diff options
Diffstat (limited to 'lib/Target/Hexagon/HexagonInstrInfo.td')
-rw-r--r-- | lib/Target/Hexagon/HexagonInstrInfo.td | 6862 |
1 files changed, 4847 insertions, 2015 deletions
diff --git a/lib/Target/Hexagon/HexagonInstrInfo.td b/lib/Target/Hexagon/HexagonInstrInfo.td index 4090681..60635cf 100644 --- a/lib/Target/Hexagon/HexagonInstrInfo.td +++ b/lib/Target/Hexagon/HexagonInstrInfo.td @@ -14,83 +14,100 @@ include "HexagonInstrFormats.td" include "HexagonOperands.td" -//===----------------------------------------------------------------------===// +// Pattern fragment that combines the value type and the register class +// into a single parameter. +// The pat frags in the definitions below need to have a named register, +// otherwise i32 will be assumed regardless of the register class. The +// name of the register does not matter. +def I1 : PatLeaf<(i1 PredRegs:$R)>; +def I32 : PatLeaf<(i32 IntRegs:$R)>; +def I64 : PatLeaf<(i64 DoubleRegs:$R)>; +def F32 : PatLeaf<(f32 IntRegs:$R)>; +def F64 : PatLeaf<(f64 DoubleRegs:$R)>; + +// Pattern fragments to extract the low and high subregisters from a +// 64-bit value. +def LoReg: OutPatFrag<(ops node:$Rs), + (EXTRACT_SUBREG (i64 $Rs), subreg_loreg)>; +def HiReg: OutPatFrag<(ops node:$Rs), + (EXTRACT_SUBREG (i64 $Rs), subreg_hireg)>; -// Multi-class for logical operators. -multiclass ALU32_rr_ri<string OpcStr, SDNode OpNode> { - def rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), - !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), - [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$b), - (i32 IntRegs:$c)))]>; - def ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Imm:$b, IntRegs:$c), - !strconcat("$dst = ", !strconcat(OpcStr, "(#$b, $c)")), - [(set (i32 IntRegs:$dst), (OpNode s10Imm:$b, - (i32 IntRegs:$c)))]>; -} +// SDNode for converting immediate C to C-1. +def DEC_CONST_SIGNED : SDNodeXForm<imm, [{ + // Return the byte immediate const-1 as an SDNode. + int32_t imm = N->getSExtValue(); + return XformSToSM1Imm(imm); +}]>; -// Multi-class for compare ops. -let isCompare = 1 in { -multiclass CMP64_rr<string OpcStr, PatFrag OpNode> { - def rr : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$b, DoubleRegs:$c), - !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), - [(set (i1 PredRegs:$dst), - (OpNode (i64 DoubleRegs:$b), (i64 DoubleRegs:$c)))]>; -} +// SDNode for converting immediate C to C-2. +def DEC2_CONST_SIGNED : SDNodeXForm<imm, [{ + // Return the byte immediate const-2 as an SDNode. + int32_t imm = N->getSExtValue(); + return XformSToSM2Imm(imm); +}]>; + +// SDNode for converting immediate C to C-3. +def DEC3_CONST_SIGNED : SDNodeXForm<imm, [{ + // Return the byte immediate const-3 as an SDNode. + int32_t imm = N->getSExtValue(); + return XformSToSM3Imm(imm); +}]>; -multiclass CMP32_rr_ri_s10<string OpcStr, string CextOp, PatFrag OpNode> { - let CextOpcode = CextOp in { - let InputType = "reg" in - def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c), - !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), - [(set (i1 PredRegs:$dst), - (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; +// SDNode for converting immediate C to C-1. +def DEC_CONST_UNSIGNED : SDNodeXForm<imm, [{ + // Return the byte immediate const-1 as an SDNode. + uint32_t imm = N->getZExtValue(); + return XformUToUM1Imm(imm); +}]>; - let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, - opExtentBits = 10, InputType = "imm" in - def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s10Ext:$c), - !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), - [(set (i1 PredRegs:$dst), - (OpNode (i32 IntRegs:$b), s10ExtPred:$c))]>; +//===----------------------------------------------------------------------===// +// Compare +//===----------------------------------------------------------------------===// +let hasSideEffects = 0, isCompare = 1, InputType = "imm", isExtendable = 1, + opExtendable = 2 in +class T_CMP <string mnemonic, bits<2> MajOp, bit isNot, Operand ImmOp> + : ALU32Inst <(outs PredRegs:$dst), + (ins IntRegs:$src1, ImmOp:$src2), + "$dst = "#!if(isNot, "!","")#mnemonic#"($src1, #$src2)", + [], "",ALU32_2op_tc_2early_SLOT0123 >, ImmRegRel { + bits<2> dst; + bits<5> src1; + bits<10> src2; + let CextOpcode = mnemonic; + let opExtentBits = !if(!eq(mnemonic, "cmp.gtu"), 9, 10); + let isExtentSigned = !if(!eq(mnemonic, "cmp.gtu"), 0, 1); + + let IClass = 0b0111; + + let Inst{27-24} = 0b0101; + let Inst{23-22} = MajOp; + let Inst{21} = !if(!eq(mnemonic, "cmp.gtu"), 0, src2{9}); + let Inst{20-16} = src1; + let Inst{13-5} = src2{8-0}; + let Inst{4} = isNot; + let Inst{3-2} = 0b00; + let Inst{1-0} = dst; } -} -multiclass CMP32_rr_ri_u9<string OpcStr, string CextOp, PatFrag OpNode> { - let CextOpcode = CextOp in { - let InputType = "reg" in - def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c), - !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), - [(set (i1 PredRegs:$dst), - (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; +def C2_cmpeqi : T_CMP <"cmp.eq", 0b00, 0, s10Ext>; +def C2_cmpgti : T_CMP <"cmp.gt", 0b01, 0, s10Ext>; +def C2_cmpgtui : T_CMP <"cmp.gtu", 0b10, 0, u9Ext>; - let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, - opExtentBits = 9, InputType = "imm" in - def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u9Ext:$c), - !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), - [(set (i1 PredRegs:$dst), - (OpNode (i32 IntRegs:$b), u9ExtPred:$c))]>; - } -} +class T_CMP_pat <InstHexagon MI, PatFrag OpNode, PatLeaf ImmPred> + : Pat<(i1 (OpNode (i32 IntRegs:$src1), ImmPred:$src2)), + (MI IntRegs:$src1, ImmPred:$src2)>; -multiclass CMP32_ri_s8<string OpcStr, PatFrag OpNode> { -let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in - def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s8Ext:$c), - !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), - [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), - s8ExtPred:$c))]>; -} -} +def : T_CMP_pat <C2_cmpeqi, seteq, s10ImmPred>; +def : T_CMP_pat <C2_cmpgti, setgt, s10ImmPred>; +def : T_CMP_pat <C2_cmpgtui, setugt, u9ImmPred>; //===----------------------------------------------------------------------===// -// ALU32/ALU (Instructions with register-register form) +// ALU32/ALU + //===----------------------------------------------------------------------===// def SDTHexagonI64I32I32 : SDTypeProfile<1, 2, [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; -def HexagonWrapperCombineII : - SDNode<"HexagonISD::WrapperCombineII", SDTHexagonI64I32I32>; - -def HexagonWrapperCombineRR : - SDNode<"HexagonISD::WrapperCombineRR", SDTHexagonI64I32I32>; +def HexagonCOMBINE : SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>; let hasSideEffects = 0, hasNewValue = 1, InputType = "reg" in class T_ALU32_3op<string mnemonic, bits<3> MajOp, bits<3> MinOp, bit OpsRev, @@ -145,6 +162,41 @@ class T_ALU32_3op_pred<string mnemonic, bits<3> MajOp, bits<3> MinOp, let Inst{4-0} = Rd; } +class T_ALU32_combineh<string Op1, string Op2, bits<3> MajOp, bits<3> MinOp, + bit OpsRev> + : T_ALU32_3op<"", MajOp, MinOp, OpsRev, 0> { + let AsmString = "$Rd = combine($Rs"#Op1#", $Rt"#Op2#")"; +} + +def A2_combine_hh : T_ALU32_combineh<".h", ".h", 0b011, 0b100, 1>; +def A2_combine_hl : T_ALU32_combineh<".h", ".l", 0b011, 0b101, 1>; +def A2_combine_lh : T_ALU32_combineh<".l", ".h", 0b011, 0b110, 1>; +def A2_combine_ll : T_ALU32_combineh<".l", ".l", 0b011, 0b111, 1>; + +class T_ALU32_3op_sfx<string mnemonic, string suffix, bits<3> MajOp, + bits<3> MinOp, bit OpsRev, bit IsComm> + : T_ALU32_3op<"", MajOp, MinOp, OpsRev, IsComm> { + let AsmString = "$Rd = "#mnemonic#"($Rs, $Rt)"#suffix; +} + +def A2_svaddh : T_ALU32_3op<"vaddh", 0b110, 0b000, 0, 1>; +def A2_svsubh : T_ALU32_3op<"vsubh", 0b110, 0b100, 1, 0>; + +let Defs = [USR_OVF], Itinerary = ALU32_3op_tc_2_SLOT0123 in { + def A2_svaddhs : T_ALU32_3op_sfx<"vaddh", ":sat", 0b110, 0b001, 0, 1>; + def A2_addsat : T_ALU32_3op_sfx<"add", ":sat", 0b110, 0b010, 0, 1>; + def A2_svadduhs : T_ALU32_3op_sfx<"vadduh", ":sat", 0b110, 0b011, 0, 1>; + def A2_svsubhs : T_ALU32_3op_sfx<"vsubh", ":sat", 0b110, 0b101, 1, 0>; + def A2_subsat : T_ALU32_3op_sfx<"sub", ":sat", 0b110, 0b110, 1, 0>; + def A2_svsubuhs : T_ALU32_3op_sfx<"vsubuh", ":sat", 0b110, 0b111, 1, 0>; +} + +let Itinerary = ALU32_3op_tc_2_SLOT0123 in +def A2_svavghs : T_ALU32_3op_sfx<"vavgh", ":rnd", 0b111, 0b001, 0, 1>; + +def A2_svavgh : T_ALU32_3op<"vavgh", 0b111, 0b000, 0, 1>; +def A2_svnavgh : T_ALU32_3op<"vnavgh", 0b111, 0b011, 1, 0>; + multiclass T_ALU32_3op_p<string mnemonic, bits<3> MajOp, bits<3> MinOp, bit OpsRev> { def t : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 0, 0>; @@ -160,7 +212,6 @@ multiclass T_ALU32_3op_A2<string mnemonic, bits<3> MajOp, bits<3> MinOp, defm A2_p#NAME : T_ALU32_3op_p<mnemonic, MajOp, MinOp, OpsRev>; } -let isCodeGenOnly = 0 in defm add : T_ALU32_3op_A2<"add", 0b011, 0b000, 0, 1>; defm and : T_ALU32_3op_A2<"and", 0b001, 0b000, 0, 1>; defm or : T_ALU32_3op_A2<"or", 0b001, 0b001, 0, 1>; @@ -178,282 +229,418 @@ def: BinOp32_pat<or, A2_or, i32>; def: BinOp32_pat<sub, A2_sub, i32>; def: BinOp32_pat<xor, A2_xor, i32>; -multiclass ALU32_Pbase<string mnemonic, RegisterClass RC, bit isNot, - bit isPredNew> { - let isPredicatedNew = isPredNew in - def NAME : ALU32_rr<(outs RC:$dst), - (ins PredRegs:$src1, IntRegs:$src2, IntRegs: $src3), - !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ", - ") $dst = ")#mnemonic#"($src2, $src3)", - []>; +// A few special cases producing register pairs: +let OutOperandList = (outs DoubleRegs:$Rd), hasNewValue = 0 in { + def S2_packhl : T_ALU32_3op <"packhl", 0b101, 0b100, 0, 0>; + + let isPredicable = 1 in + def A2_combinew : T_ALU32_3op <"combine", 0b101, 0b000, 0, 0>; + + // Conditional combinew uses "newt/f" instead of "t/fnew". + def C2_ccombinewt : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 0>; + def C2_ccombinewf : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 0>; + def C2_ccombinewnewt : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 1>; + def C2_ccombinewnewf : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 1>; } -multiclass ALU32_Pred<string mnemonic, RegisterClass RC, bit PredNot> { - let isPredicatedFalse = PredNot in { - defm _c#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 0>; - // Predicate new - defm _cdn#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 1>; - } +let hasSideEffects = 0, hasNewValue = 1, isCompare = 1, InputType = "reg" in +class T_ALU32_3op_cmp<string mnemonic, bits<2> MinOp, bit IsNeg, bit IsComm> + : ALU32_rr<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt), + "$Pd = "#mnemonic#"($Rs, $Rt)", + [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel { + let CextOpcode = mnemonic; + let isCommutable = IsComm; + bits<5> Rs; + bits<5> Rt; + bits<2> Pd; + + let IClass = 0b1111; + let Inst{27-24} = 0b0010; + let Inst{22-21} = MinOp; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + let Inst{4} = IsNeg; + let Inst{3-2} = 0b00; + let Inst{1-0} = Pd; } -let InputType = "reg" in -multiclass ALU32_base<string mnemonic, string CextOp, SDNode OpNode> { - let CextOpcode = CextOp, BaseOpcode = CextOp#_rr in { - let isPredicable = 1 in - def NAME : ALU32_rr<(outs IntRegs:$dst), - (ins IntRegs:$src1, IntRegs:$src2), - "$dst = "#mnemonic#"($src1, $src2)", - [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1), - (i32 IntRegs:$src2)))]>; - - let neverHasSideEffects = 1, isPredicated = 1 in { - defm Pt : ALU32_Pred<mnemonic, IntRegs, 0>; - defm NotPt : ALU32_Pred<mnemonic, IntRegs, 1>; - } - } +let Itinerary = ALU32_3op_tc_2early_SLOT0123 in { + def C2_cmpeq : T_ALU32_3op_cmp< "cmp.eq", 0b00, 0, 1>; + def C2_cmpgt : T_ALU32_3op_cmp< "cmp.gt", 0b10, 0, 0>; + def C2_cmpgtu : T_ALU32_3op_cmp< "cmp.gtu", 0b11, 0, 0>; } -defm SUB_rr : ALU32_base<"sub", "SUB", sub>, ImmRegRel, PredNewRel; +// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones +// that reverse the order of the operands. +class RevCmp<PatFrag F> : PatFrag<(ops node:$rhs, node:$lhs), F.Fragment>; -// Combines the two integer registers SRC1 and SRC2 into a double register. -let isPredicable = 1 in -class T_Combine : ALU32_rr<(outs DoubleRegs:$dst), - (ins IntRegs:$src1, IntRegs:$src2), - "$dst = combine($src1, $src2)", - [(set (i64 DoubleRegs:$dst), - (i64 (HexagonWrapperCombineRR (i32 IntRegs:$src1), - (i32 IntRegs:$src2))))]>; - -multiclass Combine_base { - let BaseOpcode = "combine" in { - def NAME : T_Combine; - let neverHasSideEffects = 1, isPredicated = 1 in { - defm Pt : ALU32_Pred<"combine", DoubleRegs, 0>; - defm NotPt : ALU32_Pred<"combine", DoubleRegs, 1>; - } - } -} +// Pats for compares. They use PatFrags as operands, not SDNodes, +// since seteq/setgt/etc. are defined as ParFrags. +class T_cmp32_rr_pat<InstHexagon MI, PatFrag Op, ValueType VT> + : Pat<(VT (Op (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))), + (VT (MI IntRegs:$Rs, IntRegs:$Rt))>; -defm COMBINE_rr : Combine_base, PredNewRel; +def: T_cmp32_rr_pat<C2_cmpeq, seteq, i1>; +def: T_cmp32_rr_pat<C2_cmpgt, setgt, i1>; +def: T_cmp32_rr_pat<C2_cmpgtu, setugt, i1>; -// Combines the two immediates SRC1 and SRC2 into a double register. -class COMBINE_imm<Operand imm1, Operand imm2, PatLeaf pat1, PatLeaf pat2> : - ALU32_ii<(outs DoubleRegs:$dst), (ins imm1:$src1, imm2:$src2), - "$dst = combine(#$src1, #$src2)", - [(set (i64 DoubleRegs:$dst), - (i64 (HexagonWrapperCombineII (i32 pat1:$src1), (i32 pat2:$src2))))]>; +def: T_cmp32_rr_pat<C2_cmpgt, RevCmp<setlt>, i1>; +def: T_cmp32_rr_pat<C2_cmpgtu, RevCmp<setult>, i1>; -let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 8 in -def COMBINE_Ii : COMBINE_imm<s8Ext, s8Imm, s8ExtPred, s8ImmPred>; +let CextOpcode = "MUX", InputType = "reg", hasNewValue = 1 in +def C2_mux: ALU32_rr<(outs IntRegs:$Rd), + (ins PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt), + "$Rd = mux($Pu, $Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel { + bits<5> Rd; + bits<2> Pu; + bits<5> Rs; + bits<5> Rt; + + let CextOpcode = "mux"; + let InputType = "reg"; + let hasSideEffects = 0; + let IClass = 0b1111; + + let Inst{27-24} = 0b0100; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + let Inst{6-5} = Pu; + let Inst{4-0} = Rd; +} + +def: Pat<(i32 (select (i1 PredRegs:$Pu), (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))), + (C2_mux PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt)>; + +// Combines the two immediates into a double register. +// Increase complexity to make it greater than any complexity of a combine +// that involves a register. + +let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1, + isExtentSigned = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 1, + AddedComplexity = 75 in +def A2_combineii: ALU32Inst <(outs DoubleRegs:$Rdd), (ins s8Ext:$s8, s8Imm:$S8), + "$Rdd = combine(#$s8, #$S8)", + [(set (i64 DoubleRegs:$Rdd), + (i64 (HexagonCOMBINE(i32 s8ExtPred:$s8), (i32 s8ImmPred:$S8))))]> { + bits<5> Rdd; + bits<8> s8; + bits<8> S8; + + let IClass = 0b0111; + let Inst{27-23} = 0b11000; + let Inst{22-16} = S8{7-1}; + let Inst{13} = S8{0}; + let Inst{12-5} = s8; + let Inst{4-0} = Rdd; + } //===----------------------------------------------------------------------===// -// ALU32/ALU (ADD with register-immediate form) +// Template class for predicated ADD of a reg and an Immediate value. //===----------------------------------------------------------------------===// -multiclass ALU32ri_Pbase<string mnemonic, bit isNot, bit isPredNew> { - let isPredicatedNew = isPredNew in - def NAME : ALU32_ri<(outs IntRegs:$dst), - (ins PredRegs:$src1, IntRegs:$src2, s8Ext: $src3), - !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ", - ") $dst = ")#mnemonic#"($src2, #$src3)", - []>; -} +let hasNewValue = 1, hasSideEffects = 0 in +class T_Addri_Pred <bit PredNot, bit PredNew> + : ALU32_ri <(outs IntRegs:$Rd), + (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8), + !if(PredNot, "if (!$Pu", "if ($Pu")#!if(PredNew,".new) $Rd = ", + ") $Rd = ")#"add($Rs, #$s8)"> { + bits<5> Rd; + bits<2> Pu; + bits<5> Rs; + bits<8> s8; + + let isPredicatedNew = PredNew; + let IClass = 0b0111; + + let Inst{27-24} = 0b0100; + let Inst{23} = PredNot; + let Inst{22-21} = Pu; + let Inst{20-16} = Rs; + let Inst{13} = PredNew; + let Inst{12-5} = s8; + let Inst{4-0} = Rd; + } -multiclass ALU32ri_Pred<string mnemonic, bit PredNot> { +//===----------------------------------------------------------------------===// +// A2_addi: Add a signed immediate to a register. +//===----------------------------------------------------------------------===// +let hasNewValue = 1, hasSideEffects = 0 in +class T_Addri <Operand immOp> + : ALU32_ri <(outs IntRegs:$Rd), + (ins IntRegs:$Rs, immOp:$s16), + "$Rd = add($Rs, #$s16)", [], "", ALU32_ADDI_tc_1_SLOT0123> { + bits<5> Rd; + bits<5> Rs; + bits<16> s16; + + let IClass = 0b1011; + + let Inst{27-21} = s16{15-9}; + let Inst{20-16} = Rs; + let Inst{13-5} = s16{8-0}; + let Inst{4-0} = Rd; + } + +//===----------------------------------------------------------------------===// +// Multiclass for ADD of a register and an immediate value. +//===----------------------------------------------------------------------===// +multiclass Addri_Pred<string mnemonic, bit PredNot> { let isPredicatedFalse = PredNot in { - defm _c#NAME : ALU32ri_Pbase<mnemonic, PredNot, 0>; + def NAME : T_Addri_Pred<PredNot, 0>; // Predicate new - defm _cdn#NAME : ALU32ri_Pbase<mnemonic, PredNot, 1>; + def NAME#new : T_Addri_Pred<PredNot, 1>; } } -let isExtendable = 1, InputType = "imm" in -multiclass ALU32ri_base<string mnemonic, string CextOp, SDNode OpNode> { - let CextOpcode = CextOp, BaseOpcode = CextOp#_ri in { - let opExtendable = 2, isExtentSigned = 1, opExtentBits = 16, - isPredicable = 1 in - def NAME : ALU32_ri<(outs IntRegs:$dst), - (ins IntRegs:$src1, s16Ext:$src2), - "$dst = "#mnemonic#"($src1, #$src2)", - [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1), - (s16ExtPred:$src2)))]>; +let isExtendable = 1, isExtentSigned = 1, InputType = "imm" in +multiclass Addri_base<string mnemonic, SDNode OpNode> { + let CextOpcode = mnemonic, BaseOpcode = mnemonic#_ri in { + let opExtendable = 2, opExtentBits = 16, isPredicable = 1 in + def A2_#NAME : T_Addri<s16Ext>; - let opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, - neverHasSideEffects = 1, isPredicated = 1 in { - defm Pt : ALU32ri_Pred<mnemonic, 0>; - defm NotPt : ALU32ri_Pred<mnemonic, 1>; + let opExtendable = 3, opExtentBits = 8, isPredicated = 1 in { + defm A2_p#NAME#t : Addri_Pred<mnemonic, 0>; + defm A2_p#NAME#f : Addri_Pred<mnemonic, 1>; } } } -defm ADD_ri : ALU32ri_base<"add", "ADD", add>, ImmRegRel, PredNewRel; +defm addi : Addri_base<"add", add>, ImmRegRel, PredNewRel; -let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10, -CextOpcode = "OR", InputType = "imm" in -def OR_ri : ALU32_ri<(outs IntRegs:$dst), - (ins IntRegs:$src1, s10Ext:$src2), - "$dst = or($src1, #$src2)", - [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1), - s10ExtPred:$src2))]>, ImmRegRel; +def: Pat<(i32 (add I32:$Rs, s16ExtPred:$s16)), + (i32 (A2_addi I32:$Rs, imm:$s16))>; +//===----------------------------------------------------------------------===// +// Template class used for the following ALU32 instructions. +// Rd=and(Rs,#s10) +// Rd=or(Rs,#s10) +//===----------------------------------------------------------------------===// let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10, -InputType = "imm", CextOpcode = "AND" in -def AND_ri : ALU32_ri<(outs IntRegs:$dst), - (ins IntRegs:$src1, s10Ext:$src2), - "$dst = and($src1, #$src2)", - [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1), - s10ExtPred:$src2))]>, ImmRegRel; +InputType = "imm", hasNewValue = 1 in +class T_ALU32ri_logical <string mnemonic, SDNode OpNode, bits<2> MinOp> + : ALU32_ri <(outs IntRegs:$Rd), + (ins IntRegs:$Rs, s10Ext:$s10), + "$Rd = "#mnemonic#"($Rs, #$s10)" , + [(set (i32 IntRegs:$Rd), (OpNode (i32 IntRegs:$Rs), s10ExtPred:$s10))]> { + bits<5> Rd; + bits<5> Rs; + bits<10> s10; + let CextOpcode = mnemonic; + + let IClass = 0b0111; + + let Inst{27-24} = 0b0110; + let Inst{23-22} = MinOp; + let Inst{21} = s10{9}; + let Inst{20-16} = Rs; + let Inst{13-5} = s10{8-0}; + let Inst{4-0} = Rd; + } -// Nop. -let neverHasSideEffects = 1, isCodeGenOnly = 0 in -def NOP : ALU32_rr<(outs), (ins), - "nop", - []>; +def A2_orir : T_ALU32ri_logical<"or", or, 0b10>, ImmRegRel; +def A2_andir : T_ALU32ri_logical<"and", and, 0b00>, ImmRegRel; +// Subtract register from immediate // Rd32=sub(#s10,Rs32) -let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 10, -CextOpcode = "SUB", InputType = "imm" in -def SUB_ri : ALU32_ri<(outs IntRegs:$dst), - (ins s10Ext:$src1, IntRegs:$src2), - "$dst = sub(#$src1, $src2)", - [(set IntRegs:$dst, (sub s10ExtPred:$src1, IntRegs:$src2))]>, - ImmRegRel; - -// Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs). -def : Pat<(not (i32 IntRegs:$src1)), - (SUB_ri -1, (i32 IntRegs:$src1))>; - -// Rd = neg(Rs) gets mapped to Rd=sub(#0, Rs). -// Pattern definition for 'neg' was not necessary. - -multiclass TFR_Pred<bit PredNot> { - let isPredicatedFalse = PredNot in { - def _c#NAME : ALU32_rr<(outs IntRegs:$dst), - (ins PredRegs:$src1, IntRegs:$src2), - !if(PredNot, "if (!$src1", "if ($src1")#") $dst = $src2", - []>; - // Predicate new - let isPredicatedNew = 1 in - def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst), - (ins PredRegs:$src1, IntRegs:$src2), - !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = $src2", - []>; +let isExtendable = 1, CextOpcode = "sub", opExtendable = 1, isExtentSigned = 1, + opExtentBits = 10, InputType = "imm", hasNewValue = 1, hasSideEffects = 0 in +def A2_subri: ALU32_ri <(outs IntRegs:$Rd), (ins s10Ext:$s10, IntRegs:$Rs), + "$Rd = sub(#$s10, $Rs)", []>, ImmRegRel { + bits<5> Rd; + bits<10> s10; + bits<5> Rs; + + let IClass = 0b0111; + + let Inst{27-22} = 0b011001; + let Inst{21} = s10{9}; + let Inst{20-16} = Rs; + let Inst{13-5} = s10{8-0}; + let Inst{4-0} = Rd; } + +// Nop. +let hasSideEffects = 0 in +def A2_nop: ALU32Inst <(outs), (ins), "nop" > { + let IClass = 0b0111; + let Inst{27-24} = 0b1111; } -let InputType = "reg", neverHasSideEffects = 1 in -multiclass TFR_base<string CextOp> { - let CextOpcode = CextOp, BaseOpcode = CextOp in { - let isPredicable = 1 in - def NAME : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), - "$dst = $src1", - []>; +def: Pat<(sub s10ExtPred:$s10, IntRegs:$Rs), + (A2_subri imm:$s10, IntRegs:$Rs)>; - let isPredicated = 1 in { - defm Pt : TFR_Pred<0>; - defm NotPt : TFR_Pred<1>; - } +// Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs). +def: Pat<(not (i32 IntRegs:$src1)), + (A2_subri -1, IntRegs:$src1)>; + +let hasSideEffects = 0, hasNewValue = 1 in +class T_tfr16<bit isHi> + : ALU32Inst <(outs IntRegs:$Rx), (ins IntRegs:$src1, u16Imm:$u16), + "$Rx"#!if(isHi, ".h", ".l")#" = #$u16", + [], "$src1 = $Rx" > { + bits<5> Rx; + bits<16> u16; + + let IClass = 0b0111; + let Inst{27-26} = 0b00; + let Inst{25-24} = !if(isHi, 0b10, 0b01); + let Inst{23-22} = u16{15-14}; + let Inst{21} = 0b1; + let Inst{20-16} = Rx; + let Inst{13-0} = u16{13-0}; } -} -class T_TFR64_Pred<bit PredNot, bit isPredNew> - : ALU32_rr<(outs DoubleRegs:$dst), - (ins PredRegs:$src1, DoubleRegs:$src2), - !if(PredNot, "if (!$src1", "if ($src1")# - !if(isPredNew, ".new) ", ") ")#"$dst = $src2", []> -{ +def A2_tfril: T_tfr16<0>; +def A2_tfrih: T_tfr16<1>; + +// Conditional transfer is an alias to conditional "Rd = add(Rs, #0)". +let isPredicated = 1, hasNewValue = 1, opNewValue = 0 in +class T_tfr_pred<bit isPredNot, bit isPredNew> + : ALU32Inst<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2), + "if ("#!if(isPredNot, "!", "")# + "$src1"#!if(isPredNew, ".new", "")# + ") $dst = $src2"> { bits<5> dst; bits<2> src1; bits<5> src2; - let IClass = 0b1111; - let Inst{27-24} = 0b1101; + let isPredicatedFalse = isPredNot; + let isPredicatedNew = isPredNew; + let IClass = 0b0111; + + let Inst{27-24} = 0b0100; + let Inst{23} = isPredNot; let Inst{13} = isPredNew; - let Inst{7} = PredNot; + let Inst{12-5} = 0; let Inst{4-0} = dst; - let Inst{6-5} = src1; - let Inst{20-17} = src2{4-1}; - let Inst{16} = 0b1; - let Inst{12-9} = src2{4-1}; - let Inst{8} = 0b0; -} + let Inst{22-21} = src1; + let Inst{20-16} = src2; + } -multiclass TFR64_Pred<bit PredNot> { - let isPredicatedFalse = PredNot in { - def _c#NAME : T_TFR64_Pred<PredNot, 0>; +let isPredicable = 1 in +class T_tfr : ALU32Inst<(outs IntRegs:$dst), (ins IntRegs:$src), + "$dst = $src"> { + bits<5> dst; + bits<5> src; - let isPredicatedNew = 1 in - def _cdn#NAME : T_TFR64_Pred<PredNot, 1>; // Predicate new + let IClass = 0b0111; + + let Inst{27-21} = 0b0000011; + let Inst{20-16} = src; + let Inst{13} = 0b0; + let Inst{4-0} = dst; + } + +let InputType = "reg", hasNewValue = 1, hasSideEffects = 0 in +multiclass tfr_base<string CextOp> { + let CextOpcode = CextOp, BaseOpcode = CextOp in { + def NAME : T_tfr; + + // Predicate + def t : T_tfr_pred<0, 0>; + def f : T_tfr_pred<1, 0>; + // Predicate new + def tnew : T_tfr_pred<0, 1>; + def fnew : T_tfr_pred<1, 1>; } } -let neverHasSideEffects = 1 in +// Assembler mapped to C2_ccombinew[t|f|newt|newf]. +// Please don't add bits to this instruction as it'll be converted into +// 'combine' before object code emission. +let isPredicated = 1 in +class T_tfrp_pred<bit PredNot, bit PredNew> + : ALU32_rr <(outs DoubleRegs:$dst), + (ins PredRegs:$src1, DoubleRegs:$src2), + "if ("#!if(PredNot, "!", "")#"$src1" + #!if(PredNew, ".new", "")#") $dst = $src2" > { + let isPredicatedFalse = PredNot; + let isPredicatedNew = PredNew; + } + +// Assembler mapped to A2_combinew. +// Please don't add bits to this instruction as it'll be converted into +// 'combine' before object code emission. +class T_tfrp : ALU32Inst <(outs DoubleRegs:$dst), + (ins DoubleRegs:$src), + "$dst = $src">; + +let hasSideEffects = 0 in multiclass TFR64_base<string BaseName> { let BaseOpcode = BaseName in { let isPredicable = 1 in - def NAME : ALU32Inst <(outs DoubleRegs:$dst), - (ins DoubleRegs:$src1), - "$dst = $src1" > { - bits<5> dst; - bits<5> src1; - - let IClass = 0b1111; - let Inst{27-23} = 0b01010; - let Inst{4-0} = dst; - let Inst{20-17} = src1{4-1}; - let Inst{16} = 0b1; - let Inst{12-9} = src1{4-1}; - let Inst{8} = 0b0; - } - - let isPredicated = 1 in { - defm Pt : TFR64_Pred<0>; - defm NotPt : TFR64_Pred<1>; - } + def NAME : T_tfrp; + // Predicate + def t : T_tfrp_pred <0, 0>; + def f : T_tfrp_pred <1, 0>; + // Predicate new + def tnew : T_tfrp_pred <0, 1>; + def fnew : T_tfrp_pred <1, 1>; } } -multiclass TFRI_Pred<bit PredNot> { - let isMoveImm = 1, isPredicatedFalse = PredNot in { - def _c#NAME : ALU32_ri<(outs IntRegs:$dst), - (ins PredRegs:$src1, s12Ext:$src2), - !if(PredNot, "if (!$src1", "if ($src1")#") $dst = #$src2", - []>; +let InputType = "imm", isExtendable = 1, isExtentSigned = 1, opExtentBits = 12, + isMoveImm = 1, opExtendable = 2, BaseOpcode = "TFRI", CextOpcode = "TFR", + hasSideEffects = 0, isPredicated = 1, hasNewValue = 1 in +class T_TFRI_Pred<bit PredNot, bit PredNew> + : ALU32_ri<(outs IntRegs:$Rd), (ins PredRegs:$Pu, s12Ext:$s12), + "if ("#!if(PredNot,"!","")#"$Pu"#!if(PredNew,".new","")#") $Rd = #$s12", + [], "", ALU32_2op_tc_1_SLOT0123>, ImmRegRel, PredNewRel { + let isPredicatedFalse = PredNot; + let isPredicatedNew = PredNew; - // Predicate new - let isPredicatedNew = 1 in - def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst), - (ins PredRegs:$src1, s12Ext:$src2), - !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = #$src2", - []>; - } -} - -let InputType = "imm", isExtendable = 1, isExtentSigned = 1 in -multiclass TFRI_base<string CextOp> { - let CextOpcode = CextOp, BaseOpcode = CextOp#I in { - let isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16, - isMoveImm = 1, isPredicable = 1, isReMaterializable = 1 in - def NAME : ALU32_ri<(outs IntRegs:$dst), (ins s16Ext:$src1), - "$dst = #$src1", - [(set (i32 IntRegs:$dst), s16ExtPred:$src1)]>; - - let opExtendable = 2, opExtentBits = 12, neverHasSideEffects = 1, - isPredicated = 1 in { - defm Pt : TFRI_Pred<0>; - defm NotPt : TFRI_Pred<1>; - } - } + bits<5> Rd; + bits<2> Pu; + bits<12> s12; + + let IClass = 0b0111; + let Inst{27-24} = 0b1110; + let Inst{23} = PredNot; + let Inst{22-21} = Pu; + let Inst{20} = 0b0; + let Inst{19-16,12-5} = s12; + let Inst{13} = PredNew; + let Inst{4-0} = Rd; } -defm TFRI : TFRI_base<"TFR">, ImmRegRel, PredNewRel; -defm TFR : TFR_base<"TFR">, ImmRegRel, PredNewRel; -defm TFR64 : TFR64_base<"TFR64">, PredNewRel; +def C2_cmoveit : T_TFRI_Pred<0, 0>; +def C2_cmoveif : T_TFRI_Pred<1, 0>; +def C2_cmovenewit : T_TFRI_Pred<0, 1>; +def C2_cmovenewif : T_TFRI_Pred<1, 1>; + +let InputType = "imm", isExtendable = 1, isExtentSigned = 1, + CextOpcode = "TFR", BaseOpcode = "TFRI", hasNewValue = 1, opNewValue = 0, + isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16, isMoveImm = 1, + isPredicated = 0, isPredicable = 1, isReMaterializable = 1 in +def A2_tfrsi : ALU32Inst<(outs IntRegs:$Rd), (ins s16Ext:$s16), "$Rd = #$s16", + [(set (i32 IntRegs:$Rd), s16ExtPred:$s16)], "", ALU32_2op_tc_1_SLOT0123>, + ImmRegRel, PredRel { + bits<5> Rd; + bits<16> s16; + + let IClass = 0b0111; + let Inst{27-24} = 0b1000; + let Inst{23-22,20-16,13-5} = s16; + let Inst{4-0} = Rd; +} + +defm A2_tfr : tfr_base<"TFR">, ImmRegRel, PredNewRel; +let isAsmParserOnly = 1 in +defm A2_tfrp : TFR64_base<"TFR64">, PredNewRel; + +// Assembler mapped +let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1, + isAsmParserOnly = 1 in +def A2_tfrpi : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1), + "$dst = #$src1", + [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>; + +// TODO: see if this instruction can be deleted.. +let isExtendable = 1, opExtendable = 1, opExtentBits = 6, + isAsmParserOnly = 1 in +def TFRI64_V4 : ALU64_rr<(outs DoubleRegs:$dst), (ins u6Ext:$src1), + "$dst = #$src1">; -// Transfer control register. -let neverHasSideEffects = 1 in -def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1), - "$dst = $src1", - []>; //===----------------------------------------------------------------------===// // ALU32/ALU - //===----------------------------------------------------------------------===// @@ -462,159 +649,344 @@ def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1), //===----------------------------------------------------------------------===// // ALU32/PERM + //===----------------------------------------------------------------------===// +// Scalar mux register immediate. +let hasSideEffects = 0, isExtentSigned = 1, CextOpcode = "MUX", + InputType = "imm", hasNewValue = 1, isExtendable = 1, opExtentBits = 8 in +class T_MUX1 <bit MajOp, dag ins, string AsmStr> + : ALU32Inst <(outs IntRegs:$Rd), ins, AsmStr>, ImmRegRel { + bits<5> Rd; + bits<2> Pu; + bits<8> s8; + bits<5> Rs; + + let IClass = 0b0111; + let Inst{27-24} = 0b0011; + let Inst{23} = MajOp; + let Inst{22-21} = Pu; + let Inst{20-16} = Rs; + let Inst{13} = 0b0; + let Inst{12-5} = s8; + let Inst{4-0} = Rd; +} + +let opExtendable = 2 in +def C2_muxri : T_MUX1<0b1, (ins PredRegs:$Pu, s8Ext:$s8, IntRegs:$Rs), + "$Rd = mux($Pu, #$s8, $Rs)">; + +let opExtendable = 3 in +def C2_muxir : T_MUX1<0b0, (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8), + "$Rd = mux($Pu, $Rs, #$s8)">; + +def : Pat<(i32 (select I1:$Pu, s8ExtPred:$s8, I32:$Rs)), + (C2_muxri I1:$Pu, s8ExtPred:$s8, I32:$Rs)>; + +def : Pat<(i32 (select I1:$Pu, I32:$Rs, s8ExtPred:$s8)), + (C2_muxir I1:$Pu, I32:$Rs, s8ExtPred:$s8)>; + +// C2_muxii: Scalar mux immediates. +let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, + opExtentBits = 8, opExtendable = 2 in +def C2_muxii: ALU32Inst <(outs IntRegs:$Rd), + (ins PredRegs:$Pu, s8Ext:$s8, s8Imm:$S8), + "$Rd = mux($Pu, #$s8, #$S8)" , + [(set (i32 IntRegs:$Rd), + (i32 (select I1:$Pu, s8ExtPred:$s8, s8ImmPred:$S8)))] > { + bits<5> Rd; + bits<2> Pu; + bits<8> s8; + bits<8> S8; + + let IClass = 0b0111; + + let Inst{27-25} = 0b101; + let Inst{24-23} = Pu; + let Inst{22-16} = S8{7-1}; + let Inst{13} = S8{0}; + let Inst{12-5} = s8; + let Inst{4-0} = Rd; + } + +//===----------------------------------------------------------------------===// +// template class for non-predicated alu32_2op instructions +// - aslh, asrh, sxtb, sxth, zxth +//===----------------------------------------------------------------------===// +let hasNewValue = 1, opNewValue = 0 in +class T_ALU32_2op <string mnemonic, bits<3> minOp> : + ALU32Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rs), + "$Rd = "#mnemonic#"($Rs)", [] > { + bits<5> Rd; + bits<5> Rs; + + let IClass = 0b0111; + + let Inst{27-24} = 0b0000; + let Inst{23-21} = minOp; + let Inst{13} = 0b0; + let Inst{4-0} = Rd; + let Inst{20-16} = Rs; +} + +//===----------------------------------------------------------------------===// +// template class for predicated alu32_2op instructions +// - aslh, asrh, sxtb, sxth, zxtb, zxth +//===----------------------------------------------------------------------===// +let hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in +class T_ALU32_2op_Pred <string mnemonic, bits<3> minOp, bit isPredNot, + bit isPredNew > : + ALU32Inst <(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs), + !if(isPredNot, "if (!$Pu", "if ($Pu") + #!if(isPredNew, ".new) ",") ")#"$Rd = "#mnemonic#"($Rs)"> { + bits<5> Rd; + bits<2> Pu; + bits<5> Rs; + + let IClass = 0b0111; -let neverHasSideEffects = 1 in -def COMBINE_ii : ALU32_ii<(outs DoubleRegs:$dst), - (ins s8Imm:$src1, s8Imm:$src2), - "$dst = combine(#$src1, #$src2)", - []>; - -// Mux. -def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, - DoubleRegs:$src2, - DoubleRegs:$src3), - "$dst = vmux($src1, $src2, $src3)", - []>; - -let CextOpcode = "MUX", InputType = "reg" in -def MUX_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, - IntRegs:$src2, IntRegs:$src3), - "$dst = mux($src1, $src2, $src3)", - [(set (i32 IntRegs:$dst), - (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), - (i32 IntRegs:$src3))))]>, ImmRegRel; - -let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8, -CextOpcode = "MUX", InputType = "imm" in -def MUX_ir : ALU32_ir<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2, - IntRegs:$src3), - "$dst = mux($src1, #$src2, $src3)", - [(set (i32 IntRegs:$dst), - (i32 (select (i1 PredRegs:$src1), s8ExtPred:$src2, - (i32 IntRegs:$src3))))]>, ImmRegRel; - -let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, -CextOpcode = "MUX", InputType = "imm" in -def MUX_ri : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, - s8Ext:$src3), - "$dst = mux($src1, $src2, #$src3)", - [(set (i32 IntRegs:$dst), - (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), - s8ExtPred:$src3)))]>, ImmRegRel; - -let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in -def MUX_ii : ALU32_ii<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2, - s8Imm:$src3), - "$dst = mux($src1, #$src2, #$src3)", - [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), - s8ExtPred:$src2, - s8ImmPred:$src3)))]>; - -// ALU32 - aslh, asrh, sxtb, sxth, zxtb, zxth -multiclass ALU32_2op_Pbase<string mnemonic, bit isNot, bit isPredNew> { - let isPredicatedNew = isPredNew in - def NAME : ALU32Inst<(outs IntRegs:$dst), - (ins PredRegs:$src1, IntRegs:$src2), - !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ", - ") $dst = ")#mnemonic#"($src2)">, - Requires<[HasV4T]>; -} - -multiclass ALU32_2op_Pred<string mnemonic, bit PredNot> { + let Inst{27-24} = 0b0000; + let Inst{23-21} = minOp; + let Inst{13} = 0b1; + let Inst{11} = isPredNot; + let Inst{10} = isPredNew; + let Inst{4-0} = Rd; + let Inst{9-8} = Pu; + let Inst{20-16} = Rs; +} + +multiclass ALU32_2op_Pred<string mnemonic, bits<3> minOp, bit PredNot> { let isPredicatedFalse = PredNot in { - defm _c#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 0>; + def NAME : T_ALU32_2op_Pred<mnemonic, minOp, PredNot, 0>; + // Predicate new - defm _cdn#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 1>; + let isPredicatedNew = 1 in + def NAME#new : T_ALU32_2op_Pred<mnemonic, minOp, PredNot, 1>; } } -multiclass ALU32_2op_base<string mnemonic> { +multiclass ALU32_2op_base<string mnemonic, bits<3> minOp> { let BaseOpcode = mnemonic in { - let isPredicable = 1, neverHasSideEffects = 1 in - def NAME : ALU32Inst<(outs IntRegs:$dst), - (ins IntRegs:$src1), - "$dst = "#mnemonic#"($src1)">; - - let Predicates = [HasV4T], validSubTargets = HasV4SubT, isPredicated = 1, - neverHasSideEffects = 1 in { - defm Pt_V4 : ALU32_2op_Pred<mnemonic, 0>; - defm NotPt_V4 : ALU32_2op_Pred<mnemonic, 1>; + let isPredicable = 1, hasSideEffects = 0 in + def A2_#NAME : T_ALU32_2op<mnemonic, minOp>; + + let isPredicated = 1, hasSideEffects = 0 in { + defm A4_p#NAME#t : ALU32_2op_Pred<mnemonic, minOp, 0>; + defm A4_p#NAME#f : ALU32_2op_Pred<mnemonic, minOp, 1>; } } } -defm ASLH : ALU32_2op_base<"aslh">, PredNewRel; -defm ASRH : ALU32_2op_base<"asrh">, PredNewRel; -defm SXTB : ALU32_2op_base<"sxtb">, PredNewRel; -defm SXTH : ALU32_2op_base<"sxth">, PredNewRel; -defm ZXTB : ALU32_2op_base<"zxtb">, PredNewRel; -defm ZXTH : ALU32_2op_base<"zxth">, PredNewRel; +defm aslh : ALU32_2op_base<"aslh", 0b000>, PredNewRel; +defm asrh : ALU32_2op_base<"asrh", 0b001>, PredNewRel; +defm sxtb : ALU32_2op_base<"sxtb", 0b101>, PredNewRel; +defm sxth : ALU32_2op_base<"sxth", 0b111>, PredNewRel; +defm zxth : ALU32_2op_base<"zxth", 0b110>, PredNewRel; + +// Rd=zxtb(Rs): assembler mapped to Rd=and(Rs,#255). +// Compiler would want to generate 'zxtb' instead of 'and' becuase 'zxtb' has +// predicated forms while 'and' doesn't. Since integrated assembler can't +// handle 'mapped' instructions, we need to encode 'zxtb' same as 'and' where +// immediate operand is set to '255'. + +let hasNewValue = 1, opNewValue = 0 in +class T_ZXTB: ALU32Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rs), + "$Rd = zxtb($Rs)", [] > { // Rd = and(Rs,255) + bits<5> Rd; + bits<5> Rs; + bits<10> s10 = 255; + + let IClass = 0b0111; + + let Inst{27-22} = 0b011000; + let Inst{4-0} = Rd; + let Inst{20-16} = Rs; + let Inst{21} = s10{9}; + let Inst{13-5} = s10{8-0}; +} -def : Pat <(shl (i32 IntRegs:$src1), (i32 16)), - (ASLH IntRegs:$src1)>; +//Rd=zxtb(Rs): assembler mapped to "Rd=and(Rs,#255) +multiclass ZXTB_base <string mnemonic, bits<3> minOp> { + let BaseOpcode = mnemonic in { + let isPredicable = 1, hasSideEffects = 0 in + def A2_#NAME : T_ZXTB; -def : Pat <(sra (i32 IntRegs:$src1), (i32 16)), - (ASRH IntRegs:$src1)>; + let isPredicated = 1, hasSideEffects = 0 in { + defm A4_p#NAME#t : ALU32_2op_Pred<mnemonic, minOp, 0>; + defm A4_p#NAME#f : ALU32_2op_Pred<mnemonic, minOp, 1>; + } + } +} -def : Pat <(sext_inreg (i32 IntRegs:$src1), i8), - (SXTB IntRegs:$src1)>; +defm zxtb : ZXTB_base<"zxtb",0b100>, PredNewRel; -def : Pat <(sext_inreg (i32 IntRegs:$src1), i16), - (SXTH IntRegs:$src1)>; +def: Pat<(shl I32:$src1, (i32 16)), (A2_aslh I32:$src1)>; +def: Pat<(sra I32:$src1, (i32 16)), (A2_asrh I32:$src1)>; +def: Pat<(sext_inreg I32:$src1, i8), (A2_sxtb I32:$src1)>; +def: Pat<(sext_inreg I32:$src1, i16), (A2_sxth I32:$src1)>; //===----------------------------------------------------------------------===// -// ALU32/PERM - +// Template class for vector add and avg //===----------------------------------------------------------------------===// +class T_VectALU_64 <string opc, bits<3> majOp, bits<3> minOp, + bit isSat, bit isRnd, bit isCrnd, bit SwapOps > + : ALU64_rr < (outs DoubleRegs:$Rdd), + (ins DoubleRegs:$Rss, DoubleRegs:$Rtt), + "$Rdd = "#opc#"($Rss, $Rtt)"#!if(isRnd, ":rnd", "") + #!if(isCrnd,":crnd","") + #!if(isSat, ":sat", ""), + [], "", ALU64_tc_2_SLOT23 > { + bits<5> Rdd; + bits<5> Rss; + bits<5> Rtt; + + let IClass = 0b1101; + + let Inst{27-24} = 0b0011; + let Inst{23-21} = majOp; + let Inst{20-16} = !if (SwapOps, Rtt, Rss); + let Inst{12-8} = !if (SwapOps, Rss, Rtt); + let Inst{7-5} = minOp; + let Inst{4-0} = Rdd; + } -//===----------------------------------------------------------------------===// -// ALU32/PRED + -//===----------------------------------------------------------------------===// +// ALU64 - Vector add +// Rdd=vadd[u][bhw](Rss,Rtt) +let Itinerary = ALU64_tc_1_SLOT23 in { + def A2_vaddub : T_VectALU_64 < "vaddub", 0b000, 0b000, 0, 0, 0, 0>; + def A2_vaddh : T_VectALU_64 < "vaddh", 0b000, 0b010, 0, 0, 0, 0>; + def A2_vaddw : T_VectALU_64 < "vaddw", 0b000, 0b101, 0, 0, 0, 0>; +} -// Compare. -defm CMPGTU : CMP32_rr_ri_u9<"cmp.gtu", "CMPGTU", setugt>, ImmRegRel; -defm CMPGT : CMP32_rr_ri_s10<"cmp.gt", "CMPGT", setgt>, ImmRegRel; -defm CMPEQ : CMP32_rr_ri_s10<"cmp.eq", "CMPEQ", seteq>, ImmRegRel; +// Rdd=vadd[u][bhw](Rss,Rtt):sat +let Defs = [USR_OVF] in { + def A2_vaddubs : T_VectALU_64 < "vaddub", 0b000, 0b001, 1, 0, 0, 0>; + def A2_vaddhs : T_VectALU_64 < "vaddh", 0b000, 0b011, 1, 0, 0, 0>; + def A2_vadduhs : T_VectALU_64 < "vadduh", 0b000, 0b100, 1, 0, 0, 0>; + def A2_vaddws : T_VectALU_64 < "vaddw", 0b000, 0b110, 1, 0, 0, 0>; +} -// SDNode for converting immediate C to C-1. -def DEC_CONST_SIGNED : SDNodeXForm<imm, [{ - // Return the byte immediate const-1 as an SDNode. - int32_t imm = N->getSExtValue(); - return XformSToSM1Imm(imm); -}]>; +// ALU64 - Vector average +// Rdd=vavg[u][bhw](Rss,Rtt) +let Itinerary = ALU64_tc_1_SLOT23 in { + def A2_vavgub : T_VectALU_64 < "vavgub", 0b010, 0b000, 0, 0, 0, 0>; + def A2_vavgh : T_VectALU_64 < "vavgh", 0b010, 0b010, 0, 0, 0, 0>; + def A2_vavguh : T_VectALU_64 < "vavguh", 0b010, 0b101, 0, 0, 0, 0>; + def A2_vavgw : T_VectALU_64 < "vavgw", 0b011, 0b000, 0, 0, 0, 0>; + def A2_vavguw : T_VectALU_64 < "vavguw", 0b011, 0b011, 0, 0, 0, 0>; +} -// SDNode for converting immediate C to C-1. -def DEC_CONST_UNSIGNED : SDNodeXForm<imm, [{ - // Return the byte immediate const-1 as an SDNode. - uint32_t imm = N->getZExtValue(); - return XformUToUM1Imm(imm); -}]>; +// Rdd=vavg[u][bhw](Rss,Rtt)[:rnd|:crnd] +def A2_vavgubr : T_VectALU_64 < "vavgub", 0b010, 0b001, 0, 1, 0, 0>; +def A2_vavghr : T_VectALU_64 < "vavgh", 0b010, 0b011, 0, 1, 0, 0>; +def A2_vavghcr : T_VectALU_64 < "vavgh", 0b010, 0b100, 0, 0, 1, 0>; +def A2_vavguhr : T_VectALU_64 < "vavguh", 0b010, 0b110, 0, 1, 0, 0>; + +def A2_vavgwr : T_VectALU_64 < "vavgw", 0b011, 0b001, 0, 1, 0, 0>; +def A2_vavgwcr : T_VectALU_64 < "vavgw", 0b011, 0b010, 0, 0, 1, 0>; +def A2_vavguwr : T_VectALU_64 < "vavguw", 0b011, 0b100, 0, 1, 0, 0>; + +// Rdd=vnavg[bh](Rss,Rtt) +let Itinerary = ALU64_tc_1_SLOT23 in { + def A2_vnavgh : T_VectALU_64 < "vnavgh", 0b100, 0b000, 0, 0, 0, 1>; + def A2_vnavgw : T_VectALU_64 < "vnavgw", 0b100, 0b011, 0, 0, 0, 1>; +} + +// Rdd=vnavg[bh](Rss,Rtt)[:rnd|:crnd]:sat +let Defs = [USR_OVF] in { + def A2_vnavghr : T_VectALU_64 < "vnavgh", 0b100, 0b001, 1, 1, 0, 1>; + def A2_vnavghcr : T_VectALU_64 < "vnavgh", 0b100, 0b010, 1, 0, 1, 1>; + def A2_vnavgwr : T_VectALU_64 < "vnavgw", 0b100, 0b100, 1, 1, 0, 1>; + def A2_vnavgwcr : T_VectALU_64 < "vnavgw", 0b100, 0b110, 1, 0, 1, 1>; +} + +// Rdd=vsub[u][bh](Rss,Rtt) +let Itinerary = ALU64_tc_1_SLOT23 in { + def A2_vsubub : T_VectALU_64 < "vsubub", 0b001, 0b000, 0, 0, 0, 1>; + def A2_vsubh : T_VectALU_64 < "vsubh", 0b001, 0b010, 0, 0, 0, 1>; + def A2_vsubw : T_VectALU_64 < "vsubw", 0b001, 0b101, 0, 0, 0, 1>; +} + +// Rdd=vsub[u][bh](Rss,Rtt):sat +let Defs = [USR_OVF] in { + def A2_vsububs : T_VectALU_64 < "vsubub", 0b001, 0b001, 1, 0, 0, 1>; + def A2_vsubhs : T_VectALU_64 < "vsubh", 0b001, 0b011, 1, 0, 0, 1>; + def A2_vsubuhs : T_VectALU_64 < "vsubuh", 0b001, 0b100, 1, 0, 0, 1>; + def A2_vsubws : T_VectALU_64 < "vsubw", 0b001, 0b110, 1, 0, 0, 1>; +} -def CTLZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1), - "$dst = cl0($src1)", - [(set (i32 IntRegs:$dst), (ctlz (i32 IntRegs:$src1)))]>; +// Rdd=vmax[u][bhw](Rss,Rtt) +def A2_vmaxb : T_VectALU_64 < "vmaxb", 0b110, 0b110, 0, 0, 0, 1>; +def A2_vmaxub : T_VectALU_64 < "vmaxub", 0b110, 0b000, 0, 0, 0, 1>; +def A2_vmaxh : T_VectALU_64 < "vmaxh", 0b110, 0b001, 0, 0, 0, 1>; +def A2_vmaxuh : T_VectALU_64 < "vmaxuh", 0b110, 0b010, 0, 0, 0, 1>; +def A2_vmaxw : T_VectALU_64 < "vmaxw", 0b110, 0b011, 0, 0, 0, 1>; +def A2_vmaxuw : T_VectALU_64 < "vmaxuw", 0b101, 0b101, 0, 0, 0, 1>; + +// Rdd=vmin[u][bhw](Rss,Rtt) +def A2_vminb : T_VectALU_64 < "vminb", 0b110, 0b111, 0, 0, 0, 1>; +def A2_vminub : T_VectALU_64 < "vminub", 0b101, 0b000, 0, 0, 0, 1>; +def A2_vminh : T_VectALU_64 < "vminh", 0b101, 0b001, 0, 0, 0, 1>; +def A2_vminuh : T_VectALU_64 < "vminuh", 0b101, 0b010, 0, 0, 0, 1>; +def A2_vminw : T_VectALU_64 < "vminw", 0b101, 0b011, 0, 0, 0, 1>; +def A2_vminuw : T_VectALU_64 < "vminuw", 0b101, 0b100, 0, 0, 0, 1>; -def CTTZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1), - "$dst = ct0($src1)", - [(set (i32 IntRegs:$dst), (cttz (i32 IntRegs:$src1)))]>; +//===----------------------------------------------------------------------===// +// Template class for vector compare +//===----------------------------------------------------------------------===// +let hasSideEffects = 0 in +class T_vcmp <string Str, bits<4> minOp> + : ALU64_rr <(outs PredRegs:$Pd), + (ins DoubleRegs:$Rss, DoubleRegs:$Rtt), + "$Pd = "#Str#"($Rss, $Rtt)", [], + "", ALU64_tc_2early_SLOT23> { + bits<2> Pd; + bits<5> Rss; + bits<5> Rtt; + + let IClass = 0b1101; + + let Inst{27-23} = 0b00100; + let Inst{13} = minOp{3}; + let Inst{7-5} = minOp{2-0}; + let Inst{1-0} = Pd; + let Inst{20-16} = Rss; + let Inst{12-8} = Rtt; + } -def CTLZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1), - "$dst = cl0($src1)", - [(set (i32 IntRegs:$dst), (i32 (trunc (ctlz (i64 DoubleRegs:$src1)))))]>; +class T_vcmp_pat<InstHexagon MI, PatFrag Op, ValueType T> + : Pat<(i1 (Op (T DoubleRegs:$Rss), (T DoubleRegs:$Rtt))), + (i1 (MI DoubleRegs:$Rss, DoubleRegs:$Rtt))>; + +// Vector compare bytes +def A2_vcmpbeq : T_vcmp <"vcmpb.eq", 0b0110>; +def A2_vcmpbgtu : T_vcmp <"vcmpb.gtu", 0b0111>; + +// Vector compare halfwords +def A2_vcmpheq : T_vcmp <"vcmph.eq", 0b0011>; +def A2_vcmphgt : T_vcmp <"vcmph.gt", 0b0100>; +def A2_vcmphgtu : T_vcmp <"vcmph.gtu", 0b0101>; + +// Vector compare words +def A2_vcmpweq : T_vcmp <"vcmpw.eq", 0b0000>; +def A2_vcmpwgt : T_vcmp <"vcmpw.gt", 0b0001>; +def A2_vcmpwgtu : T_vcmp <"vcmpw.gtu", 0b0010>; + +def: T_vcmp_pat<A2_vcmpbeq, seteq, v8i8>; +def: T_vcmp_pat<A2_vcmpbgtu, setugt, v8i8>; +def: T_vcmp_pat<A2_vcmpheq, seteq, v4i16>; +def: T_vcmp_pat<A2_vcmphgt, setgt, v4i16>; +def: T_vcmp_pat<A2_vcmphgtu, setugt, v4i16>; +def: T_vcmp_pat<A2_vcmpweq, seteq, v2i32>; +def: T_vcmp_pat<A2_vcmpwgt, setgt, v2i32>; +def: T_vcmp_pat<A2_vcmpwgtu, setugt, v2i32>; -def CTTZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1), - "$dst = ct0($src1)", - [(set (i32 IntRegs:$dst), (i32 (trunc (cttz (i64 DoubleRegs:$src1)))))]>; +//===----------------------------------------------------------------------===// +// ALU32/PERM - +//===----------------------------------------------------------------------===// -def TSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = tstbit($src1, $src2)", - [(set (i1 PredRegs:$dst), - (setne (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>; -def TSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), - "$dst = tstbit($src1, $src2)", - [(set (i1 PredRegs:$dst), - (setne (and (shl 1, (u5ImmPred:$src2)), (i32 IntRegs:$src1)), 0))]>; +//===----------------------------------------------------------------------===// +// ALU32/PRED + +//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU32/PRED - @@ -625,112 +997,280 @@ def TSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), // ALU64/ALU + //===----------------------------------------------------------------------===// // Add. -def ADD64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - DoubleRegs:$src2), - "$dst = add($src1, $src2)", - [(set (i64 DoubleRegs:$dst), (add (i64 DoubleRegs:$src1), - (i64 DoubleRegs:$src2)))]>; +//===----------------------------------------------------------------------===// +// Template Class +// Add/Subtract halfword +// Rd=add(Rt.L,Rs.[HL])[:sat] +// Rd=sub(Rt.L,Rs.[HL])[:sat] +// Rd=add(Rt.[LH],Rs.[HL])[:sat][:<16] +// Rd=sub(Rt.[LH],Rs.[HL])[:sat][:<16] +//===----------------------------------------------------------------------===// -// Add halfword. +let hasNewValue = 1, opNewValue = 0 in +class T_XTYPE_ADD_SUB <bits<2> LHbits, bit isSat, bit hasShift, bit isSub> + : ALU64Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs), + "$Rd = "#!if(isSub,"sub","add")#"($Rt." + #!if(hasShift, !if(LHbits{1},"h","l"),"l") #", $Rs." + #!if(hasShift, !if(LHbits{0},"h)","l)"), !if(LHbits{1},"h)","l)")) + #!if(isSat,":sat","") + #!if(hasShift,":<<16",""), [], "", ALU64_tc_1_SLOT23> { + bits<5> Rd; + bits<5> Rt; + bits<5> Rs; + let IClass = 0b1101; + + let Inst{27-23} = 0b01010; + let Inst{22} = hasShift; + let Inst{21} = isSub; + let Inst{7} = isSat; + let Inst{6-5} = LHbits; + let Inst{4-0} = Rd; + let Inst{12-8} = Rt; + let Inst{20-16} = Rs; + } -// Compare. -defm CMPEHexagon4 : CMP64_rr<"cmp.eq", seteq>; -defm CMPGT64 : CMP64_rr<"cmp.gt", setgt>; -defm CMPGTU64 : CMP64_rr<"cmp.gtu", setugt>; - -// Logical operations. -def AND_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - DoubleRegs:$src2), - "$dst = and($src1, $src2)", - [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1), - (i64 DoubleRegs:$src2)))]>; - -def OR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - DoubleRegs:$src2), - "$dst = or($src1, $src2)", - [(set (i64 DoubleRegs:$dst), (or (i64 DoubleRegs:$src1), - (i64 DoubleRegs:$src2)))]>; - -def XOR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - DoubleRegs:$src2), - "$dst = xor($src1, $src2)", - [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1), - (i64 DoubleRegs:$src2)))]>; - -// Maximum. -def MAXw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = max($src2, $src1)", - [(set (i32 IntRegs:$dst), - (i32 (select (i1 (setlt (i32 IntRegs:$src2), - (i32 IntRegs:$src1))), - (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; +//Rd=sub(Rt.L,Rs.[LH]) +def A2_subh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 1>; +def A2_subh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 1>; -def MAXUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = maxu($src2, $src1)", - [(set (i32 IntRegs:$dst), - (i32 (select (i1 (setult (i32 IntRegs:$src2), - (i32 IntRegs:$src1))), - (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; - -def MAXd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - DoubleRegs:$src2), - "$dst = max($src2, $src1)", - [(set (i64 DoubleRegs:$dst), - (i64 (select (i1 (setlt (i64 DoubleRegs:$src2), - (i64 DoubleRegs:$src1))), - (i64 DoubleRegs:$src1), - (i64 DoubleRegs:$src2))))]>; - -def MAXUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - DoubleRegs:$src2), - "$dst = maxu($src2, $src1)", - [(set (i64 DoubleRegs:$dst), - (i64 (select (i1 (setult (i64 DoubleRegs:$src2), - (i64 DoubleRegs:$src1))), - (i64 DoubleRegs:$src1), - (i64 DoubleRegs:$src2))))]>; - -// Minimum. -def MINw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = min($src2, $src1)", - [(set (i32 IntRegs:$dst), - (i32 (select (i1 (setgt (i32 IntRegs:$src2), - (i32 IntRegs:$src1))), - (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; +//Rd=add(Rt.L,Rs.[LH]) +def A2_addh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 0>; +def A2_addh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 0>; -def MINUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = minu($src2, $src1)", - [(set (i32 IntRegs:$dst), - (i32 (select (i1 (setugt (i32 IntRegs:$src2), - (i32 IntRegs:$src1))), - (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; - -def MINd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - DoubleRegs:$src2), - "$dst = min($src2, $src1)", - [(set (i64 DoubleRegs:$dst), - (i64 (select (i1 (setgt (i64 DoubleRegs:$src2), - (i64 DoubleRegs:$src1))), - (i64 DoubleRegs:$src1), - (i64 DoubleRegs:$src2))))]>; - -def MINUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - DoubleRegs:$src2), - "$dst = minu($src2, $src1)", - [(set (i64 DoubleRegs:$dst), - (i64 (select (i1 (setugt (i64 DoubleRegs:$src2), - (i64 DoubleRegs:$src1))), - (i64 DoubleRegs:$src1), - (i64 DoubleRegs:$src2))))]>; - -// Subtract. -def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - DoubleRegs:$src2), - "$dst = sub($src1, $src2)", - [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1), - (i64 DoubleRegs:$src2)))]>; +let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF] in { + //Rd=sub(Rt.L,Rs.[LH]):sat + def A2_subh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 1>; + def A2_subh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 1>; + + //Rd=add(Rt.L,Rs.[LH]):sat + def A2_addh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 0>; + def A2_addh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 0>; +} + +//Rd=sub(Rt.[LH],Rs.[LH]):<<16 +def A2_subh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 1>; +def A2_subh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 1>; +def A2_subh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 1>; +def A2_subh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 1>; + +//Rd=add(Rt.[LH],Rs.[LH]):<<16 +def A2_addh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 0>; +def A2_addh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 0>; +def A2_addh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 0>; +def A2_addh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 0>; + +let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF] in { + //Rd=sub(Rt.[LH],Rs.[LH]):sat:<<16 + def A2_subh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 1>; + def A2_subh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 1>; + def A2_subh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 1>; + def A2_subh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 1>; + + //Rd=add(Rt.[LH],Rs.[LH]):sat:<<16 + def A2_addh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 0>; + def A2_addh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 0>; + def A2_addh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 0>; + def A2_addh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 0>; +} + +// Add halfword. +def: Pat<(sext_inreg (add I32:$src1, I32:$src2), i16), + (A2_addh_l16_ll I32:$src1, I32:$src2)>; + +def: Pat<(sra (add (shl I32:$src1, (i32 16)), I32:$src2), (i32 16)), + (A2_addh_l16_hl I32:$src1, I32:$src2)>; + +def: Pat<(shl (add I32:$src1, I32:$src2), (i32 16)), + (A2_addh_h16_ll I32:$src1, I32:$src2)>; // Subtract halfword. +def: Pat<(sext_inreg (sub I32:$src1, I32:$src2), i16), + (A2_subh_l16_ll I32:$src1, I32:$src2)>; + +def: Pat<(shl (sub I32:$src1, I32:$src2), (i32 16)), + (A2_subh_h16_ll I32:$src1, I32:$src2)>; + +let hasSideEffects = 0, hasNewValue = 1 in +def S2_parityp: ALU64Inst<(outs IntRegs:$Rd), + (ins DoubleRegs:$Rs, DoubleRegs:$Rt), + "$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> { + bits<5> Rd; + bits<5> Rs; + bits<5> Rt; + + let IClass = 0b1101; + let Inst{27-24} = 0b0000; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + let Inst{4-0} = Rd; +} + +let hasNewValue = 1, opNewValue = 0, hasSideEffects = 0 in +class T_XTYPE_MIN_MAX < bit isMax, bit isUnsigned > + : ALU64Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs), + "$Rd = "#!if(isMax,"max","min")#!if(isUnsigned,"u","") + #"($Rt, $Rs)", [], "", ALU64_tc_2_SLOT23> { + bits<5> Rd; + bits<5> Rt; + bits<5> Rs; + + let IClass = 0b1101; + + let Inst{27-23} = 0b01011; + let Inst{22-21} = !if(isMax, 0b10, 0b01); + let Inst{7} = isUnsigned; + let Inst{4-0} = Rd; + let Inst{12-8} = !if(isMax, Rs, Rt); + let Inst{20-16} = !if(isMax, Rt, Rs); + } + +def A2_min : T_XTYPE_MIN_MAX < 0, 0 >; +def A2_minu : T_XTYPE_MIN_MAX < 0, 1 >; +def A2_max : T_XTYPE_MIN_MAX < 1, 0 >; +def A2_maxu : T_XTYPE_MIN_MAX < 1, 1 >; + +// Here, depending on the operand being selected, we'll either generate a +// min or max instruction. +// Ex: +// (a>b)?a:b --> max(a,b) => Here check performed is '>' and the value selected +// is the larger of two. So, the corresponding HexagonInst is passed in 'Inst'. +// (a>b)?b:a --> min(a,b) => Here check performed is '>' but the smaller value +// is selected and the corresponding HexagonInst is passed in 'SwapInst'. + +multiclass T_MinMax_pats <PatFrag Op, RegisterClass RC, ValueType VT, + InstHexagon Inst, InstHexagon SwapInst> { + def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))), + (VT RC:$src1), (VT RC:$src2)), + (Inst RC:$src1, RC:$src2)>; + def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))), + (VT RC:$src2), (VT RC:$src1)), + (SwapInst RC:$src1, RC:$src2)>; +} + + +multiclass MinMax_pats <PatFrag Op, InstHexagon Inst, InstHexagon SwapInst> { + defm: T_MinMax_pats<Op, IntRegs, i32, Inst, SwapInst>; + + def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1), + (i32 PositiveHalfWord:$src2))), + (i32 PositiveHalfWord:$src1), + (i32 PositiveHalfWord:$src2))), i16), + (Inst IntRegs:$src1, IntRegs:$src2)>; + + def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1), + (i32 PositiveHalfWord:$src2))), + (i32 PositiveHalfWord:$src2), + (i32 PositiveHalfWord:$src1))), i16), + (SwapInst IntRegs:$src1, IntRegs:$src2)>; +} + +let AddedComplexity = 200 in { + defm: MinMax_pats<setge, A2_max, A2_min>; + defm: MinMax_pats<setgt, A2_max, A2_min>; + defm: MinMax_pats<setle, A2_min, A2_max>; + defm: MinMax_pats<setlt, A2_min, A2_max>; + defm: MinMax_pats<setuge, A2_maxu, A2_minu>; + defm: MinMax_pats<setugt, A2_maxu, A2_minu>; + defm: MinMax_pats<setule, A2_minu, A2_maxu>; + defm: MinMax_pats<setult, A2_minu, A2_maxu>; +} + +class T_cmp64_rr<string mnemonic, bits<3> MinOp, bit IsComm> + : ALU64_rr<(outs PredRegs:$Pd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt), + "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", ALU64_tc_2early_SLOT23> { + let isCompare = 1; + let isCommutable = IsComm; + let hasSideEffects = 0; + + bits<2> Pd; + bits<5> Rs; + bits<5> Rt; + + let IClass = 0b1101; + let Inst{27-21} = 0b0010100; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + let Inst{7-5} = MinOp; + let Inst{1-0} = Pd; +} + +def C2_cmpeqp : T_cmp64_rr<"cmp.eq", 0b000, 1>; +def C2_cmpgtp : T_cmp64_rr<"cmp.gt", 0b010, 0>; +def C2_cmpgtup : T_cmp64_rr<"cmp.gtu", 0b100, 0>; + +class T_cmp64_rr_pat<InstHexagon MI, PatFrag CmpOp> + : Pat<(i1 (CmpOp (i64 DoubleRegs:$Rs), (i64 DoubleRegs:$Rt))), + (i1 (MI DoubleRegs:$Rs, DoubleRegs:$Rt))>; + +def: T_cmp64_rr_pat<C2_cmpeqp, seteq>; +def: T_cmp64_rr_pat<C2_cmpgtp, setgt>; +def: T_cmp64_rr_pat<C2_cmpgtup, setugt>; +def: T_cmp64_rr_pat<C2_cmpgtp, RevCmp<setlt>>; +def: T_cmp64_rr_pat<C2_cmpgtup, RevCmp<setult>>; + +def C2_vmux : ALU64_rr<(outs DoubleRegs:$Rd), + (ins PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt), + "$Rd = vmux($Pu, $Rs, $Rt)", [], "", ALU64_tc_1_SLOT23> { + let hasSideEffects = 0; + + bits<5> Rd; + bits<2> Pu; + bits<5> Rs; + bits<5> Rt; + + let IClass = 0b1101; + let Inst{27-24} = 0b0001; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + let Inst{6-5} = Pu; + let Inst{4-0} = Rd; +} + +class T_ALU64_rr<string mnemonic, string suffix, bits<4> RegType, + bits<3> MajOp, bits<3> MinOp, bit OpsRev, bit IsComm, + string Op2Pfx> + : ALU64_rr<(outs DoubleRegs:$Rd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt), + "$Rd = " #mnemonic# "($Rs, " #Op2Pfx# "$Rt)" #suffix, [], + "", ALU64_tc_1_SLOT23> { + let hasSideEffects = 0; + let isCommutable = IsComm; + + bits<5> Rs; + bits<5> Rt; + bits<5> Rd; + + let IClass = 0b1101; + let Inst{27-24} = RegType; + let Inst{23-21} = MajOp; + let Inst{20-16} = !if (OpsRev,Rt,Rs); + let Inst{12-8} = !if (OpsRev,Rs,Rt); + let Inst{7-5} = MinOp; + let Inst{4-0} = Rd; +} + +class T_ALU64_arith<string mnemonic, bits<3> MajOp, bits<3> MinOp, bit IsSat, + bit OpsRev, bit IsComm> + : T_ALU64_rr<mnemonic, !if(IsSat,":sat",""), 0b0011, MajOp, MinOp, OpsRev, + IsComm, "">; + +def A2_addp : T_ALU64_arith<"add", 0b000, 0b111, 0, 0, 1>; +def A2_subp : T_ALU64_arith<"sub", 0b001, 0b111, 0, 1, 0>; + +def: Pat<(i64 (add I64:$Rs, I64:$Rt)), (A2_addp I64:$Rs, I64:$Rt)>; +def: Pat<(i64 (sub I64:$Rs, I64:$Rt)), (A2_subp I64:$Rs, I64:$Rt)>; + +class T_ALU64_logical<string mnemonic, bits<3> MinOp, bit OpsRev, bit IsComm, + bit IsNeg> + : T_ALU64_rr<mnemonic, "", 0b0011, 0b111, MinOp, OpsRev, IsComm, + !if(IsNeg,"~","")>; + +def A2_andp : T_ALU64_logical<"and", 0b000, 0, 1, 0>; +def A2_orp : T_ALU64_logical<"or", 0b010, 0, 1, 0>; +def A2_xorp : T_ALU64_logical<"xor", 0b100, 0, 1, 0>; + +def: Pat<(i64 (and I64:$Rs, I64:$Rt)), (A2_andp I64:$Rs, I64:$Rt)>; +def: Pat<(i64 (or I64:$Rs, I64:$Rt)), (A2_orp I64:$Rs, I64:$Rt)>; +def: Pat<(i64 (xor I64:$Rs, I64:$Rt)), (A2_xorp I64:$Rs, I64:$Rt)>; //===----------------------------------------------------------------------===// // ALU64/ALU - @@ -762,82 +1302,119 @@ def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, // Pipelined looping instructions. // Logical operations on predicates. -def AND_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), - "$dst = and($src1, $src2)", - [(set (i1 PredRegs:$dst), (and (i1 PredRegs:$src1), - (i1 PredRegs:$src2)))]>; - -let neverHasSideEffects = 1 in -def AND_pnotp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, - PredRegs:$src2), - "$dst = and($src1, !$src2)", - []>; - -def ANY_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), - "$dst = any8($src1)", - []>; - -def ALL_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), - "$dst = all8($src1)", - []>; - -def VITPACK_pp : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1, - PredRegs:$src2), - "$dst = vitpack($src1, $src2)", - []>; +let hasSideEffects = 0 in +class T_LOGICAL_1OP<string MnOp, bits<2> OpBits> + : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps), + "$Pd = " # MnOp # "($Ps)", [], "", CR_tc_2early_SLOT23> { + bits<2> Pd; + bits<2> Ps; + + let IClass = 0b0110; + let Inst{27-23} = 0b10111; + let Inst{22-21} = OpBits; + let Inst{20} = 0b0; + let Inst{17-16} = Ps; + let Inst{13} = 0b0; + let Inst{1-0} = Pd; +} -def VALIGN_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - DoubleRegs:$src2, - PredRegs:$src3), - "$dst = valignb($src1, $src2, $src3)", - []>; +def C2_any8 : T_LOGICAL_1OP<"any8", 0b00>; +def C2_all8 : T_LOGICAL_1OP<"all8", 0b01>; +def C2_not : T_LOGICAL_1OP<"not", 0b10>; + +def: Pat<(i1 (not (i1 PredRegs:$Ps))), + (C2_not PredRegs:$Ps)>; + +let hasSideEffects = 0 in +class T_LOGICAL_2OP<string MnOp, bits<3> OpBits, bit IsNeg, bit Rev> + : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps, PredRegs:$Pt), + "$Pd = " # MnOp # "($Ps, " # !if (IsNeg,"!","") # "$Pt)", + [], "", CR_tc_2early_SLOT23> { + bits<2> Pd; + bits<2> Ps; + bits<2> Pt; + + let IClass = 0b0110; + let Inst{27-24} = 0b1011; + let Inst{23-21} = OpBits; + let Inst{20} = 0b0; + let Inst{17-16} = !if(Rev,Pt,Ps); // Rs and Rt are reversed for some + let Inst{13} = 0b0; // instructions. + let Inst{9-8} = !if(Rev,Ps,Pt); + let Inst{1-0} = Pd; +} -def VSPLICE_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - DoubleRegs:$src2, - PredRegs:$src3), - "$dst = vspliceb($src1, $src2, $src3)", - []>; +def C2_and : T_LOGICAL_2OP<"and", 0b000, 0, 1>; +def C2_or : T_LOGICAL_2OP<"or", 0b001, 0, 1>; +def C2_xor : T_LOGICAL_2OP<"xor", 0b010, 0, 0>; +def C2_andn : T_LOGICAL_2OP<"and", 0b011, 1, 1>; +def C2_orn : T_LOGICAL_2OP<"or", 0b111, 1, 1>; -def MASK_p : SInst<(outs DoubleRegs:$dst), (ins PredRegs:$src1), - "$dst = mask($src1)", - []>; +def: Pat<(i1 (and I1:$Ps, I1:$Pt)), (C2_and I1:$Ps, I1:$Pt)>; +def: Pat<(i1 (or I1:$Ps, I1:$Pt)), (C2_or I1:$Ps, I1:$Pt)>; +def: Pat<(i1 (xor I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, I1:$Pt)>; +def: Pat<(i1 (and I1:$Ps, (not I1:$Pt))), (C2_andn I1:$Ps, I1:$Pt)>; +def: Pat<(i1 (or I1:$Ps, (not I1:$Pt))), (C2_orn I1:$Ps, I1:$Pt)>; -def NOT_p : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), - "$dst = not($src1)", - [(set (i1 PredRegs:$dst), (not (i1 PredRegs:$src1)))]>; - -def OR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), - "$dst = or($src1, $src2)", - [(set (i1 PredRegs:$dst), (or (i1 PredRegs:$src1), - (i1 PredRegs:$src2)))]>; +let hasSideEffects = 0, hasNewValue = 1 in +def C2_vitpack : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps, PredRegs:$Pt), + "$Rd = vitpack($Ps, $Pt)", [], "", S_2op_tc_1_SLOT23> { + bits<5> Rd; + bits<2> Ps; + bits<2> Pt; + + let IClass = 0b1000; + let Inst{27-24} = 0b1001; + let Inst{22-21} = 0b00; + let Inst{17-16} = Ps; + let Inst{9-8} = Pt; + let Inst{4-0} = Rd; +} -def XOR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), - "$dst = xor($src1, $src2)", - [(set (i1 PredRegs:$dst), (xor (i1 PredRegs:$src1), - (i1 PredRegs:$src2)))]>; +let hasSideEffects = 0 in +def C2_mask : SInst<(outs DoubleRegs:$Rd), (ins PredRegs:$Pt), + "$Rd = mask($Pt)", [], "", S_2op_tc_1_SLOT23> { + bits<5> Rd; + bits<2> Pt; + let IClass = 0b1000; + let Inst{27-24} = 0b0110; + let Inst{9-8} = Pt; + let Inst{4-0} = Rd; +} // User control register transfer. //===----------------------------------------------------------------------===// // CR - //===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// JR + +//===----------------------------------------------------------------------===// + def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone, - [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; -def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, - [SDNPHasChain]>; + [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; +def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>; def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>; -let InputType = "imm", isBarrier = 1, isPredicable = 1, -Defs = [PC], isExtendable = 1, opExtendable = 0, isExtentSigned = 1, -opExtentBits = 24, isCodeGenOnly = 0 in -class T_JMP <dag InsDag, list<dag> JumpList = []> - : JInst<(outs), InsDag, - "jump $dst" , JumpList> { - bits<24> dst; +class CondStr<string CReg, bit True, bit New> { + string S = "if (" # !if(True,"","!") # CReg # !if(New,".new","") # ") "; +} +class JumpOpcStr<string Mnemonic, bit New, bit Taken> { + string S = Mnemonic # !if(Taken, ":t", !if(New, ":nt", "")); +} +let isBranch = 1, isBarrier = 1, Defs = [PC], hasSideEffects = 0, + isPredicable = 1, + isExtendable = 1, opExtendable = 0, isExtentSigned = 1, + opExtentBits = 24, opExtentAlign = 2, InputType = "imm" in +class T_JMP<string ExtStr> + : JInst<(outs), (ins brtarget:$dst), + "jump " # ExtStr # "$dst", + [], "", J_tc_2early_SLOT23> { + bits<24> dst; let IClass = 0b0101; let Inst{27-25} = 0b100; @@ -845,16 +1422,16 @@ class T_JMP <dag InsDag, list<dag> JumpList = []> let Inst{13-1} = dst{14-2}; } -let InputType = "imm", isExtendable = 1, opExtendable = 1, isExtentSigned = 1, -Defs = [PC], isPredicated = 1, opExtentBits = 17 in -class T_JMP_c <bit PredNot, bit isPredNew, bit isTak>: - JInst<(outs ), (ins PredRegs:$src, brtarget:$dst), - !if(PredNot, "if (!$src", "if ($src")# - !if(isPredNew, ".new) ", ") ")#"jump"# - !if(isPredNew, !if(isTak, ":t ", ":nt "), " ")#"$dst"> { - +let isBranch = 1, Defs = [PC], hasSideEffects = 0, isPredicated = 1, + isExtendable = 1, opExtendable = 1, isExtentSigned = 1, + opExtentBits = 17, opExtentAlign = 2, InputType = "imm" in +class T_JMP_c<bit PredNot, bit isPredNew, bit isTak, string ExtStr> + : JInst<(outs), (ins PredRegs:$src, brtarget:$dst), + CondStr<"$src", !if(PredNot,0,1), isPredNew>.S # + JumpOpcStr<"jump", isPredNew, isTak>.S # " " # + ExtStr # "$dst", + [], "", J_tc_2early_SLOT23>, ImmRegRel { let isTaken = isTak; - let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), ""); let isPredicatedFalse = PredNot; let isPredicatedNew = isPredNew; bits<2> src; @@ -864,7 +1441,7 @@ class T_JMP_c <bit PredNot, bit isPredNew, bit isTak>: let Inst{27-24} = 0b1100; let Inst{21} = PredNot; - let Inst{12} = !if(isPredNew, isTak, zero); + let Inst{12} = isTak; let Inst{11} = isPredNew; let Inst{9-8} = src; let Inst{23-22} = dst{16-15}; @@ -873,11 +1450,28 @@ class T_JMP_c <bit PredNot, bit isPredNew, bit isTak>: let Inst{7-1} = dst{8-2}; } -let isBarrier = 1, Defs = [PC], isPredicable = 1, InputType = "reg" in -class T_JMPr<dag InsDag = (ins IntRegs:$dst)> - : JRInst<(outs ), InsDag, - "jumpr $dst" , - []> { +multiclass JMP_Pred<bit PredNot, string ExtStr> { + def NAME : T_JMP_c<PredNot, 0, 0, ExtStr>; // not taken + // Predicate new + def NAME#newpt : T_JMP_c<PredNot, 1, 1, ExtStr>; // taken + def NAME#new : T_JMP_c<PredNot, 1, 0, ExtStr>; // not taken +} + +multiclass JMP_base<string BaseOp, string ExtStr> { + let BaseOpcode = BaseOp in { + def NAME : T_JMP<ExtStr>; + defm t : JMP_Pred<0, ExtStr>; + defm f : JMP_Pred<1, ExtStr>; + } +} + +// Jumps to address stored in a register, JUMPR_MISC +// if ([[!]P[.new]]) jumpr[:t/nt] Rs +let isBranch = 1, isIndirectBranch = 1, isBarrier = 1, Defs = [PC], + isPredicable = 1, hasSideEffects = 0, InputType = "reg" in +class T_JMPr + : JRInst<(outs), (ins IntRegs:$dst), + "jumpr $dst", [], "", J_tc_2early_SLOT2> { bits<5> dst; let IClass = 0b0101; @@ -885,15 +1479,15 @@ class T_JMPr<dag InsDag = (ins IntRegs:$dst)> let Inst{20-16} = dst; } -let Defs = [PC], isPredicated = 1, InputType = "reg" in -class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak>: - JRInst <(outs ), (ins PredRegs:$src, IntRegs:$dst), - !if(PredNot, "if (!$src", "if ($src")# - !if(isPredNew, ".new) ", ") ")#"jumpr"# - !if(isPredNew, !if(isTak, ":t ", ":nt "), " ")#"$dst"> { +let isBranch = 1, isIndirectBranch = 1, Defs = [PC], isPredicated = 1, + hasSideEffects = 0, InputType = "reg" in +class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak> + : JRInst <(outs), (ins PredRegs:$src, IntRegs:$dst), + CondStr<"$src", !if(PredNot,0,1), isPredNew>.S # + JumpOpcStr<"jumpr", isPredNew, isTak>.S # " $dst", [], + "", J_tc_2early_SLOT2> { let isTaken = isTak; - let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), ""); let isPredicatedFalse = PredNot; let isPredicatedNew = isPredNew; bits<2> src; @@ -904,73 +1498,88 @@ class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak>: let Inst{27-22} = 0b001101; let Inst{21} = PredNot; let Inst{20-16} = dst; - let Inst{12} = !if(isPredNew, isTak, zero); + let Inst{12} = isTak; let Inst{11} = isPredNew; let Inst{9-8} = src; - let Predicates = !if(isPredNew, [HasV3T], [HasV2T]); - let validSubTargets = !if(isPredNew, HasV3SubT, HasV2SubT); -} - -multiclass JMP_Pred<bit PredNot> { - def _#NAME : T_JMP_c<PredNot, 0, 0>; - // Predicate new - def _#NAME#new_t : T_JMP_c<PredNot, 1, 1>; // taken - def _#NAME#new_nt : T_JMP_c<PredNot, 1, 0>; // not taken -} - -multiclass JMP_base<string BaseOp> { - let BaseOpcode = BaseOp in { - def NAME : T_JMP<(ins brtarget:$dst), [(br bb:$dst)]>; - defm t : JMP_Pred<0>; - defm f : JMP_Pred<1>; - } } multiclass JMPR_Pred<bit PredNot> { - def NAME: T_JMPr_c<PredNot, 0, 0>; + def NAME : T_JMPr_c<PredNot, 0, 0>; // not taken // Predicate new - def NAME#new_tV3 : T_JMPr_c<PredNot, 1, 1>; // taken - def NAME#new_ntV3 : T_JMPr_c<PredNot, 1, 0>; // not taken + def NAME#newpt : T_JMPr_c<PredNot, 1, 1>; // taken + def NAME#new : T_JMPr_c<PredNot, 1, 0>; // not taken } multiclass JMPR_base<string BaseOp> { let BaseOpcode = BaseOp in { def NAME : T_JMPr; - defm _t : JMPR_Pred<0>; - defm _f : JMPR_Pred<1>; + defm t : JMPR_Pred<0>; + defm f : JMPR_Pred<1>; } } -let isTerminator = 1, neverHasSideEffects = 1 in { -let isBranch = 1 in -defm JMP : JMP_base<"JMP">, PredNewRel; +let isCall = 1, hasSideEffects = 1 in +class JUMPR_MISC_CALLR<bit isPred, bit isPredNot, + dag InputDag = (ins IntRegs:$Rs)> + : JRInst<(outs), InputDag, + !if(isPred, !if(isPredNot, "if (!$Pu) callr $Rs", + "if ($Pu) callr $Rs"), + "callr $Rs"), + [], "", J_tc_2early_SLOT2> { + bits<5> Rs; + bits<2> Pu; + let isPredicated = isPred; + let isPredicatedFalse = isPredNot; -let isBranch = 1, isIndirectBranch = 1 in -defm JMPR : JMPR_base<"JMPr">, PredNewRel; + let IClass = 0b0101; + let Inst{27-25} = 0b000; + let Inst{24-23} = !if (isPred, 0b10, 0b01); + let Inst{22} = 0; + let Inst{21} = isPredNot; + let Inst{9-8} = !if (isPred, Pu, 0b00); + let Inst{20-16} = Rs; -let isReturn = 1, isCodeGenOnly = 1 in -defm JMPret : JMPR_base<"JMPret">, PredNewRel; + } + +let Defs = VolatileV3.Regs in { + def J2_callrt : JUMPR_MISC_CALLR<1, 0, (ins PredRegs:$Pu, IntRegs:$Rs)>; + def J2_callrf : JUMPR_MISC_CALLR<1, 1, (ins PredRegs:$Pu, IntRegs:$Rs)>; } -def : Pat<(retflag), - (JMPret (i32 R31))>; +let isTerminator = 1, hasSideEffects = 0 in { + defm J2_jump : JMP_base<"JMP", "">, PredNewRel; -def : Pat <(brcond (i1 PredRegs:$src1), bb:$offset), - (JMP_t (i1 PredRegs:$src1), bb:$offset)>; + // Deal with explicit assembly + // - never extened a jump #, always extend a jump ## + let isAsmParserOnly = 1 in { + defm J2_jump_ext : JMP_base<"JMP", "##">; + defm J2_jump_noext : JMP_base<"JMP", "#">; + } -// A return through builtin_eh_return. -let isReturn = 1, isTerminator = 1, isBarrier = 1, neverHasSideEffects = 1, -isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in -def EH_RETURN_JMPR : T_JMPr; + defm J2_jumpr : JMPR_base<"JMPr">, PredNewRel; -def : Pat<(eh_return), - (EH_RETURN_JMPR (i32 R31))>; + let isReturn = 1, isCodeGenOnly = 1 in + defm JMPret : JMPR_base<"JMPret">, PredNewRel; +} -def : Pat<(HexagonBR_JT (i32 IntRegs:$dst)), - (JMPR (i32 IntRegs:$dst))>; +def: Pat<(br bb:$dst), + (J2_jump brtarget:$dst)>; +def: Pat<(retflag), + (JMPret (i32 R31))>; +def: Pat<(brcond (i1 PredRegs:$src1), bb:$offset), + (J2_jumpt PredRegs:$src1, bb:$offset)>; -def : Pat<(brind (i32 IntRegs:$dst)), - (JMPR (i32 IntRegs:$dst))>; +// A return through builtin_eh_return. +let isReturn = 1, isTerminator = 1, isBarrier = 1, hasSideEffects = 0, + isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in +def EH_RETURN_JMPR : T_JMPr; + +def: Pat<(eh_return), + (EH_RETURN_JMPR (i32 R31))>; +def: Pat<(HexagonBR_JT (i32 IntRegs:$dst)), + (J2_jumpr IntRegs:$dst)>; +def: Pat<(brind (i32 IntRegs:$dst)), + (J2_jumpr IntRegs:$dst)>; //===----------------------------------------------------------------------===// // JR - @@ -979,265 +1588,688 @@ def : Pat<(brind (i32 IntRegs:$dst)), //===----------------------------------------------------------------------===// // LD + //===----------------------------------------------------------------------===// -/// -// Load -- MEMri operand -multiclass LD_MEMri_Pbase<string mnemonic, RegisterClass RC, - bit isNot, bit isPredNew> { - let isPredicatedNew = isPredNew in - def NAME : LDInst2<(outs RC:$dst), - (ins PredRegs:$src1, MEMri:$addr), - !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", - ") ")#"$dst = "#mnemonic#"($addr)", - []>; -} - -multiclass LD_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> { - let isPredicatedFalse = PredNot in { - defm _c#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 0>; - // Predicate new - defm _cdn#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 1>; + +// Load - Base with Immediate offset addressing mode +let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, AddedComplexity = 20 in +class T_load_io <string mnemonic, RegisterClass RC, bits<4> MajOp, + Operand ImmOp> + : LDInst<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset), + "$dst = "#mnemonic#"($src1 + #$offset)", []>, AddrModeRel { + bits<4> name; + bits<5> dst; + bits<5> src1; + bits<14> offset; + bits<11> offsetBits; + + string ImmOpStr = !cast<string>(ImmOp); + let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), offset{13-3}, + !if (!eq(ImmOpStr, "s11_2Ext"), offset{12-2}, + !if (!eq(ImmOpStr, "s11_1Ext"), offset{11-1}, + /* s11_0Ext */ offset{10-0}))); + let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14, + !if (!eq(ImmOpStr, "s11_2Ext"), 13, + !if (!eq(ImmOpStr, "s11_1Ext"), 12, + /* s11_0Ext */ 11))); + let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1); + + let IClass = 0b1001; + + let Inst{27} = 0b0; + let Inst{26-25} = offsetBits{10-9}; + let Inst{24-21} = MajOp; + let Inst{20-16} = src1; + let Inst{13-5} = offsetBits{8-0}; + let Inst{4-0} = dst; } -} -let isExtendable = 1, neverHasSideEffects = 1 in -multiclass LD_MEMri<string mnemonic, string CextOp, RegisterClass RC, - bits<5> ImmBits, bits<5> PredImmBits> { +let opExtendable = 3, isExtentSigned = 0, isPredicated = 1 in +class T_pload_io <string mnemonic, RegisterClass RC, bits<4>MajOp, + Operand ImmOp, bit isNot, bit isPredNew> + : LDInst<(outs RC:$dst), + (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset), + "if ("#!if(isNot, "!$src1", "$src1") + #!if(isPredNew, ".new", "") + #") $dst = "#mnemonic#"($src2 + #$offset)", + [],"", V2LDST_tc_ld_SLOT01> , AddrModeRel { + bits<5> dst; + bits<2> src1; + bits<5> src2; + bits<9> offset; + bits<6> offsetBits; + string ImmOpStr = !cast<string>(ImmOp); + + let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), offset{8-3}, + !if (!eq(ImmOpStr, "u6_2Ext"), offset{7-2}, + !if (!eq(ImmOpStr, "u6_1Ext"), offset{6-1}, + /* u6_0Ext */ offset{5-0}))); + let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9, + !if (!eq(ImmOpStr, "u6_2Ext"), 8, + !if (!eq(ImmOpStr, "u6_1Ext"), 7, + /* u6_0Ext */ 6))); + let hasNewValue = !if (!eq(ImmOpStr, "u6_3Ext"), 0, 1); + let isPredicatedNew = isPredNew; + let isPredicatedFalse = isNot; + + let IClass = 0b0100; + + let Inst{27} = 0b0; + let Inst{27} = 0b0; + let Inst{26} = isNot; + let Inst{25} = isPredNew; + let Inst{24-21} = MajOp; + let Inst{20-16} = src2; + let Inst{13} = 0b0; + let Inst{12-11} = src1; + let Inst{10-5} = offsetBits; + let Inst{4-0} = dst; + } - let CextOpcode = CextOp, BaseOpcode = CextOp in { - let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits, - isPredicable = 1 in - def NAME : LDInst2<(outs RC:$dst), (ins MEMri:$addr), - "$dst = "#mnemonic#"($addr)", - []>; - - let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits, - isPredicated = 1 in { - defm Pt : LD_MEMri_Pred<mnemonic, RC, 0 >; - defm NotPt : LD_MEMri_Pred<mnemonic, RC, 1 >; - } +let isExtendable = 1, hasSideEffects = 0, addrMode = BaseImmOffset in +multiclass LD_Idxd<string mnemonic, string CextOp, RegisterClass RC, + Operand ImmOp, Operand predImmOp, bits<4>MajOp> { + let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { + let isPredicable = 1 in + def L2_#NAME#_io : T_load_io <mnemonic, RC, MajOp, ImmOp>; + + // Predicated + def L2_p#NAME#t_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 0, 0>; + def L2_p#NAME#f_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 1, 0>; + + // Predicated new + def L2_p#NAME#tnew_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 0, 1>; + def L2_p#NAME#fnew_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 1, 1>; } } -let addrMode = BaseImmOffset, isMEMri = "true" in { - let accessSize = ByteAccess in { - defm LDrib: LD_MEMri < "memb", "LDrib", IntRegs, 11, 6>, AddrModeRel; - defm LDriub: LD_MEMri < "memub" , "LDriub", IntRegs, 11, 6>, AddrModeRel; - } +let accessSize = ByteAccess in { + defm loadrb: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext, 0b1000>; + defm loadrub: LD_Idxd <"memub", "LDriub", IntRegs, s11_0Ext, u6_0Ext, 0b1001>; +} - let accessSize = HalfWordAccess in { - defm LDrih: LD_MEMri < "memh", "LDrih", IntRegs, 12, 7>, AddrModeRel; - defm LDriuh: LD_MEMri < "memuh", "LDriuh", IntRegs, 12, 7>, AddrModeRel; - } +let accessSize = HalfWordAccess, opExtentAlign = 1 in { + defm loadrh: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext, 0b1010>; + defm loadruh: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext, 0b1011>; +} - let accessSize = WordAccess in - defm LDriw: LD_MEMri < "memw", "LDriw", IntRegs, 13, 8>, AddrModeRel; +let accessSize = WordAccess, opExtentAlign = 2 in +defm loadri: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext, 0b1100>; - let accessSize = DoubleWordAccess in - defm LDrid: LD_MEMri < "memd", "LDrid", DoubleRegs, 14, 9>, AddrModeRel; +let accessSize = DoubleWordAccess, opExtentAlign = 3 in +defm loadrd: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext, 0b1110>; + +let accessSize = HalfWordAccess, opExtentAlign = 1 in { + def L2_loadbsw2_io: T_load_io<"membh", IntRegs, 0b0001, s11_1Ext>; + def L2_loadbzw2_io: T_load_io<"memubh", IntRegs, 0b0011, s11_1Ext>; } -def : Pat < (i32 (sextloadi8 ADDRriS11_0:$addr)), - (LDrib ADDRriS11_0:$addr) >; +let accessSize = WordAccess, opExtentAlign = 2 in { + def L2_loadbzw4_io: T_load_io<"memubh", DoubleRegs, 0b0101, s11_2Ext>; + def L2_loadbsw4_io: T_load_io<"membh", DoubleRegs, 0b0111, s11_2Ext>; +} -def : Pat < (i32 (zextloadi8 ADDRriS11_0:$addr)), - (LDriub ADDRriS11_0:$addr) >; +let addrMode = BaseImmOffset, isExtendable = 1, hasSideEffects = 0, + opExtendable = 3, isExtentSigned = 1 in +class T_loadalign_io <string str, bits<4> MajOp, Operand ImmOp> + : LDInst<(outs DoubleRegs:$dst), + (ins DoubleRegs:$src1, IntRegs:$src2, ImmOp:$offset), + "$dst = "#str#"($src2 + #$offset)", [], + "$src1 = $dst">, AddrModeRel { + bits<4> name; + bits<5> dst; + bits<5> src2; + bits<12> offset; + bits<11> offsetBits; + + let offsetBits = !if (!eq(!cast<string>(ImmOp), "s11_1Ext"), offset{11-1}, + /* s11_0Ext */ offset{10-0}); + let IClass = 0b1001; + + let Inst{27} = 0b0; + let Inst{26-25} = offsetBits{10-9}; + let Inst{24-21} = MajOp; + let Inst{20-16} = src2; + let Inst{13-5} = offsetBits{8-0}; + let Inst{4-0} = dst; + } -def : Pat < (i32 (sextloadi16 ADDRriS11_1:$addr)), - (LDrih ADDRriS11_1:$addr) >; +let accessSize = HalfWordAccess, opExtentBits = 12, opExtentAlign = 1 in +def L2_loadalignh_io: T_loadalign_io <"memh_fifo", 0b0010, s11_1Ext>; -def : Pat < (i32 (zextloadi16 ADDRriS11_1:$addr)), - (LDriuh ADDRriS11_1:$addr) >; +let accessSize = ByteAccess, opExtentBits = 11 in +def L2_loadalignb_io: T_loadalign_io <"memb_fifo", 0b0100, s11_0Ext>; -def : Pat < (i32 (load ADDRriS11_2:$addr)), - (LDriw ADDRriS11_2:$addr) >; +// Patterns to select load-indexed (i.e. load from base+offset). +multiclass Loadx_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred, + InstHexagon MI> { + def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>; + def: Pat<(VT (Load (add (i32 IntRegs:$Rs), ImmPred:$Off))), + (VT (MI IntRegs:$Rs, imm:$Off))>; + def: Pat<(VT (Load (i32 IntRegs:$Rs))), (VT (MI IntRegs:$Rs, 0))>; +} -def : Pat < (i64 (load ADDRriS11_3:$addr)), - (LDrid ADDRriS11_3:$addr) >; +let AddedComplexity = 20 in { + defm: Loadx_pat<load, i32, s11_2ExtPred, L2_loadri_io>; + defm: Loadx_pat<load, i64, s11_3ExtPred, L2_loadrd_io>; + defm: Loadx_pat<atomic_load_8 , i32, s11_0ExtPred, L2_loadrub_io>; + defm: Loadx_pat<atomic_load_16, i32, s11_1ExtPred, L2_loadruh_io>; + defm: Loadx_pat<atomic_load_32, i32, s11_2ExtPred, L2_loadri_io>; + defm: Loadx_pat<atomic_load_64, i64, s11_3ExtPred, L2_loadrd_io>; + + defm: Loadx_pat<extloadi1, i32, s11_0ExtPred, L2_loadrub_io>; + defm: Loadx_pat<extloadi8, i32, s11_0ExtPred, L2_loadrub_io>; + defm: Loadx_pat<extloadi16, i32, s11_1ExtPred, L2_loadruh_io>; + defm: Loadx_pat<sextloadi8, i32, s11_0ExtPred, L2_loadrb_io>; + defm: Loadx_pat<sextloadi16, i32, s11_1ExtPred, L2_loadrh_io>; + defm: Loadx_pat<zextloadi1, i32, s11_0ExtPred, L2_loadrub_io>; + defm: Loadx_pat<zextloadi8, i32, s11_0ExtPred, L2_loadrub_io>; + defm: Loadx_pat<zextloadi16, i32, s11_1ExtPred, L2_loadruh_io>; + // No sextloadi1. +} +// Sign-extending loads of i1 need to replicate the lowest bit throughout +// the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should +// do the trick. +let AddedComplexity = 20 in +def: Pat<(i32 (sextloadi1 (i32 IntRegs:$Rs))), + (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>; -// Load - Base with Immediate offset addressing mode -multiclass LD_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp, - bit isNot, bit isPredNew> { - let isPredicatedNew = isPredNew in - def NAME : LDInst2<(outs RC:$dst), - (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3), - !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", - ") ")#"$dst = "#mnemonic#"($src2+#$src3)", - []>; -} - -multiclass LD_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp, - bit PredNot> { - let isPredicatedFalse = PredNot in { - defm _c#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>; - // Predicate new - defm _cdn#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>; +//===----------------------------------------------------------------------===// +// Post increment load +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// Template class for non-predicated post increment loads with immediate offset. +//===----------------------------------------------------------------------===// +let hasSideEffects = 0, addrMode = PostInc in +class T_load_pi <string mnemonic, RegisterClass RC, Operand ImmOp, + bits<4> MajOp > + : LDInstPI <(outs RC:$dst, IntRegs:$dst2), + (ins IntRegs:$src1, ImmOp:$offset), + "$dst = "#mnemonic#"($src1++#$offset)" , + [], + "$src1 = $dst2" > , + PredNewRel { + bits<5> dst; + bits<5> src1; + bits<7> offset; + bits<4> offsetBits; + + string ImmOpStr = !cast<string>(ImmOp); + let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, + !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, + !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, + /* s4_0Imm */ offset{3-0}))); + let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1); + + let IClass = 0b1001; + + let Inst{27-25} = 0b101; + let Inst{24-21} = MajOp; + let Inst{20-16} = src1; + let Inst{13-12} = 0b00; + let Inst{8-5} = offsetBits; + let Inst{4-0} = dst; } -} -let isExtendable = 1, neverHasSideEffects = 1 in -multiclass LD_Idxd<string mnemonic, string CextOp, RegisterClass RC, - Operand ImmOp, Operand predImmOp, bits<5> ImmBits, - bits<5> PredImmBits> { +//===----------------------------------------------------------------------===// +// Template class for predicated post increment loads with immediate offset. +//===----------------------------------------------------------------------===// +let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in +class T_pload_pi <string mnemonic, RegisterClass RC, Operand ImmOp, + bits<4> MajOp, bit isPredNot, bit isPredNew > + : LDInst <(outs RC:$dst, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset), + !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", + ") ")#"$dst = "#mnemonic#"($src2++#$offset)", + [] , + "$src2 = $dst2" > , + PredNewRel { + bits<5> dst; + bits<2> src1; + bits<5> src2; + bits<7> offset; + bits<4> offsetBits; - let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { - let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits, - isPredicable = 1, AddedComplexity = 20 in - def NAME : LDInst2<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset), - "$dst = "#mnemonic#"($src1+#$offset)", - []>; - - let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits, - isPredicated = 1 in { - defm Pt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 0 >; - defm NotPt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 1 >; - } + let isPredicatedNew = isPredNew; + let isPredicatedFalse = isPredNot; + + string ImmOpStr = !cast<string>(ImmOp); + let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, + !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, + !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, + /* s4_0Imm */ offset{3-0}))); + let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1); + + let IClass = 0b1001; + + let Inst{27-25} = 0b101; + let Inst{24-21} = MajOp; + let Inst{20-16} = src2; + let Inst{13} = 0b1; + let Inst{12} = isPredNew; + let Inst{11} = isPredNot; + let Inst{10-9} = src1; + let Inst{8-5} = offsetBits; + let Inst{4-0} = dst; } -} -let addrMode = BaseImmOffset in { - let accessSize = ByteAccess in { - defm LDrib_indexed: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext, - 11, 6>, AddrModeRel; - defm LDriub_indexed: LD_Idxd <"memub" , "LDriub", IntRegs, s11_0Ext, u6_0Ext, - 11, 6>, AddrModeRel; - } - let accessSize = HalfWordAccess in { - defm LDrih_indexed: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext, - 12, 7>, AddrModeRel; - defm LDriuh_indexed: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext, - 12, 7>, AddrModeRel; +//===----------------------------------------------------------------------===// +// Multiclass for post increment loads with immediate offset. +//===----------------------------------------------------------------------===// + +multiclass LD_PostInc <string mnemonic, string BaseOp, RegisterClass RC, + Operand ImmOp, bits<4> MajOp> { + let BaseOpcode = "POST_"#BaseOp in { + let isPredicable = 1 in + def L2_#NAME#_pi : T_load_pi < mnemonic, RC, ImmOp, MajOp>; + + // Predicated + def L2_p#NAME#t_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 0>; + def L2_p#NAME#f_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 0>; + + // Predicated new + def L2_p#NAME#tnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 1>; + def L2_p#NAME#fnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 1>; } - let accessSize = WordAccess in - defm LDriw_indexed: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext, - 13, 8>, AddrModeRel; +} - let accessSize = DoubleWordAccess in - defm LDrid_indexed: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext, - 14, 9>, AddrModeRel; +// post increment byte loads with immediate offset +let accessSize = ByteAccess in { + defm loadrb : LD_PostInc <"memb", "LDrib", IntRegs, s4_0Imm, 0b1000>; + defm loadrub : LD_PostInc <"memub", "LDriub", IntRegs, s4_0Imm, 0b1001>; } -let AddedComplexity = 20 in { -def : Pat < (i32 (sextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))), - (LDrib_indexed IntRegs:$src1, s11_0ExtPred:$offset) >; +// post increment halfword loads with immediate offset +let accessSize = HalfWordAccess, opExtentAlign = 1 in { + defm loadrh : LD_PostInc <"memh", "LDrih", IntRegs, s4_1Imm, 0b1010>; + defm loadruh : LD_PostInc <"memuh", "LDriuh", IntRegs, s4_1Imm, 0b1011>; +} -def : Pat < (i32 (zextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))), - (LDriub_indexed IntRegs:$src1, s11_0ExtPred:$offset) >; +// post increment word loads with immediate offset +let accessSize = WordAccess, opExtentAlign = 2 in +defm loadri : LD_PostInc <"memw", "LDriw", IntRegs, s4_2Imm, 0b1100>; -def : Pat < (i32 (sextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))), - (LDrih_indexed IntRegs:$src1, s11_1ExtPred:$offset) >; +// post increment doubleword loads with immediate offset +let accessSize = DoubleWordAccess, opExtentAlign = 3 in +defm loadrd : LD_PostInc <"memd", "LDrid", DoubleRegs, s4_3Imm, 0b1110>; + +// Rd=memb[u]h(Rx++#s4:1) +// Rdd=memb[u]h(Rx++#s4:2) +let accessSize = HalfWordAccess, opExtentAlign = 1 in { + def L2_loadbsw2_pi : T_load_pi <"membh", IntRegs, s4_1Imm, 0b0001>; + def L2_loadbzw2_pi : T_load_pi <"memubh", IntRegs, s4_1Imm, 0b0011>; +} +let accessSize = WordAccess, opExtentAlign = 2, hasNewValue = 0 in { + def L2_loadbsw4_pi : T_load_pi <"membh", DoubleRegs, s4_2Imm, 0b0111>; + def L2_loadbzw4_pi : T_load_pi <"memubh", DoubleRegs, s4_2Imm, 0b0101>; +} -def : Pat < (i32 (zextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))), - (LDriuh_indexed IntRegs:$src1, s11_1ExtPred:$offset) >; +//===----------------------------------------------------------------------===// +// Template class for post increment fifo loads with immediate offset. +//===----------------------------------------------------------------------===// +let hasSideEffects = 0, addrMode = PostInc in +class T_loadalign_pi <string mnemonic, Operand ImmOp, bits<4> MajOp > + : LDInstPI <(outs DoubleRegs:$dst, IntRegs:$dst2), + (ins DoubleRegs:$src1, IntRegs:$src2, ImmOp:$offset), + "$dst = "#mnemonic#"($src2++#$offset)" , + [], "$src2 = $dst2, $src1 = $dst" > , + PredNewRel { + bits<5> dst; + bits<5> src2; + bits<5> offset; + bits<4> offsetBits; + + let offsetBits = !if (!eq(!cast<string>(ImmOp), "s4_1Imm"), offset{4-1}, + /* s4_0Imm */ offset{3-0}); + let IClass = 0b1001; + + let Inst{27-25} = 0b101; + let Inst{24-21} = MajOp; + let Inst{20-16} = src2; + let Inst{13-12} = 0b00; + let Inst{8-5} = offsetBits; + let Inst{4-0} = dst; + } -def : Pat < (i32 (load (add IntRegs:$src1, s11_2ExtPred:$offset))), - (LDriw_indexed IntRegs:$src1, s11_2ExtPred:$offset) >; +// Ryy=memh_fifo(Rx++#s4:1) +// Ryy=memb_fifo(Rx++#s4:0) +let accessSize = ByteAccess in +def L2_loadalignb_pi : T_loadalign_pi <"memb_fifo", s4_0Imm, 0b0100>; -def : Pat < (i64 (load (add IntRegs:$src1, s11_3ExtPred:$offset))), - (LDrid_indexed IntRegs:$src1, s11_3ExtPred:$offset) >; -} +let accessSize = HalfWordAccess, opExtentAlign = 1 in +def L2_loadalignh_pi : T_loadalign_pi <"memh_fifo", s4_1Imm, 0b0010>; //===----------------------------------------------------------------------===// -// Post increment load +// Template class for post increment loads with register offset. //===----------------------------------------------------------------------===// +let hasSideEffects = 0, addrMode = PostInc in +class T_load_pr <string mnemonic, RegisterClass RC, bits<4> MajOp, + MemAccessSize AccessSz> + : LDInstPI <(outs RC:$dst, IntRegs:$_dst_), + (ins IntRegs:$src1, ModRegs:$src2), + "$dst = "#mnemonic#"($src1++$src2)" , + [], "$src1 = $_dst_" > { + bits<5> dst; + bits<5> src1; + bits<1> src2; + + let accessSize = AccessSz; + let IClass = 0b1001; + + let Inst{27-25} = 0b110; + let Inst{24-21} = MajOp; + let Inst{20-16} = src1; + let Inst{13} = src2; + let Inst{12} = 0b0; + let Inst{7} = 0b0; + let Inst{4-0} = dst; + } + +let hasNewValue = 1 in { + def L2_loadrb_pr : T_load_pr <"memb", IntRegs, 0b1000, ByteAccess>; + def L2_loadrub_pr : T_load_pr <"memub", IntRegs, 0b1001, ByteAccess>; + def L2_loadrh_pr : T_load_pr <"memh", IntRegs, 0b1010, HalfWordAccess>; + def L2_loadruh_pr : T_load_pr <"memuh", IntRegs, 0b1011, HalfWordAccess>; + def L2_loadri_pr : T_load_pr <"memw", IntRegs, 0b1100, WordAccess>; -multiclass LD_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp, - bit isNot, bit isPredNew> { - let isPredicatedNew = isPredNew in - def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2), - (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset), - !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", - ") ")#"$dst = "#mnemonic#"($src2++#$offset)", - [], - "$src2 = $dst2">; + def L2_loadbzw2_pr : T_load_pr <"memubh", IntRegs, 0b0011, HalfWordAccess>; } -multiclass LD_PostInc_Pred<string mnemonic, RegisterClass RC, - Operand ImmOp, bit PredNot> { - let isPredicatedFalse = PredNot in { - defm _c#NAME : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>; - // Predicate new - let Predicates = [HasV4T], validSubTargets = HasV4SubT in - defm _cdn#NAME#_V4 : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>; - } +def L2_loadrd_pr : T_load_pr <"memd", DoubleRegs, 0b1110, DoubleWordAccess>; +def L2_loadbzw4_pr : T_load_pr <"memubh", DoubleRegs, 0b0101, WordAccess>; + +// Load predicate. +let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13, + isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in +def LDriw_pred : LDInst<(outs PredRegs:$dst), + (ins IntRegs:$addr, s11_2Ext:$off), + ".error \"should not emit\"", []>; + +let Defs = [R29, R30, R31], Uses = [R30], hasSideEffects = 0 in + def L2_deallocframe : LDInst<(outs), (ins), + "deallocframe", + []> { + let IClass = 0b1001; + + let Inst{27-16} = 0b000000011110; + let Inst{13} = 0b0; + let Inst{4-0} = 0b11110; } -multiclass LD_PostInc<string mnemonic, string BaseOp, RegisterClass RC, - Operand ImmOp> { +// Load / Post increment circular addressing mode. +let Uses = [CS], hasSideEffects = 0 in +class T_load_pcr<string mnemonic, RegisterClass RC, bits<4> MajOp> + : LDInst <(outs RC:$dst, IntRegs:$_dst_), + (ins IntRegs:$Rz, ModRegs:$Mu), + "$dst = "#mnemonic#"($Rz ++ I:circ($Mu))", [], + "$Rz = $_dst_" > { + bits<5> dst; + bits<5> Rz; + bit Mu; + + let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1); + let IClass = 0b1001; - let BaseOpcode = "POST_"#BaseOp in { - let isPredicable = 1 in - def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2), - (ins IntRegs:$src1, ImmOp:$offset), - "$dst = "#mnemonic#"($src1++#$offset)", - [], - "$src1 = $dst2">; - - let isPredicated = 1 in { - defm Pt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 0 >; - defm NotPt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 1 >; - } + let Inst{27-25} = 0b100; + let Inst{24-21} = MajOp; + let Inst{20-16} = Rz; + let Inst{13} = Mu; + let Inst{12} = 0b0; + let Inst{9} = 0b1; + let Inst{7} = 0b0; + let Inst{4-0} = dst; + } + +let accessSize = ByteAccess in { + def L2_loadrb_pcr : T_load_pcr <"memb", IntRegs, 0b1000>; + def L2_loadrub_pcr : T_load_pcr <"memub", IntRegs, 0b1001>; +} + +let accessSize = HalfWordAccess in { + def L2_loadrh_pcr : T_load_pcr <"memh", IntRegs, 0b1010>; + def L2_loadruh_pcr : T_load_pcr <"memuh", IntRegs, 0b1011>; + def L2_loadbsw2_pcr : T_load_pcr <"membh", IntRegs, 0b0001>; + def L2_loadbzw2_pcr : T_load_pcr <"memubh", IntRegs, 0b0011>; +} + +let accessSize = WordAccess in { + def L2_loadri_pcr : T_load_pcr <"memw", IntRegs, 0b1100>; + let hasNewValue = 0 in { + def L2_loadbzw4_pcr : T_load_pcr <"memubh", DoubleRegs, 0b0101>; + def L2_loadbsw4_pcr : T_load_pcr <"membh", DoubleRegs, 0b0111>; } } -let hasCtrlDep = 1, neverHasSideEffects = 1, addrMode = PostInc in { - defm POST_LDrib : LD_PostInc<"memb", "LDrib", IntRegs, s4_0Imm>, - PredNewRel; - defm POST_LDriub : LD_PostInc<"memub", "LDriub", IntRegs, s4_0Imm>, - PredNewRel; - defm POST_LDrih : LD_PostInc<"memh", "LDrih", IntRegs, s4_1Imm>, - PredNewRel; - defm POST_LDriuh : LD_PostInc<"memuh", "LDriuh", IntRegs, s4_1Imm>, - PredNewRel; - defm POST_LDriw : LD_PostInc<"memw", "LDriw", IntRegs, s4_2Imm>, - PredNewRel; - defm POST_LDrid : LD_PostInc<"memd", "LDrid", DoubleRegs, s4_3Imm>, - PredNewRel; +let accessSize = DoubleWordAccess in +def L2_loadrd_pcr : T_load_pcr <"memd", DoubleRegs, 0b1110>; + +// Load / Post increment circular addressing mode. +let Uses = [CS], hasSideEffects = 0 in +class T_loadalign_pcr<string mnemonic, bits<4> MajOp, MemAccessSize AccessSz > + : LDInst <(outs DoubleRegs:$dst, IntRegs:$_dst_), + (ins DoubleRegs:$_src_, IntRegs:$Rz, ModRegs:$Mu), + "$dst = "#mnemonic#"($Rz ++ I:circ($Mu))", [], + "$Rz = $_dst_, $dst = $_src_" > { + bits<5> dst; + bits<5> Rz; + bit Mu; + + let accessSize = AccessSz; + let IClass = 0b1001; + + let Inst{27-25} = 0b100; + let Inst{24-21} = MajOp; + let Inst{20-16} = Rz; + let Inst{13} = Mu; + let Inst{12} = 0b0; + let Inst{9} = 0b1; + let Inst{7} = 0b0; + let Inst{4-0} = dst; + } + +def L2_loadalignb_pcr : T_loadalign_pcr <"memb_fifo", 0b0100, ByteAccess>; +def L2_loadalignh_pcr : T_loadalign_pcr <"memh_fifo", 0b0010, HalfWordAccess>; + +//===----------------------------------------------------------------------===// +// Circular loads with immediate offset. +//===----------------------------------------------------------------------===// +let Uses = [CS], mayLoad = 1, hasSideEffects = 0 in +class T_load_pci <string mnemonic, RegisterClass RC, + Operand ImmOp, bits<4> MajOp> + : LDInstPI<(outs RC:$dst, IntRegs:$_dst_), + (ins IntRegs:$Rz, ImmOp:$offset, ModRegs:$Mu), + "$dst = "#mnemonic#"($Rz ++ #$offset:circ($Mu))", [], + "$Rz = $_dst_"> { + bits<5> dst; + bits<5> Rz; + bits<1> Mu; + bits<7> offset; + bits<4> offsetBits; + + string ImmOpStr = !cast<string>(ImmOp); + let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1); + let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, + !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, + !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, + /* s4_0Imm */ offset{3-0}))); + let IClass = 0b1001; + let Inst{27-25} = 0b100; + let Inst{24-21} = MajOp; + let Inst{20-16} = Rz; + let Inst{13} = Mu; + let Inst{12} = 0b0; + let Inst{9} = 0b0; + let Inst{8-5} = offsetBits; + let Inst{4-0} = dst; + } + +// Byte variants of circ load +let accessSize = ByteAccess in { + def L2_loadrb_pci : T_load_pci <"memb", IntRegs, s4_0Imm, 0b1000>; + def L2_loadrub_pci : T_load_pci <"memub", IntRegs, s4_0Imm, 0b1001>; } -def : Pat< (i32 (extloadi1 ADDRriS11_0:$addr)), - (i32 (LDrib ADDRriS11_0:$addr)) >; +// Half word variants of circ load +let accessSize = HalfWordAccess in { + def L2_loadrh_pci : T_load_pci <"memh", IntRegs, s4_1Imm, 0b1010>; + def L2_loadruh_pci : T_load_pci <"memuh", IntRegs, s4_1Imm, 0b1011>; + def L2_loadbzw2_pci : T_load_pci <"memubh", IntRegs, s4_1Imm, 0b0011>; + def L2_loadbsw2_pci : T_load_pci <"membh", IntRegs, s4_1Imm, 0b0001>; +} -// Load byte any-extend. -def : Pat < (i32 (extloadi8 ADDRriS11_0:$addr)), - (i32 (LDrib ADDRriS11_0:$addr)) >; +// Word variants of circ load +let accessSize = WordAccess in +def L2_loadri_pci : T_load_pci <"memw", IntRegs, s4_2Imm, 0b1100>; -// Indexed load byte any-extend. -let AddedComplexity = 20 in -def : Pat < (i32 (extloadi8 (add IntRegs:$src1, s11_0ImmPred:$offset))), - (i32 (LDrib_indexed IntRegs:$src1, s11_0ImmPred:$offset)) >; +let accessSize = WordAccess, hasNewValue = 0 in { + def L2_loadbzw4_pci : T_load_pci <"memubh", DoubleRegs, s4_2Imm, 0b0101>; + def L2_loadbsw4_pci : T_load_pci <"membh", DoubleRegs, s4_2Imm, 0b0111>; +} -def : Pat < (i32 (extloadi16 ADDRriS11_1:$addr)), - (i32 (LDrih ADDRriS11_1:$addr))>; +let accessSize = DoubleWordAccess, hasNewValue = 0 in +def L2_loadrd_pci : T_load_pci <"memd", DoubleRegs, s4_3Imm, 0b1110>; -let AddedComplexity = 20 in -def : Pat < (i32 (extloadi16 (add IntRegs:$src1, s11_1ImmPred:$offset))), - (i32 (LDrih_indexed IntRegs:$src1, s11_1ImmPred:$offset)) >; +//===----------------------------------------------------------------------===// +// Circular loads - Pseudo +// +// Please note that the input operand order in the pseudo instructions +// doesn't match with the real instructions. Pseudo instructions operand +// order should mimics the ordering in the intrinsics. Also, 'src2' doesn't +// appear in the AsmString because it's same as 'dst'. +//===----------------------------------------------------------------------===// +let isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0, isPseudo = 1 in +class T_load_pci_pseudo <string opc, RegisterClass RC> + : LDInstPI<(outs IntRegs:$_dst_, RC:$dst), + (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4Imm:$src4), + ".error \"$dst = "#opc#"($src1++#$src4:circ($src3))\"", + [], "$src1 = $_dst_">; + +def L2_loadrb_pci_pseudo : T_load_pci_pseudo <"memb", IntRegs>; +def L2_loadrub_pci_pseudo : T_load_pci_pseudo <"memub", IntRegs>; +def L2_loadrh_pci_pseudo : T_load_pci_pseudo <"memh", IntRegs>; +def L2_loadruh_pci_pseudo : T_load_pci_pseudo <"memuh", IntRegs>; +def L2_loadri_pci_pseudo : T_load_pci_pseudo <"memw", IntRegs>; +def L2_loadrd_pci_pseudo : T_load_pci_pseudo <"memd", DoubleRegs>; + + +// TODO: memb_fifo and memh_fifo must take destination register as input. +// One-off circ loads - not enough in common to break into a class. +let accessSize = ByteAccess in +def L2_loadalignb_pci : T_load_pci <"memb_fifo", DoubleRegs, s4_0Imm, 0b0100>; + +let accessSize = HalfWordAccess, opExtentAlign = 1 in +def L2_loadalignh_pci : T_load_pci <"memh_fifo", DoubleRegs, s4_1Imm, 0b0010>; + +// L[24]_load[wd]_locked: Load word/double with lock. +let isSoloAX = 1 in +class T_load_locked <string mnemonic, RegisterClass RC> + : LD0Inst <(outs RC:$dst), + (ins IntRegs:$src), + "$dst = "#mnemonic#"($src)"> { + bits<5> dst; + bits<5> src; + let IClass = 0b1001; + let Inst{27-21} = 0b0010000; + let Inst{20-16} = src; + let Inst{13-12} = !if (!eq(mnemonic, "memd_locked"), 0b01, 0b00); + let Inst{5} = 0; + let Inst{4-0} = dst; +} +let hasNewValue = 1, accessSize = WordAccess, opNewValue = 0 in + def L2_loadw_locked : T_load_locked <"memw_locked", IntRegs>; +let accessSize = DoubleWordAccess in + def L4_loadd_locked : T_load_locked <"memd_locked", DoubleRegs>; + +// S[24]_store[wd]_locked: Store word/double conditionally. +let isSoloAX = 1, isPredicateLate = 1 in +class T_store_locked <string mnemonic, RegisterClass RC> + : ST0Inst <(outs PredRegs:$Pd), (ins IntRegs:$Rs, RC:$Rt), + mnemonic#"($Rs, $Pd) = $Rt"> { + bits<2> Pd; + bits<5> Rs; + bits<5> Rt; + + let IClass = 0b1010; + let Inst{27-23} = 0b00001; + let Inst{22} = !if (!eq(mnemonic, "memw_locked"), 0b0, 0b1); + let Inst{21} = 0b1; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + let Inst{1-0} = Pd; +} -let AddedComplexity = 10 in -def : Pat < (i32 (zextloadi1 ADDRriS11_0:$addr)), - (i32 (LDriub ADDRriS11_0:$addr))>; +let accessSize = WordAccess in +def S2_storew_locked : T_store_locked <"memw_locked", IntRegs>; -let AddedComplexity = 20 in -def : Pat < (i32 (zextloadi1 (add IntRegs:$src1, s11_0ImmPred:$offset))), - (i32 (LDriub_indexed IntRegs:$src1, s11_0ImmPred:$offset))>; +let accessSize = DoubleWordAccess in +def S4_stored_locked : T_store_locked <"memd_locked", DoubleRegs>; -// Load predicate. -let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13, -isPseudo = 1, Defs = [R10,R11,D5], neverHasSideEffects = 1 in -def LDriw_pred : LDInst2<(outs PredRegs:$dst), - (ins MEMri:$addr), - "Error; should not emit", - []>; +//===----------------------------------------------------------------------===// +// Bit-reversed loads with auto-increment register +//===----------------------------------------------------------------------===// +let hasSideEffects = 0 in +class T_load_pbr<string mnemonic, RegisterClass RC, + MemAccessSize addrSize, bits<4> majOp> + : LDInst + <(outs RC:$dst, IntRegs:$_dst_), + (ins IntRegs:$Rz, ModRegs:$Mu), + "$dst = "#mnemonic#"($Rz ++ $Mu:brev)" , + [] , "$Rz = $_dst_" > { + + let accessSize = addrSize; + + bits<5> dst; + bits<5> Rz; + bits<1> Mu; + + let IClass = 0b1001; + + let Inst{27-25} = 0b111; + let Inst{24-21} = majOp; + let Inst{20-16} = Rz; + let Inst{13} = Mu; + let Inst{12} = 0b0; + let Inst{7} = 0b0; + let Inst{4-0} = dst; + } -// Deallocate stack frame. -let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in { - def DEALLOCFRAME : LDInst2<(outs), (ins), - "deallocframe", - []>; +let hasNewValue =1, opNewValue = 0 in { + def L2_loadrb_pbr : T_load_pbr <"memb", IntRegs, ByteAccess, 0b1000>; + def L2_loadrub_pbr : T_load_pbr <"memub", IntRegs, ByteAccess, 0b1001>; + def L2_loadrh_pbr : T_load_pbr <"memh", IntRegs, HalfWordAccess, 0b1010>; + def L2_loadruh_pbr : T_load_pbr <"memuh", IntRegs, HalfWordAccess, 0b1011>; + def L2_loadbsw2_pbr : T_load_pbr <"membh", IntRegs, HalfWordAccess, 0b0001>; + def L2_loadbzw2_pbr : T_load_pbr <"memubh", IntRegs, HalfWordAccess, 0b0011>; + def L2_loadri_pbr : T_load_pbr <"memw", IntRegs, WordAccess, 0b1100>; } -// Load and unpack bytes to halfwords. +def L2_loadbzw4_pbr : T_load_pbr <"memubh", DoubleRegs, WordAccess, 0b0101>; +def L2_loadbsw4_pbr : T_load_pbr <"membh", DoubleRegs, WordAccess, 0b0111>; +def L2_loadrd_pbr : T_load_pbr <"memd", DoubleRegs, DoubleWordAccess, 0b1110>; + +def L2_loadalignb_pbr :T_load_pbr <"memb_fifo", DoubleRegs, ByteAccess, 0b0100>; +def L2_loadalignh_pbr :T_load_pbr <"memh_fifo", DoubleRegs, + HalfWordAccess, 0b0010>; + +//===----------------------------------------------------------------------===// +// Bit-reversed loads - Pseudo +// +// Please note that 'src2' doesn't appear in the AsmString because +// it's same as 'dst'. +//===----------------------------------------------------------------------===// +let isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0, isPseudo = 1 in +class T_load_pbr_pseudo <string opc, RegisterClass RC> + : LDInstPI<(outs IntRegs:$_dst_, RC:$dst), + (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), + ".error \"$dst = "#opc#"($src1++$src3:brev)\"", + [], "$src1 = $_dst_">; + +def L2_loadrb_pbr_pseudo : T_load_pbr_pseudo <"memb", IntRegs>; +def L2_loadrub_pbr_pseudo : T_load_pbr_pseudo <"memub", IntRegs>; +def L2_loadrh_pbr_pseudo : T_load_pbr_pseudo <"memh", IntRegs>; +def L2_loadruh_pbr_pseudo : T_load_pbr_pseudo <"memuh", IntRegs>; +def L2_loadri_pbr_pseudo : T_load_pbr_pseudo <"memw", IntRegs>; +def L2_loadrd_pbr_pseudo : T_load_pbr_pseudo <"memd", DoubleRegs>; + //===----------------------------------------------------------------------===// // LD - //===----------------------------------------------------------------------===// @@ -1259,180 +2291,934 @@ let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in { //===----------------------------------------------------------------------===// // MTYPE/MPYH + //===----------------------------------------------------------------------===// -// Multiply and use lower result. -// Rd=+mpyi(Rs,#u8) -let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 8 in -def MPYI_riu : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Ext:$src2), - "$dst =+ mpyi($src1, #$src2)", - [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), - u8ExtPred:$src2))]>; -// Rd=-mpyi(Rs,#u8) -def MPYI_rin : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Imm:$src2), - "$dst =- mpyi($src1, #$src2)", - [(set (i32 IntRegs:$dst), (ineg (mul (i32 IntRegs:$src1), - u8ImmPred:$src2)))]>; +//===----------------------------------------------------------------------===// +// Template Class +// MPYS / Multipy signed/unsigned halfwords +//Rd=mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat] +//===----------------------------------------------------------------------===// + +let hasNewValue = 1, opNewValue = 0 in +class T_M2_mpy < bits<2> LHbits, bit isSat, bit isRnd, + bit hasShift, bit isUnsigned> + : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), + "$Rd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l") + #", $Rt."#!if(LHbits{0},"h)","l)") + #!if(hasShift,":<<1","") + #!if(isRnd,":rnd","") + #!if(isSat,":sat",""), + [], "", M_tc_3x_SLOT23 > { + bits<5> Rd; + bits<5> Rs; + bits<5> Rt; + + let IClass = 0b1110; + + let Inst{27-24} = 0b1100; + let Inst{23} = hasShift; + let Inst{22} = isUnsigned; + let Inst{21} = isRnd; + let Inst{7} = isSat; + let Inst{6-5} = LHbits; + let Inst{4-0} = Rd; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + } + +//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1] +def M2_mpy_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 0>; +def M2_mpy_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 0>; +def M2_mpy_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 0>; +def M2_mpy_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 0>; +def M2_mpy_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 0>; +def M2_mpy_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 0>; +def M2_mpy_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 0>; +def M2_mpy_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 0>; + +//Rd=mpyu(Rs.[H|L],Rt.[H|L])[:<<1] +def M2_mpyu_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 1>; +def M2_mpyu_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 1>; +def M2_mpyu_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 1>; +def M2_mpyu_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 1>; +def M2_mpyu_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 1>; +def M2_mpyu_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 1>; +def M2_mpyu_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 1>; +def M2_mpyu_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 1>; + +//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1]:rnd +def M2_mpy_rnd_ll_s1: T_M2_mpy <0b00, 0, 1, 1, 0>; +def M2_mpy_rnd_ll_s0: T_M2_mpy <0b00, 0, 1, 0, 0>; +def M2_mpy_rnd_lh_s1: T_M2_mpy <0b01, 0, 1, 1, 0>; +def M2_mpy_rnd_lh_s0: T_M2_mpy <0b01, 0, 1, 0, 0>; +def M2_mpy_rnd_hl_s1: T_M2_mpy <0b10, 0, 1, 1, 0>; +def M2_mpy_rnd_hl_s0: T_M2_mpy <0b10, 0, 1, 0, 0>; +def M2_mpy_rnd_hh_s1: T_M2_mpy <0b11, 0, 1, 1, 0>; +def M2_mpy_rnd_hh_s0: T_M2_mpy <0b11, 0, 1, 0, 0>; + +//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:sat] +//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat] +let Defs = [USR_OVF] in { + def M2_mpy_sat_ll_s1: T_M2_mpy <0b00, 1, 0, 1, 0>; + def M2_mpy_sat_ll_s0: T_M2_mpy <0b00, 1, 0, 0, 0>; + def M2_mpy_sat_lh_s1: T_M2_mpy <0b01, 1, 0, 1, 0>; + def M2_mpy_sat_lh_s0: T_M2_mpy <0b01, 1, 0, 0, 0>; + def M2_mpy_sat_hl_s1: T_M2_mpy <0b10, 1, 0, 1, 0>; + def M2_mpy_sat_hl_s0: T_M2_mpy <0b10, 1, 0, 0, 0>; + def M2_mpy_sat_hh_s1: T_M2_mpy <0b11, 1, 0, 1, 0>; + def M2_mpy_sat_hh_s0: T_M2_mpy <0b11, 1, 0, 0, 0>; + + def M2_mpy_sat_rnd_ll_s1: T_M2_mpy <0b00, 1, 1, 1, 0>; + def M2_mpy_sat_rnd_ll_s0: T_M2_mpy <0b00, 1, 1, 0, 0>; + def M2_mpy_sat_rnd_lh_s1: T_M2_mpy <0b01, 1, 1, 1, 0>; + def M2_mpy_sat_rnd_lh_s0: T_M2_mpy <0b01, 1, 1, 0, 0>; + def M2_mpy_sat_rnd_hl_s1: T_M2_mpy <0b10, 1, 1, 1, 0>; + def M2_mpy_sat_rnd_hl_s0: T_M2_mpy <0b10, 1, 1, 0, 0>; + def M2_mpy_sat_rnd_hh_s1: T_M2_mpy <0b11, 1, 1, 1, 0>; + def M2_mpy_sat_rnd_hh_s0: T_M2_mpy <0b11, 1, 1, 0, 0>; +} + +//===----------------------------------------------------------------------===// +// Template Class +// MPYS / Multipy signed/unsigned halfwords and add/subtract the +// result from the accumulator. +//Rx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat] +//===----------------------------------------------------------------------===// + +let hasNewValue = 1, opNewValue = 0 in +class T_M2_mpy_acc < bits<2> LHbits, bit isSat, bit isNac, + bit hasShift, bit isUnsigned > + : MInst_acc<(outs IntRegs:$Rx), (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt), + "$Rx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy") + #"($Rs."#!if(LHbits{1},"h","l") + #", $Rt."#!if(LHbits{0},"h)","l)") + #!if(hasShift,":<<1","") + #!if(isSat,":sat",""), + [], "$dst2 = $Rx", M_tc_3x_SLOT23 > { + bits<5> Rx; + bits<5> Rs; + bits<5> Rt; + + let IClass = 0b1110; + let Inst{27-24} = 0b1110; + let Inst{23} = hasShift; + let Inst{22} = isUnsigned; + let Inst{21} = isNac; + let Inst{7} = isSat; + let Inst{6-5} = LHbits; + let Inst{4-0} = Rx; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + } + +//Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1] +def M2_mpy_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 0>; +def M2_mpy_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 0>; +def M2_mpy_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 0>; +def M2_mpy_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 0>; +def M2_mpy_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 0>; +def M2_mpy_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 0>; +def M2_mpy_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 0>; +def M2_mpy_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 0>; + +//Rx += mpyu(Rs.[H|L],Rt.[H|L])[:<<1] +def M2_mpyu_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 1>; +def M2_mpyu_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 1>; +def M2_mpyu_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 1>; +def M2_mpyu_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 1>; +def M2_mpyu_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 1>; +def M2_mpyu_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 1>; +def M2_mpyu_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 1>; +def M2_mpyu_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 1>; + +//Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1] +def M2_mpy_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 0>; +def M2_mpy_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 0>; +def M2_mpy_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 0>; +def M2_mpy_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 0>; +def M2_mpy_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 0>; +def M2_mpy_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 0>; +def M2_mpy_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 0>; +def M2_mpy_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 0>; + +//Rx -= mpyu(Rs.[H|L],Rt.[H|L])[:<<1] +def M2_mpyu_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 1>; +def M2_mpyu_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 1>; +def M2_mpyu_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 1>; +def M2_mpyu_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 1>; +def M2_mpyu_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 1>; +def M2_mpyu_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 1>; +def M2_mpyu_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 1>; +def M2_mpyu_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 1>; + +//Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat +def M2_mpy_acc_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 0, 1, 0>; +def M2_mpy_acc_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 0, 0, 0>; +def M2_mpy_acc_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 0, 1, 0>; +def M2_mpy_acc_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 0, 0, 0>; +def M2_mpy_acc_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 0, 1, 0>; +def M2_mpy_acc_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 0, 0, 0>; +def M2_mpy_acc_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 0, 1, 0>; +def M2_mpy_acc_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 0, 0, 0>; + +//Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat +def M2_mpy_nac_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 1, 1, 0>; +def M2_mpy_nac_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 1, 0, 0>; +def M2_mpy_nac_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 1, 1, 0>; +def M2_mpy_nac_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 1, 0, 0>; +def M2_mpy_nac_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 1, 1, 0>; +def M2_mpy_nac_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 1, 0, 0>; +def M2_mpy_nac_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 1, 1, 0>; +def M2_mpy_nac_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 1, 0, 0>; + +//===----------------------------------------------------------------------===// +// Template Class +// MPYS / Multipy signed/unsigned halfwords and add/subtract the +// result from the 64-bit destination register. +//Rxx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat] +//===----------------------------------------------------------------------===// + +class T_M2_mpyd_acc < bits<2> LHbits, bit isNac, bit hasShift, bit isUnsigned> + : MInst_acc<(outs DoubleRegs:$Rxx), + (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt), + "$Rxx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy") + #"($Rs."#!if(LHbits{1},"h","l") + #", $Rt."#!if(LHbits{0},"h)","l)") + #!if(hasShift,":<<1",""), + [], "$dst2 = $Rxx", M_tc_3x_SLOT23 > { + bits<5> Rxx; + bits<5> Rs; + bits<5> Rt; + + let IClass = 0b1110; + + let Inst{27-24} = 0b0110; + let Inst{23} = hasShift; + let Inst{22} = isUnsigned; + let Inst{21} = isNac; + let Inst{7} = 0; + let Inst{6-5} = LHbits; + let Inst{4-0} = Rxx; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + } + +def M2_mpyd_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 0>; +def M2_mpyd_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 0>; +def M2_mpyd_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 0>; +def M2_mpyd_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 0>; + +def M2_mpyd_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 0>; +def M2_mpyd_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 0>; +def M2_mpyd_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 0>; +def M2_mpyd_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 0>; + +def M2_mpyd_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 0>; +def M2_mpyd_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 0>; +def M2_mpyd_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 0>; +def M2_mpyd_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 0>; + +def M2_mpyd_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 0>; +def M2_mpyd_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 0>; +def M2_mpyd_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 0>; +def M2_mpyd_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 0>; + +def M2_mpyud_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 1>; +def M2_mpyud_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 1>; +def M2_mpyud_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 1>; +def M2_mpyud_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 1>; + +def M2_mpyud_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 1>; +def M2_mpyud_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 1>; +def M2_mpyud_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 1>; +def M2_mpyud_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 1>; + +def M2_mpyud_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 1>; +def M2_mpyud_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 1>; +def M2_mpyud_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 1>; +def M2_mpyud_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 1>; + +def M2_mpyud_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 1>; +def M2_mpyud_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 1>; +def M2_mpyud_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 1>; +def M2_mpyud_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 1>; + +//===----------------------------------------------------------------------===// +// Template Class -- Vector Multipy +// Used for complex multiply real or imaginary, dual multiply and even halfwords +//===----------------------------------------------------------------------===// +class T_M2_vmpy < string opc, bits<3> MajOp, bits<3> MinOp, bit hasShift, + bit isRnd, bit isSat > + : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt), + "$Rdd = "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","") + #!if(isRnd,":rnd","") + #!if(isSat,":sat",""), + [] > { + bits<5> Rdd; + bits<5> Rss; + bits<5> Rtt; + + let IClass = 0b1110; + + let Inst{27-24} = 0b1000; + let Inst{23-21} = MajOp; + let Inst{7-5} = MinOp; + let Inst{4-0} = Rdd; + let Inst{20-16} = Rss; + let Inst{12-8} = Rtt; + } + +// Vector complex multiply imaginary: Rdd=vcmpyi(Rss,Rtt)[:<<1]:sat +let Defs = [USR_OVF] in { +def M2_vcmpy_s1_sat_i: T_M2_vmpy <"vcmpyi", 0b110, 0b110, 1, 0, 1>; +def M2_vcmpy_s0_sat_i: T_M2_vmpy <"vcmpyi", 0b010, 0b110, 0, 0, 1>; + +// Vector complex multiply real: Rdd=vcmpyr(Rss,Rtt)[:<<1]:sat +def M2_vcmpy_s1_sat_r: T_M2_vmpy <"vcmpyr", 0b101, 0b110, 1, 0, 1>; +def M2_vcmpy_s0_sat_r: T_M2_vmpy <"vcmpyr", 0b001, 0b110, 0, 0, 1>; + +// Vector dual multiply: Rdd=vdmpy(Rss,Rtt)[:<<1]:sat +def M2_vdmpys_s1: T_M2_vmpy <"vdmpy", 0b100, 0b100, 1, 0, 1>; +def M2_vdmpys_s0: T_M2_vmpy <"vdmpy", 0b000, 0b100, 0, 0, 1>; + +// Vector multiply even halfwords: Rdd=vmpyeh(Rss,Rtt)[:<<1]:sat +def M2_vmpy2es_s1: T_M2_vmpy <"vmpyeh", 0b100, 0b110, 1, 0, 1>; +def M2_vmpy2es_s0: T_M2_vmpy <"vmpyeh", 0b000, 0b110, 0, 0, 1>; + +//Rdd=vmpywoh(Rss,Rtt)[:<<1][:rnd]:sat +def M2_mmpyh_s0: T_M2_vmpy <"vmpywoh", 0b000, 0b111, 0, 0, 1>; +def M2_mmpyh_s1: T_M2_vmpy <"vmpywoh", 0b100, 0b111, 1, 0, 1>; +def M2_mmpyh_rs0: T_M2_vmpy <"vmpywoh", 0b001, 0b111, 0, 1, 1>; +def M2_mmpyh_rs1: T_M2_vmpy <"vmpywoh", 0b101, 0b111, 1, 1, 1>; + +//Rdd=vmpyweh(Rss,Rtt)[:<<1][:rnd]:sat +def M2_mmpyl_s0: T_M2_vmpy <"vmpyweh", 0b000, 0b101, 0, 0, 1>; +def M2_mmpyl_s1: T_M2_vmpy <"vmpyweh", 0b100, 0b101, 1, 0, 1>; +def M2_mmpyl_rs0: T_M2_vmpy <"vmpyweh", 0b001, 0b101, 0, 1, 1>; +def M2_mmpyl_rs1: T_M2_vmpy <"vmpyweh", 0b101, 0b101, 1, 1, 1>; + +//Rdd=vmpywouh(Rss,Rtt)[:<<1][:rnd]:sat +def M2_mmpyuh_s0: T_M2_vmpy <"vmpywouh", 0b010, 0b111, 0, 0, 1>; +def M2_mmpyuh_s1: T_M2_vmpy <"vmpywouh", 0b110, 0b111, 1, 0, 1>; +def M2_mmpyuh_rs0: T_M2_vmpy <"vmpywouh", 0b011, 0b111, 0, 1, 1>; +def M2_mmpyuh_rs1: T_M2_vmpy <"vmpywouh", 0b111, 0b111, 1, 1, 1>; + +//Rdd=vmpyweuh(Rss,Rtt)[:<<1][:rnd]:sat +def M2_mmpyul_s0: T_M2_vmpy <"vmpyweuh", 0b010, 0b101, 0, 0, 1>; +def M2_mmpyul_s1: T_M2_vmpy <"vmpyweuh", 0b110, 0b101, 1, 0, 1>; +def M2_mmpyul_rs0: T_M2_vmpy <"vmpyweuh", 0b011, 0b101, 0, 1, 1>; +def M2_mmpyul_rs1: T_M2_vmpy <"vmpyweuh", 0b111, 0b101, 1, 1, 1>; +} + +let hasNewValue = 1, opNewValue = 0 in +class T_MType_mpy <string mnemonic, bits<4> RegTyBits, RegisterClass RC, + bits<3> MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0, + string op2Suffix = "", bit isRaw = 0, bit isHi = 0 > + : MInst <(outs IntRegs:$dst), (ins RC:$src1, RC:$src2), + "$dst = "#mnemonic + #"($src1, $src2"#op2Suffix#")" + #!if(MajOp{2}, ":<<1", "") + #!if(isRnd, ":rnd", "") + #!if(isSat, ":sat", "") + #!if(isRaw, !if(isHi, ":raw:hi", ":raw:lo"), ""), [] > { + bits<5> dst; + bits<5> src1; + bits<5> src2; + + let IClass = 0b1110; + + let Inst{27-24} = RegTyBits; + let Inst{23-21} = MajOp; + let Inst{20-16} = src1; + let Inst{13} = 0b0; + let Inst{12-8} = src2; + let Inst{7-5} = MinOp; + let Inst{4-0} = dst; + } + +class T_MType_vrcmpy <string mnemonic, bits<3> MajOp, bits<3> MinOp, bit isHi> + : T_MType_mpy <mnemonic, 0b1001, DoubleRegs, MajOp, MinOp, 1, 1, "", 1, isHi>; + +class T_MType_dd <string mnemonic, bits<3> MajOp, bits<3> MinOp, + bit isSat = 0, bit isRnd = 0 > + : T_MType_mpy <mnemonic, 0b1001, DoubleRegs, MajOp, MinOp, isSat, isRnd>; + +class T_MType_rr1 <string mnemonic, bits<3> MajOp, bits<3> MinOp, + bit isSat = 0, bit isRnd = 0 > + : T_MType_mpy<mnemonic, 0b1101, IntRegs, MajOp, MinOp, isSat, isRnd>; + +class T_MType_rr2 <string mnemonic, bits<3> MajOp, bits<3> MinOp, + bit isSat = 0, bit isRnd = 0, string op2str = "" > + : T_MType_mpy<mnemonic, 0b1101, IntRegs, MajOp, MinOp, isSat, isRnd, op2str>; + +def M2_vradduh : T_MType_dd <"vradduh", 0b000, 0b001, 0, 0>; +def M2_vdmpyrs_s0 : T_MType_dd <"vdmpy", 0b000, 0b000, 1, 1>; +def M2_vdmpyrs_s1 : T_MType_dd <"vdmpy", 0b100, 0b000, 1, 1>; + +let CextOpcode = "mpyi", InputType = "reg" in +def M2_mpyi : T_MType_rr1 <"mpyi", 0b000, 0b000>, ImmRegRel; + +def M2_mpy_up : T_MType_rr1 <"mpy", 0b000, 0b001>; +def M2_mpyu_up : T_MType_rr1 <"mpyu", 0b010, 0b001>; + +def M2_dpmpyss_rnd_s0 : T_MType_rr1 <"mpy", 0b001, 0b001, 0, 1>; + +def M2_vmpy2s_s0pack : T_MType_rr1 <"vmpyh", 0b001, 0b111, 1, 1>; +def M2_vmpy2s_s1pack : T_MType_rr1 <"vmpyh", 0b101, 0b111, 1, 1>; + +def M2_hmmpyh_rs1 : T_MType_rr2 <"mpy", 0b101, 0b100, 1, 1, ".h">; +def M2_hmmpyl_rs1 : T_MType_rr2 <"mpy", 0b111, 0b100, 1, 1, ".l">; + +def M2_cmpyrs_s0 : T_MType_rr2 <"cmpy", 0b001, 0b110, 1, 1>; +def M2_cmpyrs_s1 : T_MType_rr2 <"cmpy", 0b101, 0b110, 1, 1>; +def M2_cmpyrsc_s0 : T_MType_rr2 <"cmpy", 0b011, 0b110, 1, 1, "*">; +def M2_cmpyrsc_s1 : T_MType_rr2 <"cmpy", 0b111, 0b110, 1, 1, "*">; + +// V4 Instructions +def M2_vraddh : T_MType_dd <"vraddh", 0b001, 0b111, 0>; +def M2_mpysu_up : T_MType_rr1 <"mpysu", 0b011, 0b001, 0>; +def M2_mpy_up_s1 : T_MType_rr1 <"mpy", 0b101, 0b010, 0>; +def M2_mpy_up_s1_sat : T_MType_rr1 <"mpy", 0b111, 0b000, 1>; + +def M2_hmmpyh_s1 : T_MType_rr2 <"mpy", 0b101, 0b000, 1, 0, ".h">; +def M2_hmmpyl_s1 : T_MType_rr2 <"mpy", 0b101, 0b001, 1, 0, ".l">; + +def: Pat<(i32 (mul I32:$src1, I32:$src2)), (M2_mpyi I32:$src1, I32:$src2)>; +def: Pat<(i32 (mulhs I32:$src1, I32:$src2)), (M2_mpy_up I32:$src1, I32:$src2)>; +def: Pat<(i32 (mulhu I32:$src1, I32:$src2)), (M2_mpyu_up I32:$src1, I32:$src2)>; + +let hasNewValue = 1, opNewValue = 0 in +class T_MType_mpy_ri <bit isNeg, Operand ImmOp, list<dag> pattern> + : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, ImmOp:$u8), + "$Rd ="#!if(isNeg, "- ", "+ ")#"mpyi($Rs, #$u8)" , + pattern, "", M_tc_3x_SLOT23> { + bits<5> Rd; + bits<5> Rs; + bits<8> u8; + + let IClass = 0b1110; + + let Inst{27-24} = 0b0000; + let Inst{23} = isNeg; + let Inst{13} = 0b0; + let Inst{4-0} = Rd; + let Inst{20-16} = Rs; + let Inst{12-5} = u8; + } + +let isExtendable = 1, opExtentBits = 8, opExtendable = 2 in +def M2_mpysip : T_MType_mpy_ri <0, u8Ext, + [(set (i32 IntRegs:$Rd), (mul IntRegs:$Rs, u8ExtPred:$u8))]>; + +def M2_mpysin : T_MType_mpy_ri <1, u8Imm, + [(set (i32 IntRegs:$Rd), (ineg (mul IntRegs:$Rs, + u8ImmPred:$u8)))]>; + +// Assember mapped to M2_mpyi +let isAsmParserOnly = 1 in +def M2_mpyui : MInst<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpyui($src1, $src2)">; // Rd=mpyi(Rs,#m9) // s9 is NOT the same as m9 - but it works.. so far. -// Assembler maps to either Rd=+mpyi(Rs,#u8 or Rd=-mpyi(Rs,#u8) +// Assembler maps to either Rd=+mpyi(Rs,#u8) or Rd=-mpyi(Rs,#u8) // depending on the value of m9. See Arch Spec. let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 9, -CextOpcode = "MPYI", InputType = "imm" in -def MPYI_ri : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2), - "$dst = mpyi($src1, #$src2)", - [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), - s9ExtPred:$src2))]>, ImmRegRel; - -// Rd=mpyi(Rs,Rt) -let CextOpcode = "MPYI", InputType = "reg" in -def MPYI : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = mpyi($src1, $src2)", - [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), - (i32 IntRegs:$src2)))]>, ImmRegRel; - -// Rx+=mpyi(Rs,#u8) -let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8, -CextOpcode = "MPYI_acc", InputType = "imm" in -def MPYI_acc_ri : MInst_acc<(outs IntRegs:$dst), - (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3), - "$dst += mpyi($src2, #$src3)", - [(set (i32 IntRegs:$dst), - (add (mul (i32 IntRegs:$src2), u8ExtPred:$src3), - (i32 IntRegs:$src1)))], - "$src1 = $dst">, ImmRegRel; + CextOpcode = "mpyi", InputType = "imm", hasNewValue = 1, + isAsmParserOnly = 1 in +def M2_mpysmi : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2), + "$dst = mpyi($src1, #$src2)", + [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), + s9ExtPred:$src2))]>, ImmRegRel; + +let hasNewValue = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 3, + InputType = "imm" in +class T_MType_acc_ri <string mnemonic, bits<3> MajOp, Operand ImmOp, + list<dag> pattern = []> + : MInst < (outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, ImmOp:$src3), + "$dst "#mnemonic#"($src2, #$src3)", + pattern, "$src1 = $dst", M_tc_2_SLOT23> { + bits<5> dst; + bits<5> src2; + bits<8> src3; + + let IClass = 0b1110; + + let Inst{27-26} = 0b00; + let Inst{25-23} = MajOp; + let Inst{20-16} = src2; + let Inst{13} = 0b0; + let Inst{12-5} = src3; + let Inst{4-0} = dst; + } -// Rx+=mpyi(Rs,Rt) -let CextOpcode = "MPYI_acc", InputType = "reg" in -def MPYI_acc_rr : MInst_acc<(outs IntRegs:$dst), +let InputType = "reg", hasNewValue = 1 in +class T_MType_acc_rr <string mnemonic, bits<3> MajOp, bits<3> MinOp, + bit isSwap = 0, list<dag> pattern = [], bit hasNot = 0, + bit isSat = 0, bit isShift = 0> + : MInst < (outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), - "$dst += mpyi($src2, $src3)", - [(set (i32 IntRegs:$dst), - (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)), - (i32 IntRegs:$src1)))], - "$src1 = $dst">, ImmRegRel; - -// Rx-=mpyi(Rs,#u8) -let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8 in -def MPYI_sub_ri : MInst_acc<(outs IntRegs:$dst), - (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3), - "$dst -= mpyi($src2, #$src3)", - [(set (i32 IntRegs:$dst), - (sub (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2), - u8ExtPred:$src3)))], - "$src1 = $dst">; - -// Multiply and use upper result. -// Rd=mpy(Rs,Rt.H):<<1:rnd:sat -// Rd=mpy(Rs,Rt.L):<<1:rnd:sat -// Rd=mpy(Rs,Rt) -def MPY : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = mpy($src1, $src2)", - [(set (i32 IntRegs:$dst), (mulhs (i32 IntRegs:$src1), - (i32 IntRegs:$src2)))]>; - -// Rd=mpy(Rs,Rt):rnd -// Rd=mpyu(Rs,Rt) -def MPYU : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = mpyu($src1, $src2)", - [(set (i32 IntRegs:$dst), (mulhu (i32 IntRegs:$src1), - (i32 IntRegs:$src2)))]>; - -// Multiply and use full result. -// Rdd=mpyu(Rs,Rt) -def MPYU64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = mpyu($src1, $src2)", - [(set (i64 DoubleRegs:$dst), - (mul (i64 (anyext (i32 IntRegs:$src1))), - (i64 (anyext (i32 IntRegs:$src2)))))]>; - -// Rdd=mpy(Rs,Rt) -def MPY64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = mpy($src1, $src2)", - [(set (i64 DoubleRegs:$dst), - (mul (i64 (sext (i32 IntRegs:$src1))), - (i64 (sext (i32 IntRegs:$src2)))))]>; + "$dst "#mnemonic#"($src2, "#!if(hasNot, "~$src3)","$src3)") + #!if(isShift, ":<<1", "") + #!if(isSat, ":sat", ""), + pattern, "$src1 = $dst", M_tc_2_SLOT23 > { + bits<5> dst; + bits<5> src2; + bits<5> src3; + + let IClass = 0b1110; + + let Inst{27-24} = 0b1111; + let Inst{23-21} = MajOp; + let Inst{20-16} = !if(isSwap, src3, src2); + let Inst{13} = 0b0; + let Inst{12-8} = !if(isSwap, src2, src3); + let Inst{7-5} = MinOp; + let Inst{4-0} = dst; + } + +let CextOpcode = "MPYI_acc", Itinerary = M_tc_3x_SLOT23 in { + def M2_macsip : T_MType_acc_ri <"+= mpyi", 0b010, u8Ext, + [(set (i32 IntRegs:$dst), + (add (mul IntRegs:$src2, u8ExtPred:$src3), + IntRegs:$src1))]>, ImmRegRel; + + def M2_maci : T_MType_acc_rr <"+= mpyi", 0b000, 0b000, 0, + [(set (i32 IntRegs:$dst), + (add (mul IntRegs:$src2, IntRegs:$src3), + IntRegs:$src1))]>, ImmRegRel; +} + +let CextOpcode = "ADD_acc" in { + let isExtentSigned = 1 in + def M2_accii : T_MType_acc_ri <"+= add", 0b100, s8Ext, + [(set (i32 IntRegs:$dst), + (add (add (i32 IntRegs:$src2), s8_16ExtPred:$src3), + (i32 IntRegs:$src1)))]>, ImmRegRel; + + def M2_acci : T_MType_acc_rr <"+= add", 0b000, 0b001, 0, + [(set (i32 IntRegs:$dst), + (add (add (i32 IntRegs:$src2), (i32 IntRegs:$src3)), + (i32 IntRegs:$src1)))]>, ImmRegRel; +} + +let CextOpcode = "SUB_acc" in { + let isExtentSigned = 1 in + def M2_naccii : T_MType_acc_ri <"-= add", 0b101, s8Ext>, ImmRegRel; + + def M2_nacci : T_MType_acc_rr <"-= add", 0b100, 0b001, 0>, ImmRegRel; +} + +let Itinerary = M_tc_3x_SLOT23 in +def M2_macsin : T_MType_acc_ri <"-= mpyi", 0b011, u8Ext>; + +def M2_xor_xacc : T_MType_acc_rr < "^= xor", 0b100, 0b011, 0>; +def M2_subacc : T_MType_acc_rr <"+= sub", 0b000, 0b011, 1>; + +class T_MType_acc_pat1 <InstHexagon MI, SDNode firstOp, SDNode secOp, + PatLeaf ImmPred> + : Pat <(secOp IntRegs:$src1, (firstOp IntRegs:$src2, ImmPred:$src3)), + (MI IntRegs:$src1, IntRegs:$src2, ImmPred:$src3)>; + +class T_MType_acc_pat2 <InstHexagon MI, SDNode firstOp, SDNode secOp> + : Pat <(i32 (secOp IntRegs:$src1, (firstOp IntRegs:$src2, IntRegs:$src3))), + (MI IntRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; + +def : T_MType_acc_pat2 <M2_xor_xacc, xor, xor>; +def : T_MType_acc_pat1 <M2_macsin, mul, sub, u8ExtPred>; + +def : T_MType_acc_pat1 <M2_naccii, add, sub, s8_16ExtPred>; +def : T_MType_acc_pat2 <M2_nacci, add, sub>; + +//===----------------------------------------------------------------------===// +// Template Class -- XType Vector Instructions +//===----------------------------------------------------------------------===// +class T_XTYPE_Vect < string opc, bits<3> MajOp, bits<3> MinOp, bit isConj > + : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt), + "$Rdd = "#opc#"($Rss, $Rtt"#!if(isConj,"*)",")"), + [] > { + bits<5> Rdd; + bits<5> Rss; + bits<5> Rtt; + + let IClass = 0b1110; + + let Inst{27-24} = 0b1000; + let Inst{23-21} = MajOp; + let Inst{7-5} = MinOp; + let Inst{4-0} = Rdd; + let Inst{20-16} = Rss; + let Inst{12-8} = Rtt; + } + +class T_XTYPE_Vect_acc < string opc, bits<3> MajOp, bits<3> MinOp, bit isConj > + : MInst <(outs DoubleRegs:$Rdd), + (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt), + "$Rdd += "#opc#"($Rss, $Rtt"#!if(isConj,"*)",")"), + [], "$dst2 = $Rdd",M_tc_3x_SLOT23 > { + bits<5> Rdd; + bits<5> Rss; + bits<5> Rtt; + + let IClass = 0b1110; + + let Inst{27-24} = 0b1010; + let Inst{23-21} = MajOp; + let Inst{7-5} = MinOp; + let Inst{4-0} = Rdd; + let Inst{20-16} = Rss; + let Inst{12-8} = Rtt; + } + +class T_XTYPE_Vect_diff < bits<3> MajOp, string opc > + : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rtt, DoubleRegs:$Rss), + "$Rdd = "#opc#"($Rtt, $Rss)", + [], "",M_tc_2_SLOT23 > { + bits<5> Rdd; + bits<5> Rss; + bits<5> Rtt; + + let IClass = 0b1110; + + let Inst{27-24} = 0b1000; + let Inst{23-21} = MajOp; + let Inst{7-5} = 0b000; + let Inst{4-0} = Rdd; + let Inst{20-16} = Rss; + let Inst{12-8} = Rtt; + } + +// Vector reduce add unsigned bytes: Rdd32=vrmpybu(Rss32,Rtt32) +def A2_vraddub: T_XTYPE_Vect <"vraddub", 0b010, 0b001, 0>; +def A2_vraddub_acc: T_XTYPE_Vect_acc <"vraddub", 0b010, 0b001, 0>; + +// Vector sum of absolute differences unsigned bytes: Rdd=vrsadub(Rss,Rtt) +def A2_vrsadub: T_XTYPE_Vect <"vrsadub", 0b010, 0b010, 0>; +def A2_vrsadub_acc: T_XTYPE_Vect_acc <"vrsadub", 0b010, 0b010, 0>; + +// Vector absolute difference: Rdd=vabsdiffh(Rtt,Rss) +def M2_vabsdiffh: T_XTYPE_Vect_diff<0b011, "vabsdiffh">; + +// Vector absolute difference words: Rdd=vabsdiffw(Rtt,Rss) +def M2_vabsdiffw: T_XTYPE_Vect_diff<0b001, "vabsdiffw">; + +// Vector reduce complex multiply real or imaginary: +// Rdd[+]=vrcmpy[ir](Rss,Rtt[*]) +def M2_vrcmpyi_s0: T_XTYPE_Vect <"vrcmpyi", 0b000, 0b000, 0>; +def M2_vrcmpyi_s0c: T_XTYPE_Vect <"vrcmpyi", 0b010, 0b000, 1>; +def M2_vrcmaci_s0: T_XTYPE_Vect_acc <"vrcmpyi", 0b000, 0b000, 0>; +def M2_vrcmaci_s0c: T_XTYPE_Vect_acc <"vrcmpyi", 0b010, 0b000, 1>; + +def M2_vrcmpyr_s0: T_XTYPE_Vect <"vrcmpyr", 0b000, 0b001, 0>; +def M2_vrcmpyr_s0c: T_XTYPE_Vect <"vrcmpyr", 0b011, 0b001, 1>; +def M2_vrcmacr_s0: T_XTYPE_Vect_acc <"vrcmpyr", 0b000, 0b001, 0>; +def M2_vrcmacr_s0c: T_XTYPE_Vect_acc <"vrcmpyr", 0b011, 0b001, 1>; + +// Vector reduce halfwords: +// Rdd[+]=vrmpyh(Rss,Rtt) +def M2_vrmpy_s0: T_XTYPE_Vect <"vrmpyh", 0b000, 0b010, 0>; +def M2_vrmac_s0: T_XTYPE_Vect_acc <"vrmpyh", 0b000, 0b010, 0>; + +//===----------------------------------------------------------------------===// +// Template Class -- Vector Multipy with accumulation. +// Used for complex multiply real or imaginary, dual multiply and even halfwords +//===----------------------------------------------------------------------===// +let Defs = [USR_OVF] in +class T_M2_vmpy_acc_sat < string opc, bits<3> MajOp, bits<3> MinOp, + bit hasShift, bit isRnd > + : MInst <(outs DoubleRegs:$Rxx), + (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt), + "$Rxx += "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","") + #!if(isRnd,":rnd","")#":sat", + [], "$dst2 = $Rxx",M_tc_3x_SLOT23 > { + bits<5> Rxx; + bits<5> Rss; + bits<5> Rtt; + + let IClass = 0b1110; + + let Inst{27-24} = 0b1010; + let Inst{23-21} = MajOp; + let Inst{7-5} = MinOp; + let Inst{4-0} = Rxx; + let Inst{20-16} = Rss; + let Inst{12-8} = Rtt; + } + +class T_M2_vmpy_acc < string opc, bits<3> MajOp, bits<3> MinOp, + bit hasShift, bit isRnd > + : MInst <(outs DoubleRegs:$Rxx), + (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt), + "$Rxx += "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","") + #!if(isRnd,":rnd",""), + [], "$dst2 = $Rxx",M_tc_3x_SLOT23 > { + bits<5> Rxx; + bits<5> Rss; + bits<5> Rtt; + + let IClass = 0b1110; + + let Inst{27-24} = 0b1010; + let Inst{23-21} = MajOp; + let Inst{7-5} = MinOp; + let Inst{4-0} = Rxx; + let Inst{20-16} = Rss; + let Inst{12-8} = Rtt; + } + +// Vector multiply word by signed half with accumulation +// Rxx+=vmpyw[eo]h(Rss,Rtt)[:<<1][:rnd]:sat +def M2_mmacls_s1: T_M2_vmpy_acc_sat <"vmpyweh", 0b100, 0b101, 1, 0>; +def M2_mmacls_s0: T_M2_vmpy_acc_sat <"vmpyweh", 0b000, 0b101, 0, 0>; +def M2_mmacls_rs1: T_M2_vmpy_acc_sat <"vmpyweh", 0b101, 0b101, 1, 1>; +def M2_mmacls_rs0: T_M2_vmpy_acc_sat <"vmpyweh", 0b001, 0b101, 0, 1>; + +def M2_mmachs_s1: T_M2_vmpy_acc_sat <"vmpywoh", 0b100, 0b111, 1, 0>; +def M2_mmachs_s0: T_M2_vmpy_acc_sat <"vmpywoh", 0b000, 0b111, 0, 0>; +def M2_mmachs_rs1: T_M2_vmpy_acc_sat <"vmpywoh", 0b101, 0b111, 1, 1>; +def M2_mmachs_rs0: T_M2_vmpy_acc_sat <"vmpywoh", 0b001, 0b111, 0, 1>; + +// Vector multiply word by unsigned half with accumulation +// Rxx+=vmpyw[eo]uh(Rss,Rtt)[:<<1][:rnd]:sat +def M2_mmaculs_s1: T_M2_vmpy_acc_sat <"vmpyweuh", 0b110, 0b101, 1, 0>; +def M2_mmaculs_s0: T_M2_vmpy_acc_sat <"vmpyweuh", 0b010, 0b101, 0, 0>; +def M2_mmaculs_rs1: T_M2_vmpy_acc_sat <"vmpyweuh", 0b111, 0b101, 1, 1>; +def M2_mmaculs_rs0: T_M2_vmpy_acc_sat <"vmpyweuh", 0b011, 0b101, 0, 1>; + +def M2_mmacuhs_s1: T_M2_vmpy_acc_sat <"vmpywouh", 0b110, 0b111, 1, 0>; +def M2_mmacuhs_s0: T_M2_vmpy_acc_sat <"vmpywouh", 0b010, 0b111, 0, 0>; +def M2_mmacuhs_rs1: T_M2_vmpy_acc_sat <"vmpywouh", 0b111, 0b111, 1, 1>; +def M2_mmacuhs_rs0: T_M2_vmpy_acc_sat <"vmpywouh", 0b011, 0b111, 0, 1>; + +// Vector multiply even halfwords with accumulation +// Rxx+=vmpyeh(Rss,Rtt)[:<<1][:sat] +def M2_vmac2es: T_M2_vmpy_acc <"vmpyeh", 0b001, 0b010, 0, 0>; +def M2_vmac2es_s1: T_M2_vmpy_acc_sat <"vmpyeh", 0b100, 0b110, 1, 0>; +def M2_vmac2es_s0: T_M2_vmpy_acc_sat <"vmpyeh", 0b000, 0b110, 0, 0>; + +// Vector dual multiply with accumulation +// Rxx+=vdmpy(Rss,Rtt)[:sat] +def M2_vdmacs_s1: T_M2_vmpy_acc_sat <"vdmpy", 0b100, 0b100, 1, 0>; +def M2_vdmacs_s0: T_M2_vmpy_acc_sat <"vdmpy", 0b000, 0b100, 0, 0>; + +// Vector complex multiply real or imaginary with accumulation +// Rxx+=vcmpy[ir](Rss,Rtt):sat +def M2_vcmac_s0_sat_r: T_M2_vmpy_acc_sat <"vcmpyr", 0b001, 0b100, 0, 0>; +def M2_vcmac_s0_sat_i: T_M2_vmpy_acc_sat <"vcmpyi", 0b010, 0b100, 0, 0>; + +//===----------------------------------------------------------------------===// +// Template Class -- Multiply signed/unsigned halfwords with and without +// saturation and rounding +//===----------------------------------------------------------------------===// +class T_M2_mpyd < bits<2> LHbits, bit isRnd, bit hasShift, bit isUnsigned > + : MInst < (outs DoubleRegs:$Rdd), (ins IntRegs:$Rs, IntRegs:$Rt), + "$Rdd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l") + #", $Rt."#!if(LHbits{0},"h)","l)") + #!if(hasShift,":<<1","") + #!if(isRnd,":rnd",""), + [] > { + bits<5> Rdd; + bits<5> Rs; + bits<5> Rt; + + let IClass = 0b1110; + + let Inst{27-24} = 0b0100; + let Inst{23} = hasShift; + let Inst{22} = isUnsigned; + let Inst{21} = isRnd; + let Inst{6-5} = LHbits; + let Inst{4-0} = Rdd; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; +} + +def M2_mpyd_hh_s0: T_M2_mpyd<0b11, 0, 0, 0>; +def M2_mpyd_hl_s0: T_M2_mpyd<0b10, 0, 0, 0>; +def M2_mpyd_lh_s0: T_M2_mpyd<0b01, 0, 0, 0>; +def M2_mpyd_ll_s0: T_M2_mpyd<0b00, 0, 0, 0>; + +def M2_mpyd_hh_s1: T_M2_mpyd<0b11, 0, 1, 0>; +def M2_mpyd_hl_s1: T_M2_mpyd<0b10, 0, 1, 0>; +def M2_mpyd_lh_s1: T_M2_mpyd<0b01, 0, 1, 0>; +def M2_mpyd_ll_s1: T_M2_mpyd<0b00, 0, 1, 0>; + +def M2_mpyd_rnd_hh_s0: T_M2_mpyd<0b11, 1, 0, 0>; +def M2_mpyd_rnd_hl_s0: T_M2_mpyd<0b10, 1, 0, 0>; +def M2_mpyd_rnd_lh_s0: T_M2_mpyd<0b01, 1, 0, 0>; +def M2_mpyd_rnd_ll_s0: T_M2_mpyd<0b00, 1, 0, 0>; + +def M2_mpyd_rnd_hh_s1: T_M2_mpyd<0b11, 1, 1, 0>; +def M2_mpyd_rnd_hl_s1: T_M2_mpyd<0b10, 1, 1, 0>; +def M2_mpyd_rnd_lh_s1: T_M2_mpyd<0b01, 1, 1, 0>; +def M2_mpyd_rnd_ll_s1: T_M2_mpyd<0b00, 1, 1, 0>; + +//Rdd=mpyu(Rs.[HL],Rt.[HL])[:<<1] +def M2_mpyud_hh_s0: T_M2_mpyd<0b11, 0, 0, 1>; +def M2_mpyud_hl_s0: T_M2_mpyd<0b10, 0, 0, 1>; +def M2_mpyud_lh_s0: T_M2_mpyd<0b01, 0, 0, 1>; +def M2_mpyud_ll_s0: T_M2_mpyd<0b00, 0, 0, 1>; + +def M2_mpyud_hh_s1: T_M2_mpyd<0b11, 0, 1, 1>; +def M2_mpyud_hl_s1: T_M2_mpyd<0b10, 0, 1, 1>; +def M2_mpyud_lh_s1: T_M2_mpyd<0b01, 0, 1, 1>; +def M2_mpyud_ll_s1: T_M2_mpyd<0b00, 0, 1, 1>; + +//===----------------------------------------------------------------------===// +// Template Class for xtype mpy: +// Vector multiply +// Complex multiply +// multiply 32X32 and use full result +//===----------------------------------------------------------------------===// +let hasSideEffects = 0 in +class T_XTYPE_mpy64 <string mnemonic, bits<3> MajOp, bits<3> MinOp, + bit isSat, bit hasShift, bit isConj> + : MInst <(outs DoubleRegs:$Rdd), + (ins IntRegs:$Rs, IntRegs:$Rt), + "$Rdd = "#mnemonic#"($Rs, $Rt"#!if(isConj,"*)",")") + #!if(hasShift,":<<1","") + #!if(isSat,":sat",""), + [] > { + bits<5> Rdd; + bits<5> Rs; + bits<5> Rt; + + let IClass = 0b1110; + + let Inst{27-24} = 0b0101; + let Inst{23-21} = MajOp; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + let Inst{7-5} = MinOp; + let Inst{4-0} = Rdd; + } + +//===----------------------------------------------------------------------===// +// Template Class for xtype mpy with accumulation into 64-bit: +// Vector multiply +// Complex multiply +// multiply 32X32 and use full result +//===----------------------------------------------------------------------===// +class T_XTYPE_mpy64_acc <string op1, string op2, bits<3> MajOp, bits<3> MinOp, + bit isSat, bit hasShift, bit isConj> + : MInst <(outs DoubleRegs:$Rxx), + (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt), + "$Rxx "#op2#"= "#op1#"($Rs, $Rt"#!if(isConj,"*)",")") + #!if(hasShift,":<<1","") + #!if(isSat,":sat",""), + + [] , "$dst2 = $Rxx" > { + bits<5> Rxx; + bits<5> Rs; + bits<5> Rt; + + let IClass = 0b1110; + + let Inst{27-24} = 0b0111; + let Inst{23-21} = MajOp; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + let Inst{7-5} = MinOp; + let Inst{4-0} = Rxx; + } + +// MPY - Multiply and use full result +// Rdd = mpy[u](Rs,Rt) +def M2_dpmpyss_s0 : T_XTYPE_mpy64 < "mpy", 0b000, 0b000, 0, 0, 0>; +def M2_dpmpyuu_s0 : T_XTYPE_mpy64 < "mpyu", 0b010, 0b000, 0, 0, 0>; + +// Rxx[+-]= mpy[u](Rs,Rt) +def M2_dpmpyss_acc_s0 : T_XTYPE_mpy64_acc < "mpy", "+", 0b000, 0b000, 0, 0, 0>; +def M2_dpmpyss_nac_s0 : T_XTYPE_mpy64_acc < "mpy", "-", 0b001, 0b000, 0, 0, 0>; +def M2_dpmpyuu_acc_s0 : T_XTYPE_mpy64_acc < "mpyu", "+", 0b010, 0b000, 0, 0, 0>; +def M2_dpmpyuu_nac_s0 : T_XTYPE_mpy64_acc < "mpyu", "-", 0b011, 0b000, 0, 0, 0>; + +// Complex multiply real or imaginary +// Rxx=cmpy[ir](Rs,Rt) +def M2_cmpyi_s0 : T_XTYPE_mpy64 < "cmpyi", 0b000, 0b001, 0, 0, 0>; +def M2_cmpyr_s0 : T_XTYPE_mpy64 < "cmpyr", 0b000, 0b010, 0, 0, 0>; + +// Rxx+=cmpy[ir](Rs,Rt) +def M2_cmaci_s0 : T_XTYPE_mpy64_acc < "cmpyi", "+", 0b000, 0b001, 0, 0, 0>; +def M2_cmacr_s0 : T_XTYPE_mpy64_acc < "cmpyr", "+", 0b000, 0b010, 0, 0, 0>; + +// Complex multiply +// Rdd=cmpy(Rs,Rt)[:<<]:sat +def M2_cmpys_s0 : T_XTYPE_mpy64 < "cmpy", 0b000, 0b110, 1, 0, 0>; +def M2_cmpys_s1 : T_XTYPE_mpy64 < "cmpy", 0b100, 0b110, 1, 1, 0>; + +// Rdd=cmpy(Rs,Rt*)[:<<]:sat +def M2_cmpysc_s0 : T_XTYPE_mpy64 < "cmpy", 0b010, 0b110, 1, 0, 1>; +def M2_cmpysc_s1 : T_XTYPE_mpy64 < "cmpy", 0b110, 0b110, 1, 1, 1>; + +// Rxx[-+]=cmpy(Rs,Rt)[:<<1]:sat +def M2_cmacs_s0 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b000, 0b110, 1, 0, 0>; +def M2_cnacs_s0 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b000, 0b111, 1, 0, 0>; +def M2_cmacs_s1 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b100, 0b110, 1, 1, 0>; +def M2_cnacs_s1 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b100, 0b111, 1, 1, 0>; + +// Rxx[-+]=cmpy(Rs,Rt*)[:<<1]:sat +def M2_cmacsc_s0 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b010, 0b110, 1, 0, 1>; +def M2_cnacsc_s0 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b010, 0b111, 1, 0, 1>; +def M2_cmacsc_s1 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b110, 0b110, 1, 1, 1>; +def M2_cnacsc_s1 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b110, 0b111, 1, 1, 1>; + +// Vector multiply halfwords +// Rdd=vmpyh(Rs,Rt)[:<<]:sat +//let Defs = [USR_OVF] in { + def M2_vmpy2s_s1 : T_XTYPE_mpy64 < "vmpyh", 0b100, 0b101, 1, 1, 0>; + def M2_vmpy2s_s0 : T_XTYPE_mpy64 < "vmpyh", 0b000, 0b101, 1, 0, 0>; +//} + +// Rxx+=vmpyh(Rs,Rt)[:<<1][:sat] +def M2_vmac2 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b001, 0b001, 0, 0, 0>; +def M2_vmac2s_s1 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b100, 0b101, 1, 1, 0>; +def M2_vmac2s_s0 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b000, 0b101, 1, 0, 0>; + +def: Pat<(i64 (mul (i64 (anyext (i32 IntRegs:$src1))), + (i64 (anyext (i32 IntRegs:$src2))))), + (M2_dpmpyuu_s0 IntRegs:$src1, IntRegs:$src2)>; + +def: Pat<(i64 (mul (i64 (sext (i32 IntRegs:$src1))), + (i64 (sext (i32 IntRegs:$src2))))), + (M2_dpmpyss_s0 IntRegs:$src1, IntRegs:$src2)>; + +def: Pat<(i64 (mul (is_sext_i32:$src1), + (is_sext_i32:$src2))), + (M2_dpmpyss_s0 (LoReg DoubleRegs:$src1), (LoReg DoubleRegs:$src2))>; // Multiply and accumulate, use full result. // Rxx[+-]=mpy(Rs,Rt) -// Rxx+=mpy(Rs,Rt) -def MPY64_acc : MInst_acc<(outs DoubleRegs:$dst), - (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), - "$dst += mpy($src2, $src3)", - [(set (i64 DoubleRegs:$dst), - (add (mul (i64 (sext (i32 IntRegs:$src2))), - (i64 (sext (i32 IntRegs:$src3)))), - (i64 DoubleRegs:$src1)))], - "$src1 = $dst">; - -// Rxx-=mpy(Rs,Rt) -def MPY64_sub : MInst_acc<(outs DoubleRegs:$dst), - (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), - "$dst -= mpy($src2, $src3)", - [(set (i64 DoubleRegs:$dst), - (sub (i64 DoubleRegs:$src1), - (mul (i64 (sext (i32 IntRegs:$src2))), - (i64 (sext (i32 IntRegs:$src3))))))], - "$src1 = $dst">; - -// Rxx[+-]=mpyu(Rs,Rt) -// Rxx+=mpyu(Rs,Rt) -def MPYU64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - IntRegs:$src2, IntRegs:$src3), - "$dst += mpyu($src2, $src3)", - [(set (i64 DoubleRegs:$dst), - (add (mul (i64 (anyext (i32 IntRegs:$src2))), - (i64 (anyext (i32 IntRegs:$src3)))), - (i64 DoubleRegs:$src1)))], "$src1 = $dst">; - -// Rxx-=mpyu(Rs,Rt) -def MPYU64_sub : MInst_acc<(outs DoubleRegs:$dst), - (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), - "$dst -= mpyu($src2, $src3)", - [(set (i64 DoubleRegs:$dst), - (sub (i64 DoubleRegs:$src1), - (mul (i64 (anyext (i32 IntRegs:$src2))), - (i64 (anyext (i32 IntRegs:$src3))))))], - "$src1 = $dst">; - - -let InputType = "reg", CextOpcode = "ADD_acc" in -def ADDrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, - IntRegs:$src2, IntRegs:$src3), - "$dst += add($src2, $src3)", - [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), - (i32 IntRegs:$src3)), - (i32 IntRegs:$src1)))], - "$src1 = $dst">, ImmRegRel; - -let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, -InputType = "imm", CextOpcode = "ADD_acc" in -def ADDri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, - IntRegs:$src2, s8Ext:$src3), - "$dst += add($src2, #$src3)", - [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), - s8_16ExtPred:$src3), - (i32 IntRegs:$src1)))], - "$src1 = $dst">, ImmRegRel; - -let CextOpcode = "SUB_acc", InputType = "reg" in -def SUBrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, - IntRegs:$src2, IntRegs:$src3), - "$dst -= add($src2, $src3)", - [(set (i32 IntRegs:$dst), - (sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2), - (i32 IntRegs:$src3))))], - "$src1 = $dst">, ImmRegRel; - -let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, -CextOpcode = "SUB_acc", InputType = "imm" in -def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, - IntRegs:$src2, s8Ext:$src3), - "$dst -= add($src2, #$src3)", - [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1), - (add (i32 IntRegs:$src2), - s8_16ExtPred:$src3)))], - "$src1 = $dst">, ImmRegRel; + +def: Pat<(i64 (add (i64 DoubleRegs:$src1), + (mul (i64 (sext (i32 IntRegs:$src2))), + (i64 (sext (i32 IntRegs:$src3)))))), + (M2_dpmpyss_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; + +def: Pat<(i64 (sub (i64 DoubleRegs:$src1), + (mul (i64 (sext (i32 IntRegs:$src2))), + (i64 (sext (i32 IntRegs:$src3)))))), + (M2_dpmpyss_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; + +def: Pat<(i64 (add (i64 DoubleRegs:$src1), + (mul (i64 (anyext (i32 IntRegs:$src2))), + (i64 (anyext (i32 IntRegs:$src3)))))), + (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; + +def: Pat<(i64 (add (i64 DoubleRegs:$src1), + (mul (i64 (zext (i32 IntRegs:$src2))), + (i64 (zext (i32 IntRegs:$src3)))))), + (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; + +def: Pat<(i64 (sub (i64 DoubleRegs:$src1), + (mul (i64 (anyext (i32 IntRegs:$src2))), + (i64 (anyext (i32 IntRegs:$src3)))))), + (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; + +def: Pat<(i64 (sub (i64 DoubleRegs:$src1), + (mul (i64 (zext (i32 IntRegs:$src2))), + (i64 (zext (i32 IntRegs:$src3)))))), + (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; //===----------------------------------------------------------------------===// // MTYPE/MPYH - @@ -1464,321 +3250,1134 @@ def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, //===----------------------------------------------------------------------===// /// // Store doubleword. - //===----------------------------------------------------------------------===// -// Post increment store +// Template class for non-predicated post increment stores with immediate offset //===----------------------------------------------------------------------===// +let isPredicable = 1, hasSideEffects = 0, addrMode = PostInc in +class T_store_pi <string mnemonic, RegisterClass RC, Operand ImmOp, + bits<4> MajOp, bit isHalf > + : STInst <(outs IntRegs:$_dst_), + (ins IntRegs:$src1, ImmOp:$offset, RC:$src2), + mnemonic#"($src1++#$offset) = $src2"#!if(isHalf, ".h", ""), + [], "$src1 = $_dst_" >, + AddrModeRel { + bits<5> src1; + bits<5> src2; + bits<7> offset; + bits<4> offsetBits; + + string ImmOpStr = !cast<string>(ImmOp); + let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, + !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, + !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, + /* s4_0Imm */ offset{3-0}))); + let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1); + + let IClass = 0b1010; + + let Inst{27-25} = 0b101; + let Inst{24-21} = MajOp; + let Inst{20-16} = src1; + let Inst{13} = 0b0; + let Inst{12-8} = src2; + let Inst{7} = 0b0; + let Inst{6-3} = offsetBits; + let Inst{1} = 0b0; + } -multiclass ST_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp, - bit isNot, bit isPredNew> { - let isPredicatedNew = isPredNew in - def NAME : STInst2PI<(outs IntRegs:$dst), +//===----------------------------------------------------------------------===// +// Template class for predicated post increment stores with immediate offset +//===----------------------------------------------------------------------===// +let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in +class T_pstore_pi <string mnemonic, RegisterClass RC, Operand ImmOp, + bits<4> MajOp, bit isHalf, bit isPredNot, bit isPredNew > + : STInst <(outs IntRegs:$_dst_), (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3), - !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", - ") ")#mnemonic#"($src2++#$offset) = $src3", - [], - "$src2 = $dst">; -} + !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", + ") ")#mnemonic#"($src2++#$offset) = $src3"#!if(isHalf, ".h", ""), + [], "$src2 = $_dst_" >, + AddrModeRel { + bits<2> src1; + bits<5> src2; + bits<7> offset; + bits<5> src3; + bits<4> offsetBits; -multiclass ST_PostInc_Pred<string mnemonic, RegisterClass RC, - Operand ImmOp, bit PredNot> { - let isPredicatedFalse = PredNot in { - defm _c#NAME : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>; - // Predicate new - let Predicates = [HasV4T], validSubTargets = HasV4SubT in - defm _cdn#NAME#_V4 : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>; + string ImmOpStr = !cast<string>(ImmOp); + let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, + !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, + !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, + /* s4_0Imm */ offset{3-0}))); + + let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1); + let isPredicatedNew = isPredNew; + let isPredicatedFalse = isPredNot; + + let IClass = 0b1010; + + let Inst{27-25} = 0b101; + let Inst{24-21} = MajOp; + let Inst{20-16} = src2; + let Inst{13} = 0b1; + let Inst{12-8} = src3; + let Inst{7} = isPredNew; + let Inst{6-3} = offsetBits; + let Inst{2} = isPredNot; + let Inst{1-0} = src1; } -} -let hasCtrlDep = 1, isNVStorable = 1, neverHasSideEffects = 1 in multiclass ST_PostInc<string mnemonic, string BaseOp, RegisterClass RC, - Operand ImmOp> { + Operand ImmOp, bits<4> MajOp, bit isHalf = 0 > { - let hasCtrlDep = 1, BaseOpcode = "POST_"#BaseOp in { - let isPredicable = 1 in - def NAME : STInst2PI<(outs IntRegs:$dst), - (ins IntRegs:$src1, ImmOp:$offset, RC:$src2), - mnemonic#"($src1++#$offset) = $src2", - [], - "$src1 = $dst">; - - let isPredicated = 1 in { - defm Pt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 0 >; - defm NotPt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 1 >; - } + let BaseOpcode = "POST_"#BaseOp in { + def S2_#NAME#_pi : T_store_pi <mnemonic, RC, ImmOp, MajOp, isHalf>; + + // Predicated + def S2_p#NAME#t_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp, isHalf, 0, 0>; + def S2_p#NAME#f_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp, isHalf, 1, 0>; + + // Predicated new + def S2_p#NAME#tnew_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp, + isHalf, 0, 1>; + def S2_p#NAME#fnew_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp, + isHalf, 1, 1>; } } -defm POST_STbri: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm>, AddrModeRel; -defm POST_SThri: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm>, AddrModeRel; -defm POST_STwri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel; +let accessSize = ByteAccess in +defm storerb: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm, 0b1000>; -let isNVStorable = 0 in -defm POST_STdri: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm>, AddrModeRel; +let accessSize = HalfWordAccess in +defm storerh: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm, 0b1010>; -def : Pat<(post_truncsti8 (i32 IntRegs:$src1), IntRegs:$src2, - s4_3ImmPred:$offset), - (POST_STbri IntRegs:$src2, s4_0ImmPred:$offset, IntRegs:$src1)>; +let accessSize = WordAccess in +defm storeri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm, 0b1100>; -def : Pat<(post_truncsti16 (i32 IntRegs:$src1), IntRegs:$src2, - s4_3ImmPred:$offset), - (POST_SThri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>; +let accessSize = DoubleWordAccess in +defm storerd: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm, 0b1110>; -def : Pat<(post_store (i32 IntRegs:$src1), IntRegs:$src2, s4_2ImmPred:$offset), - (POST_STwri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>; +let accessSize = HalfWordAccess, isNVStorable = 0 in +defm storerf: ST_PostInc <"memh", "STrih_H", IntRegs, s4_1Imm, 0b1011, 1>; -def : Pat<(post_store (i64 DoubleRegs:$src1), IntRegs:$src2, - s4_3ImmPred:$offset), - (POST_STdri IntRegs:$src2, s4_3ImmPred:$offset, DoubleRegs:$src1)>; +class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset, + InstHexagon MI> + : Pat<(Store Value:$src1, I32:$src2, Offset:$offset), + (MI I32:$src2, imm:$offset, Value:$src1)>; + +def: Storepi_pat<post_truncsti8, I32, s4_0ImmPred, S2_storerb_pi>; +def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>; +def: Storepi_pat<post_store, I32, s4_2ImmPred, S2_storeri_pi>; +def: Storepi_pat<post_store, I64, s4_3ImmPred, S2_storerd_pi>; //===----------------------------------------------------------------------===// -// multiclass for the store instructions with MEMri operand. +// Template class for post increment stores with register offset. //===----------------------------------------------------------------------===// -multiclass ST_MEMri_Pbase<string mnemonic, RegisterClass RC, bit isNot, - bit isPredNew> { - let isPredicatedNew = isPredNew in - def NAME : STInst2<(outs), - (ins PredRegs:$src1, MEMri:$addr, RC: $src2), - !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", - ") ")#mnemonic#"($addr) = $src2", - []>; -} +let isNVStorable = 1 in +class T_store_pr <string mnemonic, RegisterClass RC, bits<3> MajOp, + MemAccessSize AccessSz, bit isHalf = 0> + : STInst <(outs IntRegs:$_dst_), + (ins IntRegs:$src1, ModRegs:$src2, RC:$src3), + mnemonic#"($src1++$src2) = $src3"#!if(isHalf, ".h", ""), + [], "$src1 = $_dst_" > { + bits<5> src1; + bits<1> src2; + bits<5> src3; + let accessSize = AccessSz; + + let IClass = 0b1010; -multiclass ST_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> { - let isPredicatedFalse = PredNot in { - defm _c#NAME : ST_MEMri_Pbase<mnemonic, RC, PredNot, 0>; + let Inst{27-24} = 0b1101; + let Inst{23-21} = MajOp; + let Inst{20-16} = src1; + let Inst{13} = src2; + let Inst{12-8} = src3; + let Inst{7} = 0b0; + } - // Predicate new - let validSubTargets = HasV4SubT, Predicates = [HasV4T] in - defm _cdn#NAME#_V4 : ST_MEMri_Pbase<mnemonic, RC, PredNot, 1>; +def S2_storerb_pr : T_store_pr<"memb", IntRegs, 0b000, ByteAccess>; +def S2_storerh_pr : T_store_pr<"memh", IntRegs, 0b010, HalfWordAccess>; +def S2_storeri_pr : T_store_pr<"memw", IntRegs, 0b100, WordAccess>; +def S2_storerd_pr : T_store_pr<"memd", DoubleRegs, 0b110, DoubleWordAccess>; + +def S2_storerf_pr : T_store_pr<"memh", IntRegs, 0b011, HalfWordAccess, 1>; + +let opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in +class T_store_io <string mnemonic, RegisterClass RC, Operand ImmOp, + bits<3>MajOp, bit isH = 0> + : STInst <(outs), + (ins IntRegs:$src1, ImmOp:$src2, RC:$src3), + mnemonic#"($src1+#$src2) = $src3"#!if(isH,".h","")>, + AddrModeRel, ImmRegRel { + bits<5> src1; + bits<14> src2; // Actual address offset + bits<5> src3; + bits<11> offsetBits; // Represents offset encoding + + string ImmOpStr = !cast<string>(ImmOp); + + let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14, + !if (!eq(ImmOpStr, "s11_2Ext"), 13, + !if (!eq(ImmOpStr, "s11_1Ext"), 12, + /* s11_0Ext */ 11))); + let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), src2{13-3}, + !if (!eq(ImmOpStr, "s11_2Ext"), src2{12-2}, + !if (!eq(ImmOpStr, "s11_1Ext"), src2{11-1}, + /* s11_0Ext */ src2{10-0}))); + let IClass = 0b1010; + + let Inst{27} = 0b0; + let Inst{26-25} = offsetBits{10-9}; + let Inst{24} = 0b1; + let Inst{23-21} = MajOp; + let Inst{20-16} = src1; + let Inst{13} = offsetBits{8}; + let Inst{12-8} = src3; + let Inst{7-0} = offsetBits{7-0}; } -} -let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in -multiclass ST_MEMri<string mnemonic, string CextOp, RegisterClass RC, - bits<5> ImmBits, bits<5> PredImmBits> { +let opExtendable = 2, isPredicated = 1 in +class T_pstore_io <string mnemonic, RegisterClass RC, Operand ImmOp, + bits<3>MajOp, bit PredNot, bit isPredNew, bit isH = 0> + : STInst <(outs), + (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$src3, RC:$src4), + !if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", + ") ")#mnemonic#"($src2+#$src3) = $src4"#!if(isH,".h",""), + [],"",V2LDST_tc_st_SLOT01 >, + AddrModeRel, ImmRegRel { + bits<2> src1; + bits<5> src2; + bits<9> src3; // Actual address offset + bits<5> src4; + bits<6> offsetBits; // Represents offset encoding + + let isPredicatedNew = isPredNew; + let isPredicatedFalse = PredNot; - let CextOpcode = CextOp, BaseOpcode = CextOp in { - let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits, - isPredicable = 1 in - def NAME : STInst2<(outs), - (ins MEMri:$addr, RC:$src), - mnemonic#"($addr) = $src", - []>; - - let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits, - isPredicated = 1 in { - defm Pt : ST_MEMri_Pred<mnemonic, RC, 0>; - defm NotPt : ST_MEMri_Pred<mnemonic, RC, 1>; - } + string ImmOpStr = !cast<string>(ImmOp); + let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9, + !if (!eq(ImmOpStr, "u6_2Ext"), 8, + !if (!eq(ImmOpStr, "u6_1Ext"), 7, + /* u6_0Ext */ 6))); + let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), src3{8-3}, + !if (!eq(ImmOpStr, "u6_2Ext"), src3{7-2}, + !if (!eq(ImmOpStr, "u6_1Ext"), src3{6-1}, + /* u6_0Ext */ src3{5-0}))); + let IClass = 0b0100; + + let Inst{27} = 0b0; + let Inst{26} = PredNot; + let Inst{25} = isPredNew; + let Inst{24} = 0b0; + let Inst{23-21} = MajOp; + let Inst{20-16} = src2; + let Inst{13} = offsetBits{5}; + let Inst{12-8} = src4; + let Inst{7-3} = offsetBits{4-0}; + let Inst{1-0} = src1; + } + +let isExtendable = 1, isNVStorable = 1, hasSideEffects = 0 in +multiclass ST_Idxd<string mnemonic, string CextOp, RegisterClass RC, + Operand ImmOp, Operand predImmOp, bits<3> MajOp, bit isH = 0> { + let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { + def S2_#NAME#_io : T_store_io <mnemonic, RC, ImmOp, MajOp, isH>; + + // Predicated + def S2_p#NAME#t_io : T_pstore_io<mnemonic, RC, predImmOp, MajOp, 0, 0, isH>; + def S2_p#NAME#f_io : T_pstore_io<mnemonic, RC, predImmOp, MajOp, 1, 0, isH>; + + // Predicated new + def S4_p#NAME#tnew_io : T_pstore_io <mnemonic, RC, predImmOp, + MajOp, 0, 1, isH>; + def S4_p#NAME#fnew_io : T_pstore_io <mnemonic, RC, predImmOp, + MajOp, 1, 1, isH>; } } -let addrMode = BaseImmOffset, isMEMri = "true" in { +let addrMode = BaseImmOffset, InputType = "imm" in { let accessSize = ByteAccess in - defm STrib: ST_MEMri < "memb", "STrib", IntRegs, 11, 6>, AddrModeRel; + defm storerb: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext, u6_0Ext, 0b000>; + + let accessSize = HalfWordAccess, opExtentAlign = 1 in + defm storerh: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext, u6_1Ext, 0b010>; + + let accessSize = WordAccess, opExtentAlign = 2 in + defm storeri: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext, u6_2Ext, 0b100>; - let accessSize = HalfWordAccess in - defm STrih: ST_MEMri < "memh", "STrih", IntRegs, 12, 7>, AddrModeRel; + let accessSize = DoubleWordAccess, isNVStorable = 0, opExtentAlign = 3 in + defm storerd: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext, + u6_3Ext, 0b110>; - let accessSize = WordAccess in - defm STriw: ST_MEMri < "memw", "STriw", IntRegs, 13, 8>, AddrModeRel; + let accessSize = HalfWordAccess, opExtentAlign = 1 in + defm storerf: ST_Idxd < "memh", "STrif", IntRegs, s11_1Ext, + u6_1Ext, 0b011, 1>; +} - let accessSize = DoubleWordAccess, isNVStorable = 0 in - defm STrid: ST_MEMri < "memd", "STrid", DoubleRegs, 14, 9>, AddrModeRel; +// Patterns for generating stores, where the address takes different forms: +// - frameindex,, +// - base + offset, +// - simple (base address without offset). +// These would usually be used together (via Storex_pat defined below), but +// in some cases one may want to apply different properties (such as +// AddedComplexity) to the individual patterns. +class Storex_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI> + : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>; +class Storex_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, + InstHexagon MI> + : Pat<(Store Value:$Rt, (add (i32 IntRegs:$Rs), ImmPred:$Off)), + (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>; +class Storex_simple_pat<PatFrag Store, PatFrag Value, InstHexagon MI> + : Pat<(Store Value:$Rt, (i32 IntRegs:$Rs)), + (MI IntRegs:$Rs, 0, Value:$Rt)>; + +// Patterns for generating stores, where the address takes different forms, +// and where the value being stored is transformed through the value modifier +// ValueMod. The address forms are same as above. +class Storexm_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod, + InstHexagon MI> + : Pat<(Store Value:$Rs, AddrFI:$fi), + (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>; +class Storexm_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, + PatFrag ValueMod, InstHexagon MI> + : Pat<(Store Value:$Rt, (add (i32 IntRegs:$Rs), ImmPred:$Off)), + (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>; +class Storexm_simple_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod, + InstHexagon MI> + : Pat<(Store Value:$Rt, (i32 IntRegs:$Rs)), + (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>; + +multiclass Storex_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred, + InstHexagon MI> { + def: Storex_fi_pat <Store, Value, MI>; + def: Storex_add_pat <Store, Value, ImmPred, MI>; } -def : Pat<(truncstorei8 (i32 IntRegs:$src1), ADDRriS11_0:$addr), - (STrib ADDRriS11_0:$addr, (i32 IntRegs:$src1))>; +multiclass Storexm_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred, + PatFrag ValueMod, InstHexagon MI> { + def: Storexm_fi_pat <Store, Value, ValueMod, MI>; + def: Storexm_add_pat <Store, Value, ImmPred, ValueMod, MI>; +} -def : Pat<(truncstorei16 (i32 IntRegs:$src1), ADDRriS11_1:$addr), - (STrih ADDRriS11_1:$addr, (i32 IntRegs:$src1))>; +// Regular stores in the DAG have two operands: value and address. +// Atomic stores also have two, but they are reversed: address, value. +// To use atomic stores with the patterns, they need to have their operands +// swapped. This relies on the knowledge that the F.Fragment uses names +// "ptr" and "val". +class SwapSt<PatFrag F> + : PatFrag<(ops node:$val, node:$ptr), F.Fragment>; -def : Pat<(store (i32 IntRegs:$src1), ADDRriS11_2:$addr), - (STriw ADDRriS11_2:$addr, (i32 IntRegs:$src1))>; +let AddedComplexity = 20 in { + defm: Storex_pat<truncstorei8, I32, s11_0ExtPred, S2_storerb_io>; + defm: Storex_pat<truncstorei16, I32, s11_1ExtPred, S2_storerh_io>; + defm: Storex_pat<store, I32, s11_2ExtPred, S2_storeri_io>; + defm: Storex_pat<store, I64, s11_3ExtPred, S2_storerd_io>; + + defm: Storex_pat<SwapSt<atomic_store_8>, I32, s11_0ExtPred, S2_storerb_io>; + defm: Storex_pat<SwapSt<atomic_store_16>, I32, s11_1ExtPred, S2_storerh_io>; + defm: Storex_pat<SwapSt<atomic_store_32>, I32, s11_2ExtPred, S2_storeri_io>; + defm: Storex_pat<SwapSt<atomic_store_64>, I64, s11_3ExtPred, S2_storerd_io>; +} -def : Pat<(store (i64 DoubleRegs:$src1), ADDRriS11_3:$addr), - (STrid ADDRriS11_3:$addr, (i64 DoubleRegs:$src1))>; +// Simple patterns should be tried with the least priority. +def: Storex_simple_pat<truncstorei8, I32, S2_storerb_io>; +def: Storex_simple_pat<truncstorei16, I32, S2_storerh_io>; +def: Storex_simple_pat<store, I32, S2_storeri_io>; +def: Storex_simple_pat<store, I64, S2_storerd_io>; +def: Storex_simple_pat<SwapSt<atomic_store_8>, I32, S2_storerb_io>; +def: Storex_simple_pat<SwapSt<atomic_store_16>, I32, S2_storerh_io>; +def: Storex_simple_pat<SwapSt<atomic_store_32>, I32, S2_storeri_io>; +def: Storex_simple_pat<SwapSt<atomic_store_64>, I64, S2_storerd_io>; + +let AddedComplexity = 20 in { + defm: Storexm_pat<truncstorei8, I64, s11_0ExtPred, LoReg, S2_storerb_io>; + defm: Storexm_pat<truncstorei16, I64, s11_1ExtPred, LoReg, S2_storerh_io>; + defm: Storexm_pat<truncstorei32, I64, s11_2ExtPred, LoReg, S2_storeri_io>; +} + +def: Storexm_simple_pat<truncstorei8, I64, LoReg, S2_storerb_io>; +def: Storexm_simple_pat<truncstorei16, I64, LoReg, S2_storerh_io>; +def: Storexm_simple_pat<truncstorei32, I64, LoReg, S2_storeri_io>; + +// Store predicate. +let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13, + isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in +def STriw_pred : STInst<(outs), + (ins IntRegs:$addr, s11_2Ext:$off, PredRegs:$src1), + ".error \"should not emit\"", []>; + +// S2_allocframe: Allocate stack frame. +let Defs = [R29, R30], Uses = [R29, R31, R30], + hasSideEffects = 0, accessSize = DoubleWordAccess in +def S2_allocframe: ST0Inst < + (outs), (ins u11_3Imm:$u11_3), + "allocframe(#$u11_3)" > { + bits<14> u11_3; + + let IClass = 0b1010; + let Inst{27-16} = 0b000010011101; + let Inst{13-11} = 0b000; + let Inst{10-0} = u11_3{13-3}; + } + +// S2_storer[bhwdf]_pci: Store byte/half/word/double. +// S2_storer[bhwdf]_pci -> S2_storerbnew_pci +let Uses = [CS], isNVStorable = 1 in +class T_store_pci <string mnemonic, RegisterClass RC, + Operand Imm, bits<4>MajOp, + MemAccessSize AlignSize, string RegSrc = "Rt"> + : STInst <(outs IntRegs:$_dst_), + (ins IntRegs:$Rz, Imm:$offset, ModRegs:$Mu, RC:$Rt), + #mnemonic#"($Rz ++ #$offset:circ($Mu)) = $"#RegSrc#"", + [] , + "$Rz = $_dst_" > { + bits<5> Rz; + bits<7> offset; + bits<1> Mu; + bits<5> Rt; + let accessSize = AlignSize; + + let IClass = 0b1010; + let Inst{27-25} = 0b100; + let Inst{24-21} = MajOp; + let Inst{20-16} = Rz; + let Inst{13} = Mu; + let Inst{12-8} = Rt; + let Inst{7} = 0b0; + let Inst{6-3} = + !if (!eq(!cast<string>(AlignSize), "DoubleWordAccess"), offset{6-3}, + !if (!eq(!cast<string>(AlignSize), "WordAccess"), offset{5-2}, + !if (!eq(!cast<string>(AlignSize), "HalfWordAccess"), offset{4-1}, + /* ByteAccess */ offset{3-0}))); + let Inst{1} = 0b0; + } + +def S2_storerb_pci : T_store_pci<"memb", IntRegs, s4_0Imm, 0b1000, + ByteAccess>; +def S2_storerh_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1010, + HalfWordAccess>; +def S2_storerf_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1011, + HalfWordAccess, "Rt.h">; +def S2_storeri_pci : T_store_pci<"memw", IntRegs, s4_2Imm, 0b1100, + WordAccess>; +def S2_storerd_pci : T_store_pci<"memd", DoubleRegs, s4_3Imm, 0b1110, + DoubleWordAccess>; + +let Uses = [CS], isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 4 in +class T_storenew_pci <string mnemonic, Operand Imm, + bits<2>MajOp, MemAccessSize AlignSize> + : NVInst < (outs IntRegs:$_dst_), + (ins IntRegs:$Rz, Imm:$offset, ModRegs:$Mu, IntRegs:$Nt), + #mnemonic#"($Rz ++ #$offset:circ($Mu)) = $Nt.new", + [], + "$Rz = $_dst_"> { + bits<5> Rz; + bits<6> offset; + bits<1> Mu; + bits<3> Nt; + + let accessSize = AlignSize; + + let IClass = 0b1010; + let Inst{27-21} = 0b1001101; + let Inst{20-16} = Rz; + let Inst{13} = Mu; + let Inst{12-11} = MajOp; + let Inst{10-8} = Nt; + let Inst{7} = 0b0; + let Inst{6-3} = + !if (!eq(!cast<string>(AlignSize), "WordAccess"), offset{5-2}, + !if (!eq(!cast<string>(AlignSize), "HalfWordAccess"), offset{4-1}, + /* ByteAccess */ offset{3-0})); + let Inst{1} = 0b0; + } + +def S2_storerbnew_pci : T_storenew_pci <"memb", s4_0Imm, 0b00, ByteAccess>; +def S2_storerhnew_pci : T_storenew_pci <"memh", s4_1Imm, 0b01, HalfWordAccess>; +def S2_storerinew_pci : T_storenew_pci <"memw", s4_2Imm, 0b10, WordAccess>; + +//===----------------------------------------------------------------------===// +// Circular stores - Pseudo +// +// Please note that the input operand order in the pseudo instructions +// doesn't match with the real instructions. Pseudo instructions operand +// order should mimics the ordering in the intrinsics. +//===----------------------------------------------------------------------===// +let isCodeGenOnly = 1, mayStore = 1, hasSideEffects = 0, isPseudo = 1 in +class T_store_pci_pseudo <string opc, RegisterClass RC> + : STInstPI<(outs IntRegs:$_dst_), + (ins IntRegs:$src1, RC:$src2, IntRegs:$src3, s4Imm:$src4), + ".error \""#opc#"($src1++#$src4:circ($src3)) = $src2\"", + [], "$_dst_ = $src1">; + +def S2_storerb_pci_pseudo : T_store_pci_pseudo <"memb", IntRegs>; +def S2_storerh_pci_pseudo : T_store_pci_pseudo <"memh", IntRegs>; +def S2_storerf_pci_pseudo : T_store_pci_pseudo <"memh", IntRegs>; +def S2_storeri_pci_pseudo : T_store_pci_pseudo <"memw", IntRegs>; +def S2_storerd_pci_pseudo : T_store_pci_pseudo <"memd", DoubleRegs>; //===----------------------------------------------------------------------===// -// multiclass for the store instructions with base+immediate offset -// addressing mode +// Circular stores with auto-increment register //===----------------------------------------------------------------------===// -multiclass ST_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp, - bit isNot, bit isPredNew> { - let isPredicatedNew = isPredNew in - def NAME : STInst2<(outs), - (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC: $src4), - !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", - ") ")#mnemonic#"($src2+#$src3) = $src4", - []>; +let Uses = [CS], isNVStorable = 1 in +class T_store_pcr <string mnemonic, RegisterClass RC, bits<4>MajOp, + MemAccessSize AlignSize, string RegSrc = "Rt"> + : STInst <(outs IntRegs:$_dst_), + (ins IntRegs:$Rz, ModRegs:$Mu, RC:$Rt), + #mnemonic#"($Rz ++ I:circ($Mu)) = $"#RegSrc#"", + [], + "$Rz = $_dst_" > { + bits<5> Rz; + bits<1> Mu; + bits<5> Rt; + + let accessSize = AlignSize; + + let IClass = 0b1010; + let Inst{27-25} = 0b100; + let Inst{24-21} = MajOp; + let Inst{20-16} = Rz; + let Inst{13} = Mu; + let Inst{12-8} = Rt; + let Inst{7} = 0b0; + let Inst{1} = 0b1; + } + +def S2_storerb_pcr : T_store_pcr<"memb", IntRegs, 0b1000, ByteAccess>; +def S2_storerh_pcr : T_store_pcr<"memh", IntRegs, 0b1010, HalfWordAccess>; +def S2_storeri_pcr : T_store_pcr<"memw", IntRegs, 0b1100, WordAccess>; +def S2_storerd_pcr : T_store_pcr<"memd", DoubleRegs, 0b1110, DoubleWordAccess>; +def S2_storerf_pcr : T_store_pcr<"memh", IntRegs, 0b1011, + HalfWordAccess, "Rt.h">; + +//===----------------------------------------------------------------------===// +// Circular .new stores with auto-increment register +//===----------------------------------------------------------------------===// +let Uses = [CS], isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3 in +class T_storenew_pcr <string mnemonic, bits<2>MajOp, + MemAccessSize AlignSize> + : NVInst <(outs IntRegs:$_dst_), + (ins IntRegs:$Rz, ModRegs:$Mu, IntRegs:$Nt), + #mnemonic#"($Rz ++ I:circ($Mu)) = $Nt.new" , + [] , + "$Rz = $_dst_"> { + bits<5> Rz; + bits<1> Mu; + bits<3> Nt; + + let accessSize = AlignSize; + + let IClass = 0b1010; + let Inst{27-21} = 0b1001101; + let Inst{20-16} = Rz; + let Inst{13} = Mu; + let Inst{12-11} = MajOp; + let Inst{10-8} = Nt; + let Inst{7} = 0b0; + let Inst{1} = 0b1; + } + +def S2_storerbnew_pcr : T_storenew_pcr <"memb", 0b00, ByteAccess>; +def S2_storerhnew_pcr : T_storenew_pcr <"memh", 0b01, HalfWordAccess>; +def S2_storerinew_pcr : T_storenew_pcr <"memw", 0b10, WordAccess>; + +//===----------------------------------------------------------------------===// +// Bit-reversed stores with auto-increment register +//===----------------------------------------------------------------------===// +let hasSideEffects = 0 in +class T_store_pbr<string mnemonic, RegisterClass RC, + MemAccessSize addrSize, bits<3> majOp, + bit isHalf = 0> + : STInst + <(outs IntRegs:$_dst_), + (ins IntRegs:$Rz, ModRegs:$Mu, RC:$src), + #mnemonic#"($Rz ++ $Mu:brev) = $src"#!if (!eq(isHalf, 1), ".h", ""), + [], "$Rz = $_dst_" > { + + let accessSize = addrSize; + + bits<5> Rz; + bits<1> Mu; + bits<5> src; + + let IClass = 0b1010; + + let Inst{27-24} = 0b1111; + let Inst{23-21} = majOp; + let Inst{7} = 0b0; + let Inst{20-16} = Rz; + let Inst{13} = Mu; + let Inst{12-8} = src; + } + +let isNVStorable = 1 in { + let BaseOpcode = "S2_storerb_pbr" in + def S2_storerb_pbr : T_store_pbr<"memb", IntRegs, ByteAccess, + 0b000>, NewValueRel; + let BaseOpcode = "S2_storerh_pbr" in + def S2_storerh_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess, + 0b010>, NewValueRel; + let BaseOpcode = "S2_storeri_pbr" in + def S2_storeri_pbr : T_store_pbr<"memw", IntRegs, WordAccess, + 0b100>, NewValueRel; } -multiclass ST_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp, - bit PredNot> { - let isPredicatedFalse = PredNot, isPredicated = 1 in { - defm _c#NAME : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>; +def S2_storerf_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess, 0b011, 1>; +def S2_storerd_pbr : T_store_pbr<"memd", DoubleRegs, DoubleWordAccess, 0b110>; - // Predicate new - let validSubTargets = HasV4SubT, Predicates = [HasV4T] in - defm _cdn#NAME#_V4 : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>; +//===----------------------------------------------------------------------===// +// Bit-reversed .new stores with auto-increment register +//===----------------------------------------------------------------------===// +let isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3, + hasSideEffects = 0 in +class T_storenew_pbr<string mnemonic, MemAccessSize addrSize, bits<2> majOp> + : NVInst <(outs IntRegs:$_dst_), + (ins IntRegs:$Rz, ModRegs:$Mu, IntRegs:$Nt), + #mnemonic#"($Rz ++ $Mu:brev) = $Nt.new", [], + "$Rz = $_dst_">, NewValueRel { + let accessSize = addrSize; + bits<5> Rz; + bits<1> Mu; + bits<3> Nt; + + let IClass = 0b1010; + + let Inst{27-21} = 0b1111101; + let Inst{12-11} = majOp; + let Inst{7} = 0b0; + let Inst{20-16} = Rz; + let Inst{13} = Mu; + let Inst{10-8} = Nt; } + +let BaseOpcode = "S2_storerb_pbr" in +def S2_storerbnew_pbr : T_storenew_pbr<"memb", ByteAccess, 0b00>; + +let BaseOpcode = "S2_storerh_pbr" in +def S2_storerhnew_pbr : T_storenew_pbr<"memh", HalfWordAccess, 0b01>; + +let BaseOpcode = "S2_storeri_pbr" in +def S2_storerinew_pbr : T_storenew_pbr<"memw", WordAccess, 0b10>; + +//===----------------------------------------------------------------------===// +// Bit-reversed stores - Pseudo +// +// Please note that the input operand order in the pseudo instructions +// doesn't match with the real instructions. Pseudo instructions operand +// order should mimics the ordering in the intrinsics. +//===----------------------------------------------------------------------===// +let isCodeGenOnly = 1, mayStore = 1, hasSideEffects = 0, isPseudo = 1 in +class T_store_pbr_pseudo <string opc, RegisterClass RC> + : STInstPI<(outs IntRegs:$_dst_), + (ins IntRegs:$src1, RC:$src2, IntRegs:$src3), + ".error \""#opc#"($src1++$src3:brev) = $src2\"", + [], "$_dst_ = $src1">; + +def S2_storerb_pbr_pseudo : T_store_pbr_pseudo <"memb", IntRegs>; +def S2_storerh_pbr_pseudo : T_store_pbr_pseudo <"memh", IntRegs>; +def S2_storeri_pbr_pseudo : T_store_pbr_pseudo <"memw", IntRegs>; +def S2_storerf_pbr_pseudo : T_store_pbr_pseudo <"memh", IntRegs>; +def S2_storerd_pbr_pseudo : T_store_pbr_pseudo <"memd", DoubleRegs>; + +//===----------------------------------------------------------------------===// +// ST - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Template class for S_2op instructions. +//===----------------------------------------------------------------------===// +let hasSideEffects = 0 in +class T_S2op_1 <string mnemonic, bits<4> RegTyBits, RegisterClass RCOut, + RegisterClass RCIn, bits<2> MajOp, bits<3> MinOp, bit isSat> + : SInst <(outs RCOut:$dst), (ins RCIn:$src), + "$dst = "#mnemonic#"($src)"#!if(isSat, ":sat", ""), + [], "", S_2op_tc_1_SLOT23 > { + bits<5> dst; + bits<5> src; + + let IClass = 0b1000; + + let Inst{27-24} = RegTyBits; + let Inst{23-22} = MajOp; + let Inst{21} = 0b0; + let Inst{20-16} = src; + let Inst{7-5} = MinOp; + let Inst{4-0} = dst; + } + +class T_S2op_1_di <string mnemonic, bits<2> MajOp, bits<3> MinOp> + : T_S2op_1 <mnemonic, 0b0100, DoubleRegs, IntRegs, MajOp, MinOp, 0>; + +let hasNewValue = 1 in +class T_S2op_1_id <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit isSat = 0> + : T_S2op_1 <mnemonic, 0b1000, IntRegs, DoubleRegs, MajOp, MinOp, isSat>; + +let hasNewValue = 1 in +class T_S2op_1_ii <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit isSat = 0> + : T_S2op_1 <mnemonic, 0b1100, IntRegs, IntRegs, MajOp, MinOp, isSat>; + +// Vector sign/zero extend +let isReMaterializable = 1, isAsCheapAsAMove = 1 in { + def S2_vsxtbh : T_S2op_1_di <"vsxtbh", 0b00, 0b000>; + def S2_vsxthw : T_S2op_1_di <"vsxthw", 0b00, 0b100>; + def S2_vzxtbh : T_S2op_1_di <"vzxtbh", 0b00, 0b010>; + def S2_vzxthw : T_S2op_1_di <"vzxthw", 0b00, 0b110>; } -let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in -multiclass ST_Idxd<string mnemonic, string CextOp, RegisterClass RC, - Operand ImmOp, Operand predImmOp, bits<5> ImmBits, - bits<5> PredImmBits> { +// Vector splat bytes/halfwords +let isReMaterializable = 1, isAsCheapAsAMove = 1 in { + def S2_vsplatrb : T_S2op_1_ii <"vsplatb", 0b01, 0b111>; + def S2_vsplatrh : T_S2op_1_di <"vsplath", 0b01, 0b010>; +} - let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { - let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits, - isPredicable = 1 in - def NAME : STInst2<(outs), - (ins IntRegs:$src1, ImmOp:$src2, RC:$src3), - mnemonic#"($src1+#$src2) = $src3", - []>; +// Sign extend word to doubleword +def A2_sxtw : T_S2op_1_di <"sxtw", 0b01, 0b000>; - let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits in { - defm Pt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 0>; - defm NotPt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 1>; - } +def: Pat <(i64 (sext I32:$src)), (A2_sxtw I32:$src)>; + +// Vector saturate and pack +let Defs = [USR_OVF] in { + def S2_svsathb : T_S2op_1_ii <"vsathb", 0b10, 0b000>; + def S2_svsathub : T_S2op_1_ii <"vsathub", 0b10, 0b010>; + def S2_vsathb : T_S2op_1_id <"vsathb", 0b00, 0b110>; + def S2_vsathub : T_S2op_1_id <"vsathub", 0b00, 0b000>; + def S2_vsatwh : T_S2op_1_id <"vsatwh", 0b00, 0b010>; + def S2_vsatwuh : T_S2op_1_id <"vsatwuh", 0b00, 0b100>; +} + +// Vector truncate +def S2_vtrunohb : T_S2op_1_id <"vtrunohb", 0b10, 0b000>; +def S2_vtrunehb : T_S2op_1_id <"vtrunehb", 0b10, 0b010>; + +// Swizzle the bytes of a word +def A2_swiz : T_S2op_1_ii <"swiz", 0b10, 0b111>; + +// Saturate +let Defs = [USR_OVF] in { + def A2_sat : T_S2op_1_id <"sat", 0b11, 0b000>; + def A2_satb : T_S2op_1_ii <"satb", 0b11, 0b111>; + def A2_satub : T_S2op_1_ii <"satub", 0b11, 0b110>; + def A2_sath : T_S2op_1_ii <"sath", 0b11, 0b100>; + def A2_satuh : T_S2op_1_ii <"satuh", 0b11, 0b101>; + def A2_roundsat : T_S2op_1_id <"round", 0b11, 0b001, 0b1>; +} + +let Itinerary = S_2op_tc_2_SLOT23 in { + // Vector round and pack + def S2_vrndpackwh : T_S2op_1_id <"vrndwh", 0b10, 0b100>; + + let Defs = [USR_OVF] in + def S2_vrndpackwhs : T_S2op_1_id <"vrndwh", 0b10, 0b110, 1>; + + // Bit reverse + def S2_brev : T_S2op_1_ii <"brev", 0b01, 0b110>; + + // Absolute value word + def A2_abs : T_S2op_1_ii <"abs", 0b10, 0b100>; + + let Defs = [USR_OVF] in + def A2_abssat : T_S2op_1_ii <"abs", 0b10, 0b101, 1>; + + // Negate with saturation + let Defs = [USR_OVF] in + def A2_negsat : T_S2op_1_ii <"neg", 0b10, 0b110, 1>; +} + +def: Pat<(i32 (select (i1 (setlt (i32 IntRegs:$src), 0)), + (i32 (sub 0, (i32 IntRegs:$src))), + (i32 IntRegs:$src))), + (A2_abs IntRegs:$src)>; + +let AddedComplexity = 50 in +def: Pat<(i32 (xor (add (sra (i32 IntRegs:$src), (i32 31)), + (i32 IntRegs:$src)), + (sra (i32 IntRegs:$src), (i32 31)))), + (A2_abs IntRegs:$src)>; + +class T_S2op_2 <string mnemonic, bits<4> RegTyBits, RegisterClass RCOut, + RegisterClass RCIn, bits<3> MajOp, bits<3> MinOp, + bit isSat, bit isRnd, list<dag> pattern = []> + : SInst <(outs RCOut:$dst), + (ins RCIn:$src, u5Imm:$u5), + "$dst = "#mnemonic#"($src, #$u5)"#!if(isSat, ":sat", "") + #!if(isRnd, ":rnd", ""), + pattern, "", S_2op_tc_2_SLOT23> { + bits<5> dst; + bits<5> src; + bits<5> u5; + + let IClass = 0b1000; + + let Inst{27-24} = RegTyBits; + let Inst{23-21} = MajOp; + let Inst{20-16} = src; + let Inst{13} = 0b0; + let Inst{12-8} = u5; + let Inst{7-5} = MinOp; + let Inst{4-0} = dst; } + +class T_S2op_2_di <string mnemonic, bits<3> MajOp, bits<3> MinOp> + : T_S2op_2 <mnemonic, 0b1000, DoubleRegs, IntRegs, MajOp, MinOp, 0, 0>; + +let hasNewValue = 1 in +class T_S2op_2_id <string mnemonic, bits<3> MajOp, bits<3> MinOp> + : T_S2op_2 <mnemonic, 0b1000, IntRegs, DoubleRegs, MajOp, MinOp, 0, 0>; + +let hasNewValue = 1 in +class T_S2op_2_ii <string mnemonic, bits<3> MajOp, bits<3> MinOp, + bit isSat = 0, bit isRnd = 0, list<dag> pattern = []> + : T_S2op_2 <mnemonic, 0b1100, IntRegs, IntRegs, MajOp, MinOp, + isSat, isRnd, pattern>; + +class T_S2op_shift <string mnemonic, bits<3> MajOp, bits<3> MinOp, SDNode OpNd> + : T_S2op_2_ii <mnemonic, MajOp, MinOp, 0, 0, + [(set (i32 IntRegs:$dst), (OpNd (i32 IntRegs:$src), + (u5ImmPred:$u5)))]>; + +// Vector arithmetic shift right by immediate with truncate and pack +def S2_asr_i_svw_trun : T_S2op_2_id <"vasrw", 0b110, 0b010>; + +// Arithmetic/logical shift right/left by immediate +let Itinerary = S_2op_tc_1_SLOT23 in { + def S2_asr_i_r : T_S2op_shift <"asr", 0b000, 0b000, sra>; + def S2_lsr_i_r : T_S2op_shift <"lsr", 0b000, 0b001, srl>; + def S2_asl_i_r : T_S2op_shift <"asl", 0b000, 0b010, shl>; } -let addrMode = BaseImmOffset, InputType = "reg" in { - let accessSize = ByteAccess in - defm STrib_indexed: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext, - u6_0Ext, 11, 6>, AddrModeRel, ImmRegRel; +// Shift left by immediate with saturation +let Defs = [USR_OVF] in +def S2_asl_i_r_sat : T_S2op_2_ii <"asl", 0b010, 0b010, 1>; + +// Shift right with round +def S2_asr_i_r_rnd : T_S2op_2_ii <"asr", 0b010, 0b000, 0, 1>; + +let isAsmParserOnly = 1 in +def S2_asr_i_r_rnd_goodsyntax + : SInst <(outs IntRegs:$dst), (ins IntRegs:$src, u5Imm:$u5), + "$dst = asrrnd($src, #$u5)", + [], "", S_2op_tc_1_SLOT23>; + +let isAsmParserOnly = 1 in +def A2_not: ALU32_rr<(outs IntRegs:$dst),(ins IntRegs:$src), + "$dst = not($src)">; + +def: Pat<(i32 (sra (i32 (add (i32 (sra I32:$src1, u5ImmPred:$src2)), + (i32 1))), + (i32 1))), + (S2_asr_i_r_rnd IntRegs:$src1, u5ImmPred:$src2)>; + +class T_S2op_3<string opc, bits<2>MajOp, bits<3>minOp, bits<1> sat = 0> + : SInst<(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss), + "$Rdd = "#opc#"($Rss)"#!if(!eq(sat, 1),":sat","")> { + bits<5> Rss; + bits<5> Rdd; + let IClass = 0b1000; + let Inst{27-24} = 0; + let Inst{23-22} = MajOp; + let Inst{20-16} = Rss; + let Inst{7-5} = minOp; + let Inst{4-0} = Rdd; +} + +def A2_absp : T_S2op_3 <"abs", 0b10, 0b110>; +def A2_negp : T_S2op_3 <"neg", 0b10, 0b101>; +def A2_notp : T_S2op_3 <"not", 0b10, 0b100>; + +// Innterleave/deinterleave +def S2_interleave : T_S2op_3 <"interleave", 0b11, 0b101>; +def S2_deinterleave : T_S2op_3 <"deinterleave", 0b11, 0b100>; + +// Vector Complex conjugate +def A2_vconj : T_S2op_3 <"vconj", 0b10, 0b111, 1>; + +// Vector saturate without pack +def S2_vsathb_nopack : T_S2op_3 <"vsathb", 0b00, 0b111>; +def S2_vsathub_nopack : T_S2op_3 <"vsathub", 0b00, 0b100>; +def S2_vsatwh_nopack : T_S2op_3 <"vsatwh", 0b00, 0b110>; +def S2_vsatwuh_nopack : T_S2op_3 <"vsatwuh", 0b00, 0b101>; + +// Vector absolute value halfwords with and without saturation +// Rdd64=vabsh(Rss64)[:sat] +def A2_vabsh : T_S2op_3 <"vabsh", 0b01, 0b100>; +def A2_vabshsat : T_S2op_3 <"vabsh", 0b01, 0b101, 1>; + +// Vector absolute value words with and without saturation +def A2_vabsw : T_S2op_3 <"vabsw", 0b01, 0b110>; +def A2_vabswsat : T_S2op_3 <"vabsw", 0b01, 0b111, 1>; + +def : Pat<(not (i64 DoubleRegs:$src1)), + (A2_notp DoubleRegs:$src1)>; + +//===----------------------------------------------------------------------===// +// STYPE/BIT + +//===----------------------------------------------------------------------===// +// Bit count + +let hasSideEffects = 0, hasNewValue = 1 in +class T_COUNT_LEADING<string MnOp, bits<3> MajOp, bits<3> MinOp, bit Is32, + dag Out, dag Inp> + : SInst<Out, Inp, "$Rd = "#MnOp#"($Rs)", [], "", S_2op_tc_1_SLOT23> { + bits<5> Rs; + bits<5> Rd; + let IClass = 0b1000; + let Inst{27} = 0b1; + let Inst{26} = Is32; + let Inst{25-24} = 0b00; + let Inst{23-21} = MajOp; + let Inst{20-16} = Rs; + let Inst{7-5} = MinOp; + let Inst{4-0} = Rd; +} - let accessSize = HalfWordAccess in - defm STrih_indexed: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext, - u6_1Ext, 12, 7>, AddrModeRel, ImmRegRel; +class T_COUNT_LEADING_32<string MnOp, bits<3> MajOp, bits<3> MinOp> + : T_COUNT_LEADING<MnOp, MajOp, MinOp, 0b1, + (outs IntRegs:$Rd), (ins IntRegs:$Rs)>; + +class T_COUNT_LEADING_64<string MnOp, bits<3> MajOp, bits<3> MinOp> + : T_COUNT_LEADING<MnOp, MajOp, MinOp, 0b0, + (outs IntRegs:$Rd), (ins DoubleRegs:$Rs)>; + +def S2_cl0 : T_COUNT_LEADING_32<"cl0", 0b000, 0b101>; +def S2_cl1 : T_COUNT_LEADING_32<"cl1", 0b000, 0b110>; +def S2_ct0 : T_COUNT_LEADING_32<"ct0", 0b010, 0b100>; +def S2_ct1 : T_COUNT_LEADING_32<"ct1", 0b010, 0b101>; +def S2_cl0p : T_COUNT_LEADING_64<"cl0", 0b010, 0b010>; +def S2_cl1p : T_COUNT_LEADING_64<"cl1", 0b010, 0b100>; +def S2_clb : T_COUNT_LEADING_32<"clb", 0b000, 0b100>; +def S2_clbp : T_COUNT_LEADING_64<"clb", 0b010, 0b000>; +def S2_clbnorm : T_COUNT_LEADING_32<"normamt", 0b000, 0b111>; + +def: Pat<(i32 (ctlz I32:$Rs)), (S2_cl0 I32:$Rs)>; +def: Pat<(i32 (ctlz (not I32:$Rs))), (S2_cl1 I32:$Rs)>; +def: Pat<(i32 (cttz I32:$Rs)), (S2_ct0 I32:$Rs)>; +def: Pat<(i32 (cttz (not I32:$Rs))), (S2_ct1 I32:$Rs)>; +def: Pat<(i32 (trunc (ctlz I64:$Rss))), (S2_cl0p I64:$Rss)>; +def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>; + +// Bit set/clear/toggle - let accessSize = WordAccess in - defm STriw_indexed: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext, - u6_2Ext, 13, 8>, AddrModeRel, ImmRegRel; +let hasSideEffects = 0, hasNewValue = 1 in +class T_SCT_BIT_IMM<string MnOp, bits<3> MinOp> + : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, u5Imm:$u5), + "$Rd = "#MnOp#"($Rs, #$u5)", [], "", S_2op_tc_1_SLOT23> { + bits<5> Rd; + bits<5> Rs; + bits<5> u5; + let IClass = 0b1000; + let Inst{27-21} = 0b1100110; + let Inst{20-16} = Rs; + let Inst{13} = 0b0; + let Inst{12-8} = u5; + let Inst{7-5} = MinOp; + let Inst{4-0} = Rd; +} - let accessSize = DoubleWordAccess, isNVStorable = 0 in - defm STrid_indexed: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext, - u6_3Ext, 14, 9>, AddrModeRel; +let hasSideEffects = 0, hasNewValue = 1 in +class T_SCT_BIT_REG<string MnOp, bits<2> MinOp> + : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), + "$Rd = "#MnOp#"($Rs, $Rt)", [], "", S_3op_tc_1_SLOT23> { + bits<5> Rd; + bits<5> Rs; + bits<5> Rt; + let IClass = 0b1100; + let Inst{27-22} = 0b011010; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + let Inst{7-6} = MinOp; + let Inst{4-0} = Rd; } -let AddedComplexity = 10 in { -def : Pat<(truncstorei8 (i32 IntRegs:$src1), (add IntRegs:$src2, - s11_0ExtPred:$offset)), - (STrib_indexed IntRegs:$src2, s11_0ImmPred:$offset, - (i32 IntRegs:$src1))>; +def S2_clrbit_i : T_SCT_BIT_IMM<"clrbit", 0b001>; +def S2_setbit_i : T_SCT_BIT_IMM<"setbit", 0b000>; +def S2_togglebit_i : T_SCT_BIT_IMM<"togglebit", 0b010>; +def S2_clrbit_r : T_SCT_BIT_REG<"clrbit", 0b01>; +def S2_setbit_r : T_SCT_BIT_REG<"setbit", 0b00>; +def S2_togglebit_r : T_SCT_BIT_REG<"togglebit", 0b10>; + +def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, u5ImmPred:$u5)))), + (S2_clrbit_i IntRegs:$Rs, u5ImmPred:$u5)>; +def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))), + (S2_setbit_i IntRegs:$Rs, u5ImmPred:$u5)>; +def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))), + (S2_togglebit_i IntRegs:$Rs, u5ImmPred:$u5)>; +def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, (i32 IntRegs:$Rt))))), + (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>; +def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))), + (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>; +def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))), + (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>; + +// Bit test + +let hasSideEffects = 0 in +class T_TEST_BIT_IMM<string MnOp, bits<3> MajOp> + : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u5Imm:$u5), + "$Pd = "#MnOp#"($Rs, #$u5)", + [], "", S_2op_tc_2early_SLOT23> { + bits<2> Pd; + bits<5> Rs; + bits<5> u5; + let IClass = 0b1000; + let Inst{27-24} = 0b0101; + let Inst{23-21} = MajOp; + let Inst{20-16} = Rs; + let Inst{13} = 0; + let Inst{12-8} = u5; + let Inst{1-0} = Pd; +} -def : Pat<(truncstorei16 (i32 IntRegs:$src1), (add IntRegs:$src2, - s11_1ExtPred:$offset)), - (STrih_indexed IntRegs:$src2, s11_1ImmPred:$offset, - (i32 IntRegs:$src1))>; +let hasSideEffects = 0 in +class T_TEST_BIT_REG<string MnOp, bit IsNeg> + : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt), + "$Pd = "#MnOp#"($Rs, $Rt)", + [], "", S_3op_tc_2early_SLOT23> { + bits<2> Pd; + bits<5> Rs; + bits<5> Rt; + let IClass = 0b1100; + let Inst{27-22} = 0b011100; + let Inst{21} = IsNeg; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + let Inst{1-0} = Pd; +} -def : Pat<(store (i32 IntRegs:$src1), (add IntRegs:$src2, - s11_2ExtPred:$offset)), - (STriw_indexed IntRegs:$src2, s11_2ImmPred:$offset, - (i32 IntRegs:$src1))>; +def S2_tstbit_i : T_TEST_BIT_IMM<"tstbit", 0b000>; +def S2_tstbit_r : T_TEST_BIT_REG<"tstbit", 0>; + +let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm. + def: Pat<(i1 (setne (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)), + (S2_tstbit_i IntRegs:$Rs, u5ImmPred:$u5)>; + def: Pat<(i1 (setne (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)), + (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>; + def: Pat<(i1 (trunc (i32 IntRegs:$Rs))), + (S2_tstbit_i IntRegs:$Rs, 0)>; + def: Pat<(i1 (trunc (i64 DoubleRegs:$Rs))), + (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>; +} -def : Pat<(store (i64 DoubleRegs:$src1), (add IntRegs:$src2, - s11_3ExtPred:$offset)), - (STrid_indexed IntRegs:$src2, s11_3ImmPred:$offset, - (i64 DoubleRegs:$src1))>; +let hasSideEffects = 0 in +class T_TEST_BITS_IMM<string MnOp, bits<2> MajOp, bit IsNeg> + : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u6Imm:$u6), + "$Pd = "#MnOp#"($Rs, #$u6)", + [], "", S_2op_tc_2early_SLOT23> { + bits<2> Pd; + bits<5> Rs; + bits<6> u6; + let IClass = 0b1000; + let Inst{27-24} = 0b0101; + let Inst{23-22} = MajOp; + let Inst{21} = IsNeg; + let Inst{20-16} = Rs; + let Inst{13-8} = u6; + let Inst{1-0} = Pd; } -// memh(Rx++#s4:1)=Rt.H +let hasSideEffects = 0 in +class T_TEST_BITS_REG<string MnOp, bits<2> MajOp, bit IsNeg> + : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt), + "$Pd = "#MnOp#"($Rs, $Rt)", + [], "", S_3op_tc_2early_SLOT23> { + bits<2> Pd; + bits<5> Rs; + bits<5> Rt; + let IClass = 0b1100; + let Inst{27-24} = 0b0111; + let Inst{23-22} = MajOp; + let Inst{21} = IsNeg; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + let Inst{1-0} = Pd; +} -// Store word. -// Store predicate. -let Defs = [R10,R11,D5], neverHasSideEffects = 1 in -def STriw_pred : STInst2<(outs), - (ins MEMri:$addr, PredRegs:$src1), - "Error; should not emit", - []>; +def C2_bitsclri : T_TEST_BITS_IMM<"bitsclr", 0b10, 0>; +def C2_bitsclr : T_TEST_BITS_REG<"bitsclr", 0b10, 0>; +def C2_bitsset : T_TEST_BITS_REG<"bitsset", 0b01, 0>; -// Allocate stack frame. -let Defs = [R29, R30], Uses = [R31, R30], neverHasSideEffects = 1 in { - def ALLOCFRAME : STInst2<(outs), - (ins i32imm:$amt), - "allocframe(#$amt)", - []>; +let AddedComplexity = 20 in { // Complexity greater than compare reg-imm. + def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), u6ImmPred:$u6), 0)), + (C2_bitsclri IntRegs:$Rs, u6ImmPred:$u6)>; + def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), 0)), + (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>; } + +let AddedComplexity = 10 in // Complexity greater than compare reg-reg. +def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), IntRegs:$Rt)), + (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>; + //===----------------------------------------------------------------------===// -// ST - +// STYPE/BIT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// -// STYPE/ALU + +// STYPE/COMPLEX + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// STYPE/COMPLEX - //===----------------------------------------------------------------------===// -// Logical NOT. -def NOT_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1), - "$dst = not($src1)", - [(set (i64 DoubleRegs:$dst), (not (i64 DoubleRegs:$src1)))]>; +//===----------------------------------------------------------------------===// +// XTYPE/PERM + +//===----------------------------------------------------------------------===// -// Sign extend word to doubleword. -def SXTW : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1), - "$dst = sxtw($src1)", - [(set (i64 DoubleRegs:$dst), (sext (i32 IntRegs:$src1)))]>; //===----------------------------------------------------------------------===// -// STYPE/ALU - +// XTYPE/PERM - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// -// STYPE/BIT + +// STYPE/PRED + //===----------------------------------------------------------------------===// -// clrbit. -def CLRBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), - "$dst = clrbit($src1, #$src2)", - [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1), - (not - (shl 1, u5ImmPred:$src2))))]>; - -def CLRBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), - "$dst = clrbit($src1, #$src2)", - []>; - -// Map from r0 = and(r1, 2147483647) to r0 = clrbit(r1, #31). -def : Pat <(and (i32 IntRegs:$src1), 2147483647), - (CLRBIT_31 (i32 IntRegs:$src1), 31)>; - -// setbit. -def SETBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), - "$dst = setbit($src1, #$src2)", - [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1), - (shl 1, u5ImmPred:$src2)))]>; - -// Map from r0 = or(r1, -2147483648) to r0 = setbit(r1, #31). -def SETBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), - "$dst = setbit($src1, #$src2)", - []>; - -def : Pat <(or (i32 IntRegs:$src1), -2147483648), - (SETBIT_31 (i32 IntRegs:$src1), 31)>; - -// togglebit. -def TOGBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), - "$dst = setbit($src1, #$src2)", - [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1), - (shl 1, u5ImmPred:$src2)))]>; - -// Map from r0 = xor(r1, -2147483648) to r0 = togglebit(r1, #31). -def TOGBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), - "$dst = togglebit($src1, #$src2)", - []>; - -def : Pat <(xor (i32 IntRegs:$src1), -2147483648), - (TOGBIT_31 (i32 IntRegs:$src1), 31)>; // Predicate transfer. -let neverHasSideEffects = 1 in -def TFR_RsPd : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1), - "$dst = $src1 /* Should almost never emit this. */", - []>; +let hasSideEffects = 0, hasNewValue = 1 in +def C2_tfrpr : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps), + "$Rd = $Ps", [], "", S_2op_tc_1_SLOT23> { + bits<5> Rd; + bits<2> Ps; + + let IClass = 0b1000; + let Inst{27-24} = 0b1001; + let Inst{22} = 0b1; + let Inst{17-16} = Ps; + let Inst{4-0} = Rd; +} + +// Transfer general register to predicate. +let hasSideEffects = 0 in +def C2_tfrrp: SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs), + "$Pd = $Rs", [], "", S_2op_tc_2early_SLOT23> { + bits<2> Pd; + bits<5> Rs; + + let IClass = 0b1000; + let Inst{27-21} = 0b0101010; + let Inst{20-16} = Rs; + let Inst{1-0} = Pd; +} + +let hasSideEffects = 0, isCodeGenOnly = 1 in +def C2_pxfer_map: SInst<(outs PredRegs:$dst), (ins PredRegs:$src), + "$dst = $src">; + + +// Patterns for loads of i1: +def: Pat<(i1 (load AddrFI:$fi)), + (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>; +def: Pat<(i1 (load (add (i32 IntRegs:$Rs), s11_0ExtPred:$Off))), + (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>; +def: Pat<(i1 (load (i32 IntRegs:$Rs))), + (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>; + +def I1toI32: OutPatFrag<(ops node:$Rs), + (C2_muxii (i1 $Rs), 1, 0)>; + +def I32toI1: OutPatFrag<(ops node:$Rs), + (i1 (C2_tfrrp (i32 $Rs)))>; + +defm: Storexm_pat<store, I1, s11_0ExtPred, I1toI32, S2_storerb_io>; +def: Storexm_simple_pat<store, I1, I1toI32, S2_storerb_io>; -def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1), - "$dst = $src1 /* Should almost never emit this. */", - [(set (i1 PredRegs:$dst), (trunc (i32 IntRegs:$src1)))]>; //===----------------------------------------------------------------------===// // STYPE/PRED - //===----------------------------------------------------------------------===// @@ -1786,88 +4385,56 @@ def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1), //===----------------------------------------------------------------------===// // STYPE/SHIFT + //===----------------------------------------------------------------------===// +class S_2OpInstImm<string Mnemonic, bits<3>MajOp, bits<3>MinOp, + Operand Imm, list<dag> pattern = [], bit isRnd = 0> + : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, Imm:$src2), + "$dst = "#Mnemonic#"($src1, #$src2)"#!if(isRnd, ":rnd", ""), + pattern> { + bits<5> src1; + bits<5> dst; + let IClass = 0b1000; + let Inst{27-24} = 0; + let Inst{23-21} = MajOp; + let Inst{20-16} = src1; + let Inst{7-5} = MinOp; + let Inst{4-0} = dst; +} + +class S_2OpInstImmI6<string Mnemonic, SDNode OpNode, bits<3>MinOp> + : S_2OpInstImm<Mnemonic, 0b000, MinOp, u6Imm, + [(set (i64 DoubleRegs:$dst), (OpNode (i64 DoubleRegs:$src1), + u6ImmPred:$src2))]> { + bits<6> src2; + let Inst{13-8} = src2; +} + // Shift by immediate. -def ASR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), - "$dst = asr($src1, #$src2)", - [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1), - u5ImmPred:$src2))]>; - -def ASRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), - "$dst = asr($src1, #$src2)", - [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1), - u6ImmPred:$src2))]>; - -def ASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), - "$dst = asl($src1, #$src2)", - [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), - u5ImmPred:$src2))]>; - -def ASLd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), - "$dst = asl($src1, #$src2)", - [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), - u6ImmPred:$src2))]>; - -def LSR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), - "$dst = lsr($src1, #$src2)", - [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1), - u5ImmPred:$src2))]>; - -def LSRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), - "$dst = lsr($src1, #$src2)", - [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1), - u6ImmPred:$src2))]>; - -// Shift by immediate and add. -let AddedComplexity = 100 in -def ADDASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, - u3Imm:$src3), - "$dst = addasl($src1, $src2, #$src3)", - [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1), - (shl (i32 IntRegs:$src2), - u3ImmPred:$src3)))]>; - -// Shift by register. -def ASL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = asl($src1, $src2)", - [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), - (i32 IntRegs:$src2)))]>; - -def ASR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = asr($src1, $src2)", - [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1), - (i32 IntRegs:$src2)))]>; - -def LSL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = lsl($src1, $src2)", - [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), - (i32 IntRegs:$src2)))]>; - -def LSR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = lsr($src1, $src2)", - [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1), - (i32 IntRegs:$src2)))]>; - -def ASLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), - "$dst = asl($src1, $src2)", - [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), - (i32 IntRegs:$src2)))]>; - -def LSLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), - "$dst = lsl($src1, $src2)", - [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), - (i32 IntRegs:$src2)))]>; - -def ASRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - IntRegs:$src2), - "$dst = asr($src1, $src2)", - [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1), - (i32 IntRegs:$src2)))]>; - -def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, - IntRegs:$src2), - "$dst = lsr($src1, $src2)", - [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1), - (i32 IntRegs:$src2)))]>; +def S2_asr_i_p : S_2OpInstImmI6<"asr", sra, 0b000>; +def S2_asl_i_p : S_2OpInstImmI6<"asl", shl, 0b010>; +def S2_lsr_i_p : S_2OpInstImmI6<"lsr", srl, 0b001>; + +// Shift left by small amount and add. +let AddedComplexity = 100, hasNewValue = 1, hasSideEffects = 0 in +def S2_addasl_rrri: SInst <(outs IntRegs:$Rd), + (ins IntRegs:$Rt, IntRegs:$Rs, u3Imm:$u3), + "$Rd = addasl($Rt, $Rs, #$u3)" , + [(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rt), + (shl (i32 IntRegs:$Rs), u3ImmPred:$u3)))], + "", S_3op_tc_2_SLOT23> { + bits<5> Rd; + bits<5> Rt; + bits<5> Rs; + bits<3> u3; + + let IClass = 0b1100; + + let Inst{27-21} = 0b0100000; + let Inst{20-16} = Rs; + let Inst{13} = 0b0; + let Inst{12-8} = Rt; + let Inst{7-5} = u3; + let Inst{4-0} = Rd; + } //===----------------------------------------------------------------------===// // STYPE/SHIFT - @@ -1894,39 +4461,222 @@ def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, //===----------------------------------------------------------------------===// // SYSTEM/USER + //===----------------------------------------------------------------------===// -def SDHexagonBARRIER: SDTypeProfile<0, 0, []>; -def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDHexagonBARRIER, - [SDNPHasChain]>; +def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>; -let hasSideEffects = 1, isSolo = 1 in -def BARRIER : SYSInst<(outs), (ins), +let hasSideEffects = 1, isSoloAX = 1 in +def Y2_barrier : SYSInst<(outs), (ins), "barrier", - [(HexagonBARRIER)]>; + [(HexagonBARRIER)],"",ST_tc_st_SLOT0> { + let Inst{31-28} = 0b1010; + let Inst{27-21} = 0b1000000; +} //===----------------------------------------------------------------------===// // SYSTEM/SUPER - //===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// CRUSER - Type. +//===----------------------------------------------------------------------===// +// HW loop +let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2, + opExtendable = 0, hasSideEffects = 0 in +class LOOP_iBase<string mnemonic, Operand brOp, bit mustExtend = 0> + : CRInst<(outs), (ins brOp:$offset, u10Imm:$src2), + #mnemonic#"($offset, #$src2)", + [], "" , CR_tc_3x_SLOT3> { + bits<9> offset; + bits<10> src2; + + let IClass = 0b0110; + + let Inst{27-22} = 0b100100; + let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1); + let Inst{20-16} = src2{9-5}; + let Inst{12-8} = offset{8-4}; + let Inst{7-5} = src2{4-2}; + let Inst{4-3} = offset{3-2}; + let Inst{1-0} = src2{1-0}; +} -// TFRI64 - assembly mapped. -let isReMaterializable = 1 in -def TFRI64 : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1), - "$dst = #$src1", - [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>; - -// Pseudo instruction to encode a set of conditional transfers. -// This instruction is used instead of a mux and trades-off codesize -// for performance. We conduct this transformation optimistically in -// the hope that these instructions get promoted to dot-new transfers. -let AddedComplexity = 100, isPredicated = 1 in -def TFR_condset_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, - IntRegs:$src2, - IntRegs:$src3), - "Error; should not emit", - [(set (i32 IntRegs:$dst), - (i32 (select (i1 PredRegs:$src1), - (i32 IntRegs:$src2), - (i32 IntRegs:$src3))))]>; -let AddedComplexity = 100, isPredicated = 1 in +let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2, + opExtendable = 0, hasSideEffects = 0 in +class LOOP_rBase<string mnemonic, Operand brOp, bit mustExtend = 0> + : CRInst<(outs), (ins brOp:$offset, IntRegs:$src2), + #mnemonic#"($offset, $src2)", + [], "" ,CR_tc_3x_SLOT3> { + bits<9> offset; + bits<5> src2; + + let IClass = 0b0110; + + let Inst{27-22} = 0b000000; + let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1); + let Inst{20-16} = src2; + let Inst{12-8} = offset{8-4}; + let Inst{4-3} = offset{3-2}; + } + +multiclass LOOP_ri<string mnemonic> { + def i : LOOP_iBase<mnemonic, brtarget>; + def r : LOOP_rBase<mnemonic, brtarget>; +} + + +let Defs = [SA0, LC0, USR] in +defm J2_loop0 : LOOP_ri<"loop0">; + +// Interestingly only loop0's appear to set usr.lpcfg +let Defs = [SA1, LC1] in +defm J2_loop1 : LOOP_ri<"loop1">; + +let isBranch = 1, isTerminator = 1, hasSideEffects = 0, + Defs = [PC, LC0], Uses = [SA0, LC0] in { +def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset), + ":endloop0", + []>; +} + +let isBranch = 1, isTerminator = 1, hasSideEffects = 0, + Defs = [PC, LC1], Uses = [SA1, LC1] in { +def ENDLOOP1 : Endloop<(outs), (ins brtarget:$offset), + ":endloop1", + []>; +} + +// Pipelined loop instructions, sp[123]loop0 +let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0, + isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2, + opExtendable = 0, isPredicateLate = 1 in +class SPLOOP_iBase<string SP, bits<2> op> + : CRInst <(outs), (ins brtarget:$r7_2, u10Imm:$U10), + "p3 = sp"#SP#"loop0($r7_2, #$U10)" > { + bits<9> r7_2; + bits<10> U10; + + let IClass = 0b0110; + + let Inst{22-21} = op; + let Inst{27-23} = 0b10011; + let Inst{20-16} = U10{9-5}; + let Inst{12-8} = r7_2{8-4}; + let Inst{7-5} = U10{4-2}; + let Inst{4-3} = r7_2{3-2}; + let Inst{1-0} = U10{1-0}; + } + +let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0, + isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2, + opExtendable = 0, isPredicateLate = 1 in +class SPLOOP_rBase<string SP, bits<2> op> + : CRInst <(outs), (ins brtarget:$r7_2, IntRegs:$Rs), + "p3 = sp"#SP#"loop0($r7_2, $Rs)" > { + bits<9> r7_2; + bits<5> Rs; + + let IClass = 0b0110; + + let Inst{22-21} = op; + let Inst{27-23} = 0b00001; + let Inst{20-16} = Rs; + let Inst{12-8} = r7_2{8-4}; + let Inst{4-3} = r7_2{3-2}; + } + +multiclass SPLOOP_ri<string mnemonic, bits<2> op> { + def i : SPLOOP_iBase<mnemonic, op>; + def r : SPLOOP_rBase<mnemonic, op>; +} + +defm J2_ploop1s : SPLOOP_ri<"1", 0b01>; +defm J2_ploop2s : SPLOOP_ri<"2", 0b10>; +defm J2_ploop3s : SPLOOP_ri<"3", 0b11>; + +// if (Rs[!>=<]=#0) jump:[t/nt] +let Defs = [PC], isPredicated = 1, isBranch = 1, hasSideEffects = 0, + hasSideEffects = 0 in +class J2_jump_0_Base<string compare, bit isTak, bits<2> op> + : CRInst <(outs), (ins IntRegs:$Rs, brtarget:$r13_2), + "if ($Rs"#compare#"#0) jump"#!if(isTak, ":t", ":nt")#" $r13_2" > { + bits<5> Rs; + bits<15> r13_2; + + let IClass = 0b0110; + + let Inst{27-24} = 0b0001; + let Inst{23-22} = op; + let Inst{12} = isTak; + let Inst{21} = r13_2{14}; + let Inst{20-16} = Rs; + let Inst{11-1} = r13_2{12-2}; + let Inst{13} = r13_2{13}; + } + +multiclass J2_jump_compare_0<string compare, bits<2> op> { + def NAME : J2_jump_0_Base<compare, 0, op>; + def NAME#pt : J2_jump_0_Base<compare, 1, op>; +} + +defm J2_jumprz : J2_jump_compare_0<"!=", 0b00>; +defm J2_jumprgtez : J2_jump_compare_0<">=", 0b01>; +defm J2_jumprnz : J2_jump_compare_0<"==", 0b10>; +defm J2_jumprltez : J2_jump_compare_0<"<=", 0b11>; + +// Transfer to/from Control/GPR Guest/GPR +let hasSideEffects = 0 in +class TFR_CR_RS_base<RegisterClass CTRC, RegisterClass RC, bit isDouble> + : CRInst <(outs CTRC:$dst), (ins RC:$src), + "$dst = $src", [], "", CR_tc_3x_SLOT3> { + bits<5> dst; + bits<5> src; + + let IClass = 0b0110; + + let Inst{27-25} = 0b001; + let Inst{24} = isDouble; + let Inst{23-21} = 0b001; + let Inst{20-16} = src; + let Inst{4-0} = dst; + } + +def A2_tfrrcr : TFR_CR_RS_base<CtrRegs, IntRegs, 0b0>; +def A4_tfrpcp : TFR_CR_RS_base<CtrRegs64, DoubleRegs, 0b1>; +def : InstAlias<"m0 = $Rs", (A2_tfrrcr C6, IntRegs:$Rs)>; +def : InstAlias<"m1 = $Rs", (A2_tfrrcr C7, IntRegs:$Rs)>; + +let hasSideEffects = 0 in +class TFR_RD_CR_base<RegisterClass RC, RegisterClass CTRC, bit isSingle> + : CRInst <(outs RC:$dst), (ins CTRC:$src), + "$dst = $src", [], "", CR_tc_3x_SLOT3> { + bits<5> dst; + bits<5> src; + + let IClass = 0b0110; + + let Inst{27-26} = 0b10; + let Inst{25} = isSingle; + let Inst{24-21} = 0b0000; + let Inst{20-16} = src; + let Inst{4-0} = dst; + } + +let hasNewValue = 1, opNewValue = 0 in +def A2_tfrcrr : TFR_RD_CR_base<IntRegs, CtrRegs, 1>; +def A4_tfrcpp : TFR_RD_CR_base<DoubleRegs, CtrRegs64, 0>; +def : InstAlias<"$Rd = m0", (A2_tfrcrr IntRegs:$Rd, C6)>; +def : InstAlias<"$Rd = m1", (A2_tfrcrr IntRegs:$Rd, C7)>; + +// Y4_trace: Send value to etm trace. +let isSoloAX = 1, hasSideEffects = 0 in +def Y4_trace: CRInst <(outs), (ins IntRegs:$Rs), + "trace($Rs)"> { + bits<5> Rs; + + let IClass = 0b0110; + let Inst{27-21} = 0b0010010; + let Inst{20-16} = Rs; + } + +let AddedComplexity = 100, isPredicated = 1, isCodeGenOnly = 1 in def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, s12Imm:$src3), "Error; should not emit", @@ -1934,7 +4684,7 @@ def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), s12ImmPred:$src3)))]>; -let AddedComplexity = 100, isPredicated = 1 in +let AddedComplexity = 100, isPredicated = 1, isCodeGenOnly = 1 in def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2, IntRegs:$src3), "Error; should not emit", @@ -1942,7 +4692,7 @@ def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2, (i32 IntRegs:$src3))))]>; -let AddedComplexity = 100, isPredicated = 1 in +let AddedComplexity = 100, isPredicated = 1, isCodeGenOnly = 1 in def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2, s12Imm:$src3), "Error; should not emit", @@ -1951,115 +4701,109 @@ def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst), s12ImmPred:$src3)))]>; // Generate frameindex addresses. -let isReMaterializable = 1 in +let isReMaterializable = 1, isCodeGenOnly = 1 in def TFR_FI : ALU32_ri<(outs IntRegs:$dst), (ins FrameIndex:$src1), "$dst = add($src1)", [(set (i32 IntRegs:$dst), ADDRri:$src1)]>; -// -// CR - Type. -// -let neverHasSideEffects = 1, Defs = [SA0, LC0] in { -def LOOP0_i : CRInst<(outs), (ins brtarget:$offset, u10Imm:$src2), - "loop0($offset, #$src2)", - []>; -} +// Support for generating global address. +// Taken from X86InstrInfo.td. +def SDTHexagonCONST32 : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, + SDTCisVT<1, i32>, + SDTCisPtrTy<0>]>; +def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>; +def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>; -let neverHasSideEffects = 1, Defs = [SA0, LC0] in { -def LOOP0_r : CRInst<(outs), (ins brtarget:$offset, IntRegs:$src2), - "loop0($offset, $src2)", - []>; -} +// HI/LO Instructions +let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0, + hasNewValue = 1, opNewValue = 0 in +class REG_IMMED<string RegHalf, string Op, bit Rs, bits<3> MajOp, bit MinOp> + : ALU32_ri<(outs IntRegs:$dst), + (ins i32imm:$imm_value), + "$dst"#RegHalf#" = #"#Op#"($imm_value)", []> { + bits<5> dst; + bits<32> imm_value; + let IClass = 0b0111; -let isBranch = 1, isTerminator = 1, neverHasSideEffects = 1, - Defs = [PC, LC0], Uses = [SA0, LC0] in { -def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset), - ":endloop0", - []>; + let Inst{27} = Rs; + let Inst{26-24} = MajOp; + let Inst{21} = MinOp; + let Inst{20-16} = dst; + let Inst{23-22} = !if (!eq(Op, "LO"), imm_value{15-14}, imm_value{31-30}); + let Inst{13-0} = !if (!eq(Op, "LO"), imm_value{13-0}, imm_value{29-16}); } -// Support for generating global address. -// Taken from X86InstrInfo.td. -def SDTHexagonCONST32 : SDTypeProfile<1, 1, [ - SDTCisVT<0, i32>, - SDTCisVT<1, i32>, - SDTCisPtrTy<0>]>; -def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>; -def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>; +let isAsmParserOnly = 1 in { + def LO : REG_IMMED<".l", "LO", 0b0, 0b001, 0b1>; + def LO_H : REG_IMMED<".l", "HI", 0b0, 0b001, 0b1>; + def HI : REG_IMMED<".h", "HI", 0b0, 0b010, 0b1>; + def HI_L : REG_IMMED<".h", "LO", 0b0, 0b010, 0b1>; +} -// HI/LO Instructions -let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in -def LO : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), - "$dst.l = #LO($global)", - []>; +let isMoveImm = 1, isCodeGenOnly = 1 in +def LO_PIC : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), + "$dst.l = #LO($label@GOTREL)", + []>; -let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in -def HI : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), - "$dst.h = #HI($global)", - []>; +let isMoveImm = 1, isCodeGenOnly = 1 in +def HI_PIC : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), + "$dst.h = #HI($label@GOTREL)", + []>; -let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0, + isAsmParserOnly = 1 in def LOi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), "$dst.l = #LO($imm_value)", []>; -let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0, + isAsmParserOnly = 1 in def HIi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), "$dst.h = #HI($imm_value)", []>; -let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0, + isAsmParserOnly = 1 in def LO_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst.l = #LO($jt)", []>; -let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0, + isAsmParserOnly = 1 in def HI_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst.h = #HI($jt)", []>; - -let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in -def LO_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), - "$dst.l = #LO($label)", - []>; - -let isReMaterializable = 1, isMoveImm = 1 , neverHasSideEffects = 1 in -def HI_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), - "$dst.h = #HI($label)", - []>; - // This pattern is incorrect. When we add small data, we should change // this pattern to use memw(#foo). // This is for sdata. -let isMoveImm = 1 in -def CONST32 : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global), +let isMoveImm = 1, isAsmParserOnly = 1 in +def CONST32 : CONSTLDInst<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (load (HexagonCONST32 tglobaltlsaddr:$global)))]>; -// This is for non-sdata. let isReMaterializable = 1, isMoveImm = 1 in def CONST32_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (HexagonCONST32 tglobaladdr:$global))]>; -let isReMaterializable = 1, isMoveImm = 1 in -def CONST32_set_jt : LDInst2<(outs IntRegs:$dst), (ins jumptablebase:$jt), +let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in +def CONST32_set_jt : CONSTLDInst<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst = CONST32(#$jt)", [(set (i32 IntRegs:$dst), (HexagonCONST32 tjumptable:$jt))]>; -let isReMaterializable = 1, isMoveImm = 1 in +let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in def CONST32GP_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (HexagonCONST32_GP tglobaladdr:$global))]>; -let isReMaterializable = 1, isMoveImm = 1 in -def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global), +let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in +def CONST32_Int_Real : CONSTLDInst<(outs IntRegs:$dst), (ins i32imm:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), imm:$global) ]>; @@ -2067,839 +4811,921 @@ def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global), def : Pat<(HexagonCONST32_GP tblockaddress:$addr), (CONST32_Int_Real tblockaddress:$addr)>; -let isReMaterializable = 1, isMoveImm = 1 in +let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label), "$dst = CONST32($label)", [(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>; -let isReMaterializable = 1, isMoveImm = 1 in -def CONST64_Int_Real : LDInst2<(outs DoubleRegs:$dst), (ins i64imm:$global), +let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in +def CONST64_Int_Real : CONSTLDInst<(outs DoubleRegs:$dst), (ins i64imm:$global), "$dst = CONST64(#$global)", - [(set (i64 DoubleRegs:$dst), imm:$global) ]>; + [(set (i64 DoubleRegs:$dst), imm:$global)]>; -def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins), - "$dst = xor($dst, $dst)", - [(set (i1 PredRegs:$dst), 0)]>; +let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1, + isCodeGenOnly = 1 in +def TFR_PdTrue : SInst<(outs PredRegs:$dst), (ins), "", + [(set (i1 PredRegs:$dst), 1)]>; -def MPY_trsext : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), - "$dst = mpy($src1, $src2)", - [(set (i32 IntRegs:$dst), - (trunc (i64 (srl (i64 (mul (i64 (sext (i32 IntRegs:$src1))), - (i64 (sext (i32 IntRegs:$src2))))), - (i32 32)))))]>; +let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1, + isCodeGenOnly = 1 in +def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins), "$dst = xor($dst, $dst)", + [(set (i1 PredRegs:$dst), 0)]>; // Pseudo instructions. def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; - -def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, +def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; -def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, - [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; - def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; +def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, + [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; -def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; - -def call : SDNode<"HexagonISD::CALL", SDT_SPCall, - [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; +def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; // For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain, // Optional Flag and Variable Arguments. // Its 1 Operand has pointer type. -def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall, - [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; - -let Defs = [R29, R30], Uses = [R31, R30, R29] in { - def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), - "Should never be emitted", - [(callseq_start timm:$amt)]>; -} - -let Defs = [R29, R30, R31], Uses = [R29] in { - def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), - "Should never be emitted", - [(callseq_end timm:$amt1, timm:$amt2)]>; -} -// Call subroutine. -let isCall = 1, neverHasSideEffects = 1, - Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, - R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in { - def CALL : JInst<(outs), (ins calltarget:$dst), - "call $dst", []>; -} - -// Call subroutine from register. -let isCall = 1, neverHasSideEffects = 1, - Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, - R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in { - def CALLR : JRInst<(outs), (ins IntRegs:$dst), - "callr $dst", - []>; - } +def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall, + [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; + +let Defs = [R29, R30], Uses = [R31, R30, R29], isPseudo = 1 in +def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), + ".error \"should not emit\" ", + [(callseq_start timm:$amt)]>; +let Defs = [R29, R30, R31], Uses = [R29], isPseudo = 1 in +def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), + ".error \"should not emit\" ", + [(callseq_end timm:$amt1, timm:$amt2)]>; + +// Call subroutine indirectly. +let Defs = VolatileV3.Regs in +def J2_callr : JUMPR_MISC_CALLR<0, 1>; // Indirect tail-call. -let isCodeGenOnly = 1, isCall = 1, isReturn = 1 in -def TCRETURNR : T_JMPr; +let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0, + isTerminator = 1, isCodeGenOnly = 1 in +def TCRETURNr : T_JMPr; // Direct tail-calls. let isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0, isTerminator = 1, isCodeGenOnly = 1 in { - def TCRETURNtg : T_JMP<(ins calltarget:$dst)>; - def TCRETURNtext : T_JMP<(ins calltarget:$dst)>; + def TCRETURNtg : JInst<(outs), (ins calltarget:$dst), "jump $dst", + [], "", J_tc_2early_SLOT23>; + def TCRETURNtext : JInst<(outs), (ins calltarget:$dst), "jump $dst", + [], "", J_tc_2early_SLOT23>; } -// Map call instruction. -def : Pat<(call (i32 IntRegs:$dst)), - (CALLR (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>; -def : Pat<(call tglobaladdr:$dst), - (CALL tglobaladdr:$dst)>, Requires<[HasV2TOnly]>; -def : Pat<(call texternalsym:$dst), - (CALL texternalsym:$dst)>, Requires<[HasV2TOnly]>; //Tail calls. -def : Pat<(HexagonTCRet tglobaladdr:$dst), - (TCRETURNtg tglobaladdr:$dst)>; -def : Pat<(HexagonTCRet texternalsym:$dst), - (TCRETURNtext texternalsym:$dst)>; -def : Pat<(HexagonTCRet (i32 IntRegs:$dst)), - (TCRETURNR (i32 IntRegs:$dst))>; - -// Atomic load and store support -// 8 bit atomic load -def : Pat<(atomic_load_8 ADDRriS11_0:$src1), - (i32 (LDriub ADDRriS11_0:$src1))>; - -def : Pat<(atomic_load_8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset)), - (i32 (LDriub_indexed (i32 IntRegs:$src1), s11_0ImmPred:$offset))>; - -// 16 bit atomic load -def : Pat<(atomic_load_16 ADDRriS11_1:$src1), - (i32 (LDriuh ADDRriS11_1:$src1))>; - -def : Pat<(atomic_load_16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset)), - (i32 (LDriuh_indexed (i32 IntRegs:$src1), s11_1ImmPred:$offset))>; - -def : Pat<(atomic_load_32 ADDRriS11_2:$src1), - (i32 (LDriw ADDRriS11_2:$src1))>; - -def : Pat<(atomic_load_32 (add (i32 IntRegs:$src1), s11_2ImmPred:$offset)), - (i32 (LDriw_indexed (i32 IntRegs:$src1), s11_2ImmPred:$offset))>; - -// 64 bit atomic load -def : Pat<(atomic_load_64 ADDRriS11_3:$src1), - (i64 (LDrid ADDRriS11_3:$src1))>; - -def : Pat<(atomic_load_64 (add (i32 IntRegs:$src1), s11_3ImmPred:$offset)), - (i64 (LDrid_indexed (i32 IntRegs:$src1), s11_3ImmPred:$offset))>; - - -def : Pat<(atomic_store_8 ADDRriS11_0:$src2, (i32 IntRegs:$src1)), - (STrib ADDRriS11_0:$src2, (i32 IntRegs:$src1))>; - -def : Pat<(atomic_store_8 (add (i32 IntRegs:$src2), s11_0ImmPred:$offset), - (i32 IntRegs:$src1)), - (STrib_indexed (i32 IntRegs:$src2), s11_0ImmPred:$offset, - (i32 IntRegs:$src1))>; - - -def : Pat<(atomic_store_16 ADDRriS11_1:$src2, (i32 IntRegs:$src1)), - (STrih ADDRriS11_1:$src2, (i32 IntRegs:$src1))>; - -def : Pat<(atomic_store_16 (i32 IntRegs:$src1), - (add (i32 IntRegs:$src2), s11_1ImmPred:$offset)), - (STrih_indexed (i32 IntRegs:$src2), s11_1ImmPred:$offset, - (i32 IntRegs:$src1))>; - -def : Pat<(atomic_store_32 ADDRriS11_2:$src2, (i32 IntRegs:$src1)), - (STriw ADDRriS11_2:$src2, (i32 IntRegs:$src1))>; - -def : Pat<(atomic_store_32 (add (i32 IntRegs:$src2), s11_2ImmPred:$offset), - (i32 IntRegs:$src1)), - (STriw_indexed (i32 IntRegs:$src2), s11_2ImmPred:$offset, - (i32 IntRegs:$src1))>; - - - - -def : Pat<(atomic_store_64 ADDRriS11_3:$src2, (i64 DoubleRegs:$src1)), - (STrid ADDRriS11_3:$src2, (i64 DoubleRegs:$src1))>; - -def : Pat<(atomic_store_64 (add (i32 IntRegs:$src2), s11_3ImmPred:$offset), - (i64 DoubleRegs:$src1)), - (STrid_indexed (i32 IntRegs:$src2), s11_3ImmPred:$offset, - (i64 DoubleRegs:$src1))>; +def: Pat<(HexagonTCRet tglobaladdr:$dst), + (TCRETURNtg tglobaladdr:$dst)>; +def: Pat<(HexagonTCRet texternalsym:$dst), + (TCRETURNtext texternalsym:$dst)>; +def: Pat<(HexagonTCRet (i32 IntRegs:$dst)), + (TCRETURNr (i32 IntRegs:$dst))>; // Map from r0 = and(r1, 65535) to r0 = zxth(r1) -def : Pat <(and (i32 IntRegs:$src1), 65535), - (ZXTH (i32 IntRegs:$src1))>; +def: Pat<(and (i32 IntRegs:$src1), 65535), + (A2_zxth IntRegs:$src1)>; // Map from r0 = and(r1, 255) to r0 = zxtb(r1). -def : Pat <(and (i32 IntRegs:$src1), 255), - (ZXTB (i32 IntRegs:$src1))>; +def: Pat<(and (i32 IntRegs:$src1), 255), + (A2_zxtb IntRegs:$src1)>; // Map Add(p1, true) to p1 = not(p1). // Add(p1, false) should never be produced, // if it does, it got to be mapped to NOOP. -def : Pat <(add (i1 PredRegs:$src1), -1), - (NOT_p (i1 PredRegs:$src1))>; - -// Map from p0 = setlt(r0, r1) r2 = mux(p0, r3, r4) => -// p0 = cmp.lt(r0, r1), r0 = mux(p0, r2, r1). -// cmp.lt(r0, r1) -> cmp.gt(r1, r0) -def : Pat <(select (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), - (i32 IntRegs:$src3), - (i32 IntRegs:$src4)), - (i32 (TFR_condset_rr (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)), - (i32 IntRegs:$src4), (i32 IntRegs:$src3)))>, - Requires<[HasV2TOnly]>; +def: Pat<(add (i1 PredRegs:$src1), -1), + (C2_not PredRegs:$src1)>; // Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i). -def : Pat <(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ImmPred:$src3), - (i32 (TFR_condset_ii (i1 PredRegs:$src1), s8ImmPred:$src3, - s8ImmPred:$src2))>; +def: Pat<(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ExtPred:$src3), + (C2_muxii PredRegs:$src1, s8ExtPred:$src3, s8ImmPred:$src2)>; // Map from p0 = pnot(p0); r0 = select(p0, #i, r1) -// => r0 = TFR_condset_ri(p0, r1, #i) -def : Pat <(select (not (i1 PredRegs:$src1)), s12ImmPred:$src2, - (i32 IntRegs:$src3)), - (i32 (TFR_condset_ri (i1 PredRegs:$src1), (i32 IntRegs:$src3), - s12ImmPred:$src2))>; +// => r0 = C2_muxir(p0, r1, #i) +def: Pat<(select (not (i1 PredRegs:$src1)), s8ExtPred:$src2, + (i32 IntRegs:$src3)), + (C2_muxir PredRegs:$src1, IntRegs:$src3, s8ExtPred:$src2)>; // Map from p0 = pnot(p0); r0 = mux(p0, r1, #i) -// => r0 = TFR_condset_ir(p0, #i, r1) -def : Pat <(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s12ImmPred:$src3), - (i32 (TFR_condset_ir (i1 PredRegs:$src1), s12ImmPred:$src3, - (i32 IntRegs:$src2)))>; +// => r0 = C2_muxri (p0, #i, r1) +def: Pat<(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s8ExtPred:$src3), + (C2_muxri PredRegs:$src1, s8ExtPred:$src3, IntRegs:$src2)>; // Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump. -def : Pat <(brcond (not (i1 PredRegs:$src1)), bb:$offset), - (JMP_f (i1 PredRegs:$src1), bb:$offset)>; +def: Pat<(brcond (not (i1 PredRegs:$src1)), bb:$offset), + (J2_jumpf PredRegs:$src1, bb:$offset)>; -// Map from p2 = pnot(p2); p1 = and(p0, p2) => p1 = and(p0, !p2). -def : Pat <(and (i1 PredRegs:$src1), (not (i1 PredRegs:$src2))), - (i1 (AND_pnotp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>; +// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = A2_sxtw(Rss.lo). +def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)), + (A2_sxtw (LoReg DoubleRegs:$src1))>; +// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = A2_sxtw(A2_sxth(Rss.lo)). +def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)), + (A2_sxtw (A2_sxth (LoReg DoubleRegs:$src1)))>; -let AddedComplexity = 100 in -def : Pat <(i64 (zextloadi1 (HexagonCONST32 tglobaladdr:$global))), - (i64 (COMBINE_rr (TFRI 0), - (LDriub_indexed (CONST32_set tglobaladdr:$global), 0)))>, - Requires<[NoV4T]>; - -// Map from i1 loads to 32 bits. This assumes that the i1* is byte aligned. -let AddedComplexity = 10 in -def : Pat <(i32 (zextloadi1 ADDRriS11_0:$addr)), - (i32 (A2_and (i32 (LDrib ADDRriS11_0:$addr)), (TFRI 0x1)))>; - -// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = SXTW(Rss.lo). -def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)), - (i64 (SXTW (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>; - -// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = SXTW(SXTH(Rss.lo)). -def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)), - (i64 (SXTW (i32 (SXTH (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), - subreg_loreg))))))>; - -// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = SXTW(SXTB(Rss.lo)). -def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)), - (i64 (SXTW (i32 (SXTB (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), - subreg_loreg))))))>; +// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = A2_sxtw(A2_sxtb(Rss.lo)). +def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)), + (A2_sxtw (A2_sxtb (LoReg DoubleRegs:$src1)))>; // We want to prevent emitting pnot's as much as possible. -// Map brcond with an unsupported setcc to a JMP_f. +// Map brcond with an unsupported setcc to a J2_jumpf. def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), - (JMP_f (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), + (J2_jumpf (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src2)), bb:$offset)>; def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)), bb:$offset), - (JMP_f (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>; + (J2_jumpf (C2_cmpeqi (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>; -def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset), - (JMP_f (i1 PredRegs:$src1), bb:$offset)>; +def: Pat<(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset), + (J2_jumpf PredRegs:$src1, bb:$offset)>; -def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset), - (JMP_t (i1 PredRegs:$src1), bb:$offset)>; +def: Pat<(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset), + (J2_jumpt PredRegs:$src1, bb:$offset)>; // cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1) -def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), - bb:$offset), - (JMP_f (CMPGTri (i32 IntRegs:$src1), - (DEC_CONST_SIGNED s8ImmPred:$src2)), bb:$offset)>; +def: Pat<(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), bb:$offset), + (J2_jumpf (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s8ImmPred:$src2)), + bb:$offset)>; // cmp.lt(r0, r1) -> cmp.gt(r1, r0) def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), - (JMP_t (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)), bb:$offset)>; + (J2_jumpt (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)), bb:$offset)>; def : Pat <(brcond (i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), bb:$offset), - (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)), + (J2_jumpf (C2_cmpgtup (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)), bb:$offset)>; def : Pat <(brcond (i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), - (JMP_f (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), + (J2_jumpf (C2_cmpgtu (i32 IntRegs:$src1), (i32 IntRegs:$src2)), bb:$offset)>; def : Pat <(brcond (i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), bb:$offset), - (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), + (J2_jumpf (C2_cmpgtup (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), bb:$offset)>; // Map from a 64-bit select to an emulated 64-bit mux. // Hexagon does not support 64-bit MUXes; so emulate with combines. -def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2), - (i64 DoubleRegs:$src3)), - (i64 (COMBINE_rr (i32 (MUX_rr (i1 PredRegs:$src1), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), - subreg_hireg)), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3), - subreg_hireg)))), - (i32 (MUX_rr (i1 PredRegs:$src1), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), - subreg_loreg)), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3), - subreg_loreg))))))>; +def: Pat<(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src3)), + (A2_combinew (C2_mux PredRegs:$src1, (HiReg DoubleRegs:$src2), + (HiReg DoubleRegs:$src3)), + (C2_mux PredRegs:$src1, (LoReg DoubleRegs:$src2), + (LoReg DoubleRegs:$src3)))>; // Map from a 1-bit select to logical ops. // From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3). -def : Pat <(select (i1 PredRegs:$src1), (i1 PredRegs:$src2), - (i1 PredRegs:$src3)), - (OR_pp (AND_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)), - (AND_pp (NOT_p (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>; +def: Pat<(select (i1 PredRegs:$src1), (i1 PredRegs:$src2), (i1 PredRegs:$src3)), + (C2_or (C2_and PredRegs:$src1, PredRegs:$src2), + (C2_and (C2_not PredRegs:$src1), PredRegs:$src3))>; // Map Pd = load(addr) -> Rs = load(addr); Pd = Rs. def : Pat<(i1 (load ADDRriS11_2:$addr)), - (i1 (TFR_PdRs (i32 (LDrib ADDRriS11_2:$addr))))>; + (i1 (C2_tfrrp (i32 (L2_loadrb_io AddrFI:$addr, 0))))>; // Map for truncating from 64 immediates to 32 bit immediates. -def : Pat<(i32 (trunc (i64 DoubleRegs:$src))), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))>; +def: Pat<(i32 (trunc (i64 DoubleRegs:$src))), + (LoReg DoubleRegs:$src)>; // Map for truncating from i64 immediates to i1 bit immediates. -def : Pat<(i1 (trunc (i64 DoubleRegs:$src))), - (i1 (TFR_PdRs (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), - subreg_loreg))))>; +def: Pat<(i1 (trunc (i64 DoubleRegs:$src))), + (C2_tfrrp (LoReg DoubleRegs:$src))>; // Map memb(Rs) = Rdd -> memb(Rs) = Rt. def : Pat<(truncstorei8 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), - (STrib ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + (S2_storerb_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map memh(Rs) = Rdd -> memh(Rs) = Rt. def : Pat<(truncstorei16 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), - (STrih ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + (S2_storerh_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map memw(Rs) = Rdd -> memw(Rs) = Rt def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), - (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + (S2_storeri_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map memw(Rs) = Rdd -> memw(Rs) = Rt. def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), - (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + (S2_storeri_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map from i1 = constant<-1>; memw(addr) = i1 -> r0 = 1; memw(addr) = r0. def : Pat<(store (i1 -1), ADDRriS11_2:$addr), - (STrib ADDRriS11_2:$addr, (TFRI 1))>; + (S2_storerb_io AddrFI:$addr, 0, (A2_tfrsi 1))>; // Map from i1 = constant<-1>; store i1 -> r0 = 1; store r0. def : Pat<(store (i1 -1), ADDRriS11_2:$addr), - (STrib ADDRriS11_2:$addr, (TFRI 1))>; + (S2_storerb_io AddrFI:$addr, 0, (A2_tfrsi 1))>; // Map from memb(Rs) = Pd -> Rt = mux(Pd, #0, #1); store Rt. def : Pat<(store (i1 PredRegs:$src1), ADDRriS11_2:$addr), - (STrib ADDRriS11_2:$addr, (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0)) )>; - -// Map Rdd = anyext(Rs) -> Rdd = sxtw(Rs). -// Hexagon_TODO: We can probably use combine but that will cost 2 instructions. -// Better way to do this? -def : Pat<(i64 (anyext (i32 IntRegs:$src1))), - (i64 (SXTW (i32 IntRegs:$src1)))>; + (S2_storerb_io AddrFI:$addr, 0, (i32 (C2_muxii (i1 PredRegs:$src1), 1, 0)) )>; -// Map cmple -> cmpgt. // rs <= rt -> !(rs > rt). -def : Pat<(i1 (setle (i32 IntRegs:$src1), s10ExtPred:$src2)), - (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), s10ExtPred:$src2)))>; +let AddedComplexity = 30 in +def: Pat<(i1 (setle (i32 IntRegs:$src1), s10ExtPred:$src2)), + (C2_not (C2_cmpgti IntRegs:$src1, s10ExtPred:$src2))>; // rs <= rt -> !(rs > rt). def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))), - (i1 (NOT_p (CMPGTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; + (i1 (C2_not (C2_cmpgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; // Rss <= Rtt -> !(Rss > Rtt). -def : Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), - (i1 (NOT_p (CMPGT64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>; +def: Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (C2_not (C2_cmpgtp DoubleRegs:$src1, DoubleRegs:$src2))>; // Map cmpne -> cmpeq. // Hexagon_TODO: We should improve on this. // rs != rt -> !(rs == rt). -def : Pat <(i1 (setne (i32 IntRegs:$src1), s10ExtPred:$src2)), - (i1 (NOT_p(i1 (CMPEQri (i32 IntRegs:$src1), s10ExtPred:$src2))))>; +let AddedComplexity = 30 in +def: Pat<(i1 (setne (i32 IntRegs:$src1), s10ExtPred:$src2)), + (C2_not (C2_cmpeqi IntRegs:$src1, s10ExtPred:$src2))>; // Map cmpne(Rs) -> !cmpeqe(Rs). // rs != rt -> !(rs == rt). def : Pat <(i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), - (i1 (NOT_p (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>; + (i1 (C2_not (i1 (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>; // Convert setne back to xor for hexagon since we compute w/ pred registers. -def : Pat <(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))), - (i1 (XOR_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>; +def: Pat<(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))), + (C2_xor PredRegs:$src1, PredRegs:$src2)>; // Map cmpne(Rss) -> !cmpew(Rss). // rs != rt -> !(rs == rt). -def : Pat <(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), - (i1 (NOT_p (i1 (CMPEHexagon4rr (i64 DoubleRegs:$src1), - (i64 DoubleRegs:$src2)))))>; +def: Pat<(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (C2_not (C2_cmpeqp DoubleRegs:$src1, DoubleRegs:$src2))>; // Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt). // rs >= rt -> !(rt > rs). def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), - (i1 (NOT_p (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>; + (i1 (C2_not (i1 (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>; // cmpge(Rs, Imm) -> cmpgt(Rs, Imm-1) -def : Pat <(i1 (setge (i32 IntRegs:$src1), s8ExtPred:$src2)), - (i1 (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2)))>; +let AddedComplexity = 30 in +def: Pat<(i1 (setge (i32 IntRegs:$src1), s8ExtPred:$src2)), + (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s8ExtPred:$src2))>; // Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss). // rss >= rtt -> !(rtt > rss). -def : Pat <(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), - (i1 (NOT_p (i1 (CMPGT64rr (i64 DoubleRegs:$src2), - (i64 DoubleRegs:$src1)))))>; +def: Pat<(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (C2_not (C2_cmpgtp DoubleRegs:$src2, DoubleRegs:$src1))>; // Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm). // !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1). // rs < rt -> !(rs >= rt). -def : Pat <(i1 (setlt (i32 IntRegs:$src1), s8ExtPred:$src2)), - (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2))))>; - -// Map cmplt(Rs, Rt) -> cmpgt(Rt, Rs). -// rs < rt -> rt > rs. -// We can let assembler map it, or we can do in the compiler itself. -def : Pat <(i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), - (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>; - -// Map cmplt(Rss, Rtt) -> cmpgt(Rtt, Rss). -// rss < rtt -> (rtt > rss). -def : Pat <(i1 (setlt (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), - (i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>; - -// Map from cmpltu(Rs, Rd) -> cmpgtu(Rd, Rs) -// rs < rt -> rt > rs. -// We can let assembler map it, or we can do in the compiler itself. -def : Pat <(i1 (setult (i32 IntRegs:$src1), (i32 IntRegs:$src2))), - (i1 (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>; - -// Map from cmpltu(Rss, Rdd) -> cmpgtu(Rdd, Rss). -// rs < rt -> rt > rs. -def : Pat <(i1 (setult (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), - (i1 (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>; +let AddedComplexity = 30 in +def: Pat<(i1 (setlt (i32 IntRegs:$src1), s8ExtPred:$src2)), + (C2_not (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s8ExtPred:$src2)))>; // Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs) -def : Pat <(i1 (setuge (i32 IntRegs:$src1), 0)), - (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src1)))>; +def: Pat<(i1 (setuge (i32 IntRegs:$src1), 0)), + (C2_cmpeq IntRegs:$src1, IntRegs:$src1)>; // Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1) -def : Pat <(i1 (setuge (i32 IntRegs:$src1), u8ExtPred:$src2)), - (i1 (CMPGTUri (i32 IntRegs:$src1), (DEC_CONST_UNSIGNED u8ExtPred:$src2)))>; +def: Pat<(i1 (setuge (i32 IntRegs:$src1), u8ExtPred:$src2)), + (C2_cmpgtui IntRegs:$src1, (DEC_CONST_UNSIGNED u8ExtPred:$src2))>; // Generate cmpgtu(Rs, #u9) -def : Pat <(i1 (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)), - (i1 (CMPGTUri (i32 IntRegs:$src1), u9ExtPred:$src2))>; - -// Map from Rs >= Rt -> !(Rt > Rs). -// rs >= rt -> !(rt > rs). -def : Pat <(i1 (setuge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), - (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>; +def: Pat<(i1 (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)), + (C2_cmpgtui IntRegs:$src1, u9ExtPred:$src2)>; // Map from Rs >= Rt -> !(Rt > Rs). // rs >= rt -> !(rt > rs). -def : Pat <(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), - (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>; - -// Map from cmpleu(Rs, Rt) -> !cmpgtu(Rs, Rt). -// Map from (Rs <= Rt) -> !(Rs > Rt). -def : Pat <(i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))), - (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; +def: Pat<(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (C2_not (C2_cmpgtup DoubleRegs:$src2, DoubleRegs:$src1))>; // Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1). // Map from (Rs <= Rt) -> !(Rs > Rt). -def : Pat <(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), - (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>; +def: Pat<(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (C2_not (C2_cmpgtup DoubleRegs:$src1, DoubleRegs:$src2))>; // Sign extends. // i1 -> i32 -def : Pat <(i32 (sext (i1 PredRegs:$src1))), - (i32 (MUX_ii (i1 PredRegs:$src1), -1, 0))>; +def: Pat<(i32 (sext (i1 PredRegs:$src1))), + (C2_muxii PredRegs:$src1, -1, 0)>; // i1 -> i64 -def : Pat <(i64 (sext (i1 PredRegs:$src1))), - (i64 (COMBINE_rr (TFRI -1), (MUX_ii (i1 PredRegs:$src1), -1, 0)))>; - -// Convert sign-extended load back to load and sign extend. -// i8 -> i64 -def: Pat <(i64 (sextloadi8 ADDRriS11_0:$src1)), - (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>; - -// Convert any-extended load back to load and sign extend. -// i8 -> i64 -def: Pat <(i64 (extloadi8 ADDRriS11_0:$src1)), - (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>; - -// Convert sign-extended load back to load and sign extend. -// i16 -> i64 -def: Pat <(i64 (sextloadi16 ADDRriS11_1:$src1)), - (i64 (SXTW (LDrih ADDRriS11_1:$src1)))>; +def: Pat<(i64 (sext (i1 PredRegs:$src1))), + (A2_combinew (A2_tfrsi -1), (C2_muxii PredRegs:$src1, -1, 0))>; // Convert sign-extended load back to load and sign extend. // i32 -> i64 def: Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)), - (i64 (SXTW (LDriw ADDRriS11_2:$src1)))>; - + (i64 (A2_sxtw (L2_loadri_io AddrFI:$src1, 0)))>; // Zero extends. // i1 -> i32 -def : Pat <(i32 (zext (i1 PredRegs:$src1))), - (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; +def: Pat<(i32 (zext (i1 PredRegs:$src1))), + (C2_muxii PredRegs:$src1, 1, 0)>; -// i1 -> i64 -def : Pat <(i64 (zext (i1 PredRegs:$src1))), - (i64 (COMBINE_rr (TFRI 0), (MUX_ii (i1 PredRegs:$src1), 1, 0)))>, - Requires<[NoV4T]>; +// Map from Rs = Pd to Pd = mux(Pd, #1, #0) +def: Pat<(i32 (anyext (i1 PredRegs:$src1))), + (C2_muxii PredRegs:$src1, 1, 0)>; -// i32 -> i64 -def : Pat <(i64 (zext (i32 IntRegs:$src1))), - (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>, - Requires<[NoV4T]>; +// Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0)) +def: Pat<(i64 (anyext (i1 PredRegs:$src1))), + (A2_sxtw (C2_muxii PredRegs:$src1, 1, 0))>; -// i8 -> i64 -def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)), - (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>, - Requires<[NoV4T]>; +def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), + (i32 32))), + (i64 (zextloadi32 ADDRriS11_2:$srcLow)))), + (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), + (L2_loadri_io AddrFI:$srcLow, 0)))>; -let AddedComplexity = 20 in -def: Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1), - s11_0ExtPred:$offset))), - (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1, - s11_0ExtPred:$offset)))>, - Requires<[NoV4T]>; +// Multiply 64-bit unsigned and use upper result. +def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), + (A2_addp + (M2_dpmpyuu_acc_s0 + (S2_lsr_i_p + (A2_addp + (M2_dpmpyuu_acc_s0 + (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $src1), (LoReg $src2)), 32), + (HiReg $src1), + (LoReg $src2)), + (A2_combinew (A2_tfrsi 0), + (LoReg (M2_dpmpyuu_s0 (LoReg $src1), (HiReg $src2))))), + 32), + (HiReg $src1), + (HiReg $src2)), + (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $src1), (HiReg $src2)), 32) +)>; -// i1 -> i64 -def: Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)), - (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>, - Requires<[NoV4T]>; +// Hexagon specific ISD nodes. +def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, + SDTCisVT<1, i32>]>; +def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>; -let AddedComplexity = 20 in -def: Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1), - s11_0ExtPred:$offset))), - (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1, - s11_0ExtPred:$offset)))>, - Requires<[NoV4T]>; +def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC", + SDTHexagonADJDYNALLOC>; +def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>; -// i16 -> i64 -def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)), - (i64 (COMBINE_rr (TFRI 0), (LDriuh ADDRriS11_1:$src1)))>, - Requires<[NoV4T]>; +// Needed to tag these instructions for stack layout. +let isCodeGenOnly = 1, usesCustomInserter = 1 in +def ADJDYNALLOC : T_Addri<s6Imm>; -let AddedComplexity = 20 in -def: Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1), - s11_1ExtPred:$offset))), - (i64 (COMBINE_rr (TFRI 0), (LDriuh_indexed IntRegs:$src1, - s11_1ExtPred:$offset)))>, - Requires<[NoV4T]>; +def: Pat<(Hexagon_ADJDYNALLOC I32:$Rs, s16ImmPred:$s16), + (ADJDYNALLOC I32:$Rs, imm:$s16)>; -// i32 -> i64 -def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)), - (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>, - Requires<[NoV4T]>; +let isCodeGenOnly = 1 in +def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = $src1", + [(set (i32 IntRegs:$dst), + (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>; let AddedComplexity = 100 in -def: Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))), - (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1, - s11_2ExtPred:$offset)))>, - Requires<[NoV4T]>; +def: Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)), + (i32 IntRegs:$src1)>; -let AddedComplexity = 10 in -def: Pat <(i32 (zextloadi1 ADDRriS11_0:$src1)), - (i32 (LDriw ADDRriS11_0:$src1))>; +def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>; -// Map from Rs = Pd to Pd = mux(Pd, #1, #0) -def : Pat <(i32 (zext (i1 PredRegs:$src1))), - (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; +def : Pat<(HexagonWrapperJT tjumptable:$dst), + (i32 (CONST32_set_jt tjumptable:$dst))>; -// Map from Rs = Pd to Pd = mux(Pd, #1, #0) -def : Pat <(i32 (anyext (i1 PredRegs:$src1))), - (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; +// XTYPE/SHIFT +// +//===----------------------------------------------------------------------===// +// Template Class +// Shift by immediate/register and accumulate/logical +//===----------------------------------------------------------------------===// -// Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0)) -def : Pat <(i64 (anyext (i1 PredRegs:$src1))), - (i64 (SXTW (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))))>; +// Rx[+-&|]=asr(Rs,#u5) +// Rx[+-&|^]=lsr(Rs,#u5) +// Rx[+-&|^]=asl(Rs,#u5) + +let hasNewValue = 1, opNewValue = 0 in +class T_shift_imm_acc_r <string opc1, string opc2, SDNode OpNode1, + SDNode OpNode2, bits<3> majOp, bits<2> minOp> + : SInst_acc<(outs IntRegs:$Rx), + (ins IntRegs:$src1, IntRegs:$Rs, u5Imm:$u5), + "$Rx "#opc2#opc1#"($Rs, #$u5)", + [(set (i32 IntRegs:$Rx), + (OpNode2 (i32 IntRegs:$src1), + (OpNode1 (i32 IntRegs:$Rs), u5ImmPred:$u5)))], + "$src1 = $Rx", S_2op_tc_2_SLOT23> { + bits<5> Rx; + bits<5> Rs; + bits<5> u5; + + let IClass = 0b1000; + + let Inst{27-24} = 0b1110; + let Inst{23-22} = majOp{2-1}; + let Inst{13} = 0b0; + let Inst{7} = majOp{0}; + let Inst{6-5} = minOp; + let Inst{4-0} = Rx; + let Inst{20-16} = Rs; + let Inst{12-8} = u5; + } +// Rx[+-&|]=asr(Rs,Rt) +// Rx[+-&|^]=lsr(Rs,Rt) +// Rx[+-&|^]=asl(Rs,Rt) + +let hasNewValue = 1, opNewValue = 0 in +class T_shift_reg_acc_r <string opc1, string opc2, SDNode OpNode1, + SDNode OpNode2, bits<2> majOp, bits<2> minOp> + : SInst_acc<(outs IntRegs:$Rx), + (ins IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt), + "$Rx "#opc2#opc1#"($Rs, $Rt)", + [(set (i32 IntRegs:$Rx), + (OpNode2 (i32 IntRegs:$src1), + (OpNode1 (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))], + "$src1 = $Rx", S_3op_tc_2_SLOT23 > { + bits<5> Rx; + bits<5> Rs; + bits<5> Rt; + + let IClass = 0b1100; -let AddedComplexity = 100 in -def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), - (i32 32))), - (i64 (zextloadi32 (i32 (add IntRegs:$src2, - s11_2ExtPred:$offset2)))))), - (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), - (LDriw_indexed IntRegs:$src2, - s11_2ExtPred:$offset2)))>; + let Inst{27-24} = 0b1100; + let Inst{23-22} = majOp; + let Inst{7-6} = minOp; + let Inst{4-0} = Rx; + let Inst{20-16} = Rs; + let Inst{12-8} = Rt; + } -def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), - (i32 32))), - (i64 (zextloadi32 ADDRriS11_2:$srcLow)))), - (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), - (LDriw ADDRriS11_2:$srcLow)))>; +// Rxx[+-&|]=asr(Rss,#u6) +// Rxx[+-&|^]=lsr(Rss,#u6) +// Rxx[+-&|^]=asl(Rss,#u6) + +class T_shift_imm_acc_p <string opc1, string opc2, SDNode OpNode1, + SDNode OpNode2, bits<3> majOp, bits<2> minOp> + : SInst_acc<(outs DoubleRegs:$Rxx), + (ins DoubleRegs:$src1, DoubleRegs:$Rss, u6Imm:$u6), + "$Rxx "#opc2#opc1#"($Rss, #$u6)", + [(set (i64 DoubleRegs:$Rxx), + (OpNode2 (i64 DoubleRegs:$src1), + (OpNode1 (i64 DoubleRegs:$Rss), u6ImmPred:$u6)))], + "$src1 = $Rxx", S_2op_tc_2_SLOT23> { + bits<5> Rxx; + bits<5> Rss; + bits<6> u6; + + let IClass = 0b1000; + + let Inst{27-24} = 0b0010; + let Inst{23-22} = majOp{2-1}; + let Inst{7} = majOp{0}; + let Inst{6-5} = minOp; + let Inst{4-0} = Rxx; + let Inst{20-16} = Rss; + let Inst{13-8} = u6; + } -def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), - (i32 32))), - (i64 (zext (i32 IntRegs:$srcLow))))), - (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), - IntRegs:$srcLow))>; -let AddedComplexity = 100 in -def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), - (i32 32))), - (i64 (zextloadi32 (i32 (add IntRegs:$src2, - s11_2ExtPred:$offset2)))))), - (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), - (LDriw_indexed IntRegs:$src2, - s11_2ExtPred:$offset2)))>; +// Rxx[+-&|]=asr(Rss,Rt) +// Rxx[+-&|^]=lsr(Rss,Rt) +// Rxx[+-&|^]=asl(Rss,Rt) +// Rxx[+-&|^]=lsl(Rss,Rt) + +class T_shift_reg_acc_p <string opc1, string opc2, SDNode OpNode1, + SDNode OpNode2, bits<3> majOp, bits<2> minOp> + : SInst_acc<(outs DoubleRegs:$Rxx), + (ins DoubleRegs:$src1, DoubleRegs:$Rss, IntRegs:$Rt), + "$Rxx "#opc2#opc1#"($Rss, $Rt)", + [(set (i64 DoubleRegs:$Rxx), + (OpNode2 (i64 DoubleRegs:$src1), + (OpNode1 (i64 DoubleRegs:$Rss), (i32 IntRegs:$Rt))))], + "$src1 = $Rxx", S_3op_tc_2_SLOT23> { + bits<5> Rxx; + bits<5> Rss; + bits<5> Rt; + + let IClass = 0b1100; + + let Inst{27-24} = 0b1011; + let Inst{23-21} = majOp; + let Inst{20-16} = Rss; + let Inst{12-8} = Rt; + let Inst{7-6} = minOp; + let Inst{4-0} = Rxx; + } -def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), - (i32 32))), - (i64 (zextloadi32 ADDRriS11_2:$srcLow)))), - (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), - (LDriw ADDRriS11_2:$srcLow)))>; +//===----------------------------------------------------------------------===// +// Multi-class for the shift instructions with logical/arithmetic operators. +//===----------------------------------------------------------------------===// -def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), - (i32 32))), - (i64 (zext (i32 IntRegs:$srcLow))))), - (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), - IntRegs:$srcLow))>; - -// Any extended 64-bit load. -// anyext i32 -> i64 -def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)), - (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>, - Requires<[NoV4T]>; - -// When there is an offset we should prefer the pattern below over the pattern above. -// The complexity of the above is 13 (gleaned from HexagonGenDAGIsel.inc) -// So this complexity below is comfortably higher to allow for choosing the below. -// If this is not done then we generate addresses such as -// ******************************************** -// r1 = add (r0, #4) -// r1 = memw(r1 + #0) -// instead of -// r1 = memw(r0 + #4) -// ******************************************** +multiclass xtype_imm_base<string OpcStr1, string OpcStr2, SDNode OpNode1, + SDNode OpNode2, bits<3> majOp, bits<2> minOp > { + def _i_r#NAME : T_shift_imm_acc_r< OpcStr1, OpcStr2, OpNode1, + OpNode2, majOp, minOp >; + def _i_p#NAME : T_shift_imm_acc_p< OpcStr1, OpcStr2, OpNode1, + OpNode2, majOp, minOp >; +} + +multiclass xtype_imm_acc<string opc1, SDNode OpNode, bits<2>minOp> { + let AddedComplexity = 100 in + defm _acc : xtype_imm_base< opc1, "+= ", OpNode, add, 0b001, minOp>; + + defm _nac : xtype_imm_base< opc1, "-= ", OpNode, sub, 0b000, minOp>; + defm _and : xtype_imm_base< opc1, "&= ", OpNode, and, 0b010, minOp>; + defm _or : xtype_imm_base< opc1, "|= ", OpNode, or, 0b011, minOp>; +} + +multiclass xtype_xor_imm_acc<string opc1, SDNode OpNode, bits<2>minOp> { let AddedComplexity = 100 in -def: Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))), - (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1, - s11_2ExtPred:$offset)))>, - Requires<[NoV4T]>; + defm _xacc : xtype_imm_base< opc1, "^= ", OpNode, xor, 0b100, minOp>; +} -// anyext i16 -> i64. -def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)), - (i64 (COMBINE_rr (TFRI 0), (LDrih ADDRriS11_2:$src1)))>, - Requires<[NoV4T]>; +defm S2_asr : xtype_imm_acc<"asr", sra, 0b00>; -let AddedComplexity = 20 in -def: Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1), - s11_1ExtPred:$offset))), - (i64 (COMBINE_rr (TFRI 0), (LDrih_indexed IntRegs:$src1, - s11_1ExtPred:$offset)))>, - Requires<[NoV4T]>; +defm S2_lsr : xtype_imm_acc<"lsr", srl, 0b01>, + xtype_xor_imm_acc<"lsr", srl, 0b01>; -// Map from Rdd = zxtw(Rs) -> Rdd = combine(0, Rs). -def : Pat<(i64 (zext (i32 IntRegs:$src1))), - (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>, - Requires<[NoV4T]>; +defm S2_asl : xtype_imm_acc<"asl", shl, 0b10>, + xtype_xor_imm_acc<"asl", shl, 0b10>; -// Multiply 64-bit unsigned and use upper result. -def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), - (i64 - (MPYU64_acc - (i64 - (COMBINE_rr - (TFRI 0), - (i32 - (EXTRACT_SUBREG - (i64 - (LSRd_ri - (i64 - (MPYU64_acc - (i64 - (MPYU64_acc - (i64 - (COMBINE_rr (TFRI 0), - (i32 - (EXTRACT_SUBREG - (i64 - (LSRd_ri - (i64 - (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), - subreg_loreg)), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), - subreg_loreg)))), 32)), - subreg_loreg)))), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))), - 32)), subreg_loreg)))), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>; - -// Multiply 64-bit signed and use upper result. -def : Pat <(mulhs (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), - (i64 - (MPY64_acc - (i64 - (COMBINE_rr (TFRI 0), - (i32 - (EXTRACT_SUBREG - (i64 - (LSRd_ri - (i64 - (MPY64_acc - (i64 - (MPY64_acc - (i64 - (COMBINE_rr (TFRI 0), - (i32 - (EXTRACT_SUBREG - (i64 - (LSRd_ri - (i64 - (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), - subreg_loreg)), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), - subreg_loreg)))), 32)), - subreg_loreg)))), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))), - 32)), subreg_loreg)))), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), - (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>; +multiclass xtype_reg_acc_r<string opc1, SDNode OpNode, bits<2>minOp> { + let AddedComplexity = 100 in + def _acc : T_shift_reg_acc_r <opc1, "+= ", OpNode, add, 0b11, minOp>; -// Hexagon specific ISD nodes. -//def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>]>; -def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, - [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; -def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC", - SDTHexagonADJDYNALLOC>; -// Needed to tag these instructions for stack layout. -let usesCustomInserter = 1 in -def ADJDYNALLOC : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1, - s16Imm:$src2), - "$dst = add($src1, #$src2)", - [(set (i32 IntRegs:$dst), - (Hexagon_ADJDYNALLOC (i32 IntRegs:$src1), - s16ImmPred:$src2))]>; + def _nac : T_shift_reg_acc_r <opc1, "-= ", OpNode, sub, 0b10, minOp>; + def _and : T_shift_reg_acc_r <opc1, "&= ", OpNode, and, 0b01, minOp>; + def _or : T_shift_reg_acc_r <opc1, "|= ", OpNode, or, 0b00, minOp>; +} -def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>; -def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>; -def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1), - "$dst = $src1", - [(set (i32 IntRegs:$dst), - (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>; +multiclass xtype_reg_acc_p<string opc1, SDNode OpNode, bits<2>minOp> { + let AddedComplexity = 100 in + def _acc : T_shift_reg_acc_p <opc1, "+= ", OpNode, add, 0b110, minOp>; -let AddedComplexity = 100 in -def : Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)), - (COPY (i32 IntRegs:$src1))>; + def _nac : T_shift_reg_acc_p <opc1, "-= ", OpNode, sub, 0b100, minOp>; + def _and : T_shift_reg_acc_p <opc1, "&= ", OpNode, and, 0b010, minOp>; + def _or : T_shift_reg_acc_p <opc1, "|= ", OpNode, or, 0b000, minOp>; + def _xor : T_shift_reg_acc_p <opc1, "^= ", OpNode, xor, 0b011, minOp>; +} -def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>; +multiclass xtype_reg_acc<string OpcStr, SDNode OpNode, bits<2> minOp > { + defm _r_r : xtype_reg_acc_r <OpcStr, OpNode, minOp>; + defm _r_p : xtype_reg_acc_p <OpcStr, OpNode, minOp>; +} -def : Pat<(HexagonWrapperJT tjumptable:$dst), - (i32 (CONST32_set_jt tjumptable:$dst))>; +defm S2_asl : xtype_reg_acc<"asl", shl, 0b10>; +defm S2_asr : xtype_reg_acc<"asr", sra, 0b00>; +defm S2_lsr : xtype_reg_acc<"lsr", srl, 0b01>; +defm S2_lsl : xtype_reg_acc<"lsl", shl, 0b11>; -// XTYPE/SHIFT +//===----------------------------------------------------------------------===// +let hasSideEffects = 0 in +class T_S3op_1 <string mnemonic, RegisterClass RC, bits<2> MajOp, bits<3> MinOp, + bit SwapOps, bit isSat = 0, bit isRnd = 0, bit hasShift = 0> + : SInst <(outs RC:$dst), + (ins DoubleRegs:$src1, DoubleRegs:$src2), + "$dst = "#mnemonic#"($src1, $src2)"#!if(isRnd, ":rnd", "") + #!if(hasShift,":>>1","") + #!if(isSat, ":sat", ""), + [], "", S_3op_tc_2_SLOT23 > { + bits<5> dst; + bits<5> src1; + bits<5> src2; -// Multi-class for logical operators : -// Shift by immediate/register and accumulate/logical -multiclass xtype_imm<string OpcStr, SDNode OpNode1, SDNode OpNode2> { - def _ri : SInst_acc<(outs IntRegs:$dst), - (ins IntRegs:$src1, IntRegs:$src2, u5Imm:$src3), - !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")), - [(set (i32 IntRegs:$dst), - (OpNode2 (i32 IntRegs:$src1), - (OpNode1 (i32 IntRegs:$src2), - u5ImmPred:$src3)))], - "$src1 = $dst">; - - def d_ri : SInst_acc<(outs DoubleRegs:$dst), - (ins DoubleRegs:$src1, DoubleRegs:$src2, u6Imm:$src3), - !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")), - [(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1), - (OpNode1 (i64 DoubleRegs:$src2), u6ImmPred:$src3)))], - "$src1 = $dst">; -} - -// Multi-class for logical operators : -// Shift by register and accumulate/logical (32/64 bits) -multiclass xtype_reg<string OpcStr, SDNode OpNode1, SDNode OpNode2> { - def _rr : SInst_acc<(outs IntRegs:$dst), - (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), - !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")), - [(set (i32 IntRegs:$dst), - (OpNode2 (i32 IntRegs:$src1), - (OpNode1 (i32 IntRegs:$src2), - (i32 IntRegs:$src3))))], - "$src1 = $dst">; + let IClass = 0b1100; - def d_rr : SInst_acc<(outs DoubleRegs:$dst), - (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3), - !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")), - [(set (i64 DoubleRegs:$dst), - (OpNode2 (i64 DoubleRegs:$src1), - (OpNode1 (i64 DoubleRegs:$src2), - (i32 IntRegs:$src3))))], - "$src1 = $dst">; + let Inst{27-24} = 0b0001; + let Inst{23-22} = MajOp; + let Inst{20-16} = !if (SwapOps, src2, src1); + let Inst{12-8} = !if (SwapOps, src1, src2); + let Inst{7-5} = MinOp; + let Inst{4-0} = dst; + } -} +class T_S3op_64 <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit SwapOps, + bit isSat = 0, bit isRnd = 0, bit hasShift = 0 > + : T_S3op_1 <mnemonic, DoubleRegs, MajOp, MinOp, SwapOps, + isSat, isRnd, hasShift>; -multiclass basic_xtype_imm<string OpcStr, SDNode OpNode> { -let AddedComplexity = 100 in - defm _ADD : xtype_imm< !strconcat("+= ", OpcStr), OpNode, add>; - defm _SUB : xtype_imm< !strconcat("-= ", OpcStr), OpNode, sub>; - defm _AND : xtype_imm< !strconcat("&= ", OpcStr), OpNode, and>; - defm _OR : xtype_imm< !strconcat("|= ", OpcStr), OpNode, or>; +let Itinerary = S_3op_tc_1_SLOT23 in { + def S2_shuffeb : T_S3op_64 < "shuffeb", 0b00, 0b010, 0>; + def S2_shuffeh : T_S3op_64 < "shuffeh", 0b00, 0b110, 0>; + def S2_shuffob : T_S3op_64 < "shuffob", 0b00, 0b100, 1>; + def S2_shuffoh : T_S3op_64 < "shuffoh", 0b10, 0b000, 1>; + + def S2_vtrunewh : T_S3op_64 < "vtrunewh", 0b10, 0b010, 0>; + def S2_vtrunowh : T_S3op_64 < "vtrunowh", 0b10, 0b100, 0>; } -multiclass basic_xtype_reg<string OpcStr, SDNode OpNode> { -let AddedComplexity = 100 in - defm _ADD : xtype_reg< !strconcat("+= ", OpcStr), OpNode, add>; - defm _SUB : xtype_reg< !strconcat("-= ", OpcStr), OpNode, sub>; - defm _AND : xtype_reg< !strconcat("&= ", OpcStr), OpNode, and>; - defm _OR : xtype_reg< !strconcat("|= ", OpcStr), OpNode, or>; +def S2_lfsp : T_S3op_64 < "lfs", 0b10, 0b110, 0>; + +let hasSideEffects = 0 in +class T_S3op_2 <string mnemonic, bits<3> MajOp, bit SwapOps> + : SInst < (outs DoubleRegs:$Rdd), + (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, PredRegs:$Pu), + "$Rdd = "#mnemonic#"($Rss, $Rtt, $Pu)", + [], "", S_3op_tc_1_SLOT23 > { + bits<5> Rdd; + bits<5> Rss; + bits<5> Rtt; + bits<2> Pu; + + let IClass = 0b1100; + + let Inst{27-24} = 0b0010; + let Inst{23-21} = MajOp; + let Inst{20-16} = !if (SwapOps, Rtt, Rss); + let Inst{12-8} = !if (SwapOps, Rss, Rtt); + let Inst{6-5} = Pu; + let Inst{4-0} = Rdd; + } + +def S2_valignrb : T_S3op_2 < "valignb", 0b000, 1>; +def S2_vsplicerb : T_S3op_2 < "vspliceb", 0b100, 0>; + +//===----------------------------------------------------------------------===// +// Template class used by vector shift, vector rotate, vector neg, +// 32-bit shift, 64-bit shifts, etc. +//===----------------------------------------------------------------------===// + +let hasSideEffects = 0 in +class T_S3op_3 <string mnemonic, RegisterClass RC, bits<2> MajOp, + bits<2> MinOp, bit isSat = 0, list<dag> pattern = [] > + : SInst <(outs RC:$dst), + (ins RC:$src1, IntRegs:$src2), + "$dst = "#mnemonic#"($src1, $src2)"#!if(isSat, ":sat", ""), + pattern, "", S_3op_tc_1_SLOT23> { + bits<5> dst; + bits<5> src1; + bits<5> src2; + + let IClass = 0b1100; + + let Inst{27-24} = !if(!eq(!cast<string>(RC), "IntRegs"), 0b0110, 0b0011); + let Inst{23-22} = MajOp; + let Inst{20-16} = src1; + let Inst{12-8} = src2; + let Inst{7-6} = MinOp; + let Inst{4-0} = dst; + } + +let hasNewValue = 1 in +class T_S3op_shift32 <string mnemonic, SDNode OpNode, bits<2> MinOp> + : T_S3op_3 <mnemonic, IntRegs, 0b01, MinOp, 0, + [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23 in +class T_S3op_shift32_Sat <string mnemonic, bits<2> MinOp> + : T_S3op_3 <mnemonic, IntRegs, 0b00, MinOp, 1, []>; + + +class T_S3op_shift64 <string mnemonic, SDNode OpNode, bits<2> MinOp> + : T_S3op_3 <mnemonic, DoubleRegs, 0b10, MinOp, 0, + [(set (i64 DoubleRegs:$dst), (OpNode (i64 DoubleRegs:$src1), + (i32 IntRegs:$src2)))]>; + + +class T_S3op_shiftVect <string mnemonic, bits<2> MajOp, bits<2> MinOp> + : T_S3op_3 <mnemonic, DoubleRegs, MajOp, MinOp, 0, []>; + + +// Shift by register +// Rdd=[asr|lsr|asl|lsl](Rss,Rt) + +def S2_asr_r_p : T_S3op_shift64 < "asr", sra, 0b00>; +def S2_lsr_r_p : T_S3op_shift64 < "lsr", srl, 0b01>; +def S2_asl_r_p : T_S3op_shift64 < "asl", shl, 0b10>; +def S2_lsl_r_p : T_S3op_shift64 < "lsl", shl, 0b11>; + +// Rd=[asr|lsr|asl|lsl](Rs,Rt) + +def S2_asr_r_r : T_S3op_shift32<"asr", sra, 0b00>; +def S2_lsr_r_r : T_S3op_shift32<"lsr", srl, 0b01>; +def S2_asl_r_r : T_S3op_shift32<"asl", shl, 0b10>; +def S2_lsl_r_r : T_S3op_shift32<"lsl", shl, 0b11>; + +// Shift by register with saturation +// Rd=asr(Rs,Rt):sat +// Rd=asl(Rs,Rt):sat + +let Defs = [USR_OVF] in { + def S2_asr_r_r_sat : T_S3op_shift32_Sat<"asr", 0b00>; + def S2_asl_r_r_sat : T_S3op_shift32_Sat<"asl", 0b10>; } -multiclass xtype_xor_imm<string OpcStr, SDNode OpNode> { -let AddedComplexity = 100 in - defm _XOR : xtype_imm< !strconcat("^= ", OpcStr), OpNode, xor>; +let hasNewValue = 1, hasSideEffects = 0 in +class T_S3op_8 <string opc, bits<3> MinOp, bit isSat, bit isRnd, bit hasShift, bit hasSplat = 0> + : SInst < (outs IntRegs:$Rd), + (ins DoubleRegs:$Rss, IntRegs:$Rt), + "$Rd = "#opc#"($Rss, $Rt"#!if(hasSplat, "*", "")#")" + #!if(hasShift, ":<<1", "") + #!if(isRnd, ":rnd", "") + #!if(isSat, ":sat", ""), + [], "", S_3op_tc_1_SLOT23 > { + bits<5> Rd; + bits<5> Rss; + bits<5> Rt; + + let IClass = 0b1100; + + let Inst{27-24} = 0b0101; + let Inst{20-16} = Rss; + let Inst{12-8} = Rt; + let Inst{7-5} = MinOp; + let Inst{4-0} = Rd; + } + +def S2_asr_r_svw_trun : T_S3op_8<"vasrw", 0b010, 0, 0, 0>; + +let Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23 in +def S2_vcrotate : T_S3op_shiftVect < "vcrotate", 0b11, 0b00>; + +let hasSideEffects = 0 in +class T_S3op_7 <string mnemonic, bit MajOp > + : SInst <(outs DoubleRegs:$Rdd), + (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, u3Imm:$u3), + "$Rdd = "#mnemonic#"($Rss, $Rtt, #$u3)" , + [], "", S_3op_tc_1_SLOT23 > { + bits<5> Rdd; + bits<5> Rss; + bits<5> Rtt; + bits<3> u3; + + let IClass = 0b1100; + + let Inst{27-24} = 0b0000; + let Inst{23} = MajOp; + let Inst{20-16} = !if(MajOp, Rss, Rtt); + let Inst{12-8} = !if(MajOp, Rtt, Rss); + let Inst{7-5} = u3; + let Inst{4-0} = Rdd; + } + +def S2_valignib : T_S3op_7 < "valignb", 0>; +def S2_vspliceib : T_S3op_7 < "vspliceb", 1>; + +//===----------------------------------------------------------------------===// +// Template class for 'insert bitfield' instructions +//===----------------------------------------------------------------------===// +let hasSideEffects = 0 in +class T_S3op_insert <string mnemonic, RegisterClass RC> + : SInst <(outs RC:$dst), + (ins RC:$src1, RC:$src2, DoubleRegs:$src3), + "$dst = "#mnemonic#"($src2, $src3)" , + [], "$src1 = $dst", S_3op_tc_1_SLOT23 > { + bits<5> dst; + bits<5> src2; + bits<5> src3; + + let IClass = 0b1100; + + let Inst{27-26} = 0b10; + let Inst{25-24} = !if(!eq(!cast<string>(RC), "IntRegs"), 0b00, 0b10); + let Inst{23} = 0b0; + let Inst{20-16} = src2; + let Inst{12-8} = src3; + let Inst{4-0} = dst; + } + +let hasSideEffects = 0 in +class T_S2op_insert <bits<4> RegTyBits, RegisterClass RC, Operand ImmOp> + : SInst <(outs RC:$dst), (ins RC:$dst2, RC:$src1, ImmOp:$src2, ImmOp:$src3), + "$dst = insert($src1, #$src2, #$src3)", + [], "$dst2 = $dst", S_2op_tc_2_SLOT23> { + bits<5> dst; + bits<5> src1; + bits<6> src2; + bits<6> src3; + bit bit23; + bit bit13; + string ImmOpStr = !cast<string>(ImmOp); + + let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5}, 0); + let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0); + + let IClass = 0b1000; + + let Inst{27-24} = RegTyBits; + let Inst{23} = bit23; + let Inst{22-21} = src3{4-3}; + let Inst{20-16} = src1; + let Inst{13} = bit13; + let Inst{12-8} = src2{4-0}; + let Inst{7-5} = src3{2-0}; + let Inst{4-0} = dst; + } + +// Rx=insert(Rs,Rtt) +// Rx=insert(Rs,#u5,#U5) +let hasNewValue = 1 in { + def S2_insert_rp : T_S3op_insert <"insert", IntRegs>; + def S2_insert : T_S2op_insert <0b1111, IntRegs, u5Imm>; } -defm ASL : basic_xtype_imm<"asl", shl>, basic_xtype_reg<"asl", shl>, - xtype_xor_imm<"asl", shl>; +// Rxx=insert(Rss,Rtt) +// Rxx=insert(Rss,#u6,#U6) +def S2_insertp_rp : T_S3op_insert<"insert", DoubleRegs>; +def S2_insertp : T_S2op_insert <0b0011, DoubleRegs, u6Imm>; -defm LSR : basic_xtype_imm<"lsr", srl>, basic_xtype_reg<"lsr", srl>, - xtype_xor_imm<"lsr", srl>; +//===----------------------------------------------------------------------===// +// Template class for 'extract bitfield' instructions +//===----------------------------------------------------------------------===// +let hasNewValue = 1, hasSideEffects = 0 in +class T_S3op_extract <string mnemonic, bits<2> MinOp> + : SInst <(outs IntRegs:$Rd), (ins IntRegs:$Rs, DoubleRegs:$Rtt), + "$Rd = "#mnemonic#"($Rs, $Rtt)", + [], "", S_3op_tc_2_SLOT23 > { + bits<5> Rd; + bits<5> Rs; + bits<5> Rtt; + + let IClass = 0b1100; + + let Inst{27-22} = 0b100100; + let Inst{20-16} = Rs; + let Inst{12-8} = Rtt; + let Inst{7-6} = MinOp; + let Inst{4-0} = Rd; + } + +let hasSideEffects = 0 in +class T_S2op_extract <string mnemonic, bits<4> RegTyBits, + RegisterClass RC, Operand ImmOp> + : SInst <(outs RC:$dst), (ins RC:$src1, ImmOp:$src2, ImmOp:$src3), + "$dst = "#mnemonic#"($src1, #$src2, #$src3)", + [], "", S_2op_tc_2_SLOT23> { + bits<5> dst; + bits<5> src1; + bits<6> src2; + bits<6> src3; + bit bit23; + bit bit13; + string ImmOpStr = !cast<string>(ImmOp); + + let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5}, + !if (!eq(mnemonic, "extractu"), 0, 1)); + + let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0); + + let IClass = 0b1000; + + let Inst{27-24} = RegTyBits; + let Inst{23} = bit23; + let Inst{22-21} = src3{4-3}; + let Inst{20-16} = src1; + let Inst{13} = bit13; + let Inst{12-8} = src2{4-0}; + let Inst{7-5} = src3{2-0}; + let Inst{4-0} = dst; + } -defm ASR : basic_xtype_imm<"asr", sra>, basic_xtype_reg<"asr", sra>; -defm LSL : basic_xtype_reg<"lsl", shl>; +// Extract bitfield + +// Rdd=extractu(Rss,Rtt) +// Rdd=extractu(Rss,#u6,#U6) +def S2_extractup_rp : T_S3op_64 < "extractu", 0b00, 0b000, 0>; +def S2_extractup : T_S2op_extract <"extractu", 0b0001, DoubleRegs, u6Imm>; + +// Rd=extractu(Rs,Rtt) +// Rd=extractu(Rs,#u5,#U5) +let hasNewValue = 1 in { + def S2_extractu_rp : T_S3op_extract<"extractu", 0b00>; + def S2_extractu : T_S2op_extract <"extractu", 0b1101, IntRegs, u5Imm>; +} // Change the sign of the immediate for Rd=-mpyi(Rs,#u8) -def : Pat <(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)), - (i32 (MPYI_rin (i32 IntRegs:$src1), u8ImmPred:$src2))>; +def: Pat<(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)), + (M2_mpysin IntRegs:$src1, u8ImmPred:$src2)>; + +//===----------------------------------------------------------------------===// +// :raw for of tableindx[bdhw] insns +//===----------------------------------------------------------------------===// + +let hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in +class tableidxRaw<string OpStr, bits<2>MinOp> + : SInst <(outs IntRegs:$Rx), + (ins IntRegs:$_dst_, IntRegs:$Rs, u4Imm:$u4, s6Imm:$S6), + "$Rx = "#OpStr#"($Rs, #$u4, #$S6):raw", + [], "$Rx = $_dst_" > { + bits<5> Rx; + bits<5> Rs; + bits<4> u4; + bits<6> S6; + + let IClass = 0b1000; + + let Inst{27-24} = 0b0111; + let Inst{23-22} = MinOp; + let Inst{21} = u4{3}; + let Inst{20-16} = Rs; + let Inst{13-8} = S6; + let Inst{7-5} = u4{2-0}; + let Inst{4-0} = Rx; + } + +def S2_tableidxb : tableidxRaw<"tableidxb", 0b00>; +def S2_tableidxh : tableidxRaw<"tableidxh", 0b01>; +def S2_tableidxw : tableidxRaw<"tableidxw", 0b10>; +def S2_tableidxd : tableidxRaw<"tableidxd", 0b11>; //===----------------------------------------------------------------------===// // V3 Instructions + @@ -2930,3 +5756,9 @@ include "HexagonInstrInfoV5.td" //===----------------------------------------------------------------------===// // V5 Instructions - //===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// ALU32/64/Vector + +//===----------------------------------------------------------------------===/// + +include "HexagonInstrInfoVector.td"
\ No newline at end of file |