intrinsic takes MDNode arguments, verify that they are either global // or are local to *this* function. @@ -2786,95 +2802,123 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { break; case Intrinsic::ctlz: // llvm.ctlz case Intrinsic::cttz: // llvm.cttz - Assert1(isa<ConstantInt>(CI.getArgOperand(1)), - "is_zero_undef argument of bit counting intrinsics must be a " - "constant int", &CI); + Assert(isa<ConstantInt>(CI.getArgOperand(1)), + "is_zero_undef argument of bit counting intrinsics must be a " + "constant int", + &CI); + break; + case Intrinsic::dbg_declare: // llvm.dbg.declare + Assert(isa<MetadataAsValue>(CI.getArgOperand(0)), + "invalid llvm.dbg.declare intrinsic call 1", &CI); + visitDbgIntrinsic("declare", cast<DbgDeclareInst>(CI)); + break; + case Intrinsic::dbg_value: // llvm.dbg.value + visitDbgIntrinsic("value", cast<DbgValueInst>(CI)); break; - case Intrinsic::dbg_declare: { // llvm.dbg.declare - Assert1(CI.getArgOperand(0) && isa<MetadataAsValue>(CI.getArgOperand(0)), - "invalid llvm.dbg.declare intrinsic call 1", &CI); - } break; case Intrinsic::memcpy: case Intrinsic::memmove: - case Intrinsic::memset: - Assert1(isa<ConstantInt>(CI.getArgOperand(3)), - "alignment argument of memory intrinsics must be a constant int", - &CI); - Assert1(isa<ConstantInt>(CI.getArgOperand(4)), - "isvolatile argument of memory intrinsics must be a constant int", - &CI); + case Intrinsic::memset: { + ConstantInt *AlignCI = dyn_cast<ConstantInt>(CI.getArgOperand(3)); + Assert(AlignCI, + "alignment argument of memory intrinsics must be a constant int", + &CI); + const APInt &AlignVal = AlignCI->getValue(); + Assert(AlignCI->isZero() || AlignVal.isPowerOf2(), + "alignment argument of memory intrinsics must be a power of 2", &CI); + Assert(isa<ConstantInt>(CI.getArgOperand(4)), + "isvolatile argument of memory intrinsics must be a constant int", + &CI); break; + } case Intrinsic::gcroot: case Intrinsic::gcwrite: case Intrinsic::gcread: if (ID == Intrinsic::gcroot) { AllocaInst *AI = dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts()); - Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI); - Assert1(isa<Constant>(CI.getArgOperand(1)), - "llvm.gcroot parameter #2 must be a constant.", &CI); + Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI); + Assert(isa<Constant>(CI.getArgOperand(1)), + "llvm.gcroot parameter #2 must be a constant.", &CI); if (!AI->getType()->getElementType()->isPointerTy()) { - Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)), - "llvm.gcroot parameter #1 must either be a pointer alloca, " - "or argument #2 must be a non-null constant.", &CI); + Assert(!isa<ConstantPointerNull>(CI.getArgOperand(1)), + "llvm.gcroot parameter #1 must either be a pointer alloca, " + "or argument #2 must be a non-null constant.", + &CI); } } - Assert1(CI.getParent()->getParent()->hasGC(), - "Enclosing function does not use GC.", &CI); + Assert(CI.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", &CI); break; case Intrinsic::init_trampoline: - Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()), - "llvm.init_trampoline parameter #2 must resolve to a function.", - &CI); + Assert(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()), + "llvm.init_trampoline parameter #2 must resolve to a function.", + &CI); break; case Intrinsic::prefetch: - Assert1(isa<ConstantInt>(CI.getArgOperand(1)) && - isa<ConstantInt>(CI.getArgOperand(2)) && - cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 && - cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4, - "invalid arguments to llvm.prefetch", - &CI); + Assert(isa<ConstantInt>(CI.getArgOperand(1)) && + isa<ConstantInt>(CI.getArgOperand(2)) && + cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 && + cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4, + "invalid arguments to llvm.prefetch", &CI); break; case Intrinsic::stackprotector: - Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()), - "llvm.stackprotector parameter #2 must resolve to an alloca.", - &CI); + Assert(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()), + "llvm.stackprotector parameter #2 must resolve to an alloca.", &CI); break; case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::invariant_start: - Assert1(isa<ConstantInt>(CI.getArgOperand(0)), - "size argument of memory use markers must be a constant integer", - &CI); + Assert(isa<ConstantInt>(CI.getArgOperand(0)), + "size argument of memory use markers must be a constant integer", + &CI); break; case Intrinsic::invariant_end: - Assert1(isa<ConstantInt>(CI.getArgOperand(1)), - "llvm.invariant.end parameter #2 must be a constant integer", &CI); + Assert(isa<ConstantInt>(CI.getArgOperand(1)), + "llvm.invariant.end parameter #2 must be a constant integer", &CI); break; - case Intrinsic::frameallocate: { + case Intrinsic::frameescape: { BasicBlock *BB = CI.getParent(); - Assert1(BB == &BB->getParent()->front(), - "llvm.frameallocate used outside of entry block", &CI); - Assert1(!SawFrameAllocate, - "multiple calls to llvm.frameallocate in one function", &CI); - SawFrameAllocate = true; - Assert1(isa<ConstantInt>(CI.getArgOperand(0)), - "llvm.frameallocate argument must be constant integer size", &CI); + Assert(BB == &BB->getParent()->front(), + "llvm.frameescape used outside of entry block", &CI); + Assert(!SawFrameEscape, + "multiple calls to llvm.frameescape in one function", &CI); + for (Value *Arg : CI.arg_operands()) { + auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); + Assert(AI && AI->isStaticAlloca(), + "llvm.frameescape only accepts static allocas", &CI); + } + FrameEscapeInfo[BB->getParent()].first = CI.getNumArgOperands(); + SawFrameEscape = true; break; } case Intrinsic::framerecover: { Value *FnArg = CI.getArgOperand(0)->stripPointerCasts(); Function *Fn = dyn_cast<Function>(FnArg); - Assert1(Fn && !Fn->isDeclaration(), "llvm.framerecover first " - "argument must be function defined in this module", &CI); + Assert(Fn && !Fn->isDeclaration(), + "llvm.framerecover first " + "argument must be function defined in this module", + &CI); + auto *IdxArg = dyn_cast<ConstantInt>(CI.getArgOperand(2)); + Assert(IdxArg, "idx argument of llvm.framerecover must be a constant int", + &CI); + auto &Entry = FrameEscapeInfo[Fn]; + Entry.second = unsigned( + std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); + break; + } + + case Intrinsic::eh_unwindhelp: { + auto *AI = dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts()); + Assert(AI && AI->isStaticAlloca(), + "llvm.eh.unwindhelp requires a static alloca", &CI); break; } case Intrinsic::experimental_gc_statepoint: - Assert1(!CI.isInlineAsm(), - "gc.statepoint support for inline assembly unimplemented", &CI); + Assert(!CI.isInlineAsm(), + "gc.statepoint support for inline assembly unimplemented", &CI); VerifyStatepoint(ImmutableCallSite(&CI)); break; @@ -2886,56 +2930,52 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { CallSite StatepointCS(CI.getArgOperand(0)); const Function *StatepointFn = StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr; - Assert2(StatepointFn && StatepointFn->isDeclaration() && - StatepointFn->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, - "gc.result operand #1 must be from a statepoint", - &CI, CI.getArgOperand(0)); + Assert(StatepointFn && StatepointFn->isDeclaration() && + StatepointFn->getIntrinsicID() == + Intrinsic::experimental_gc_statepoint, + "gc.result operand #1 must be from a statepoint", &CI, + CI.getArgOperand(0)); // Assert that result type matches wrapped callee. const Value *Target = StatepointCS.getArgument(0); const PointerType *PT = cast<PointerType>(Target->getType()); const FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); - Assert1(CI.getType() == TargetFuncType->getReturnType(), - "gc.result result type does not match wrapped callee", - &CI); + Assert(CI.getType() == TargetFuncType->getReturnType(), + "gc.result result type does not match wrapped callee", &CI); break; } case Intrinsic::experimental_gc_relocate: { - Assert1(CI.getNumArgOperands() == 3, "wrong number of arguments", &CI); + Assert(CI.getNumArgOperands() == 3, "wrong number of arguments", &CI); // Check that this relocate is correctly tied to the statepoint // This is case for relocate on the unwinding path of an invoke statepoint if (ExtractValueInst *ExtractValue = dyn_cast<ExtractValueInst>(CI.getArgOperand(0))) { - Assert1(isa<LandingPadInst>(ExtractValue->getAggregateOperand()), - "gc relocate on unwind path incorrectly linked to the statepoint", - &CI); + Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()), + "gc relocate on unwind path incorrectly linked to the statepoint", + &CI); const BasicBlock *invokeBB = ExtractValue->getParent()->getUniquePredecessor(); // Landingpad relocates should have only one predecessor with invoke // statepoint terminator - Assert1(invokeBB, - "safepoints should have unique landingpads", - ExtractValue->getParent()); - Assert1(invokeBB->getTerminator(), - "safepoint block should be well formed", - invokeBB); - Assert1(isStatepoint(invokeBB->getTerminator()), - "gc relocate should be linked to a statepoint", - invokeBB); + Assert(invokeBB, "safepoints should have unique landingpads", + ExtractValue->getParent()); + Assert(invokeBB->getTerminator(), "safepoint block should be well formed", + invokeBB); + Assert(isStatepoint(invokeBB->getTerminator()), + "gc relocate should be linked to a statepoint", invokeBB); } else { // In all other cases relocate should be tied to the statepoint directly. // This covers relocates on a normal return path of invoke statepoint and // relocates of a call statepoint auto Token = CI.getArgOperand(0); - Assert2(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), - "gc relocate is incorrectly tied to the statepoint", - &CI, Token); + Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), + "gc relocate is incorrectly tied to the statepoint", &CI, Token); } // Verify rest of the relocate arguments @@ -2945,53 +2985,74 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { // Both the base and derived must be piped through the safepoint Value* Base = CI.getArgOperand(1); - Assert1(isa<ConstantInt>(Base), - "gc.relocate operand #2 must be integer offset", &CI); - + Assert(isa<ConstantInt>(Base), + "gc.relocate operand #2 must be integer offset", &CI); + Value* Derived = CI.getArgOperand(2); - Assert1(isa<ConstantInt>(Derived), - "gc.relocate operand #3 must be integer offset", &CI); + Assert(isa<ConstantInt>(Derived), + "gc.relocate operand #3 must be integer offset", &CI); const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); // Check the bounds - Assert1(0 <= BaseIndex && - BaseIndex < (int)StatepointCS.arg_size(), - "gc.relocate: statepoint base index out of bounds", &CI); - Assert1(0 <= DerivedIndex && - DerivedIndex < (int)StatepointCS.arg_size(), - "gc.relocate: statepoint derived index out of bounds", &CI); + Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(), + "gc.relocate: statepoint base index out of bounds", &CI); + Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(), + "gc.relocate: statepoint derived index out of bounds", &CI); // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' // section of the statepoint's argument - const int NumCallArgs = + Assert(StatepointCS.arg_size() > 0, + "gc.statepoint: insufficient arguments"); + Assert(isa<ConstantInt>(StatepointCS.getArgument(1)), + "gc.statement: number of call arguments must be constant integer"); + const unsigned NumCallArgs = cast<ConstantInt>(StatepointCS.getArgument(1))->getZExtValue(); + Assert(StatepointCS.arg_size() > NumCallArgs+3, + "gc.statepoint: mismatch in number of call arguments"); + Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs+3)), + "gc.statepoint: number of deoptimization arguments must be " + "a constant integer"); const int NumDeoptArgs = cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 3))->getZExtValue(); const int GCParamArgsStart = NumCallArgs + NumDeoptArgs + 4; const int GCParamArgsEnd = StatepointCS.arg_size(); - Assert1(GCParamArgsStart <= BaseIndex && - BaseIndex < GCParamArgsEnd, - "gc.relocate: statepoint base index doesn't fall within the " - "'gc parameters' section of the statepoint call", &CI); - Assert1(GCParamArgsStart <= DerivedIndex && - DerivedIndex < GCParamArgsEnd, - "gc.relocate: statepoint derived index doesn't fall within the " - "'gc parameters' section of the statepoint call", &CI); - + Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, + "gc.relocate: statepoint base index doesn't fall within the " + "'gc parameters' section of the statepoint call", + &CI); + Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, + "gc.relocate: statepoint derived index doesn't fall within the " + "'gc parameters' section of the statepoint call", + &CI); // Assert that the result type matches the type of the relocated pointer GCRelocateOperands Operands(&CI); - Assert1(Operands.derivedPtr()->getType() == CI.getType(), - "gc.relocate: relocating a pointer shouldn't change its type", - &CI); + Assert(Operands.derivedPtr()->getType() == CI.getType(), + "gc.relocate: relocating a pointer shouldn't change its type", &CI); break; } }; } -void DebugInfoVerifier::verifyDebugInfo() { - if (!VerifyDebugInfo) +template <class DbgIntrinsicTy> +void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) { + auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); + Assert(isa<ValueAsMetadata>(MD) || + (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), + "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); + Assert(isa<MDLocalVariable>(DII.getRawVariable()), + "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, + DII.getRawVariable()); + Assert(isa<MDExpression>(DII.getRawExpression()), + "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, + DII.getRawExpression()); +} + +void Verifier::verifyDebugInfo() { + // Run the debug info verifier only if the regular verifier succeeds, since + // sometimes checks that have already failed will cause crashes here. + if (EverBroken || !VerifyDebugInfo) return; DebugInfoFinder Finder; @@ -3002,23 +3063,23 @@ void DebugInfoVerifier::verifyDebugInfo() { // // NOTE: The loud braces are necessary for MSVC compatibility. for (DICompileUnit CU : Finder.compile_units()) { - Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU); + Assert(CU.Verify(), "DICompileUnit does not Verify!", CU); } for (DISubprogram S : Finder.subprograms()) { - Assert1(S.Verify(), "DISubprogram does not Verify!", S); + Assert(S.Verify(), "DISubprogram does not Verify!", S); } for (DIGlobalVariable GV : Finder.global_variables()) { - Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV); + Assert(GV.Verify(), "DIGlobalVariable does not Verify!", GV); } for (DIType T : Finder.types()) { - Assert1(T.Verify(), "DIType does not Verify!", T); + Assert(T.Verify(), "DIType does not Verify!", T); } for (DIScope S : Finder.scopes()) { - Assert1(S.Verify(), "DIScope does not Verify!", S); + Assert(S.Verify(), "DIScope does not Verify!", S); } } -void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) { +void Verifier::processInstructions(DebugInfoFinder &Finder) { for (const Function &F : *M) for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) { if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg)) @@ -3028,25 +3089,16 @@ void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) { } } -void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder, - const CallInst &CI) { +void Verifier::processCallInst(DebugInfoFinder &Finder, const CallInst &CI) { if (Function *F = CI.getCalledFunction()) if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) switch (ID) { - case Intrinsic::dbg_declare: { - auto *DDI = cast<DbgDeclareInst>(&CI); - Finder.processDeclare(*M, DDI); - if (auto E = DDI->getExpression()) - Assert1(DIExpression(E).Verify(), "DIExpression does not Verify!", E); + case Intrinsic::dbg_declare: + Finder.processDeclare(*M, cast<DbgDeclareInst>(&CI)); break; - } - case Intrinsic::dbg_value: { - auto *DVI = cast<DbgValueInst>(&CI); - Finder.processValue(*M, DVI); - if (auto E = DVI->getExpression()) - Assert1(DIExpression(E).Verify(), "DIExpression does not Verify!", E); + case Intrinsic::dbg_value: + Finder.processValue(*M, cast<DbgValueInst>(&CI)); break; - } default: break; } @@ -3079,8 +3131,7 @@ bool llvm::verifyModule(const Module &M, raw_ostream *OS) { // Note that this function's return value is inverted from what you would // expect of a function called "verify". - DebugInfoVerifier DIV(OS ? *OS : NullStr); - return !V.verify(M) || !DIV.verify(M) || Broken; + return !V.verify(M) || Broken; } namespace { @@ -3090,7 +3141,7 @@ struct VerifierLegacyPass : public FunctionPass { Verifier V; bool FatalErrors; - VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) { + VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) { initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); } explicit VerifierLegacyPass(bool FatalErrors) @@ -3116,48 +3167,15 @@ struct VerifierLegacyPass : public FunctionPass { AU.setPreservesAll(); } }; -struct DebugInfoVerifierLegacyPass : public ModulePass { - static char ID; - - DebugInfoVerifier V; - bool FatalErrors; - - DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) { - initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); - } - explicit DebugInfoVerifierLegacyPass(bool FatalErrors) - : ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) { - initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - bool runOnModule(Module &M) override { - if (!V.verify(M) && FatalErrors) - report_fatal_error("Broken debug info found, compilation aborted!"); - - return false; - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.setPreservesAll(); - } -}; } char VerifierLegacyPass::ID = 0; INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) -char DebugInfoVerifierLegacyPass::ID = 0; -INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier", - false, false) - FunctionPass *llvm::createVerifierPass(bool FatalErrors) { return new VerifierLegacyPass(FatalErrors); } -ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) { - return new DebugInfoVerifierLegacyPass(FatalErrors); -} - PreservedAnalyses VerifierPass::run(Module &M) { if (verifyModule(M, &dbgs()) && FatalErrors) report_fatal_error("Broken module found, compilation aborted!"); |