aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/Hexagon/HexagonInstrInfo.td
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/Hexagon/HexagonInstrInfo.td')
-rw-r--r--lib/Target/Hexagon/HexagonInstrInfo.td6862
1 files changed, 4847 insertions, 2015 deletions
diff --git a/lib/Target/Hexagon/HexagonInstrInfo.td b/lib/Target/Hexagon/HexagonInstrInfo.td
index 4090681..60635cf 100644
--- a/lib/Target/Hexagon/HexagonInstrInfo.td
+++ b/lib/Target/Hexagon/HexagonInstrInfo.td
@@ -14,83 +14,100 @@
include "HexagonInstrFormats.td"
include "HexagonOperands.td"
-//===----------------------------------------------------------------------===//
+// Pattern fragment that combines the value type and the register class
+// into a single parameter.
+// The pat frags in the definitions below need to have a named register,
+// otherwise i32 will be assumed regardless of the register class. The
+// name of the register does not matter.
+def I1 : PatLeaf<(i1 PredRegs:$R)>;
+def I32 : PatLeaf<(i32 IntRegs:$R)>;
+def I64 : PatLeaf<(i64 DoubleRegs:$R)>;
+def F32 : PatLeaf<(f32 IntRegs:$R)>;
+def F64 : PatLeaf<(f64 DoubleRegs:$R)>;
+
+// Pattern fragments to extract the low and high subregisters from a
+// 64-bit value.
+def LoReg: OutPatFrag<(ops node:$Rs),
+ (EXTRACT_SUBREG (i64 $Rs), subreg_loreg)>;
+def HiReg: OutPatFrag<(ops node:$Rs),
+ (EXTRACT_SUBREG (i64 $Rs), subreg_hireg)>;
-// Multi-class for logical operators.
-multiclass ALU32_rr_ri<string OpcStr, SDNode OpNode> {
- def rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
- [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$b),
- (i32 IntRegs:$c)))]>;
- def ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Imm:$b, IntRegs:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "(#$b, $c)")),
- [(set (i32 IntRegs:$dst), (OpNode s10Imm:$b,
- (i32 IntRegs:$c)))]>;
-}
+// SDNode for converting immediate C to C-1.
+def DEC_CONST_SIGNED : SDNodeXForm<imm, [{
+ // Return the byte immediate const-1 as an SDNode.
+ int32_t imm = N->getSExtValue();
+ return XformSToSM1Imm(imm);
+}]>;
-// Multi-class for compare ops.
-let isCompare = 1 in {
-multiclass CMP64_rr<string OpcStr, PatFrag OpNode> {
- def rr : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$b, DoubleRegs:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
- [(set (i1 PredRegs:$dst),
- (OpNode (i64 DoubleRegs:$b), (i64 DoubleRegs:$c)))]>;
-}
+// SDNode for converting immediate C to C-2.
+def DEC2_CONST_SIGNED : SDNodeXForm<imm, [{
+ // Return the byte immediate const-2 as an SDNode.
+ int32_t imm = N->getSExtValue();
+ return XformSToSM2Imm(imm);
+}]>;
+
+// SDNode for converting immediate C to C-3.
+def DEC3_CONST_SIGNED : SDNodeXForm<imm, [{
+ // Return the byte immediate const-3 as an SDNode.
+ int32_t imm = N->getSExtValue();
+ return XformSToSM3Imm(imm);
+}]>;
-multiclass CMP32_rr_ri_s10<string OpcStr, string CextOp, PatFrag OpNode> {
- let CextOpcode = CextOp in {
- let InputType = "reg" in
- def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
- [(set (i1 PredRegs:$dst),
- (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
+// SDNode for converting immediate C to C-1.
+def DEC_CONST_UNSIGNED : SDNodeXForm<imm, [{
+ // Return the byte immediate const-1 as an SDNode.
+ uint32_t imm = N->getZExtValue();
+ return XformUToUM1Imm(imm);
+}]>;
- let isExtendable = 1, opExtendable = 2, isExtentSigned = 1,
- opExtentBits = 10, InputType = "imm" in
- def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s10Ext:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
- [(set (i1 PredRegs:$dst),
- (OpNode (i32 IntRegs:$b), s10ExtPred:$c))]>;
+//===----------------------------------------------------------------------===//
+// Compare
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, isCompare = 1, InputType = "imm", isExtendable = 1,
+ opExtendable = 2 in
+class T_CMP <string mnemonic, bits<2> MajOp, bit isNot, Operand ImmOp>
+ : ALU32Inst <(outs PredRegs:$dst),
+ (ins IntRegs:$src1, ImmOp:$src2),
+ "$dst = "#!if(isNot, "!","")#mnemonic#"($src1, #$src2)",
+ [], "",ALU32_2op_tc_2early_SLOT0123 >, ImmRegRel {
+ bits<2> dst;
+ bits<5> src1;
+ bits<10> src2;
+ let CextOpcode = mnemonic;
+ let opExtentBits = !if(!eq(mnemonic, "cmp.gtu"), 9, 10);
+ let isExtentSigned = !if(!eq(mnemonic, "cmp.gtu"), 0, 1);
+
+ let IClass = 0b0111;
+
+ let Inst{27-24} = 0b0101;
+ let Inst{23-22} = MajOp;
+ let Inst{21} = !if(!eq(mnemonic, "cmp.gtu"), 0, src2{9});
+ let Inst{20-16} = src1;
+ let Inst{13-5} = src2{8-0};
+ let Inst{4} = isNot;
+ let Inst{3-2} = 0b00;
+ let Inst{1-0} = dst;
}
-}
-multiclass CMP32_rr_ri_u9<string OpcStr, string CextOp, PatFrag OpNode> {
- let CextOpcode = CextOp in {
- let InputType = "reg" in
- def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
- [(set (i1 PredRegs:$dst),
- (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
+def C2_cmpeqi : T_CMP <"cmp.eq", 0b00, 0, s10Ext>;
+def C2_cmpgti : T_CMP <"cmp.gt", 0b01, 0, s10Ext>;
+def C2_cmpgtui : T_CMP <"cmp.gtu", 0b10, 0, u9Ext>;
- let isExtendable = 1, opExtendable = 2, isExtentSigned = 0,
- opExtentBits = 9, InputType = "imm" in
- def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u9Ext:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
- [(set (i1 PredRegs:$dst),
- (OpNode (i32 IntRegs:$b), u9ExtPred:$c))]>;
- }
-}
+class T_CMP_pat <InstHexagon MI, PatFrag OpNode, PatLeaf ImmPred>
+ : Pat<(i1 (OpNode (i32 IntRegs:$src1), ImmPred:$src2)),
+ (MI IntRegs:$src1, ImmPred:$src2)>;
-multiclass CMP32_ri_s8<string OpcStr, PatFrag OpNode> {
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in
- def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s8Ext:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
- [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b),
- s8ExtPred:$c))]>;
-}
-}
+def : T_CMP_pat <C2_cmpeqi, seteq, s10ImmPred>;
+def : T_CMP_pat <C2_cmpgti, setgt, s10ImmPred>;
+def : T_CMP_pat <C2_cmpgtui, setugt, u9ImmPred>;
//===----------------------------------------------------------------------===//
-// ALU32/ALU (Instructions with register-register form)
+// ALU32/ALU +
//===----------------------------------------------------------------------===//
def SDTHexagonI64I32I32 : SDTypeProfile<1, 2,
[SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
-def HexagonWrapperCombineII :
- SDNode<"HexagonISD::WrapperCombineII", SDTHexagonI64I32I32>;
-
-def HexagonWrapperCombineRR :
- SDNode<"HexagonISD::WrapperCombineRR", SDTHexagonI64I32I32>;
+def HexagonCOMBINE : SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>;
let hasSideEffects = 0, hasNewValue = 1, InputType = "reg" in
class T_ALU32_3op<string mnemonic, bits<3> MajOp, bits<3> MinOp, bit OpsRev,
@@ -145,6 +162,41 @@ class T_ALU32_3op_pred<string mnemonic, bits<3> MajOp, bits<3> MinOp,
let Inst{4-0} = Rd;
}
+class T_ALU32_combineh<string Op1, string Op2, bits<3> MajOp, bits<3> MinOp,
+ bit OpsRev>
+ : T_ALU32_3op<"", MajOp, MinOp, OpsRev, 0> {
+ let AsmString = "$Rd = combine($Rs"#Op1#", $Rt"#Op2#")";
+}
+
+def A2_combine_hh : T_ALU32_combineh<".h", ".h", 0b011, 0b100, 1>;
+def A2_combine_hl : T_ALU32_combineh<".h", ".l", 0b011, 0b101, 1>;
+def A2_combine_lh : T_ALU32_combineh<".l", ".h", 0b011, 0b110, 1>;
+def A2_combine_ll : T_ALU32_combineh<".l", ".l", 0b011, 0b111, 1>;
+
+class T_ALU32_3op_sfx<string mnemonic, string suffix, bits<3> MajOp,
+ bits<3> MinOp, bit OpsRev, bit IsComm>
+ : T_ALU32_3op<"", MajOp, MinOp, OpsRev, IsComm> {
+ let AsmString = "$Rd = "#mnemonic#"($Rs, $Rt)"#suffix;
+}
+
+def A2_svaddh : T_ALU32_3op<"vaddh", 0b110, 0b000, 0, 1>;
+def A2_svsubh : T_ALU32_3op<"vsubh", 0b110, 0b100, 1, 0>;
+
+let Defs = [USR_OVF], Itinerary = ALU32_3op_tc_2_SLOT0123 in {
+ def A2_svaddhs : T_ALU32_3op_sfx<"vaddh", ":sat", 0b110, 0b001, 0, 1>;
+ def A2_addsat : T_ALU32_3op_sfx<"add", ":sat", 0b110, 0b010, 0, 1>;
+ def A2_svadduhs : T_ALU32_3op_sfx<"vadduh", ":sat", 0b110, 0b011, 0, 1>;
+ def A2_svsubhs : T_ALU32_3op_sfx<"vsubh", ":sat", 0b110, 0b101, 1, 0>;
+ def A2_subsat : T_ALU32_3op_sfx<"sub", ":sat", 0b110, 0b110, 1, 0>;
+ def A2_svsubuhs : T_ALU32_3op_sfx<"vsubuh", ":sat", 0b110, 0b111, 1, 0>;
+}
+
+let Itinerary = ALU32_3op_tc_2_SLOT0123 in
+def A2_svavghs : T_ALU32_3op_sfx<"vavgh", ":rnd", 0b111, 0b001, 0, 1>;
+
+def A2_svavgh : T_ALU32_3op<"vavgh", 0b111, 0b000, 0, 1>;
+def A2_svnavgh : T_ALU32_3op<"vnavgh", 0b111, 0b011, 1, 0>;
+
multiclass T_ALU32_3op_p<string mnemonic, bits<3> MajOp, bits<3> MinOp,
bit OpsRev> {
def t : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 0, 0>;
@@ -160,7 +212,6 @@ multiclass T_ALU32_3op_A2<string mnemonic, bits<3> MajOp, bits<3> MinOp,
defm A2_p#NAME : T_ALU32_3op_p<mnemonic, MajOp, MinOp, OpsRev>;
}
-let isCodeGenOnly = 0 in
defm add : T_ALU32_3op_A2<"add", 0b011, 0b000, 0, 1>;
defm and : T_ALU32_3op_A2<"and", 0b001, 0b000, 0, 1>;
defm or : T_ALU32_3op_A2<"or", 0b001, 0b001, 0, 1>;
@@ -178,282 +229,418 @@ def: BinOp32_pat<or, A2_or, i32>;
def: BinOp32_pat<sub, A2_sub, i32>;
def: BinOp32_pat<xor, A2_xor, i32>;
-multiclass ALU32_Pbase<string mnemonic, RegisterClass RC, bit isNot,
- bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : ALU32_rr<(outs RC:$dst),
- (ins PredRegs:$src1, IntRegs:$src2, IntRegs: $src3),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
- ") $dst = ")#mnemonic#"($src2, $src3)",
- []>;
+// A few special cases producing register pairs:
+let OutOperandList = (outs DoubleRegs:$Rd), hasNewValue = 0 in {
+ def S2_packhl : T_ALU32_3op <"packhl", 0b101, 0b100, 0, 0>;
+
+ let isPredicable = 1 in
+ def A2_combinew : T_ALU32_3op <"combine", 0b101, 0b000, 0, 0>;
+
+ // Conditional combinew uses "newt/f" instead of "t/fnew".
+ def C2_ccombinewt : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 0>;
+ def C2_ccombinewf : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 0>;
+ def C2_ccombinewnewt : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 1>;
+ def C2_ccombinewnewf : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 1>;
}
-multiclass ALU32_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 1>;
- }
+let hasSideEffects = 0, hasNewValue = 1, isCompare = 1, InputType = "reg" in
+class T_ALU32_3op_cmp<string mnemonic, bits<2> MinOp, bit IsNeg, bit IsComm>
+ : ALU32_rr<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Pd = "#mnemonic#"($Rs, $Rt)",
+ [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel {
+ let CextOpcode = mnemonic;
+ let isCommutable = IsComm;
+ bits<5> Rs;
+ bits<5> Rt;
+ bits<2> Pd;
+
+ let IClass = 0b1111;
+ let Inst{27-24} = 0b0010;
+ let Inst{22-21} = MinOp;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{4} = IsNeg;
+ let Inst{3-2} = 0b00;
+ let Inst{1-0} = Pd;
}
-let InputType = "reg" in
-multiclass ALU32_base<string mnemonic, string CextOp, SDNode OpNode> {
- let CextOpcode = CextOp, BaseOpcode = CextOp#_rr in {
- let isPredicable = 1 in
- def NAME : ALU32_rr<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = "#mnemonic#"($src1, $src2)",
- [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
- let neverHasSideEffects = 1, isPredicated = 1 in {
- defm Pt : ALU32_Pred<mnemonic, IntRegs, 0>;
- defm NotPt : ALU32_Pred<mnemonic, IntRegs, 1>;
- }
- }
+let Itinerary = ALU32_3op_tc_2early_SLOT0123 in {
+ def C2_cmpeq : T_ALU32_3op_cmp< "cmp.eq", 0b00, 0, 1>;
+ def C2_cmpgt : T_ALU32_3op_cmp< "cmp.gt", 0b10, 0, 0>;
+ def C2_cmpgtu : T_ALU32_3op_cmp< "cmp.gtu", 0b11, 0, 0>;
}
-defm SUB_rr : ALU32_base<"sub", "SUB", sub>, ImmRegRel, PredNewRel;
+// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
+// that reverse the order of the operands.
+class RevCmp<PatFrag F> : PatFrag<(ops node:$rhs, node:$lhs), F.Fragment>;
-// Combines the two integer registers SRC1 and SRC2 into a double register.
-let isPredicable = 1 in
-class T_Combine : ALU32_rr<(outs DoubleRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = combine($src1, $src2)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (HexagonWrapperCombineRR (i32 IntRegs:$src1),
- (i32 IntRegs:$src2))))]>;
-
-multiclass Combine_base {
- let BaseOpcode = "combine" in {
- def NAME : T_Combine;
- let neverHasSideEffects = 1, isPredicated = 1 in {
- defm Pt : ALU32_Pred<"combine", DoubleRegs, 0>;
- defm NotPt : ALU32_Pred<"combine", DoubleRegs, 1>;
- }
- }
-}
+// Pats for compares. They use PatFrags as operands, not SDNodes,
+// since seteq/setgt/etc. are defined as ParFrags.
+class T_cmp32_rr_pat<InstHexagon MI, PatFrag Op, ValueType VT>
+ : Pat<(VT (Op (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))),
+ (VT (MI IntRegs:$Rs, IntRegs:$Rt))>;
-defm COMBINE_rr : Combine_base, PredNewRel;
+def: T_cmp32_rr_pat<C2_cmpeq, seteq, i1>;
+def: T_cmp32_rr_pat<C2_cmpgt, setgt, i1>;
+def: T_cmp32_rr_pat<C2_cmpgtu, setugt, i1>;
-// Combines the two immediates SRC1 and SRC2 into a double register.
-class COMBINE_imm<Operand imm1, Operand imm2, PatLeaf pat1, PatLeaf pat2> :
- ALU32_ii<(outs DoubleRegs:$dst), (ins imm1:$src1, imm2:$src2),
- "$dst = combine(#$src1, #$src2)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (HexagonWrapperCombineII (i32 pat1:$src1), (i32 pat2:$src2))))]>;
+def: T_cmp32_rr_pat<C2_cmpgt, RevCmp<setlt>, i1>;
+def: T_cmp32_rr_pat<C2_cmpgtu, RevCmp<setult>, i1>;
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 8 in
-def COMBINE_Ii : COMBINE_imm<s8Ext, s8Imm, s8ExtPred, s8ImmPred>;
+let CextOpcode = "MUX", InputType = "reg", hasNewValue = 1 in
+def C2_mux: ALU32_rr<(outs IntRegs:$Rd),
+ (ins PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = mux($Pu, $Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel {
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let CextOpcode = "mux";
+ let InputType = "reg";
+ let hasSideEffects = 0;
+ let IClass = 0b1111;
+
+ let Inst{27-24} = 0b0100;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{6-5} = Pu;
+ let Inst{4-0} = Rd;
+}
+
+def: Pat<(i32 (select (i1 PredRegs:$Pu), (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))),
+ (C2_mux PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt)>;
+
+// Combines the two immediates into a double register.
+// Increase complexity to make it greater than any complexity of a combine
+// that involves a register.
+
+let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1,
+ isExtentSigned = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 1,
+ AddedComplexity = 75 in
+def A2_combineii: ALU32Inst <(outs DoubleRegs:$Rdd), (ins s8Ext:$s8, s8Imm:$S8),
+ "$Rdd = combine(#$s8, #$S8)",
+ [(set (i64 DoubleRegs:$Rdd),
+ (i64 (HexagonCOMBINE(i32 s8ExtPred:$s8), (i32 s8ImmPred:$S8))))]> {
+ bits<5> Rdd;
+ bits<8> s8;
+ bits<8> S8;
+
+ let IClass = 0b0111;
+ let Inst{27-23} = 0b11000;
+ let Inst{22-16} = S8{7-1};
+ let Inst{13} = S8{0};
+ let Inst{12-5} = s8;
+ let Inst{4-0} = Rdd;
+ }
//===----------------------------------------------------------------------===//
-// ALU32/ALU (ADD with register-immediate form)
+// Template class for predicated ADD of a reg and an Immediate value.
//===----------------------------------------------------------------------===//
-multiclass ALU32ri_Pbase<string mnemonic, bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : ALU32_ri<(outs IntRegs:$dst),
- (ins PredRegs:$src1, IntRegs:$src2, s8Ext: $src3),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
- ") $dst = ")#mnemonic#"($src2, #$src3)",
- []>;
-}
+let hasNewValue = 1, hasSideEffects = 0 in
+class T_Addri_Pred <bit PredNot, bit PredNew>
+ : ALU32_ri <(outs IntRegs:$Rd),
+ (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8),
+ !if(PredNot, "if (!$Pu", "if ($Pu")#!if(PredNew,".new) $Rd = ",
+ ") $Rd = ")#"add($Rs, #$s8)"> {
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<5> Rs;
+ bits<8> s8;
+
+ let isPredicatedNew = PredNew;
+ let IClass = 0b0111;
+
+ let Inst{27-24} = 0b0100;
+ let Inst{23} = PredNot;
+ let Inst{22-21} = Pu;
+ let Inst{20-16} = Rs;
+ let Inst{13} = PredNew;
+ let Inst{12-5} = s8;
+ let Inst{4-0} = Rd;
+ }
-multiclass ALU32ri_Pred<string mnemonic, bit PredNot> {
+//===----------------------------------------------------------------------===//
+// A2_addi: Add a signed immediate to a register.
+//===----------------------------------------------------------------------===//
+let hasNewValue = 1, hasSideEffects = 0 in
+class T_Addri <Operand immOp>
+ : ALU32_ri <(outs IntRegs:$Rd),
+ (ins IntRegs:$Rs, immOp:$s16),
+ "$Rd = add($Rs, #$s16)", [], "", ALU32_ADDI_tc_1_SLOT0123> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<16> s16;
+
+ let IClass = 0b1011;
+
+ let Inst{27-21} = s16{15-9};
+ let Inst{20-16} = Rs;
+ let Inst{13-5} = s16{8-0};
+ let Inst{4-0} = Rd;
+ }
+
+//===----------------------------------------------------------------------===//
+// Multiclass for ADD of a register and an immediate value.
+//===----------------------------------------------------------------------===//
+multiclass Addri_Pred<string mnemonic, bit PredNot> {
let isPredicatedFalse = PredNot in {
- defm _c#NAME : ALU32ri_Pbase<mnemonic, PredNot, 0>;
+ def NAME : T_Addri_Pred<PredNot, 0>;
// Predicate new
- defm _cdn#NAME : ALU32ri_Pbase<mnemonic, PredNot, 1>;
+ def NAME#new : T_Addri_Pred<PredNot, 1>;
}
}
-let isExtendable = 1, InputType = "imm" in
-multiclass ALU32ri_base<string mnemonic, string CextOp, SDNode OpNode> {
- let CextOpcode = CextOp, BaseOpcode = CextOp#_ri in {
- let opExtendable = 2, isExtentSigned = 1, opExtentBits = 16,
- isPredicable = 1 in
- def NAME : ALU32_ri<(outs IntRegs:$dst),
- (ins IntRegs:$src1, s16Ext:$src2),
- "$dst = "#mnemonic#"($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
- (s16ExtPred:$src2)))]>;
+let isExtendable = 1, isExtentSigned = 1, InputType = "imm" in
+multiclass Addri_base<string mnemonic, SDNode OpNode> {
+ let CextOpcode = mnemonic, BaseOpcode = mnemonic#_ri in {
+ let opExtendable = 2, opExtentBits = 16, isPredicable = 1 in
+ def A2_#NAME : T_Addri<s16Ext>;
- let opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
- neverHasSideEffects = 1, isPredicated = 1 in {
- defm Pt : ALU32ri_Pred<mnemonic, 0>;
- defm NotPt : ALU32ri_Pred<mnemonic, 1>;
+ let opExtendable = 3, opExtentBits = 8, isPredicated = 1 in {
+ defm A2_p#NAME#t : Addri_Pred<mnemonic, 0>;
+ defm A2_p#NAME#f : Addri_Pred<mnemonic, 1>;
}
}
}
-defm ADD_ri : ALU32ri_base<"add", "ADD", add>, ImmRegRel, PredNewRel;
+defm addi : Addri_base<"add", add>, ImmRegRel, PredNewRel;
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10,
-CextOpcode = "OR", InputType = "imm" in
-def OR_ri : ALU32_ri<(outs IntRegs:$dst),
- (ins IntRegs:$src1, s10Ext:$src2),
- "$dst = or($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
- s10ExtPred:$src2))]>, ImmRegRel;
+def: Pat<(i32 (add I32:$Rs, s16ExtPred:$s16)),
+ (i32 (A2_addi I32:$Rs, imm:$s16))>;
+//===----------------------------------------------------------------------===//
+// Template class used for the following ALU32 instructions.
+// Rd=and(Rs,#s10)
+// Rd=or(Rs,#s10)
+//===----------------------------------------------------------------------===//
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10,
-InputType = "imm", CextOpcode = "AND" in
-def AND_ri : ALU32_ri<(outs IntRegs:$dst),
- (ins IntRegs:$src1, s10Ext:$src2),
- "$dst = and($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
- s10ExtPred:$src2))]>, ImmRegRel;
+InputType = "imm", hasNewValue = 1 in
+class T_ALU32ri_logical <string mnemonic, SDNode OpNode, bits<2> MinOp>
+ : ALU32_ri <(outs IntRegs:$Rd),
+ (ins IntRegs:$Rs, s10Ext:$s10),
+ "$Rd = "#mnemonic#"($Rs, #$s10)" ,
+ [(set (i32 IntRegs:$Rd), (OpNode (i32 IntRegs:$Rs), s10ExtPred:$s10))]> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<10> s10;
+ let CextOpcode = mnemonic;
+
+ let IClass = 0b0111;
+
+ let Inst{27-24} = 0b0110;
+ let Inst{23-22} = MinOp;
+ let Inst{21} = s10{9};
+ let Inst{20-16} = Rs;
+ let Inst{13-5} = s10{8-0};
+ let Inst{4-0} = Rd;
+ }
-// Nop.
-let neverHasSideEffects = 1, isCodeGenOnly = 0 in
-def NOP : ALU32_rr<(outs), (ins),
- "nop",
- []>;
+def A2_orir : T_ALU32ri_logical<"or", or, 0b10>, ImmRegRel;
+def A2_andir : T_ALU32ri_logical<"and", and, 0b00>, ImmRegRel;
+// Subtract register from immediate
// Rd32=sub(#s10,Rs32)
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 10,
-CextOpcode = "SUB", InputType = "imm" in
-def SUB_ri : ALU32_ri<(outs IntRegs:$dst),
- (ins s10Ext:$src1, IntRegs:$src2),
- "$dst = sub(#$src1, $src2)",
- [(set IntRegs:$dst, (sub s10ExtPred:$src1, IntRegs:$src2))]>,
- ImmRegRel;
-
-// Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs).
-def : Pat<(not (i32 IntRegs:$src1)),
- (SUB_ri -1, (i32 IntRegs:$src1))>;
-
-// Rd = neg(Rs) gets mapped to Rd=sub(#0, Rs).
-// Pattern definition for 'neg' was not necessary.
-
-multiclass TFR_Pred<bit PredNot> {
- let isPredicatedFalse = PredNot in {
- def _c#NAME : ALU32_rr<(outs IntRegs:$dst),
- (ins PredRegs:$src1, IntRegs:$src2),
- !if(PredNot, "if (!$src1", "if ($src1")#") $dst = $src2",
- []>;
- // Predicate new
- let isPredicatedNew = 1 in
- def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst),
- (ins PredRegs:$src1, IntRegs:$src2),
- !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = $src2",
- []>;
+let isExtendable = 1, CextOpcode = "sub", opExtendable = 1, isExtentSigned = 1,
+ opExtentBits = 10, InputType = "imm", hasNewValue = 1, hasSideEffects = 0 in
+def A2_subri: ALU32_ri <(outs IntRegs:$Rd), (ins s10Ext:$s10, IntRegs:$Rs),
+ "$Rd = sub(#$s10, $Rs)", []>, ImmRegRel {
+ bits<5> Rd;
+ bits<10> s10;
+ bits<5> Rs;
+
+ let IClass = 0b0111;
+
+ let Inst{27-22} = 0b011001;
+ let Inst{21} = s10{9};
+ let Inst{20-16} = Rs;
+ let Inst{13-5} = s10{8-0};
+ let Inst{4-0} = Rd;
}
+
+// Nop.
+let hasSideEffects = 0 in
+def A2_nop: ALU32Inst <(outs), (ins), "nop" > {
+ let IClass = 0b0111;
+ let Inst{27-24} = 0b1111;
}
-let InputType = "reg", neverHasSideEffects = 1 in
-multiclass TFR_base<string CextOp> {
- let CextOpcode = CextOp, BaseOpcode = CextOp in {
- let isPredicable = 1 in
- def NAME : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1),
- "$dst = $src1",
- []>;
+def: Pat<(sub s10ExtPred:$s10, IntRegs:$Rs),
+ (A2_subri imm:$s10, IntRegs:$Rs)>;
- let isPredicated = 1 in {
- defm Pt : TFR_Pred<0>;
- defm NotPt : TFR_Pred<1>;
- }
+// Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs).
+def: Pat<(not (i32 IntRegs:$src1)),
+ (A2_subri -1, IntRegs:$src1)>;
+
+let hasSideEffects = 0, hasNewValue = 1 in
+class T_tfr16<bit isHi>
+ : ALU32Inst <(outs IntRegs:$Rx), (ins IntRegs:$src1, u16Imm:$u16),
+ "$Rx"#!if(isHi, ".h", ".l")#" = #$u16",
+ [], "$src1 = $Rx" > {
+ bits<5> Rx;
+ bits<16> u16;
+
+ let IClass = 0b0111;
+ let Inst{27-26} = 0b00;
+ let Inst{25-24} = !if(isHi, 0b10, 0b01);
+ let Inst{23-22} = u16{15-14};
+ let Inst{21} = 0b1;
+ let Inst{20-16} = Rx;
+ let Inst{13-0} = u16{13-0};
}
-}
-class T_TFR64_Pred<bit PredNot, bit isPredNew>
- : ALU32_rr<(outs DoubleRegs:$dst),
- (ins PredRegs:$src1, DoubleRegs:$src2),
- !if(PredNot, "if (!$src1", "if ($src1")#
- !if(isPredNew, ".new) ", ") ")#"$dst = $src2", []>
-{
+def A2_tfril: T_tfr16<0>;
+def A2_tfrih: T_tfr16<1>;
+
+// Conditional transfer is an alias to conditional "Rd = add(Rs, #0)".
+let isPredicated = 1, hasNewValue = 1, opNewValue = 0 in
+class T_tfr_pred<bit isPredNot, bit isPredNew>
+ : ALU32Inst<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2),
+ "if ("#!if(isPredNot, "!", "")#
+ "$src1"#!if(isPredNew, ".new", "")#
+ ") $dst = $src2"> {
bits<5> dst;
bits<2> src1;
bits<5> src2;
- let IClass = 0b1111;
- let Inst{27-24} = 0b1101;
+ let isPredicatedFalse = isPredNot;
+ let isPredicatedNew = isPredNew;
+ let IClass = 0b0111;
+
+ let Inst{27-24} = 0b0100;
+ let Inst{23} = isPredNot;
let Inst{13} = isPredNew;
- let Inst{7} = PredNot;
+ let Inst{12-5} = 0;
let Inst{4-0} = dst;
- let Inst{6-5} = src1;
- let Inst{20-17} = src2{4-1};
- let Inst{16} = 0b1;
- let Inst{12-9} = src2{4-1};
- let Inst{8} = 0b0;
-}
+ let Inst{22-21} = src1;
+ let Inst{20-16} = src2;
+ }
-multiclass TFR64_Pred<bit PredNot> {
- let isPredicatedFalse = PredNot in {
- def _c#NAME : T_TFR64_Pred<PredNot, 0>;
+let isPredicable = 1 in
+class T_tfr : ALU32Inst<(outs IntRegs:$dst), (ins IntRegs:$src),
+ "$dst = $src"> {
+ bits<5> dst;
+ bits<5> src;
- let isPredicatedNew = 1 in
- def _cdn#NAME : T_TFR64_Pred<PredNot, 1>; // Predicate new
+ let IClass = 0b0111;
+
+ let Inst{27-21} = 0b0000011;
+ let Inst{20-16} = src;
+ let Inst{13} = 0b0;
+ let Inst{4-0} = dst;
+ }
+
+let InputType = "reg", hasNewValue = 1, hasSideEffects = 0 in
+multiclass tfr_base<string CextOp> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp in {
+ def NAME : T_tfr;
+
+ // Predicate
+ def t : T_tfr_pred<0, 0>;
+ def f : T_tfr_pred<1, 0>;
+ // Predicate new
+ def tnew : T_tfr_pred<0, 1>;
+ def fnew : T_tfr_pred<1, 1>;
}
}
-let neverHasSideEffects = 1 in
+// Assembler mapped to C2_ccombinew[t|f|newt|newf].
+// Please don't add bits to this instruction as it'll be converted into
+// 'combine' before object code emission.
+let isPredicated = 1 in
+class T_tfrp_pred<bit PredNot, bit PredNew>
+ : ALU32_rr <(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, DoubleRegs:$src2),
+ "if ("#!if(PredNot, "!", "")#"$src1"
+ #!if(PredNew, ".new", "")#") $dst = $src2" > {
+ let isPredicatedFalse = PredNot;
+ let isPredicatedNew = PredNew;
+ }
+
+// Assembler mapped to A2_combinew.
+// Please don't add bits to this instruction as it'll be converted into
+// 'combine' before object code emission.
+class T_tfrp : ALU32Inst <(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src),
+ "$dst = $src">;
+
+let hasSideEffects = 0 in
multiclass TFR64_base<string BaseName> {
let BaseOpcode = BaseName in {
let isPredicable = 1 in
- def NAME : ALU32Inst <(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1),
- "$dst = $src1" > {
- bits<5> dst;
- bits<5> src1;
-
- let IClass = 0b1111;
- let Inst{27-23} = 0b01010;
- let Inst{4-0} = dst;
- let Inst{20-17} = src1{4-1};
- let Inst{16} = 0b1;
- let Inst{12-9} = src1{4-1};
- let Inst{8} = 0b0;
- }
-
- let isPredicated = 1 in {
- defm Pt : TFR64_Pred<0>;
- defm NotPt : TFR64_Pred<1>;
- }
+ def NAME : T_tfrp;
+ // Predicate
+ def t : T_tfrp_pred <0, 0>;
+ def f : T_tfrp_pred <1, 0>;
+ // Predicate new
+ def tnew : T_tfrp_pred <0, 1>;
+ def fnew : T_tfrp_pred <1, 1>;
}
}
-multiclass TFRI_Pred<bit PredNot> {
- let isMoveImm = 1, isPredicatedFalse = PredNot in {
- def _c#NAME : ALU32_ri<(outs IntRegs:$dst),
- (ins PredRegs:$src1, s12Ext:$src2),
- !if(PredNot, "if (!$src1", "if ($src1")#") $dst = #$src2",
- []>;
+let InputType = "imm", isExtendable = 1, isExtentSigned = 1, opExtentBits = 12,
+ isMoveImm = 1, opExtendable = 2, BaseOpcode = "TFRI", CextOpcode = "TFR",
+ hasSideEffects = 0, isPredicated = 1, hasNewValue = 1 in
+class T_TFRI_Pred<bit PredNot, bit PredNew>
+ : ALU32_ri<(outs IntRegs:$Rd), (ins PredRegs:$Pu, s12Ext:$s12),
+ "if ("#!if(PredNot,"!","")#"$Pu"#!if(PredNew,".new","")#") $Rd = #$s12",
+ [], "", ALU32_2op_tc_1_SLOT0123>, ImmRegRel, PredNewRel {
+ let isPredicatedFalse = PredNot;
+ let isPredicatedNew = PredNew;
- // Predicate new
- let isPredicatedNew = 1 in
- def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst),
- (ins PredRegs:$src1, s12Ext:$src2),
- !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = #$src2",
- []>;
- }
-}
-
-let InputType = "imm", isExtendable = 1, isExtentSigned = 1 in
-multiclass TFRI_base<string CextOp> {
- let CextOpcode = CextOp, BaseOpcode = CextOp#I in {
- let isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16,
- isMoveImm = 1, isPredicable = 1, isReMaterializable = 1 in
- def NAME : ALU32_ri<(outs IntRegs:$dst), (ins s16Ext:$src1),
- "$dst = #$src1",
- [(set (i32 IntRegs:$dst), s16ExtPred:$src1)]>;
-
- let opExtendable = 2, opExtentBits = 12, neverHasSideEffects = 1,
- isPredicated = 1 in {
- defm Pt : TFRI_Pred<0>;
- defm NotPt : TFRI_Pred<1>;
- }
- }
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<12> s12;
+
+ let IClass = 0b0111;
+ let Inst{27-24} = 0b1110;
+ let Inst{23} = PredNot;
+ let Inst{22-21} = Pu;
+ let Inst{20} = 0b0;
+ let Inst{19-16,12-5} = s12;
+ let Inst{13} = PredNew;
+ let Inst{4-0} = Rd;
}
-defm TFRI : TFRI_base<"TFR">, ImmRegRel, PredNewRel;
-defm TFR : TFR_base<"TFR">, ImmRegRel, PredNewRel;
-defm TFR64 : TFR64_base<"TFR64">, PredNewRel;
+def C2_cmoveit : T_TFRI_Pred<0, 0>;
+def C2_cmoveif : T_TFRI_Pred<1, 0>;
+def C2_cmovenewit : T_TFRI_Pred<0, 1>;
+def C2_cmovenewif : T_TFRI_Pred<1, 1>;
+
+let InputType = "imm", isExtendable = 1, isExtentSigned = 1,
+ CextOpcode = "TFR", BaseOpcode = "TFRI", hasNewValue = 1, opNewValue = 0,
+ isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16, isMoveImm = 1,
+ isPredicated = 0, isPredicable = 1, isReMaterializable = 1 in
+def A2_tfrsi : ALU32Inst<(outs IntRegs:$Rd), (ins s16Ext:$s16), "$Rd = #$s16",
+ [(set (i32 IntRegs:$Rd), s16ExtPred:$s16)], "", ALU32_2op_tc_1_SLOT0123>,
+ ImmRegRel, PredRel {
+ bits<5> Rd;
+ bits<16> s16;
+
+ let IClass = 0b0111;
+ let Inst{27-24} = 0b1000;
+ let Inst{23-22,20-16,13-5} = s16;
+ let Inst{4-0} = Rd;
+}
+
+defm A2_tfr : tfr_base<"TFR">, ImmRegRel, PredNewRel;
+let isAsmParserOnly = 1 in
+defm A2_tfrp : TFR64_base<"TFR64">, PredNewRel;
+
+// Assembler mapped
+let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1,
+ isAsmParserOnly = 1 in
+def A2_tfrpi : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1),
+ "$dst = #$src1",
+ [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>;
+
+// TODO: see if this instruction can be deleted..
+let isExtendable = 1, opExtendable = 1, opExtentBits = 6,
+ isAsmParserOnly = 1 in
+def TFRI64_V4 : ALU64_rr<(outs DoubleRegs:$dst), (ins u6Ext:$src1),
+ "$dst = #$src1">;
-// Transfer control register.
-let neverHasSideEffects = 1 in
-def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1),
- "$dst = $src1",
- []>;
//===----------------------------------------------------------------------===//
// ALU32/ALU -
//===----------------------------------------------------------------------===//
@@ -462,159 +649,344 @@ def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1),
//===----------------------------------------------------------------------===//
// ALU32/PERM +
//===----------------------------------------------------------------------===//
+// Scalar mux register immediate.
+let hasSideEffects = 0, isExtentSigned = 1, CextOpcode = "MUX",
+ InputType = "imm", hasNewValue = 1, isExtendable = 1, opExtentBits = 8 in
+class T_MUX1 <bit MajOp, dag ins, string AsmStr>
+ : ALU32Inst <(outs IntRegs:$Rd), ins, AsmStr>, ImmRegRel {
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<8> s8;
+ bits<5> Rs;
+
+ let IClass = 0b0111;
+ let Inst{27-24} = 0b0011;
+ let Inst{23} = MajOp;
+ let Inst{22-21} = Pu;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b0;
+ let Inst{12-5} = s8;
+ let Inst{4-0} = Rd;
+}
+
+let opExtendable = 2 in
+def C2_muxri : T_MUX1<0b1, (ins PredRegs:$Pu, s8Ext:$s8, IntRegs:$Rs),
+ "$Rd = mux($Pu, #$s8, $Rs)">;
+
+let opExtendable = 3 in
+def C2_muxir : T_MUX1<0b0, (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8),
+ "$Rd = mux($Pu, $Rs, #$s8)">;
+
+def : Pat<(i32 (select I1:$Pu, s8ExtPred:$s8, I32:$Rs)),
+ (C2_muxri I1:$Pu, s8ExtPred:$s8, I32:$Rs)>;
+
+def : Pat<(i32 (select I1:$Pu, I32:$Rs, s8ExtPred:$s8)),
+ (C2_muxir I1:$Pu, I32:$Rs, s8ExtPred:$s8)>;
+
+// C2_muxii: Scalar mux immediates.
+let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1,
+ opExtentBits = 8, opExtendable = 2 in
+def C2_muxii: ALU32Inst <(outs IntRegs:$Rd),
+ (ins PredRegs:$Pu, s8Ext:$s8, s8Imm:$S8),
+ "$Rd = mux($Pu, #$s8, #$S8)" ,
+ [(set (i32 IntRegs:$Rd),
+ (i32 (select I1:$Pu, s8ExtPred:$s8, s8ImmPred:$S8)))] > {
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<8> s8;
+ bits<8> S8;
+
+ let IClass = 0b0111;
+
+ let Inst{27-25} = 0b101;
+ let Inst{24-23} = Pu;
+ let Inst{22-16} = S8{7-1};
+ let Inst{13} = S8{0};
+ let Inst{12-5} = s8;
+ let Inst{4-0} = Rd;
+ }
+
+//===----------------------------------------------------------------------===//
+// template class for non-predicated alu32_2op instructions
+// - aslh, asrh, sxtb, sxth, zxth
+//===----------------------------------------------------------------------===//
+let hasNewValue = 1, opNewValue = 0 in
+class T_ALU32_2op <string mnemonic, bits<3> minOp> :
+ ALU32Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rs),
+ "$Rd = "#mnemonic#"($Rs)", [] > {
+ bits<5> Rd;
+ bits<5> Rs;
+
+ let IClass = 0b0111;
+
+ let Inst{27-24} = 0b0000;
+ let Inst{23-21} = minOp;
+ let Inst{13} = 0b0;
+ let Inst{4-0} = Rd;
+ let Inst{20-16} = Rs;
+}
+
+//===----------------------------------------------------------------------===//
+// template class for predicated alu32_2op instructions
+// - aslh, asrh, sxtb, sxth, zxtb, zxth
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
+class T_ALU32_2op_Pred <string mnemonic, bits<3> minOp, bit isPredNot,
+ bit isPredNew > :
+ ALU32Inst <(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs),
+ !if(isPredNot, "if (!$Pu", "if ($Pu")
+ #!if(isPredNew, ".new) ",") ")#"$Rd = "#mnemonic#"($Rs)"> {
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<5> Rs;
+
+ let IClass = 0b0111;
-let neverHasSideEffects = 1 in
-def COMBINE_ii : ALU32_ii<(outs DoubleRegs:$dst),
- (ins s8Imm:$src1, s8Imm:$src2),
- "$dst = combine(#$src1, #$src2)",
- []>;
-
-// Mux.
-def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1,
- DoubleRegs:$src2,
- DoubleRegs:$src3),
- "$dst = vmux($src1, $src2, $src3)",
- []>;
-
-let CextOpcode = "MUX", InputType = "reg" in
-def MUX_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
- IntRegs:$src2, IntRegs:$src3),
- "$dst = mux($src1, $src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))]>, ImmRegRel;
-
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
-CextOpcode = "MUX", InputType = "imm" in
-def MUX_ir : ALU32_ir<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2,
- IntRegs:$src3),
- "$dst = mux($src1, #$src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 PredRegs:$src1), s8ExtPred:$src2,
- (i32 IntRegs:$src3))))]>, ImmRegRel;
-
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
-CextOpcode = "MUX", InputType = "imm" in
-def MUX_ri : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2,
- s8Ext:$src3),
- "$dst = mux($src1, $src2, #$src3)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
- s8ExtPred:$src3)))]>, ImmRegRel;
-
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in
-def MUX_ii : ALU32_ii<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2,
- s8Imm:$src3),
- "$dst = mux($src1, #$src2, #$src3)",
- [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1),
- s8ExtPred:$src2,
- s8ImmPred:$src3)))]>;
-
-// ALU32 - aslh, asrh, sxtb, sxth, zxtb, zxth
-multiclass ALU32_2op_Pbase<string mnemonic, bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : ALU32Inst<(outs IntRegs:$dst),
- (ins PredRegs:$src1, IntRegs:$src2),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
- ") $dst = ")#mnemonic#"($src2)">,
- Requires<[HasV4T]>;
-}
-
-multiclass ALU32_2op_Pred<string mnemonic, bit PredNot> {
+ let Inst{27-24} = 0b0000;
+ let Inst{23-21} = minOp;
+ let Inst{13} = 0b1;
+ let Inst{11} = isPredNot;
+ let Inst{10} = isPredNew;
+ let Inst{4-0} = Rd;
+ let Inst{9-8} = Pu;
+ let Inst{20-16} = Rs;
+}
+
+multiclass ALU32_2op_Pred<string mnemonic, bits<3> minOp, bit PredNot> {
let isPredicatedFalse = PredNot in {
- defm _c#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 0>;
+ def NAME : T_ALU32_2op_Pred<mnemonic, minOp, PredNot, 0>;
+
// Predicate new
- defm _cdn#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 1>;
+ let isPredicatedNew = 1 in
+ def NAME#new : T_ALU32_2op_Pred<mnemonic, minOp, PredNot, 1>;
}
}
-multiclass ALU32_2op_base<string mnemonic> {
+multiclass ALU32_2op_base<string mnemonic, bits<3> minOp> {
let BaseOpcode = mnemonic in {
- let isPredicable = 1, neverHasSideEffects = 1 in
- def NAME : ALU32Inst<(outs IntRegs:$dst),
- (ins IntRegs:$src1),
- "$dst = "#mnemonic#"($src1)">;
-
- let Predicates = [HasV4T], validSubTargets = HasV4SubT, isPredicated = 1,
- neverHasSideEffects = 1 in {
- defm Pt_V4 : ALU32_2op_Pred<mnemonic, 0>;
- defm NotPt_V4 : ALU32_2op_Pred<mnemonic, 1>;
+ let isPredicable = 1, hasSideEffects = 0 in
+ def A2_#NAME : T_ALU32_2op<mnemonic, minOp>;
+
+ let isPredicated = 1, hasSideEffects = 0 in {
+ defm A4_p#NAME#t : ALU32_2op_Pred<mnemonic, minOp, 0>;
+ defm A4_p#NAME#f : ALU32_2op_Pred<mnemonic, minOp, 1>;
}
}
}
-defm ASLH : ALU32_2op_base<"aslh">, PredNewRel;
-defm ASRH : ALU32_2op_base<"asrh">, PredNewRel;
-defm SXTB : ALU32_2op_base<"sxtb">, PredNewRel;
-defm SXTH : ALU32_2op_base<"sxth">, PredNewRel;
-defm ZXTB : ALU32_2op_base<"zxtb">, PredNewRel;
-defm ZXTH : ALU32_2op_base<"zxth">, PredNewRel;
+defm aslh : ALU32_2op_base<"aslh", 0b000>, PredNewRel;
+defm asrh : ALU32_2op_base<"asrh", 0b001>, PredNewRel;
+defm sxtb : ALU32_2op_base<"sxtb", 0b101>, PredNewRel;
+defm sxth : ALU32_2op_base<"sxth", 0b111>, PredNewRel;
+defm zxth : ALU32_2op_base<"zxth", 0b110>, PredNewRel;
+
+// Rd=zxtb(Rs): assembler mapped to Rd=and(Rs,#255).
+// Compiler would want to generate 'zxtb' instead of 'and' becuase 'zxtb' has
+// predicated forms while 'and' doesn't. Since integrated assembler can't
+// handle 'mapped' instructions, we need to encode 'zxtb' same as 'and' where
+// immediate operand is set to '255'.
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_ZXTB: ALU32Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rs),
+ "$Rd = zxtb($Rs)", [] > { // Rd = and(Rs,255)
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<10> s10 = 255;
+
+ let IClass = 0b0111;
+
+ let Inst{27-22} = 0b011000;
+ let Inst{4-0} = Rd;
+ let Inst{20-16} = Rs;
+ let Inst{21} = s10{9};
+ let Inst{13-5} = s10{8-0};
+}
-def : Pat <(shl (i32 IntRegs:$src1), (i32 16)),
- (ASLH IntRegs:$src1)>;
+//Rd=zxtb(Rs): assembler mapped to "Rd=and(Rs,#255)
+multiclass ZXTB_base <string mnemonic, bits<3> minOp> {
+ let BaseOpcode = mnemonic in {
+ let isPredicable = 1, hasSideEffects = 0 in
+ def A2_#NAME : T_ZXTB;
-def : Pat <(sra (i32 IntRegs:$src1), (i32 16)),
- (ASRH IntRegs:$src1)>;
+ let isPredicated = 1, hasSideEffects = 0 in {
+ defm A4_p#NAME#t : ALU32_2op_Pred<mnemonic, minOp, 0>;
+ defm A4_p#NAME#f : ALU32_2op_Pred<mnemonic, minOp, 1>;
+ }
+ }
+}
-def : Pat <(sext_inreg (i32 IntRegs:$src1), i8),
- (SXTB IntRegs:$src1)>;
+defm zxtb : ZXTB_base<"zxtb",0b100>, PredNewRel;
-def : Pat <(sext_inreg (i32 IntRegs:$src1), i16),
- (SXTH IntRegs:$src1)>;
+def: Pat<(shl I32:$src1, (i32 16)), (A2_aslh I32:$src1)>;
+def: Pat<(sra I32:$src1, (i32 16)), (A2_asrh I32:$src1)>;
+def: Pat<(sext_inreg I32:$src1, i8), (A2_sxtb I32:$src1)>;
+def: Pat<(sext_inreg I32:$src1, i16), (A2_sxth I32:$src1)>;
//===----------------------------------------------------------------------===//
-// ALU32/PERM -
+// Template class for vector add and avg
//===----------------------------------------------------------------------===//
+class T_VectALU_64 <string opc, bits<3> majOp, bits<3> minOp,
+ bit isSat, bit isRnd, bit isCrnd, bit SwapOps >
+ : ALU64_rr < (outs DoubleRegs:$Rdd),
+ (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
+ "$Rdd = "#opc#"($Rss, $Rtt)"#!if(isRnd, ":rnd", "")
+ #!if(isCrnd,":crnd","")
+ #!if(isSat, ":sat", ""),
+ [], "", ALU64_tc_2_SLOT23 > {
+ bits<5> Rdd;
+ bits<5> Rss;
+ bits<5> Rtt;
+
+ let IClass = 0b1101;
+
+ let Inst{27-24} = 0b0011;
+ let Inst{23-21} = majOp;
+ let Inst{20-16} = !if (SwapOps, Rtt, Rss);
+ let Inst{12-8} = !if (SwapOps, Rss, Rtt);
+ let Inst{7-5} = minOp;
+ let Inst{4-0} = Rdd;
+ }
-//===----------------------------------------------------------------------===//
-// ALU32/PRED +
-//===----------------------------------------------------------------------===//
+// ALU64 - Vector add
+// Rdd=vadd[u][bhw](Rss,Rtt)
+let Itinerary = ALU64_tc_1_SLOT23 in {
+ def A2_vaddub : T_VectALU_64 < "vaddub", 0b000, 0b000, 0, 0, 0, 0>;
+ def A2_vaddh : T_VectALU_64 < "vaddh", 0b000, 0b010, 0, 0, 0, 0>;
+ def A2_vaddw : T_VectALU_64 < "vaddw", 0b000, 0b101, 0, 0, 0, 0>;
+}
-// Compare.
-defm CMPGTU : CMP32_rr_ri_u9<"cmp.gtu", "CMPGTU", setugt>, ImmRegRel;
-defm CMPGT : CMP32_rr_ri_s10<"cmp.gt", "CMPGT", setgt>, ImmRegRel;
-defm CMPEQ : CMP32_rr_ri_s10<"cmp.eq", "CMPEQ", seteq>, ImmRegRel;
+// Rdd=vadd[u][bhw](Rss,Rtt):sat
+let Defs = [USR_OVF] in {
+ def A2_vaddubs : T_VectALU_64 < "vaddub", 0b000, 0b001, 1, 0, 0, 0>;
+ def A2_vaddhs : T_VectALU_64 < "vaddh", 0b000, 0b011, 1, 0, 0, 0>;
+ def A2_vadduhs : T_VectALU_64 < "vadduh", 0b000, 0b100, 1, 0, 0, 0>;
+ def A2_vaddws : T_VectALU_64 < "vaddw", 0b000, 0b110, 1, 0, 0, 0>;
+}
-// SDNode for converting immediate C to C-1.
-def DEC_CONST_SIGNED : SDNodeXForm<imm, [{
- // Return the byte immediate const-1 as an SDNode.
- int32_t imm = N->getSExtValue();
- return XformSToSM1Imm(imm);
-}]>;
+// ALU64 - Vector average
+// Rdd=vavg[u][bhw](Rss,Rtt)
+let Itinerary = ALU64_tc_1_SLOT23 in {
+ def A2_vavgub : T_VectALU_64 < "vavgub", 0b010, 0b000, 0, 0, 0, 0>;
+ def A2_vavgh : T_VectALU_64 < "vavgh", 0b010, 0b010, 0, 0, 0, 0>;
+ def A2_vavguh : T_VectALU_64 < "vavguh", 0b010, 0b101, 0, 0, 0, 0>;
+ def A2_vavgw : T_VectALU_64 < "vavgw", 0b011, 0b000, 0, 0, 0, 0>;
+ def A2_vavguw : T_VectALU_64 < "vavguw", 0b011, 0b011, 0, 0, 0, 0>;
+}
-// SDNode for converting immediate C to C-1.
-def DEC_CONST_UNSIGNED : SDNodeXForm<imm, [{
- // Return the byte immediate const-1 as an SDNode.
- uint32_t imm = N->getZExtValue();
- return XformUToUM1Imm(imm);
-}]>;
+// Rdd=vavg[u][bhw](Rss,Rtt)[:rnd|:crnd]
+def A2_vavgubr : T_VectALU_64 < "vavgub", 0b010, 0b001, 0, 1, 0, 0>;
+def A2_vavghr : T_VectALU_64 < "vavgh", 0b010, 0b011, 0, 1, 0, 0>;
+def A2_vavghcr : T_VectALU_64 < "vavgh", 0b010, 0b100, 0, 0, 1, 0>;
+def A2_vavguhr : T_VectALU_64 < "vavguh", 0b010, 0b110, 0, 1, 0, 0>;
+
+def A2_vavgwr : T_VectALU_64 < "vavgw", 0b011, 0b001, 0, 1, 0, 0>;
+def A2_vavgwcr : T_VectALU_64 < "vavgw", 0b011, 0b010, 0, 0, 1, 0>;
+def A2_vavguwr : T_VectALU_64 < "vavguw", 0b011, 0b100, 0, 1, 0, 0>;
+
+// Rdd=vnavg[bh](Rss,Rtt)
+let Itinerary = ALU64_tc_1_SLOT23 in {
+ def A2_vnavgh : T_VectALU_64 < "vnavgh", 0b100, 0b000, 0, 0, 0, 1>;
+ def A2_vnavgw : T_VectALU_64 < "vnavgw", 0b100, 0b011, 0, 0, 0, 1>;
+}
+
+// Rdd=vnavg[bh](Rss,Rtt)[:rnd|:crnd]:sat
+let Defs = [USR_OVF] in {
+ def A2_vnavghr : T_VectALU_64 < "vnavgh", 0b100, 0b001, 1, 1, 0, 1>;
+ def A2_vnavghcr : T_VectALU_64 < "vnavgh", 0b100, 0b010, 1, 0, 1, 1>;
+ def A2_vnavgwr : T_VectALU_64 < "vnavgw", 0b100, 0b100, 1, 1, 0, 1>;
+ def A2_vnavgwcr : T_VectALU_64 < "vnavgw", 0b100, 0b110, 1, 0, 1, 1>;
+}
+
+// Rdd=vsub[u][bh](Rss,Rtt)
+let Itinerary = ALU64_tc_1_SLOT23 in {
+ def A2_vsubub : T_VectALU_64 < "vsubub", 0b001, 0b000, 0, 0, 0, 1>;
+ def A2_vsubh : T_VectALU_64 < "vsubh", 0b001, 0b010, 0, 0, 0, 1>;
+ def A2_vsubw : T_VectALU_64 < "vsubw", 0b001, 0b101, 0, 0, 0, 1>;
+}
+
+// Rdd=vsub[u][bh](Rss,Rtt):sat
+let Defs = [USR_OVF] in {
+ def A2_vsububs : T_VectALU_64 < "vsubub", 0b001, 0b001, 1, 0, 0, 1>;
+ def A2_vsubhs : T_VectALU_64 < "vsubh", 0b001, 0b011, 1, 0, 0, 1>;
+ def A2_vsubuhs : T_VectALU_64 < "vsubuh", 0b001, 0b100, 1, 0, 0, 1>;
+ def A2_vsubws : T_VectALU_64 < "vsubw", 0b001, 0b110, 1, 0, 0, 1>;
+}
-def CTLZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
- "$dst = cl0($src1)",
- [(set (i32 IntRegs:$dst), (ctlz (i32 IntRegs:$src1)))]>;
+// Rdd=vmax[u][bhw](Rss,Rtt)
+def A2_vmaxb : T_VectALU_64 < "vmaxb", 0b110, 0b110, 0, 0, 0, 1>;
+def A2_vmaxub : T_VectALU_64 < "vmaxub", 0b110, 0b000, 0, 0, 0, 1>;
+def A2_vmaxh : T_VectALU_64 < "vmaxh", 0b110, 0b001, 0, 0, 0, 1>;
+def A2_vmaxuh : T_VectALU_64 < "vmaxuh", 0b110, 0b010, 0, 0, 0, 1>;
+def A2_vmaxw : T_VectALU_64 < "vmaxw", 0b110, 0b011, 0, 0, 0, 1>;
+def A2_vmaxuw : T_VectALU_64 < "vmaxuw", 0b101, 0b101, 0, 0, 0, 1>;
+
+// Rdd=vmin[u][bhw](Rss,Rtt)
+def A2_vminb : T_VectALU_64 < "vminb", 0b110, 0b111, 0, 0, 0, 1>;
+def A2_vminub : T_VectALU_64 < "vminub", 0b101, 0b000, 0, 0, 0, 1>;
+def A2_vminh : T_VectALU_64 < "vminh", 0b101, 0b001, 0, 0, 0, 1>;
+def A2_vminuh : T_VectALU_64 < "vminuh", 0b101, 0b010, 0, 0, 0, 1>;
+def A2_vminw : T_VectALU_64 < "vminw", 0b101, 0b011, 0, 0, 0, 1>;
+def A2_vminuw : T_VectALU_64 < "vminuw", 0b101, 0b100, 0, 0, 0, 1>;
-def CTTZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
- "$dst = ct0($src1)",
- [(set (i32 IntRegs:$dst), (cttz (i32 IntRegs:$src1)))]>;
+//===----------------------------------------------------------------------===//
+// Template class for vector compare
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_vcmp <string Str, bits<4> minOp>
+ : ALU64_rr <(outs PredRegs:$Pd),
+ (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
+ "$Pd = "#Str#"($Rss, $Rtt)", [],
+ "", ALU64_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<5> Rss;
+ bits<5> Rtt;
+
+ let IClass = 0b1101;
+
+ let Inst{27-23} = 0b00100;
+ let Inst{13} = minOp{3};
+ let Inst{7-5} = minOp{2-0};
+ let Inst{1-0} = Pd;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rtt;
+ }
-def CTLZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
- "$dst = cl0($src1)",
- [(set (i32 IntRegs:$dst), (i32 (trunc (ctlz (i64 DoubleRegs:$src1)))))]>;
+class T_vcmp_pat<InstHexagon MI, PatFrag Op, ValueType T>
+ : Pat<(i1 (Op (T DoubleRegs:$Rss), (T DoubleRegs:$Rtt))),
+ (i1 (MI DoubleRegs:$Rss, DoubleRegs:$Rtt))>;
+
+// Vector compare bytes
+def A2_vcmpbeq : T_vcmp <"vcmpb.eq", 0b0110>;
+def A2_vcmpbgtu : T_vcmp <"vcmpb.gtu", 0b0111>;
+
+// Vector compare halfwords
+def A2_vcmpheq : T_vcmp <"vcmph.eq", 0b0011>;
+def A2_vcmphgt : T_vcmp <"vcmph.gt", 0b0100>;
+def A2_vcmphgtu : T_vcmp <"vcmph.gtu", 0b0101>;
+
+// Vector compare words
+def A2_vcmpweq : T_vcmp <"vcmpw.eq", 0b0000>;
+def A2_vcmpwgt : T_vcmp <"vcmpw.gt", 0b0001>;
+def A2_vcmpwgtu : T_vcmp <"vcmpw.gtu", 0b0010>;
+
+def: T_vcmp_pat<A2_vcmpbeq, seteq, v8i8>;
+def: T_vcmp_pat<A2_vcmpbgtu, setugt, v8i8>;
+def: T_vcmp_pat<A2_vcmpheq, seteq, v4i16>;
+def: T_vcmp_pat<A2_vcmphgt, setgt, v4i16>;
+def: T_vcmp_pat<A2_vcmphgtu, setugt, v4i16>;
+def: T_vcmp_pat<A2_vcmpweq, seteq, v2i32>;
+def: T_vcmp_pat<A2_vcmpwgt, setgt, v2i32>;
+def: T_vcmp_pat<A2_vcmpwgtu, setugt, v2i32>;
-def CTTZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
- "$dst = ct0($src1)",
- [(set (i32 IntRegs:$dst), (i32 (trunc (cttz (i64 DoubleRegs:$src1)))))]>;
+//===----------------------------------------------------------------------===//
+// ALU32/PERM -
+//===----------------------------------------------------------------------===//
-def TSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = tstbit($src1, $src2)",
- [(set (i1 PredRegs:$dst),
- (setne (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>;
-def TSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = tstbit($src1, $src2)",
- [(set (i1 PredRegs:$dst),
- (setne (and (shl 1, (u5ImmPred:$src2)), (i32 IntRegs:$src1)), 0))]>;
+//===----------------------------------------------------------------------===//
+// ALU32/PRED +
+//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ALU32/PRED -
@@ -625,112 +997,280 @@ def TSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
// ALU64/ALU +
//===----------------------------------------------------------------------===//
// Add.
-def ADD64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = add($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (add (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2)))]>;
+//===----------------------------------------------------------------------===//
+// Template Class
+// Add/Subtract halfword
+// Rd=add(Rt.L,Rs.[HL])[:sat]
+// Rd=sub(Rt.L,Rs.[HL])[:sat]
+// Rd=add(Rt.[LH],Rs.[HL])[:sat][:<16]
+// Rd=sub(Rt.[LH],Rs.[HL])[:sat][:<16]
+//===----------------------------------------------------------------------===//
-// Add halfword.
+let hasNewValue = 1, opNewValue = 0 in
+class T_XTYPE_ADD_SUB <bits<2> LHbits, bit isSat, bit hasShift, bit isSub>
+ : ALU64Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs),
+ "$Rd = "#!if(isSub,"sub","add")#"($Rt."
+ #!if(hasShift, !if(LHbits{1},"h","l"),"l") #", $Rs."
+ #!if(hasShift, !if(LHbits{0},"h)","l)"), !if(LHbits{1},"h)","l)"))
+ #!if(isSat,":sat","")
+ #!if(hasShift,":<<16",""), [], "", ALU64_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rt;
+ bits<5> Rs;
+ let IClass = 0b1101;
+
+ let Inst{27-23} = 0b01010;
+ let Inst{22} = hasShift;
+ let Inst{21} = isSub;
+ let Inst{7} = isSat;
+ let Inst{6-5} = LHbits;
+ let Inst{4-0} = Rd;
+ let Inst{12-8} = Rt;
+ let Inst{20-16} = Rs;
+ }
-// Compare.
-defm CMPEHexagon4 : CMP64_rr<"cmp.eq", seteq>;
-defm CMPGT64 : CMP64_rr<"cmp.gt", setgt>;
-defm CMPGTU64 : CMP64_rr<"cmp.gtu", setugt>;
-
-// Logical operations.
-def AND_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = and($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2)))]>;
-
-def OR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = or($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (or (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2)))]>;
-
-def XOR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = xor($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2)))]>;
-
-// Maximum.
-def MAXw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = max($src2, $src1)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 (setlt (i32 IntRegs:$src2),
- (i32 IntRegs:$src1))),
- (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
+//Rd=sub(Rt.L,Rs.[LH])
+def A2_subh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 1>;
+def A2_subh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 1>;
-def MAXUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = maxu($src2, $src1)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 (setult (i32 IntRegs:$src2),
- (i32 IntRegs:$src1))),
- (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
-
-def MAXd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = max($src2, $src1)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (select (i1 (setlt (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src1))),
- (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2))))]>;
-
-def MAXUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = maxu($src2, $src1)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (select (i1 (setult (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src1))),
- (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2))))]>;
-
-// Minimum.
-def MINw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = min($src2, $src1)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 (setgt (i32 IntRegs:$src2),
- (i32 IntRegs:$src1))),
- (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
+//Rd=add(Rt.L,Rs.[LH])
+def A2_addh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 0>;
+def A2_addh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 0>;
-def MINUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = minu($src2, $src1)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 (setugt (i32 IntRegs:$src2),
- (i32 IntRegs:$src1))),
- (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
-
-def MINd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = min($src2, $src1)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (select (i1 (setgt (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src1))),
- (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2))))]>;
-
-def MINUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = minu($src2, $src1)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (select (i1 (setugt (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src1))),
- (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2))))]>;
-
-// Subtract.
-def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = sub($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2)))]>;
+let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF] in {
+ //Rd=sub(Rt.L,Rs.[LH]):sat
+ def A2_subh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 1>;
+ def A2_subh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 1>;
+
+ //Rd=add(Rt.L,Rs.[LH]):sat
+ def A2_addh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 0>;
+ def A2_addh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 0>;
+}
+
+//Rd=sub(Rt.[LH],Rs.[LH]):<<16
+def A2_subh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 1>;
+def A2_subh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 1>;
+def A2_subh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 1>;
+def A2_subh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 1>;
+
+//Rd=add(Rt.[LH],Rs.[LH]):<<16
+def A2_addh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 0>;
+def A2_addh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 0>;
+def A2_addh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 0>;
+def A2_addh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 0>;
+
+let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF] in {
+ //Rd=sub(Rt.[LH],Rs.[LH]):sat:<<16
+ def A2_subh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 1>;
+ def A2_subh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 1>;
+ def A2_subh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 1>;
+ def A2_subh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 1>;
+
+ //Rd=add(Rt.[LH],Rs.[LH]):sat:<<16
+ def A2_addh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 0>;
+ def A2_addh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 0>;
+ def A2_addh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 0>;
+ def A2_addh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 0>;
+}
+
+// Add halfword.
+def: Pat<(sext_inreg (add I32:$src1, I32:$src2), i16),
+ (A2_addh_l16_ll I32:$src1, I32:$src2)>;
+
+def: Pat<(sra (add (shl I32:$src1, (i32 16)), I32:$src2), (i32 16)),
+ (A2_addh_l16_hl I32:$src1, I32:$src2)>;
+
+def: Pat<(shl (add I32:$src1, I32:$src2), (i32 16)),
+ (A2_addh_h16_ll I32:$src1, I32:$src2)>;
// Subtract halfword.
+def: Pat<(sext_inreg (sub I32:$src1, I32:$src2), i16),
+ (A2_subh_l16_ll I32:$src1, I32:$src2)>;
+
+def: Pat<(shl (sub I32:$src1, I32:$src2), (i32 16)),
+ (A2_subh_h16_ll I32:$src1, I32:$src2)>;
+
+let hasSideEffects = 0, hasNewValue = 1 in
+def S2_parityp: ALU64Inst<(outs IntRegs:$Rd),
+ (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
+ "$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1101;
+ let Inst{27-24} = 0b0000;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{4-0} = Rd;
+}
+
+let hasNewValue = 1, opNewValue = 0, hasSideEffects = 0 in
+class T_XTYPE_MIN_MAX < bit isMax, bit isUnsigned >
+ : ALU64Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs),
+ "$Rd = "#!if(isMax,"max","min")#!if(isUnsigned,"u","")
+ #"($Rt, $Rs)", [], "", ALU64_tc_2_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rt;
+ bits<5> Rs;
+
+ let IClass = 0b1101;
+
+ let Inst{27-23} = 0b01011;
+ let Inst{22-21} = !if(isMax, 0b10, 0b01);
+ let Inst{7} = isUnsigned;
+ let Inst{4-0} = Rd;
+ let Inst{12-8} = !if(isMax, Rs, Rt);
+ let Inst{20-16} = !if(isMax, Rt, Rs);
+ }
+
+def A2_min : T_XTYPE_MIN_MAX < 0, 0 >;
+def A2_minu : T_XTYPE_MIN_MAX < 0, 1 >;
+def A2_max : T_XTYPE_MIN_MAX < 1, 0 >;
+def A2_maxu : T_XTYPE_MIN_MAX < 1, 1 >;
+
+// Here, depending on the operand being selected, we'll either generate a
+// min or max instruction.
+// Ex:
+// (a>b)?a:b --> max(a,b) => Here check performed is '>' and the value selected
+// is the larger of two. So, the corresponding HexagonInst is passed in 'Inst'.
+// (a>b)?b:a --> min(a,b) => Here check performed is '>' but the smaller value
+// is selected and the corresponding HexagonInst is passed in 'SwapInst'.
+
+multiclass T_MinMax_pats <PatFrag Op, RegisterClass RC, ValueType VT,
+ InstHexagon Inst, InstHexagon SwapInst> {
+ def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))),
+ (VT RC:$src1), (VT RC:$src2)),
+ (Inst RC:$src1, RC:$src2)>;
+ def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))),
+ (VT RC:$src2), (VT RC:$src1)),
+ (SwapInst RC:$src1, RC:$src2)>;
+}
+
+
+multiclass MinMax_pats <PatFrag Op, InstHexagon Inst, InstHexagon SwapInst> {
+ defm: T_MinMax_pats<Op, IntRegs, i32, Inst, SwapInst>;
+
+ def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1),
+ (i32 PositiveHalfWord:$src2))),
+ (i32 PositiveHalfWord:$src1),
+ (i32 PositiveHalfWord:$src2))), i16),
+ (Inst IntRegs:$src1, IntRegs:$src2)>;
+
+ def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1),
+ (i32 PositiveHalfWord:$src2))),
+ (i32 PositiveHalfWord:$src2),
+ (i32 PositiveHalfWord:$src1))), i16),
+ (SwapInst IntRegs:$src1, IntRegs:$src2)>;
+}
+
+let AddedComplexity = 200 in {
+ defm: MinMax_pats<setge, A2_max, A2_min>;
+ defm: MinMax_pats<setgt, A2_max, A2_min>;
+ defm: MinMax_pats<setle, A2_min, A2_max>;
+ defm: MinMax_pats<setlt, A2_min, A2_max>;
+ defm: MinMax_pats<setuge, A2_maxu, A2_minu>;
+ defm: MinMax_pats<setugt, A2_maxu, A2_minu>;
+ defm: MinMax_pats<setule, A2_minu, A2_maxu>;
+ defm: MinMax_pats<setult, A2_minu, A2_maxu>;
+}
+
+class T_cmp64_rr<string mnemonic, bits<3> MinOp, bit IsComm>
+ : ALU64_rr<(outs PredRegs:$Pd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
+ "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", ALU64_tc_2early_SLOT23> {
+ let isCompare = 1;
+ let isCommutable = IsComm;
+ let hasSideEffects = 0;
+
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1101;
+ let Inst{27-21} = 0b0010100;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = MinOp;
+ let Inst{1-0} = Pd;
+}
+
+def C2_cmpeqp : T_cmp64_rr<"cmp.eq", 0b000, 1>;
+def C2_cmpgtp : T_cmp64_rr<"cmp.gt", 0b010, 0>;
+def C2_cmpgtup : T_cmp64_rr<"cmp.gtu", 0b100, 0>;
+
+class T_cmp64_rr_pat<InstHexagon MI, PatFrag CmpOp>
+ : Pat<(i1 (CmpOp (i64 DoubleRegs:$Rs), (i64 DoubleRegs:$Rt))),
+ (i1 (MI DoubleRegs:$Rs, DoubleRegs:$Rt))>;
+
+def: T_cmp64_rr_pat<C2_cmpeqp, seteq>;
+def: T_cmp64_rr_pat<C2_cmpgtp, setgt>;
+def: T_cmp64_rr_pat<C2_cmpgtup, setugt>;
+def: T_cmp64_rr_pat<C2_cmpgtp, RevCmp<setlt>>;
+def: T_cmp64_rr_pat<C2_cmpgtup, RevCmp<setult>>;
+
+def C2_vmux : ALU64_rr<(outs DoubleRegs:$Rd),
+ (ins PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt),
+ "$Rd = vmux($Pu, $Rs, $Rt)", [], "", ALU64_tc_1_SLOT23> {
+ let hasSideEffects = 0;
+
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1101;
+ let Inst{27-24} = 0b0001;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{6-5} = Pu;
+ let Inst{4-0} = Rd;
+}
+
+class T_ALU64_rr<string mnemonic, string suffix, bits<4> RegType,
+ bits<3> MajOp, bits<3> MinOp, bit OpsRev, bit IsComm,
+ string Op2Pfx>
+ : ALU64_rr<(outs DoubleRegs:$Rd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
+ "$Rd = " #mnemonic# "($Rs, " #Op2Pfx# "$Rt)" #suffix, [],
+ "", ALU64_tc_1_SLOT23> {
+ let hasSideEffects = 0;
+ let isCommutable = IsComm;
+
+ bits<5> Rs;
+ bits<5> Rt;
+ bits<5> Rd;
+
+ let IClass = 0b1101;
+ let Inst{27-24} = RegType;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = !if (OpsRev,Rt,Rs);
+ let Inst{12-8} = !if (OpsRev,Rs,Rt);
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rd;
+}
+
+class T_ALU64_arith<string mnemonic, bits<3> MajOp, bits<3> MinOp, bit IsSat,
+ bit OpsRev, bit IsComm>
+ : T_ALU64_rr<mnemonic, !if(IsSat,":sat",""), 0b0011, MajOp, MinOp, OpsRev,
+ IsComm, "">;
+
+def A2_addp : T_ALU64_arith<"add", 0b000, 0b111, 0, 0, 1>;
+def A2_subp : T_ALU64_arith<"sub", 0b001, 0b111, 0, 1, 0>;
+
+def: Pat<(i64 (add I64:$Rs, I64:$Rt)), (A2_addp I64:$Rs, I64:$Rt)>;
+def: Pat<(i64 (sub I64:$Rs, I64:$Rt)), (A2_subp I64:$Rs, I64:$Rt)>;
+
+class T_ALU64_logical<string mnemonic, bits<3> MinOp, bit OpsRev, bit IsComm,
+ bit IsNeg>
+ : T_ALU64_rr<mnemonic, "", 0b0011, 0b111, MinOp, OpsRev, IsComm,
+ !if(IsNeg,"~","")>;
+
+def A2_andp : T_ALU64_logical<"and", 0b000, 0, 1, 0>;
+def A2_orp : T_ALU64_logical<"or", 0b010, 0, 1, 0>;
+def A2_xorp : T_ALU64_logical<"xor", 0b100, 0, 1, 0>;
+
+def: Pat<(i64 (and I64:$Rs, I64:$Rt)), (A2_andp I64:$Rs, I64:$Rt)>;
+def: Pat<(i64 (or I64:$Rs, I64:$Rt)), (A2_orp I64:$Rs, I64:$Rt)>;
+def: Pat<(i64 (xor I64:$Rs, I64:$Rt)), (A2_xorp I64:$Rs, I64:$Rt)>;
//===----------------------------------------------------------------------===//
// ALU64/ALU -
@@ -762,82 +1302,119 @@ def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
// Pipelined looping instructions.
// Logical operations on predicates.
-def AND_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
- "$dst = and($src1, $src2)",
- [(set (i1 PredRegs:$dst), (and (i1 PredRegs:$src1),
- (i1 PredRegs:$src2)))]>;
-
-let neverHasSideEffects = 1 in
-def AND_pnotp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1,
- PredRegs:$src2),
- "$dst = and($src1, !$src2)",
- []>;
-
-def ANY_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
- "$dst = any8($src1)",
- []>;
-
-def ALL_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
- "$dst = all8($src1)",
- []>;
-
-def VITPACK_pp : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1,
- PredRegs:$src2),
- "$dst = vitpack($src1, $src2)",
- []>;
+let hasSideEffects = 0 in
+class T_LOGICAL_1OP<string MnOp, bits<2> OpBits>
+ : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps),
+ "$Pd = " # MnOp # "($Ps)", [], "", CR_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<2> Ps;
+
+ let IClass = 0b0110;
+ let Inst{27-23} = 0b10111;
+ let Inst{22-21} = OpBits;
+ let Inst{20} = 0b0;
+ let Inst{17-16} = Ps;
+ let Inst{13} = 0b0;
+ let Inst{1-0} = Pd;
+}
-def VALIGN_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2,
- PredRegs:$src3),
- "$dst = valignb($src1, $src2, $src3)",
- []>;
+def C2_any8 : T_LOGICAL_1OP<"any8", 0b00>;
+def C2_all8 : T_LOGICAL_1OP<"all8", 0b01>;
+def C2_not : T_LOGICAL_1OP<"not", 0b10>;
+
+def: Pat<(i1 (not (i1 PredRegs:$Ps))),
+ (C2_not PredRegs:$Ps)>;
+
+let hasSideEffects = 0 in
+class T_LOGICAL_2OP<string MnOp, bits<3> OpBits, bit IsNeg, bit Rev>
+ : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps, PredRegs:$Pt),
+ "$Pd = " # MnOp # "($Ps, " # !if (IsNeg,"!","") # "$Pt)",
+ [], "", CR_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<2> Ps;
+ bits<2> Pt;
+
+ let IClass = 0b0110;
+ let Inst{27-24} = 0b1011;
+ let Inst{23-21} = OpBits;
+ let Inst{20} = 0b0;
+ let Inst{17-16} = !if(Rev,Pt,Ps); // Rs and Rt are reversed for some
+ let Inst{13} = 0b0; // instructions.
+ let Inst{9-8} = !if(Rev,Ps,Pt);
+ let Inst{1-0} = Pd;
+}
-def VSPLICE_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2,
- PredRegs:$src3),
- "$dst = vspliceb($src1, $src2, $src3)",
- []>;
+def C2_and : T_LOGICAL_2OP<"and", 0b000, 0, 1>;
+def C2_or : T_LOGICAL_2OP<"or", 0b001, 0, 1>;
+def C2_xor : T_LOGICAL_2OP<"xor", 0b010, 0, 0>;
+def C2_andn : T_LOGICAL_2OP<"and", 0b011, 1, 1>;
+def C2_orn : T_LOGICAL_2OP<"or", 0b111, 1, 1>;
-def MASK_p : SInst<(outs DoubleRegs:$dst), (ins PredRegs:$src1),
- "$dst = mask($src1)",
- []>;
+def: Pat<(i1 (and I1:$Ps, I1:$Pt)), (C2_and I1:$Ps, I1:$Pt)>;
+def: Pat<(i1 (or I1:$Ps, I1:$Pt)), (C2_or I1:$Ps, I1:$Pt)>;
+def: Pat<(i1 (xor I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, I1:$Pt)>;
+def: Pat<(i1 (and I1:$Ps, (not I1:$Pt))), (C2_andn I1:$Ps, I1:$Pt)>;
+def: Pat<(i1 (or I1:$Ps, (not I1:$Pt))), (C2_orn I1:$Ps, I1:$Pt)>;
-def NOT_p : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
- "$dst = not($src1)",
- [(set (i1 PredRegs:$dst), (not (i1 PredRegs:$src1)))]>;
-
-def OR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
- "$dst = or($src1, $src2)",
- [(set (i1 PredRegs:$dst), (or (i1 PredRegs:$src1),
- (i1 PredRegs:$src2)))]>;
+let hasSideEffects = 0, hasNewValue = 1 in
+def C2_vitpack : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps, PredRegs:$Pt),
+ "$Rd = vitpack($Ps, $Pt)", [], "", S_2op_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<2> Ps;
+ bits<2> Pt;
+
+ let IClass = 0b1000;
+ let Inst{27-24} = 0b1001;
+ let Inst{22-21} = 0b00;
+ let Inst{17-16} = Ps;
+ let Inst{9-8} = Pt;
+ let Inst{4-0} = Rd;
+}
-def XOR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
- "$dst = xor($src1, $src2)",
- [(set (i1 PredRegs:$dst), (xor (i1 PredRegs:$src1),
- (i1 PredRegs:$src2)))]>;
+let hasSideEffects = 0 in
+def C2_mask : SInst<(outs DoubleRegs:$Rd), (ins PredRegs:$Pt),
+ "$Rd = mask($Pt)", [], "", S_2op_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<2> Pt;
+ let IClass = 0b1000;
+ let Inst{27-24} = 0b0110;
+ let Inst{9-8} = Pt;
+ let Inst{4-0} = Rd;
+}
// User control register transfer.
//===----------------------------------------------------------------------===//
// CR -
//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// JR +
+//===----------------------------------------------------------------------===//
+
def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
- [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
-def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone,
- [SDNPHasChain]>;
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;
def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>;
-let InputType = "imm", isBarrier = 1, isPredicable = 1,
-Defs = [PC], isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
-opExtentBits = 24, isCodeGenOnly = 0 in
-class T_JMP <dag InsDag, list<dag> JumpList = []>
- : JInst<(outs), InsDag,
- "jump $dst" , JumpList> {
- bits<24> dst;
+class CondStr<string CReg, bit True, bit New> {
+ string S = "if (" # !if(True,"","!") # CReg # !if(New,".new","") # ") ";
+}
+class JumpOpcStr<string Mnemonic, bit New, bit Taken> {
+ string S = Mnemonic # !if(Taken, ":t", !if(New, ":nt", ""));
+}
+let isBranch = 1, isBarrier = 1, Defs = [PC], hasSideEffects = 0,
+ isPredicable = 1,
+ isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
+ opExtentBits = 24, opExtentAlign = 2, InputType = "imm" in
+class T_JMP<string ExtStr>
+ : JInst<(outs), (ins brtarget:$dst),
+ "jump " # ExtStr # "$dst",
+ [], "", J_tc_2early_SLOT23> {
+ bits<24> dst;
let IClass = 0b0101;
let Inst{27-25} = 0b100;
@@ -845,16 +1422,16 @@ class T_JMP <dag InsDag, list<dag> JumpList = []>
let Inst{13-1} = dst{14-2};
}
-let InputType = "imm", isExtendable = 1, opExtendable = 1, isExtentSigned = 1,
-Defs = [PC], isPredicated = 1, opExtentBits = 17 in
-class T_JMP_c <bit PredNot, bit isPredNew, bit isTak>:
- JInst<(outs ), (ins PredRegs:$src, brtarget:$dst),
- !if(PredNot, "if (!$src", "if ($src")#
- !if(isPredNew, ".new) ", ") ")#"jump"#
- !if(isPredNew, !if(isTak, ":t ", ":nt "), " ")#"$dst"> {
-
+let isBranch = 1, Defs = [PC], hasSideEffects = 0, isPredicated = 1,
+ isExtendable = 1, opExtendable = 1, isExtentSigned = 1,
+ opExtentBits = 17, opExtentAlign = 2, InputType = "imm" in
+class T_JMP_c<bit PredNot, bit isPredNew, bit isTak, string ExtStr>
+ : JInst<(outs), (ins PredRegs:$src, brtarget:$dst),
+ CondStr<"$src", !if(PredNot,0,1), isPredNew>.S #
+ JumpOpcStr<"jump", isPredNew, isTak>.S # " " #
+ ExtStr # "$dst",
+ [], "", J_tc_2early_SLOT23>, ImmRegRel {
let isTaken = isTak;
- let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), "");
let isPredicatedFalse = PredNot;
let isPredicatedNew = isPredNew;
bits<2> src;
@@ -864,7 +1441,7 @@ class T_JMP_c <bit PredNot, bit isPredNew, bit isTak>:
let Inst{27-24} = 0b1100;
let Inst{21} = PredNot;
- let Inst{12} = !if(isPredNew, isTak, zero);
+ let Inst{12} = isTak;
let Inst{11} = isPredNew;
let Inst{9-8} = src;
let Inst{23-22} = dst{16-15};
@@ -873,11 +1450,28 @@ class T_JMP_c <bit PredNot, bit isPredNew, bit isTak>:
let Inst{7-1} = dst{8-2};
}
-let isBarrier = 1, Defs = [PC], isPredicable = 1, InputType = "reg" in
-class T_JMPr<dag InsDag = (ins IntRegs:$dst)>
- : JRInst<(outs ), InsDag,
- "jumpr $dst" ,
- []> {
+multiclass JMP_Pred<bit PredNot, string ExtStr> {
+ def NAME : T_JMP_c<PredNot, 0, 0, ExtStr>; // not taken
+ // Predicate new
+ def NAME#newpt : T_JMP_c<PredNot, 1, 1, ExtStr>; // taken
+ def NAME#new : T_JMP_c<PredNot, 1, 0, ExtStr>; // not taken
+}
+
+multiclass JMP_base<string BaseOp, string ExtStr> {
+ let BaseOpcode = BaseOp in {
+ def NAME : T_JMP<ExtStr>;
+ defm t : JMP_Pred<0, ExtStr>;
+ defm f : JMP_Pred<1, ExtStr>;
+ }
+}
+
+// Jumps to address stored in a register, JUMPR_MISC
+// if ([[!]P[.new]]) jumpr[:t/nt] Rs
+let isBranch = 1, isIndirectBranch = 1, isBarrier = 1, Defs = [PC],
+ isPredicable = 1, hasSideEffects = 0, InputType = "reg" in
+class T_JMPr
+ : JRInst<(outs), (ins IntRegs:$dst),
+ "jumpr $dst", [], "", J_tc_2early_SLOT2> {
bits<5> dst;
let IClass = 0b0101;
@@ -885,15 +1479,15 @@ class T_JMPr<dag InsDag = (ins IntRegs:$dst)>
let Inst{20-16} = dst;
}
-let Defs = [PC], isPredicated = 1, InputType = "reg" in
-class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak>:
- JRInst <(outs ), (ins PredRegs:$src, IntRegs:$dst),
- !if(PredNot, "if (!$src", "if ($src")#
- !if(isPredNew, ".new) ", ") ")#"jumpr"#
- !if(isPredNew, !if(isTak, ":t ", ":nt "), " ")#"$dst"> {
+let isBranch = 1, isIndirectBranch = 1, Defs = [PC], isPredicated = 1,
+ hasSideEffects = 0, InputType = "reg" in
+class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak>
+ : JRInst <(outs), (ins PredRegs:$src, IntRegs:$dst),
+ CondStr<"$src", !if(PredNot,0,1), isPredNew>.S #
+ JumpOpcStr<"jumpr", isPredNew, isTak>.S # " $dst", [],
+ "", J_tc_2early_SLOT2> {
let isTaken = isTak;
- let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), "");
let isPredicatedFalse = PredNot;
let isPredicatedNew = isPredNew;
bits<2> src;
@@ -904,73 +1498,88 @@ class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak>:
let Inst{27-22} = 0b001101;
let Inst{21} = PredNot;
let Inst{20-16} = dst;
- let Inst{12} = !if(isPredNew, isTak, zero);
+ let Inst{12} = isTak;
let Inst{11} = isPredNew;
let Inst{9-8} = src;
- let Predicates = !if(isPredNew, [HasV3T], [HasV2T]);
- let validSubTargets = !if(isPredNew, HasV3SubT, HasV2SubT);
-}
-
-multiclass JMP_Pred<bit PredNot> {
- def _#NAME : T_JMP_c<PredNot, 0, 0>;
- // Predicate new
- def _#NAME#new_t : T_JMP_c<PredNot, 1, 1>; // taken
- def _#NAME#new_nt : T_JMP_c<PredNot, 1, 0>; // not taken
-}
-
-multiclass JMP_base<string BaseOp> {
- let BaseOpcode = BaseOp in {
- def NAME : T_JMP<(ins brtarget:$dst), [(br bb:$dst)]>;
- defm t : JMP_Pred<0>;
- defm f : JMP_Pred<1>;
- }
}
multiclass JMPR_Pred<bit PredNot> {
- def NAME: T_JMPr_c<PredNot, 0, 0>;
+ def NAME : T_JMPr_c<PredNot, 0, 0>; // not taken
// Predicate new
- def NAME#new_tV3 : T_JMPr_c<PredNot, 1, 1>; // taken
- def NAME#new_ntV3 : T_JMPr_c<PredNot, 1, 0>; // not taken
+ def NAME#newpt : T_JMPr_c<PredNot, 1, 1>; // taken
+ def NAME#new : T_JMPr_c<PredNot, 1, 0>; // not taken
}
multiclass JMPR_base<string BaseOp> {
let BaseOpcode = BaseOp in {
def NAME : T_JMPr;
- defm _t : JMPR_Pred<0>;
- defm _f : JMPR_Pred<1>;
+ defm t : JMPR_Pred<0>;
+ defm f : JMPR_Pred<1>;
}
}
-let isTerminator = 1, neverHasSideEffects = 1 in {
-let isBranch = 1 in
-defm JMP : JMP_base<"JMP">, PredNewRel;
+let isCall = 1, hasSideEffects = 1 in
+class JUMPR_MISC_CALLR<bit isPred, bit isPredNot,
+ dag InputDag = (ins IntRegs:$Rs)>
+ : JRInst<(outs), InputDag,
+ !if(isPred, !if(isPredNot, "if (!$Pu) callr $Rs",
+ "if ($Pu) callr $Rs"),
+ "callr $Rs"),
+ [], "", J_tc_2early_SLOT2> {
+ bits<5> Rs;
+ bits<2> Pu;
+ let isPredicated = isPred;
+ let isPredicatedFalse = isPredNot;
-let isBranch = 1, isIndirectBranch = 1 in
-defm JMPR : JMPR_base<"JMPr">, PredNewRel;
+ let IClass = 0b0101;
+ let Inst{27-25} = 0b000;
+ let Inst{24-23} = !if (isPred, 0b10, 0b01);
+ let Inst{22} = 0;
+ let Inst{21} = isPredNot;
+ let Inst{9-8} = !if (isPred, Pu, 0b00);
+ let Inst{20-16} = Rs;
-let isReturn = 1, isCodeGenOnly = 1 in
-defm JMPret : JMPR_base<"JMPret">, PredNewRel;
+ }
+
+let Defs = VolatileV3.Regs in {
+ def J2_callrt : JUMPR_MISC_CALLR<1, 0, (ins PredRegs:$Pu, IntRegs:$Rs)>;
+ def J2_callrf : JUMPR_MISC_CALLR<1, 1, (ins PredRegs:$Pu, IntRegs:$Rs)>;
}
-def : Pat<(retflag),
- (JMPret (i32 R31))>;
+let isTerminator = 1, hasSideEffects = 0 in {
+ defm J2_jump : JMP_base<"JMP", "">, PredNewRel;
-def : Pat <(brcond (i1 PredRegs:$src1), bb:$offset),
- (JMP_t (i1 PredRegs:$src1), bb:$offset)>;
+ // Deal with explicit assembly
+ // - never extened a jump #, always extend a jump ##
+ let isAsmParserOnly = 1 in {
+ defm J2_jump_ext : JMP_base<"JMP", "##">;
+ defm J2_jump_noext : JMP_base<"JMP", "#">;
+ }
-// A return through builtin_eh_return.
-let isReturn = 1, isTerminator = 1, isBarrier = 1, neverHasSideEffects = 1,
-isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
-def EH_RETURN_JMPR : T_JMPr;
+ defm J2_jumpr : JMPR_base<"JMPr">, PredNewRel;
-def : Pat<(eh_return),
- (EH_RETURN_JMPR (i32 R31))>;
+ let isReturn = 1, isCodeGenOnly = 1 in
+ defm JMPret : JMPR_base<"JMPret">, PredNewRel;
+}
-def : Pat<(HexagonBR_JT (i32 IntRegs:$dst)),
- (JMPR (i32 IntRegs:$dst))>;
+def: Pat<(br bb:$dst),
+ (J2_jump brtarget:$dst)>;
+def: Pat<(retflag),
+ (JMPret (i32 R31))>;
+def: Pat<(brcond (i1 PredRegs:$src1), bb:$offset),
+ (J2_jumpt PredRegs:$src1, bb:$offset)>;
-def : Pat<(brind (i32 IntRegs:$dst)),
- (JMPR (i32 IntRegs:$dst))>;
+// A return through builtin_eh_return.
+let isReturn = 1, isTerminator = 1, isBarrier = 1, hasSideEffects = 0,
+ isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
+def EH_RETURN_JMPR : T_JMPr;
+
+def: Pat<(eh_return),
+ (EH_RETURN_JMPR (i32 R31))>;
+def: Pat<(HexagonBR_JT (i32 IntRegs:$dst)),
+ (J2_jumpr IntRegs:$dst)>;
+def: Pat<(brind (i32 IntRegs:$dst)),
+ (J2_jumpr IntRegs:$dst)>;
//===----------------------------------------------------------------------===//
// JR -
@@ -979,265 +1588,688 @@ def : Pat<(brind (i32 IntRegs:$dst)),
//===----------------------------------------------------------------------===//
// LD +
//===----------------------------------------------------------------------===//
-///
-// Load -- MEMri operand
-multiclass LD_MEMri_Pbase<string mnemonic, RegisterClass RC,
- bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : LDInst2<(outs RC:$dst),
- (ins PredRegs:$src1, MEMri:$addr),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#"$dst = "#mnemonic#"($addr)",
- []>;
-}
-
-multiclass LD_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 1>;
+
+// Load - Base with Immediate offset addressing mode
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, AddedComplexity = 20 in
+class T_load_io <string mnemonic, RegisterClass RC, bits<4> MajOp,
+ Operand ImmOp>
+ : LDInst<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset),
+ "$dst = "#mnemonic#"($src1 + #$offset)", []>, AddrModeRel {
+ bits<4> name;
+ bits<5> dst;
+ bits<5> src1;
+ bits<14> offset;
+ bits<11> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), offset{13-3},
+ !if (!eq(ImmOpStr, "s11_2Ext"), offset{12-2},
+ !if (!eq(ImmOpStr, "s11_1Ext"), offset{11-1},
+ /* s11_0Ext */ offset{10-0})));
+ let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14,
+ !if (!eq(ImmOpStr, "s11_2Ext"), 13,
+ !if (!eq(ImmOpStr, "s11_1Ext"), 12,
+ /* s11_0Ext */ 11)));
+ let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
+
+ let IClass = 0b1001;
+
+ let Inst{27} = 0b0;
+ let Inst{26-25} = offsetBits{10-9};
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13-5} = offsetBits{8-0};
+ let Inst{4-0} = dst;
}
-}
-let isExtendable = 1, neverHasSideEffects = 1 in
-multiclass LD_MEMri<string mnemonic, string CextOp, RegisterClass RC,
- bits<5> ImmBits, bits<5> PredImmBits> {
+let opExtendable = 3, isExtentSigned = 0, isPredicated = 1 in
+class T_pload_io <string mnemonic, RegisterClass RC, bits<4>MajOp,
+ Operand ImmOp, bit isNot, bit isPredNew>
+ : LDInst<(outs RC:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
+ "if ("#!if(isNot, "!$src1", "$src1")
+ #!if(isPredNew, ".new", "")
+ #") $dst = "#mnemonic#"($src2 + #$offset)",
+ [],"", V2LDST_tc_ld_SLOT01> , AddrModeRel {
+ bits<5> dst;
+ bits<2> src1;
+ bits<5> src2;
+ bits<9> offset;
+ bits<6> offsetBits;
+ string ImmOpStr = !cast<string>(ImmOp);
+
+ let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), offset{8-3},
+ !if (!eq(ImmOpStr, "u6_2Ext"), offset{7-2},
+ !if (!eq(ImmOpStr, "u6_1Ext"), offset{6-1},
+ /* u6_0Ext */ offset{5-0})));
+ let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9,
+ !if (!eq(ImmOpStr, "u6_2Ext"), 8,
+ !if (!eq(ImmOpStr, "u6_1Ext"), 7,
+ /* u6_0Ext */ 6)));
+ let hasNewValue = !if (!eq(ImmOpStr, "u6_3Ext"), 0, 1);
+ let isPredicatedNew = isPredNew;
+ let isPredicatedFalse = isNot;
+
+ let IClass = 0b0100;
+
+ let Inst{27} = 0b0;
+ let Inst{27} = 0b0;
+ let Inst{26} = isNot;
+ let Inst{25} = isPredNew;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{13} = 0b0;
+ let Inst{12-11} = src1;
+ let Inst{10-5} = offsetBits;
+ let Inst{4-0} = dst;
+ }
- let CextOpcode = CextOp, BaseOpcode = CextOp in {
- let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits,
- isPredicable = 1 in
- def NAME : LDInst2<(outs RC:$dst), (ins MEMri:$addr),
- "$dst = "#mnemonic#"($addr)",
- []>;
-
- let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits,
- isPredicated = 1 in {
- defm Pt : LD_MEMri_Pred<mnemonic, RC, 0 >;
- defm NotPt : LD_MEMri_Pred<mnemonic, RC, 1 >;
- }
+let isExtendable = 1, hasSideEffects = 0, addrMode = BaseImmOffset in
+multiclass LD_Idxd<string mnemonic, string CextOp, RegisterClass RC,
+ Operand ImmOp, Operand predImmOp, bits<4>MajOp> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
+ let isPredicable = 1 in
+ def L2_#NAME#_io : T_load_io <mnemonic, RC, MajOp, ImmOp>;
+
+ // Predicated
+ def L2_p#NAME#t_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 0, 0>;
+ def L2_p#NAME#f_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 1, 0>;
+
+ // Predicated new
+ def L2_p#NAME#tnew_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 0, 1>;
+ def L2_p#NAME#fnew_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 1, 1>;
}
}
-let addrMode = BaseImmOffset, isMEMri = "true" in {
- let accessSize = ByteAccess in {
- defm LDrib: LD_MEMri < "memb", "LDrib", IntRegs, 11, 6>, AddrModeRel;
- defm LDriub: LD_MEMri < "memub" , "LDriub", IntRegs, 11, 6>, AddrModeRel;
- }
+let accessSize = ByteAccess in {
+ defm loadrb: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext, 0b1000>;
+ defm loadrub: LD_Idxd <"memub", "LDriub", IntRegs, s11_0Ext, u6_0Ext, 0b1001>;
+}
- let accessSize = HalfWordAccess in {
- defm LDrih: LD_MEMri < "memh", "LDrih", IntRegs, 12, 7>, AddrModeRel;
- defm LDriuh: LD_MEMri < "memuh", "LDriuh", IntRegs, 12, 7>, AddrModeRel;
- }
+let accessSize = HalfWordAccess, opExtentAlign = 1 in {
+ defm loadrh: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext, 0b1010>;
+ defm loadruh: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext, 0b1011>;
+}
- let accessSize = WordAccess in
- defm LDriw: LD_MEMri < "memw", "LDriw", IntRegs, 13, 8>, AddrModeRel;
+let accessSize = WordAccess, opExtentAlign = 2 in
+defm loadri: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext, 0b1100>;
- let accessSize = DoubleWordAccess in
- defm LDrid: LD_MEMri < "memd", "LDrid", DoubleRegs, 14, 9>, AddrModeRel;
+let accessSize = DoubleWordAccess, opExtentAlign = 3 in
+defm loadrd: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext, 0b1110>;
+
+let accessSize = HalfWordAccess, opExtentAlign = 1 in {
+ def L2_loadbsw2_io: T_load_io<"membh", IntRegs, 0b0001, s11_1Ext>;
+ def L2_loadbzw2_io: T_load_io<"memubh", IntRegs, 0b0011, s11_1Ext>;
}
-def : Pat < (i32 (sextloadi8 ADDRriS11_0:$addr)),
- (LDrib ADDRriS11_0:$addr) >;
+let accessSize = WordAccess, opExtentAlign = 2 in {
+ def L2_loadbzw4_io: T_load_io<"memubh", DoubleRegs, 0b0101, s11_2Ext>;
+ def L2_loadbsw4_io: T_load_io<"membh", DoubleRegs, 0b0111, s11_2Ext>;
+}
-def : Pat < (i32 (zextloadi8 ADDRriS11_0:$addr)),
- (LDriub ADDRriS11_0:$addr) >;
+let addrMode = BaseImmOffset, isExtendable = 1, hasSideEffects = 0,
+ opExtendable = 3, isExtentSigned = 1 in
+class T_loadalign_io <string str, bits<4> MajOp, Operand ImmOp>
+ : LDInst<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, IntRegs:$src2, ImmOp:$offset),
+ "$dst = "#str#"($src2 + #$offset)", [],
+ "$src1 = $dst">, AddrModeRel {
+ bits<4> name;
+ bits<5> dst;
+ bits<5> src2;
+ bits<12> offset;
+ bits<11> offsetBits;
+
+ let offsetBits = !if (!eq(!cast<string>(ImmOp), "s11_1Ext"), offset{11-1},
+ /* s11_0Ext */ offset{10-0});
+ let IClass = 0b1001;
+
+ let Inst{27} = 0b0;
+ let Inst{26-25} = offsetBits{10-9};
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{13-5} = offsetBits{8-0};
+ let Inst{4-0} = dst;
+ }
-def : Pat < (i32 (sextloadi16 ADDRriS11_1:$addr)),
- (LDrih ADDRriS11_1:$addr) >;
+let accessSize = HalfWordAccess, opExtentBits = 12, opExtentAlign = 1 in
+def L2_loadalignh_io: T_loadalign_io <"memh_fifo", 0b0010, s11_1Ext>;
-def : Pat < (i32 (zextloadi16 ADDRriS11_1:$addr)),
- (LDriuh ADDRriS11_1:$addr) >;
+let accessSize = ByteAccess, opExtentBits = 11 in
+def L2_loadalignb_io: T_loadalign_io <"memb_fifo", 0b0100, s11_0Ext>;
-def : Pat < (i32 (load ADDRriS11_2:$addr)),
- (LDriw ADDRriS11_2:$addr) >;
+// Patterns to select load-indexed (i.e. load from base+offset).
+multiclass Loadx_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
+ InstHexagon MI> {
+ def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
+ def: Pat<(VT (Load (add (i32 IntRegs:$Rs), ImmPred:$Off))),
+ (VT (MI IntRegs:$Rs, imm:$Off))>;
+ def: Pat<(VT (Load (i32 IntRegs:$Rs))), (VT (MI IntRegs:$Rs, 0))>;
+}
-def : Pat < (i64 (load ADDRriS11_3:$addr)),
- (LDrid ADDRriS11_3:$addr) >;
+let AddedComplexity = 20 in {
+ defm: Loadx_pat<load, i32, s11_2ExtPred, L2_loadri_io>;
+ defm: Loadx_pat<load, i64, s11_3ExtPred, L2_loadrd_io>;
+ defm: Loadx_pat<atomic_load_8 , i32, s11_0ExtPred, L2_loadrub_io>;
+ defm: Loadx_pat<atomic_load_16, i32, s11_1ExtPred, L2_loadruh_io>;
+ defm: Loadx_pat<atomic_load_32, i32, s11_2ExtPred, L2_loadri_io>;
+ defm: Loadx_pat<atomic_load_64, i64, s11_3ExtPred, L2_loadrd_io>;
+
+ defm: Loadx_pat<extloadi1, i32, s11_0ExtPred, L2_loadrub_io>;
+ defm: Loadx_pat<extloadi8, i32, s11_0ExtPred, L2_loadrub_io>;
+ defm: Loadx_pat<extloadi16, i32, s11_1ExtPred, L2_loadruh_io>;
+ defm: Loadx_pat<sextloadi8, i32, s11_0ExtPred, L2_loadrb_io>;
+ defm: Loadx_pat<sextloadi16, i32, s11_1ExtPred, L2_loadrh_io>;
+ defm: Loadx_pat<zextloadi1, i32, s11_0ExtPred, L2_loadrub_io>;
+ defm: Loadx_pat<zextloadi8, i32, s11_0ExtPred, L2_loadrub_io>;
+ defm: Loadx_pat<zextloadi16, i32, s11_1ExtPred, L2_loadruh_io>;
+ // No sextloadi1.
+}
+// Sign-extending loads of i1 need to replicate the lowest bit throughout
+// the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should
+// do the trick.
+let AddedComplexity = 20 in
+def: Pat<(i32 (sextloadi1 (i32 IntRegs:$Rs))),
+ (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>;
-// Load - Base with Immediate offset addressing mode
-multiclass LD_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp,
- bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : LDInst2<(outs RC:$dst),
- (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#"$dst = "#mnemonic#"($src2+#$src3)",
- []>;
-}
-
-multiclass LD_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp,
- bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>;
+//===----------------------------------------------------------------------===//
+// Post increment load
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// Template class for non-predicated post increment loads with immediate offset.
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, addrMode = PostInc in
+class T_load_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<4> MajOp >
+ : LDInstPI <(outs RC:$dst, IntRegs:$dst2),
+ (ins IntRegs:$src1, ImmOp:$offset),
+ "$dst = "#mnemonic#"($src1++#$offset)" ,
+ [],
+ "$src1 = $dst2" > ,
+ PredNewRel {
+ bits<5> dst;
+ bits<5> src1;
+ bits<7> offset;
+ bits<4> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
+ !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
+ !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0})));
+ let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
+
+ let IClass = 0b1001;
+
+ let Inst{27-25} = 0b101;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13-12} = 0b00;
+ let Inst{8-5} = offsetBits;
+ let Inst{4-0} = dst;
}
-}
-let isExtendable = 1, neverHasSideEffects = 1 in
-multiclass LD_Idxd<string mnemonic, string CextOp, RegisterClass RC,
- Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
- bits<5> PredImmBits> {
+//===----------------------------------------------------------------------===//
+// Template class for predicated post increment loads with immediate offset.
+//===----------------------------------------------------------------------===//
+let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in
+class T_pload_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<4> MajOp, bit isPredNot, bit isPredNew >
+ : LDInst <(outs RC:$dst, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
+ !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#"$dst = "#mnemonic#"($src2++#$offset)",
+ [] ,
+ "$src2 = $dst2" > ,
+ PredNewRel {
+ bits<5> dst;
+ bits<2> src1;
+ bits<5> src2;
+ bits<7> offset;
+ bits<4> offsetBits;
- let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
- let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits,
- isPredicable = 1, AddedComplexity = 20 in
- def NAME : LDInst2<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset),
- "$dst = "#mnemonic#"($src1+#$offset)",
- []>;
-
- let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits,
- isPredicated = 1 in {
- defm Pt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 0 >;
- defm NotPt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 1 >;
- }
+ let isPredicatedNew = isPredNew;
+ let isPredicatedFalse = isPredNot;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
+ !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
+ !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0})));
+ let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
+
+ let IClass = 0b1001;
+
+ let Inst{27-25} = 0b101;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{13} = 0b1;
+ let Inst{12} = isPredNew;
+ let Inst{11} = isPredNot;
+ let Inst{10-9} = src1;
+ let Inst{8-5} = offsetBits;
+ let Inst{4-0} = dst;
}
-}
-let addrMode = BaseImmOffset in {
- let accessSize = ByteAccess in {
- defm LDrib_indexed: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext,
- 11, 6>, AddrModeRel;
- defm LDriub_indexed: LD_Idxd <"memub" , "LDriub", IntRegs, s11_0Ext, u6_0Ext,
- 11, 6>, AddrModeRel;
- }
- let accessSize = HalfWordAccess in {
- defm LDrih_indexed: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext,
- 12, 7>, AddrModeRel;
- defm LDriuh_indexed: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext,
- 12, 7>, AddrModeRel;
+//===----------------------------------------------------------------------===//
+// Multiclass for post increment loads with immediate offset.
+//===----------------------------------------------------------------------===//
+
+multiclass LD_PostInc <string mnemonic, string BaseOp, RegisterClass RC,
+ Operand ImmOp, bits<4> MajOp> {
+ let BaseOpcode = "POST_"#BaseOp in {
+ let isPredicable = 1 in
+ def L2_#NAME#_pi : T_load_pi < mnemonic, RC, ImmOp, MajOp>;
+
+ // Predicated
+ def L2_p#NAME#t_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 0>;
+ def L2_p#NAME#f_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 0>;
+
+ // Predicated new
+ def L2_p#NAME#tnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 1>;
+ def L2_p#NAME#fnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 1>;
}
- let accessSize = WordAccess in
- defm LDriw_indexed: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext,
- 13, 8>, AddrModeRel;
+}
- let accessSize = DoubleWordAccess in
- defm LDrid_indexed: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext,
- 14, 9>, AddrModeRel;
+// post increment byte loads with immediate offset
+let accessSize = ByteAccess in {
+ defm loadrb : LD_PostInc <"memb", "LDrib", IntRegs, s4_0Imm, 0b1000>;
+ defm loadrub : LD_PostInc <"memub", "LDriub", IntRegs, s4_0Imm, 0b1001>;
}
-let AddedComplexity = 20 in {
-def : Pat < (i32 (sextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))),
- (LDrib_indexed IntRegs:$src1, s11_0ExtPred:$offset) >;
+// post increment halfword loads with immediate offset
+let accessSize = HalfWordAccess, opExtentAlign = 1 in {
+ defm loadrh : LD_PostInc <"memh", "LDrih", IntRegs, s4_1Imm, 0b1010>;
+ defm loadruh : LD_PostInc <"memuh", "LDriuh", IntRegs, s4_1Imm, 0b1011>;
+}
-def : Pat < (i32 (zextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))),
- (LDriub_indexed IntRegs:$src1, s11_0ExtPred:$offset) >;
+// post increment word loads with immediate offset
+let accessSize = WordAccess, opExtentAlign = 2 in
+defm loadri : LD_PostInc <"memw", "LDriw", IntRegs, s4_2Imm, 0b1100>;
-def : Pat < (i32 (sextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))),
- (LDrih_indexed IntRegs:$src1, s11_1ExtPred:$offset) >;
+// post increment doubleword loads with immediate offset
+let accessSize = DoubleWordAccess, opExtentAlign = 3 in
+defm loadrd : LD_PostInc <"memd", "LDrid", DoubleRegs, s4_3Imm, 0b1110>;
+
+// Rd=memb[u]h(Rx++#s4:1)
+// Rdd=memb[u]h(Rx++#s4:2)
+let accessSize = HalfWordAccess, opExtentAlign = 1 in {
+ def L2_loadbsw2_pi : T_load_pi <"membh", IntRegs, s4_1Imm, 0b0001>;
+ def L2_loadbzw2_pi : T_load_pi <"memubh", IntRegs, s4_1Imm, 0b0011>;
+}
+let accessSize = WordAccess, opExtentAlign = 2, hasNewValue = 0 in {
+ def L2_loadbsw4_pi : T_load_pi <"membh", DoubleRegs, s4_2Imm, 0b0111>;
+ def L2_loadbzw4_pi : T_load_pi <"memubh", DoubleRegs, s4_2Imm, 0b0101>;
+}
-def : Pat < (i32 (zextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))),
- (LDriuh_indexed IntRegs:$src1, s11_1ExtPred:$offset) >;
+//===----------------------------------------------------------------------===//
+// Template class for post increment fifo loads with immediate offset.
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, addrMode = PostInc in
+class T_loadalign_pi <string mnemonic, Operand ImmOp, bits<4> MajOp >
+ : LDInstPI <(outs DoubleRegs:$dst, IntRegs:$dst2),
+ (ins DoubleRegs:$src1, IntRegs:$src2, ImmOp:$offset),
+ "$dst = "#mnemonic#"($src2++#$offset)" ,
+ [], "$src2 = $dst2, $src1 = $dst" > ,
+ PredNewRel {
+ bits<5> dst;
+ bits<5> src2;
+ bits<5> offset;
+ bits<4> offsetBits;
+
+ let offsetBits = !if (!eq(!cast<string>(ImmOp), "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0});
+ let IClass = 0b1001;
+
+ let Inst{27-25} = 0b101;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{13-12} = 0b00;
+ let Inst{8-5} = offsetBits;
+ let Inst{4-0} = dst;
+ }
-def : Pat < (i32 (load (add IntRegs:$src1, s11_2ExtPred:$offset))),
- (LDriw_indexed IntRegs:$src1, s11_2ExtPred:$offset) >;
+// Ryy=memh_fifo(Rx++#s4:1)
+// Ryy=memb_fifo(Rx++#s4:0)
+let accessSize = ByteAccess in
+def L2_loadalignb_pi : T_loadalign_pi <"memb_fifo", s4_0Imm, 0b0100>;
-def : Pat < (i64 (load (add IntRegs:$src1, s11_3ExtPred:$offset))),
- (LDrid_indexed IntRegs:$src1, s11_3ExtPred:$offset) >;
-}
+let accessSize = HalfWordAccess, opExtentAlign = 1 in
+def L2_loadalignh_pi : T_loadalign_pi <"memh_fifo", s4_1Imm, 0b0010>;
//===----------------------------------------------------------------------===//
-// Post increment load
+// Template class for post increment loads with register offset.
//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, addrMode = PostInc in
+class T_load_pr <string mnemonic, RegisterClass RC, bits<4> MajOp,
+ MemAccessSize AccessSz>
+ : LDInstPI <(outs RC:$dst, IntRegs:$_dst_),
+ (ins IntRegs:$src1, ModRegs:$src2),
+ "$dst = "#mnemonic#"($src1++$src2)" ,
+ [], "$src1 = $_dst_" > {
+ bits<5> dst;
+ bits<5> src1;
+ bits<1> src2;
+
+ let accessSize = AccessSz;
+ let IClass = 0b1001;
+
+ let Inst{27-25} = 0b110;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13} = src2;
+ let Inst{12} = 0b0;
+ let Inst{7} = 0b0;
+ let Inst{4-0} = dst;
+ }
+
+let hasNewValue = 1 in {
+ def L2_loadrb_pr : T_load_pr <"memb", IntRegs, 0b1000, ByteAccess>;
+ def L2_loadrub_pr : T_load_pr <"memub", IntRegs, 0b1001, ByteAccess>;
+ def L2_loadrh_pr : T_load_pr <"memh", IntRegs, 0b1010, HalfWordAccess>;
+ def L2_loadruh_pr : T_load_pr <"memuh", IntRegs, 0b1011, HalfWordAccess>;
+ def L2_loadri_pr : T_load_pr <"memw", IntRegs, 0b1100, WordAccess>;
-multiclass LD_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp,
- bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2),
- (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#"$dst = "#mnemonic#"($src2++#$offset)",
- [],
- "$src2 = $dst2">;
+ def L2_loadbzw2_pr : T_load_pr <"memubh", IntRegs, 0b0011, HalfWordAccess>;
}
-multiclass LD_PostInc_Pred<string mnemonic, RegisterClass RC,
- Operand ImmOp, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>;
- // Predicate new
- let Predicates = [HasV4T], validSubTargets = HasV4SubT in
- defm _cdn#NAME#_V4 : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>;
- }
+def L2_loadrd_pr : T_load_pr <"memd", DoubleRegs, 0b1110, DoubleWordAccess>;
+def L2_loadbzw4_pr : T_load_pr <"memubh", DoubleRegs, 0b0101, WordAccess>;
+
+// Load predicate.
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
+ isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
+def LDriw_pred : LDInst<(outs PredRegs:$dst),
+ (ins IntRegs:$addr, s11_2Ext:$off),
+ ".error \"should not emit\"", []>;
+
+let Defs = [R29, R30, R31], Uses = [R30], hasSideEffects = 0 in
+ def L2_deallocframe : LDInst<(outs), (ins),
+ "deallocframe",
+ []> {
+ let IClass = 0b1001;
+
+ let Inst{27-16} = 0b000000011110;
+ let Inst{13} = 0b0;
+ let Inst{4-0} = 0b11110;
}
-multiclass LD_PostInc<string mnemonic, string BaseOp, RegisterClass RC,
- Operand ImmOp> {
+// Load / Post increment circular addressing mode.
+let Uses = [CS], hasSideEffects = 0 in
+class T_load_pcr<string mnemonic, RegisterClass RC, bits<4> MajOp>
+ : LDInst <(outs RC:$dst, IntRegs:$_dst_),
+ (ins IntRegs:$Rz, ModRegs:$Mu),
+ "$dst = "#mnemonic#"($Rz ++ I:circ($Mu))", [],
+ "$Rz = $_dst_" > {
+ bits<5> dst;
+ bits<5> Rz;
+ bit Mu;
+
+ let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
+ let IClass = 0b1001;
- let BaseOpcode = "POST_"#BaseOp in {
- let isPredicable = 1 in
- def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2),
- (ins IntRegs:$src1, ImmOp:$offset),
- "$dst = "#mnemonic#"($src1++#$offset)",
- [],
- "$src1 = $dst2">;
-
- let isPredicated = 1 in {
- defm Pt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 0 >;
- defm NotPt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 1 >;
- }
+ let Inst{27-25} = 0b100;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12} = 0b0;
+ let Inst{9} = 0b1;
+ let Inst{7} = 0b0;
+ let Inst{4-0} = dst;
+ }
+
+let accessSize = ByteAccess in {
+ def L2_loadrb_pcr : T_load_pcr <"memb", IntRegs, 0b1000>;
+ def L2_loadrub_pcr : T_load_pcr <"memub", IntRegs, 0b1001>;
+}
+
+let accessSize = HalfWordAccess in {
+ def L2_loadrh_pcr : T_load_pcr <"memh", IntRegs, 0b1010>;
+ def L2_loadruh_pcr : T_load_pcr <"memuh", IntRegs, 0b1011>;
+ def L2_loadbsw2_pcr : T_load_pcr <"membh", IntRegs, 0b0001>;
+ def L2_loadbzw2_pcr : T_load_pcr <"memubh", IntRegs, 0b0011>;
+}
+
+let accessSize = WordAccess in {
+ def L2_loadri_pcr : T_load_pcr <"memw", IntRegs, 0b1100>;
+ let hasNewValue = 0 in {
+ def L2_loadbzw4_pcr : T_load_pcr <"memubh", DoubleRegs, 0b0101>;
+ def L2_loadbsw4_pcr : T_load_pcr <"membh", DoubleRegs, 0b0111>;
}
}
-let hasCtrlDep = 1, neverHasSideEffects = 1, addrMode = PostInc in {
- defm POST_LDrib : LD_PostInc<"memb", "LDrib", IntRegs, s4_0Imm>,
- PredNewRel;
- defm POST_LDriub : LD_PostInc<"memub", "LDriub", IntRegs, s4_0Imm>,
- PredNewRel;
- defm POST_LDrih : LD_PostInc<"memh", "LDrih", IntRegs, s4_1Imm>,
- PredNewRel;
- defm POST_LDriuh : LD_PostInc<"memuh", "LDriuh", IntRegs, s4_1Imm>,
- PredNewRel;
- defm POST_LDriw : LD_PostInc<"memw", "LDriw", IntRegs, s4_2Imm>,
- PredNewRel;
- defm POST_LDrid : LD_PostInc<"memd", "LDrid", DoubleRegs, s4_3Imm>,
- PredNewRel;
+let accessSize = DoubleWordAccess in
+def L2_loadrd_pcr : T_load_pcr <"memd", DoubleRegs, 0b1110>;
+
+// Load / Post increment circular addressing mode.
+let Uses = [CS], hasSideEffects = 0 in
+class T_loadalign_pcr<string mnemonic, bits<4> MajOp, MemAccessSize AccessSz >
+ : LDInst <(outs DoubleRegs:$dst, IntRegs:$_dst_),
+ (ins DoubleRegs:$_src_, IntRegs:$Rz, ModRegs:$Mu),
+ "$dst = "#mnemonic#"($Rz ++ I:circ($Mu))", [],
+ "$Rz = $_dst_, $dst = $_src_" > {
+ bits<5> dst;
+ bits<5> Rz;
+ bit Mu;
+
+ let accessSize = AccessSz;
+ let IClass = 0b1001;
+
+ let Inst{27-25} = 0b100;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12} = 0b0;
+ let Inst{9} = 0b1;
+ let Inst{7} = 0b0;
+ let Inst{4-0} = dst;
+ }
+
+def L2_loadalignb_pcr : T_loadalign_pcr <"memb_fifo", 0b0100, ByteAccess>;
+def L2_loadalignh_pcr : T_loadalign_pcr <"memh_fifo", 0b0010, HalfWordAccess>;
+
+//===----------------------------------------------------------------------===//
+// Circular loads with immediate offset.
+//===----------------------------------------------------------------------===//
+let Uses = [CS], mayLoad = 1, hasSideEffects = 0 in
+class T_load_pci <string mnemonic, RegisterClass RC,
+ Operand ImmOp, bits<4> MajOp>
+ : LDInstPI<(outs RC:$dst, IntRegs:$_dst_),
+ (ins IntRegs:$Rz, ImmOp:$offset, ModRegs:$Mu),
+ "$dst = "#mnemonic#"($Rz ++ #$offset:circ($Mu))", [],
+ "$Rz = $_dst_"> {
+ bits<5> dst;
+ bits<5> Rz;
+ bits<1> Mu;
+ bits<7> offset;
+ bits<4> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
+ let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
+ !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
+ !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0})));
+ let IClass = 0b1001;
+ let Inst{27-25} = 0b100;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12} = 0b0;
+ let Inst{9} = 0b0;
+ let Inst{8-5} = offsetBits;
+ let Inst{4-0} = dst;
+ }
+
+// Byte variants of circ load
+let accessSize = ByteAccess in {
+ def L2_loadrb_pci : T_load_pci <"memb", IntRegs, s4_0Imm, 0b1000>;
+ def L2_loadrub_pci : T_load_pci <"memub", IntRegs, s4_0Imm, 0b1001>;
}
-def : Pat< (i32 (extloadi1 ADDRriS11_0:$addr)),
- (i32 (LDrib ADDRriS11_0:$addr)) >;
+// Half word variants of circ load
+let accessSize = HalfWordAccess in {
+ def L2_loadrh_pci : T_load_pci <"memh", IntRegs, s4_1Imm, 0b1010>;
+ def L2_loadruh_pci : T_load_pci <"memuh", IntRegs, s4_1Imm, 0b1011>;
+ def L2_loadbzw2_pci : T_load_pci <"memubh", IntRegs, s4_1Imm, 0b0011>;
+ def L2_loadbsw2_pci : T_load_pci <"membh", IntRegs, s4_1Imm, 0b0001>;
+}
-// Load byte any-extend.
-def : Pat < (i32 (extloadi8 ADDRriS11_0:$addr)),
- (i32 (LDrib ADDRriS11_0:$addr)) >;
+// Word variants of circ load
+let accessSize = WordAccess in
+def L2_loadri_pci : T_load_pci <"memw", IntRegs, s4_2Imm, 0b1100>;
-// Indexed load byte any-extend.
-let AddedComplexity = 20 in
-def : Pat < (i32 (extloadi8 (add IntRegs:$src1, s11_0ImmPred:$offset))),
- (i32 (LDrib_indexed IntRegs:$src1, s11_0ImmPred:$offset)) >;
+let accessSize = WordAccess, hasNewValue = 0 in {
+ def L2_loadbzw4_pci : T_load_pci <"memubh", DoubleRegs, s4_2Imm, 0b0101>;
+ def L2_loadbsw4_pci : T_load_pci <"membh", DoubleRegs, s4_2Imm, 0b0111>;
+}
-def : Pat < (i32 (extloadi16 ADDRriS11_1:$addr)),
- (i32 (LDrih ADDRriS11_1:$addr))>;
+let accessSize = DoubleWordAccess, hasNewValue = 0 in
+def L2_loadrd_pci : T_load_pci <"memd", DoubleRegs, s4_3Imm, 0b1110>;
-let AddedComplexity = 20 in
-def : Pat < (i32 (extloadi16 (add IntRegs:$src1, s11_1ImmPred:$offset))),
- (i32 (LDrih_indexed IntRegs:$src1, s11_1ImmPred:$offset)) >;
+//===----------------------------------------------------------------------===//
+// Circular loads - Pseudo
+//
+// Please note that the input operand order in the pseudo instructions
+// doesn't match with the real instructions. Pseudo instructions operand
+// order should mimics the ordering in the intrinsics. Also, 'src2' doesn't
+// appear in the AsmString because it's same as 'dst'.
+//===----------------------------------------------------------------------===//
+let isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0, isPseudo = 1 in
+class T_load_pci_pseudo <string opc, RegisterClass RC>
+ : LDInstPI<(outs IntRegs:$_dst_, RC:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4Imm:$src4),
+ ".error \"$dst = "#opc#"($src1++#$src4:circ($src3))\"",
+ [], "$src1 = $_dst_">;
+
+def L2_loadrb_pci_pseudo : T_load_pci_pseudo <"memb", IntRegs>;
+def L2_loadrub_pci_pseudo : T_load_pci_pseudo <"memub", IntRegs>;
+def L2_loadrh_pci_pseudo : T_load_pci_pseudo <"memh", IntRegs>;
+def L2_loadruh_pci_pseudo : T_load_pci_pseudo <"memuh", IntRegs>;
+def L2_loadri_pci_pseudo : T_load_pci_pseudo <"memw", IntRegs>;
+def L2_loadrd_pci_pseudo : T_load_pci_pseudo <"memd", DoubleRegs>;
+
+
+// TODO: memb_fifo and memh_fifo must take destination register as input.
+// One-off circ loads - not enough in common to break into a class.
+let accessSize = ByteAccess in
+def L2_loadalignb_pci : T_load_pci <"memb_fifo", DoubleRegs, s4_0Imm, 0b0100>;
+
+let accessSize = HalfWordAccess, opExtentAlign = 1 in
+def L2_loadalignh_pci : T_load_pci <"memh_fifo", DoubleRegs, s4_1Imm, 0b0010>;
+
+// L[24]_load[wd]_locked: Load word/double with lock.
+let isSoloAX = 1 in
+class T_load_locked <string mnemonic, RegisterClass RC>
+ : LD0Inst <(outs RC:$dst),
+ (ins IntRegs:$src),
+ "$dst = "#mnemonic#"($src)"> {
+ bits<5> dst;
+ bits<5> src;
+ let IClass = 0b1001;
+ let Inst{27-21} = 0b0010000;
+ let Inst{20-16} = src;
+ let Inst{13-12} = !if (!eq(mnemonic, "memd_locked"), 0b01, 0b00);
+ let Inst{5} = 0;
+ let Inst{4-0} = dst;
+}
+let hasNewValue = 1, accessSize = WordAccess, opNewValue = 0 in
+ def L2_loadw_locked : T_load_locked <"memw_locked", IntRegs>;
+let accessSize = DoubleWordAccess in
+ def L4_loadd_locked : T_load_locked <"memd_locked", DoubleRegs>;
+
+// S[24]_store[wd]_locked: Store word/double conditionally.
+let isSoloAX = 1, isPredicateLate = 1 in
+class T_store_locked <string mnemonic, RegisterClass RC>
+ : ST0Inst <(outs PredRegs:$Pd), (ins IntRegs:$Rs, RC:$Rt),
+ mnemonic#"($Rs, $Pd) = $Rt"> {
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1010;
+ let Inst{27-23} = 0b00001;
+ let Inst{22} = !if (!eq(mnemonic, "memw_locked"), 0b0, 0b1);
+ let Inst{21} = 0b1;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{1-0} = Pd;
+}
-let AddedComplexity = 10 in
-def : Pat < (i32 (zextloadi1 ADDRriS11_0:$addr)),
- (i32 (LDriub ADDRriS11_0:$addr))>;
+let accessSize = WordAccess in
+def S2_storew_locked : T_store_locked <"memw_locked", IntRegs>;
-let AddedComplexity = 20 in
-def : Pat < (i32 (zextloadi1 (add IntRegs:$src1, s11_0ImmPred:$offset))),
- (i32 (LDriub_indexed IntRegs:$src1, s11_0ImmPred:$offset))>;
+let accessSize = DoubleWordAccess in
+def S4_stored_locked : T_store_locked <"memd_locked", DoubleRegs>;
-// Load predicate.
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
-isPseudo = 1, Defs = [R10,R11,D5], neverHasSideEffects = 1 in
-def LDriw_pred : LDInst2<(outs PredRegs:$dst),
- (ins MEMri:$addr),
- "Error; should not emit",
- []>;
+//===----------------------------------------------------------------------===//
+// Bit-reversed loads with auto-increment register
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_load_pbr<string mnemonic, RegisterClass RC,
+ MemAccessSize addrSize, bits<4> majOp>
+ : LDInst
+ <(outs RC:$dst, IntRegs:$_dst_),
+ (ins IntRegs:$Rz, ModRegs:$Mu),
+ "$dst = "#mnemonic#"($Rz ++ $Mu:brev)" ,
+ [] , "$Rz = $_dst_" > {
+
+ let accessSize = addrSize;
+
+ bits<5> dst;
+ bits<5> Rz;
+ bits<1> Mu;
+
+ let IClass = 0b1001;
+
+ let Inst{27-25} = 0b111;
+ let Inst{24-21} = majOp;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12} = 0b0;
+ let Inst{7} = 0b0;
+ let Inst{4-0} = dst;
+ }
-// Deallocate stack frame.
-let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in {
- def DEALLOCFRAME : LDInst2<(outs), (ins),
- "deallocframe",
- []>;
+let hasNewValue =1, opNewValue = 0 in {
+ def L2_loadrb_pbr : T_load_pbr <"memb", IntRegs, ByteAccess, 0b1000>;
+ def L2_loadrub_pbr : T_load_pbr <"memub", IntRegs, ByteAccess, 0b1001>;
+ def L2_loadrh_pbr : T_load_pbr <"memh", IntRegs, HalfWordAccess, 0b1010>;
+ def L2_loadruh_pbr : T_load_pbr <"memuh", IntRegs, HalfWordAccess, 0b1011>;
+ def L2_loadbsw2_pbr : T_load_pbr <"membh", IntRegs, HalfWordAccess, 0b0001>;
+ def L2_loadbzw2_pbr : T_load_pbr <"memubh", IntRegs, HalfWordAccess, 0b0011>;
+ def L2_loadri_pbr : T_load_pbr <"memw", IntRegs, WordAccess, 0b1100>;
}
-// Load and unpack bytes to halfwords.
+def L2_loadbzw4_pbr : T_load_pbr <"memubh", DoubleRegs, WordAccess, 0b0101>;
+def L2_loadbsw4_pbr : T_load_pbr <"membh", DoubleRegs, WordAccess, 0b0111>;
+def L2_loadrd_pbr : T_load_pbr <"memd", DoubleRegs, DoubleWordAccess, 0b1110>;
+
+def L2_loadalignb_pbr :T_load_pbr <"memb_fifo", DoubleRegs, ByteAccess, 0b0100>;
+def L2_loadalignh_pbr :T_load_pbr <"memh_fifo", DoubleRegs,
+ HalfWordAccess, 0b0010>;
+
+//===----------------------------------------------------------------------===//
+// Bit-reversed loads - Pseudo
+//
+// Please note that 'src2' doesn't appear in the AsmString because
+// it's same as 'dst'.
+//===----------------------------------------------------------------------===//
+let isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0, isPseudo = 1 in
+class T_load_pbr_pseudo <string opc, RegisterClass RC>
+ : LDInstPI<(outs IntRegs:$_dst_, RC:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ ".error \"$dst = "#opc#"($src1++$src3:brev)\"",
+ [], "$src1 = $_dst_">;
+
+def L2_loadrb_pbr_pseudo : T_load_pbr_pseudo <"memb", IntRegs>;
+def L2_loadrub_pbr_pseudo : T_load_pbr_pseudo <"memub", IntRegs>;
+def L2_loadrh_pbr_pseudo : T_load_pbr_pseudo <"memh", IntRegs>;
+def L2_loadruh_pbr_pseudo : T_load_pbr_pseudo <"memuh", IntRegs>;
+def L2_loadri_pbr_pseudo : T_load_pbr_pseudo <"memw", IntRegs>;
+def L2_loadrd_pbr_pseudo : T_load_pbr_pseudo <"memd", DoubleRegs>;
+
//===----------------------------------------------------------------------===//
// LD -
//===----------------------------------------------------------------------===//
@@ -1259,180 +2291,934 @@ let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in {
//===----------------------------------------------------------------------===//
// MTYPE/MPYH +
//===----------------------------------------------------------------------===//
-// Multiply and use lower result.
-// Rd=+mpyi(Rs,#u8)
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 8 in
-def MPYI_riu : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Ext:$src2),
- "$dst =+ mpyi($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
- u8ExtPred:$src2))]>;
-// Rd=-mpyi(Rs,#u8)
-def MPYI_rin : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Imm:$src2),
- "$dst =- mpyi($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (ineg (mul (i32 IntRegs:$src1),
- u8ImmPred:$src2)))]>;
+//===----------------------------------------------------------------------===//
+// Template Class
+// MPYS / Multipy signed/unsigned halfwords
+//Rd=mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat]
+//===----------------------------------------------------------------------===//
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_M2_mpy < bits<2> LHbits, bit isSat, bit isRnd,
+ bit hasShift, bit isUnsigned>
+ : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l")
+ #", $Rt."#!if(LHbits{0},"h)","l)")
+ #!if(hasShift,":<<1","")
+ #!if(isRnd,":rnd","")
+ #!if(isSat,":sat",""),
+ [], "", M_tc_3x_SLOT23 > {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b1100;
+ let Inst{23} = hasShift;
+ let Inst{22} = isUnsigned;
+ let Inst{21} = isRnd;
+ let Inst{7} = isSat;
+ let Inst{6-5} = LHbits;
+ let Inst{4-0} = Rd;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ }
+
+//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1]
+def M2_mpy_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 0>;
+def M2_mpy_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 0>;
+def M2_mpy_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 0>;
+def M2_mpy_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 0>;
+def M2_mpy_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 0>;
+def M2_mpy_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 0>;
+def M2_mpy_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 0>;
+def M2_mpy_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 0>;
+
+//Rd=mpyu(Rs.[H|L],Rt.[H|L])[:<<1]
+def M2_mpyu_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 1>;
+def M2_mpyu_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 1>;
+def M2_mpyu_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 1>;
+def M2_mpyu_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 1>;
+def M2_mpyu_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 1>;
+def M2_mpyu_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 1>;
+def M2_mpyu_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 1>;
+def M2_mpyu_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 1>;
+
+//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1]:rnd
+def M2_mpy_rnd_ll_s1: T_M2_mpy <0b00, 0, 1, 1, 0>;
+def M2_mpy_rnd_ll_s0: T_M2_mpy <0b00, 0, 1, 0, 0>;
+def M2_mpy_rnd_lh_s1: T_M2_mpy <0b01, 0, 1, 1, 0>;
+def M2_mpy_rnd_lh_s0: T_M2_mpy <0b01, 0, 1, 0, 0>;
+def M2_mpy_rnd_hl_s1: T_M2_mpy <0b10, 0, 1, 1, 0>;
+def M2_mpy_rnd_hl_s0: T_M2_mpy <0b10, 0, 1, 0, 0>;
+def M2_mpy_rnd_hh_s1: T_M2_mpy <0b11, 0, 1, 1, 0>;
+def M2_mpy_rnd_hh_s0: T_M2_mpy <0b11, 0, 1, 0, 0>;
+
+//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:sat]
+//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat]
+let Defs = [USR_OVF] in {
+ def M2_mpy_sat_ll_s1: T_M2_mpy <0b00, 1, 0, 1, 0>;
+ def M2_mpy_sat_ll_s0: T_M2_mpy <0b00, 1, 0, 0, 0>;
+ def M2_mpy_sat_lh_s1: T_M2_mpy <0b01, 1, 0, 1, 0>;
+ def M2_mpy_sat_lh_s0: T_M2_mpy <0b01, 1, 0, 0, 0>;
+ def M2_mpy_sat_hl_s1: T_M2_mpy <0b10, 1, 0, 1, 0>;
+ def M2_mpy_sat_hl_s0: T_M2_mpy <0b10, 1, 0, 0, 0>;
+ def M2_mpy_sat_hh_s1: T_M2_mpy <0b11, 1, 0, 1, 0>;
+ def M2_mpy_sat_hh_s0: T_M2_mpy <0b11, 1, 0, 0, 0>;
+
+ def M2_mpy_sat_rnd_ll_s1: T_M2_mpy <0b00, 1, 1, 1, 0>;
+ def M2_mpy_sat_rnd_ll_s0: T_M2_mpy <0b00, 1, 1, 0, 0>;
+ def M2_mpy_sat_rnd_lh_s1: T_M2_mpy <0b01, 1, 1, 1, 0>;
+ def M2_mpy_sat_rnd_lh_s0: T_M2_mpy <0b01, 1, 1, 0, 0>;
+ def M2_mpy_sat_rnd_hl_s1: T_M2_mpy <0b10, 1, 1, 1, 0>;
+ def M2_mpy_sat_rnd_hl_s0: T_M2_mpy <0b10, 1, 1, 0, 0>;
+ def M2_mpy_sat_rnd_hh_s1: T_M2_mpy <0b11, 1, 1, 1, 0>;
+ def M2_mpy_sat_rnd_hh_s0: T_M2_mpy <0b11, 1, 1, 0, 0>;
+}
+
+//===----------------------------------------------------------------------===//
+// Template Class
+// MPYS / Multipy signed/unsigned halfwords and add/subtract the
+// result from the accumulator.
+//Rx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat]
+//===----------------------------------------------------------------------===//
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_M2_mpy_acc < bits<2> LHbits, bit isSat, bit isNac,
+ bit hasShift, bit isUnsigned >
+ : MInst_acc<(outs IntRegs:$Rx), (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
+ "$Rx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy")
+ #"($Rs."#!if(LHbits{1},"h","l")
+ #", $Rt."#!if(LHbits{0},"h)","l)")
+ #!if(hasShift,":<<1","")
+ #!if(isSat,":sat",""),
+ [], "$dst2 = $Rx", M_tc_3x_SLOT23 > {
+ bits<5> Rx;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+ let Inst{27-24} = 0b1110;
+ let Inst{23} = hasShift;
+ let Inst{22} = isUnsigned;
+ let Inst{21} = isNac;
+ let Inst{7} = isSat;
+ let Inst{6-5} = LHbits;
+ let Inst{4-0} = Rx;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ }
+
+//Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1]
+def M2_mpy_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 0>;
+def M2_mpy_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 0>;
+def M2_mpy_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 0>;
+def M2_mpy_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 0>;
+def M2_mpy_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 0>;
+def M2_mpy_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 0>;
+def M2_mpy_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 0>;
+def M2_mpy_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 0>;
+
+//Rx += mpyu(Rs.[H|L],Rt.[H|L])[:<<1]
+def M2_mpyu_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 1>;
+def M2_mpyu_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 1>;
+def M2_mpyu_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 1>;
+def M2_mpyu_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 1>;
+def M2_mpyu_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 1>;
+def M2_mpyu_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 1>;
+def M2_mpyu_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 1>;
+def M2_mpyu_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 1>;
+
+//Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1]
+def M2_mpy_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 0>;
+def M2_mpy_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 0>;
+def M2_mpy_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 0>;
+def M2_mpy_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 0>;
+def M2_mpy_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 0>;
+def M2_mpy_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 0>;
+def M2_mpy_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 0>;
+def M2_mpy_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 0>;
+
+//Rx -= mpyu(Rs.[H|L],Rt.[H|L])[:<<1]
+def M2_mpyu_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 1>;
+def M2_mpyu_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 1>;
+def M2_mpyu_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 1>;
+def M2_mpyu_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 1>;
+def M2_mpyu_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 1>;
+def M2_mpyu_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 1>;
+def M2_mpyu_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 1>;
+def M2_mpyu_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 1>;
+
+//Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat
+def M2_mpy_acc_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 0, 1, 0>;
+def M2_mpy_acc_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 0, 0, 0>;
+def M2_mpy_acc_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 0, 1, 0>;
+def M2_mpy_acc_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 0, 0, 0>;
+def M2_mpy_acc_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 0, 1, 0>;
+def M2_mpy_acc_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 0, 0, 0>;
+def M2_mpy_acc_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 0, 1, 0>;
+def M2_mpy_acc_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 0, 0, 0>;
+
+//Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat
+def M2_mpy_nac_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 1, 1, 0>;
+def M2_mpy_nac_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 1, 0, 0>;
+def M2_mpy_nac_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 1, 1, 0>;
+def M2_mpy_nac_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 1, 0, 0>;
+def M2_mpy_nac_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 1, 1, 0>;
+def M2_mpy_nac_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 1, 0, 0>;
+def M2_mpy_nac_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 1, 1, 0>;
+def M2_mpy_nac_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 1, 0, 0>;
+
+//===----------------------------------------------------------------------===//
+// Template Class
+// MPYS / Multipy signed/unsigned halfwords and add/subtract the
+// result from the 64-bit destination register.
+//Rxx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat]
+//===----------------------------------------------------------------------===//
+
+class T_M2_mpyd_acc < bits<2> LHbits, bit isNac, bit hasShift, bit isUnsigned>
+ : MInst_acc<(outs DoubleRegs:$Rxx),
+ (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
+ "$Rxx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy")
+ #"($Rs."#!if(LHbits{1},"h","l")
+ #", $Rt."#!if(LHbits{0},"h)","l)")
+ #!if(hasShift,":<<1",""),
+ [], "$dst2 = $Rxx", M_tc_3x_SLOT23 > {
+ bits<5> Rxx;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b0110;
+ let Inst{23} = hasShift;
+ let Inst{22} = isUnsigned;
+ let Inst{21} = isNac;
+ let Inst{7} = 0;
+ let Inst{6-5} = LHbits;
+ let Inst{4-0} = Rxx;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ }
+
+def M2_mpyd_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 0>;
+def M2_mpyd_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 0>;
+def M2_mpyd_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 0>;
+def M2_mpyd_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 0>;
+
+def M2_mpyd_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 0>;
+def M2_mpyd_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 0>;
+def M2_mpyd_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 0>;
+def M2_mpyd_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 0>;
+
+def M2_mpyd_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 0>;
+def M2_mpyd_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 0>;
+def M2_mpyd_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 0>;
+def M2_mpyd_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 0>;
+
+def M2_mpyd_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 0>;
+def M2_mpyd_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 0>;
+def M2_mpyd_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 0>;
+def M2_mpyd_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 0>;
+
+def M2_mpyud_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 1>;
+def M2_mpyud_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 1>;
+def M2_mpyud_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 1>;
+def M2_mpyud_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 1>;
+
+def M2_mpyud_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 1>;
+def M2_mpyud_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 1>;
+def M2_mpyud_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 1>;
+def M2_mpyud_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 1>;
+
+def M2_mpyud_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 1>;
+def M2_mpyud_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 1>;
+def M2_mpyud_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 1>;
+def M2_mpyud_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 1>;
+
+def M2_mpyud_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 1>;
+def M2_mpyud_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 1>;
+def M2_mpyud_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 1>;
+def M2_mpyud_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 1>;
+
+//===----------------------------------------------------------------------===//
+// Template Class -- Vector Multipy
+// Used for complex multiply real or imaginary, dual multiply and even halfwords
+//===----------------------------------------------------------------------===//
+class T_M2_vmpy < string opc, bits<3> MajOp, bits<3> MinOp, bit hasShift,
+ bit isRnd, bit isSat >
+ : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
+ "$Rdd = "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","")
+ #!if(isRnd,":rnd","")
+ #!if(isSat,":sat",""),
+ [] > {
+ bits<5> Rdd;
+ bits<5> Rss;
+ bits<5> Rtt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b1000;
+ let Inst{23-21} = MajOp;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rdd;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rtt;
+ }
+
+// Vector complex multiply imaginary: Rdd=vcmpyi(Rss,Rtt)[:<<1]:sat
+let Defs = [USR_OVF] in {
+def M2_vcmpy_s1_sat_i: T_M2_vmpy <"vcmpyi", 0b110, 0b110, 1, 0, 1>;
+def M2_vcmpy_s0_sat_i: T_M2_vmpy <"vcmpyi", 0b010, 0b110, 0, 0, 1>;
+
+// Vector complex multiply real: Rdd=vcmpyr(Rss,Rtt)[:<<1]:sat
+def M2_vcmpy_s1_sat_r: T_M2_vmpy <"vcmpyr", 0b101, 0b110, 1, 0, 1>;
+def M2_vcmpy_s0_sat_r: T_M2_vmpy <"vcmpyr", 0b001, 0b110, 0, 0, 1>;
+
+// Vector dual multiply: Rdd=vdmpy(Rss,Rtt)[:<<1]:sat
+def M2_vdmpys_s1: T_M2_vmpy <"vdmpy", 0b100, 0b100, 1, 0, 1>;
+def M2_vdmpys_s0: T_M2_vmpy <"vdmpy", 0b000, 0b100, 0, 0, 1>;
+
+// Vector multiply even halfwords: Rdd=vmpyeh(Rss,Rtt)[:<<1]:sat
+def M2_vmpy2es_s1: T_M2_vmpy <"vmpyeh", 0b100, 0b110, 1, 0, 1>;
+def M2_vmpy2es_s0: T_M2_vmpy <"vmpyeh", 0b000, 0b110, 0, 0, 1>;
+
+//Rdd=vmpywoh(Rss,Rtt)[:<<1][:rnd]:sat
+def M2_mmpyh_s0: T_M2_vmpy <"vmpywoh", 0b000, 0b111, 0, 0, 1>;
+def M2_mmpyh_s1: T_M2_vmpy <"vmpywoh", 0b100, 0b111, 1, 0, 1>;
+def M2_mmpyh_rs0: T_M2_vmpy <"vmpywoh", 0b001, 0b111, 0, 1, 1>;
+def M2_mmpyh_rs1: T_M2_vmpy <"vmpywoh", 0b101, 0b111, 1, 1, 1>;
+
+//Rdd=vmpyweh(Rss,Rtt)[:<<1][:rnd]:sat
+def M2_mmpyl_s0: T_M2_vmpy <"vmpyweh", 0b000, 0b101, 0, 0, 1>;
+def M2_mmpyl_s1: T_M2_vmpy <"vmpyweh", 0b100, 0b101, 1, 0, 1>;
+def M2_mmpyl_rs0: T_M2_vmpy <"vmpyweh", 0b001, 0b101, 0, 1, 1>;
+def M2_mmpyl_rs1: T_M2_vmpy <"vmpyweh", 0b101, 0b101, 1, 1, 1>;
+
+//Rdd=vmpywouh(Rss,Rtt)[:<<1][:rnd]:sat
+def M2_mmpyuh_s0: T_M2_vmpy <"vmpywouh", 0b010, 0b111, 0, 0, 1>;
+def M2_mmpyuh_s1: T_M2_vmpy <"vmpywouh", 0b110, 0b111, 1, 0, 1>;
+def M2_mmpyuh_rs0: T_M2_vmpy <"vmpywouh", 0b011, 0b111, 0, 1, 1>;
+def M2_mmpyuh_rs1: T_M2_vmpy <"vmpywouh", 0b111, 0b111, 1, 1, 1>;
+
+//Rdd=vmpyweuh(Rss,Rtt)[:<<1][:rnd]:sat
+def M2_mmpyul_s0: T_M2_vmpy <"vmpyweuh", 0b010, 0b101, 0, 0, 1>;
+def M2_mmpyul_s1: T_M2_vmpy <"vmpyweuh", 0b110, 0b101, 1, 0, 1>;
+def M2_mmpyul_rs0: T_M2_vmpy <"vmpyweuh", 0b011, 0b101, 0, 1, 1>;
+def M2_mmpyul_rs1: T_M2_vmpy <"vmpyweuh", 0b111, 0b101, 1, 1, 1>;
+}
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_MType_mpy <string mnemonic, bits<4> RegTyBits, RegisterClass RC,
+ bits<3> MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0,
+ string op2Suffix = "", bit isRaw = 0, bit isHi = 0 >
+ : MInst <(outs IntRegs:$dst), (ins RC:$src1, RC:$src2),
+ "$dst = "#mnemonic
+ #"($src1, $src2"#op2Suffix#")"
+ #!if(MajOp{2}, ":<<1", "")
+ #!if(isRnd, ":rnd", "")
+ #!if(isSat, ":sat", "")
+ #!if(isRaw, !if(isHi, ":raw:hi", ":raw:lo"), ""), [] > {
+ bits<5> dst;
+ bits<5> src1;
+ bits<5> src2;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = RegTyBits;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = src2;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = dst;
+ }
+
+class T_MType_vrcmpy <string mnemonic, bits<3> MajOp, bits<3> MinOp, bit isHi>
+ : T_MType_mpy <mnemonic, 0b1001, DoubleRegs, MajOp, MinOp, 1, 1, "", 1, isHi>;
+
+class T_MType_dd <string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit isSat = 0, bit isRnd = 0 >
+ : T_MType_mpy <mnemonic, 0b1001, DoubleRegs, MajOp, MinOp, isSat, isRnd>;
+
+class T_MType_rr1 <string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit isSat = 0, bit isRnd = 0 >
+ : T_MType_mpy<mnemonic, 0b1101, IntRegs, MajOp, MinOp, isSat, isRnd>;
+
+class T_MType_rr2 <string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit isSat = 0, bit isRnd = 0, string op2str = "" >
+ : T_MType_mpy<mnemonic, 0b1101, IntRegs, MajOp, MinOp, isSat, isRnd, op2str>;
+
+def M2_vradduh : T_MType_dd <"vradduh", 0b000, 0b001, 0, 0>;
+def M2_vdmpyrs_s0 : T_MType_dd <"vdmpy", 0b000, 0b000, 1, 1>;
+def M2_vdmpyrs_s1 : T_MType_dd <"vdmpy", 0b100, 0b000, 1, 1>;
+
+let CextOpcode = "mpyi", InputType = "reg" in
+def M2_mpyi : T_MType_rr1 <"mpyi", 0b000, 0b000>, ImmRegRel;
+
+def M2_mpy_up : T_MType_rr1 <"mpy", 0b000, 0b001>;
+def M2_mpyu_up : T_MType_rr1 <"mpyu", 0b010, 0b001>;
+
+def M2_dpmpyss_rnd_s0 : T_MType_rr1 <"mpy", 0b001, 0b001, 0, 1>;
+
+def M2_vmpy2s_s0pack : T_MType_rr1 <"vmpyh", 0b001, 0b111, 1, 1>;
+def M2_vmpy2s_s1pack : T_MType_rr1 <"vmpyh", 0b101, 0b111, 1, 1>;
+
+def M2_hmmpyh_rs1 : T_MType_rr2 <"mpy", 0b101, 0b100, 1, 1, ".h">;
+def M2_hmmpyl_rs1 : T_MType_rr2 <"mpy", 0b111, 0b100, 1, 1, ".l">;
+
+def M2_cmpyrs_s0 : T_MType_rr2 <"cmpy", 0b001, 0b110, 1, 1>;
+def M2_cmpyrs_s1 : T_MType_rr2 <"cmpy", 0b101, 0b110, 1, 1>;
+def M2_cmpyrsc_s0 : T_MType_rr2 <"cmpy", 0b011, 0b110, 1, 1, "*">;
+def M2_cmpyrsc_s1 : T_MType_rr2 <"cmpy", 0b111, 0b110, 1, 1, "*">;
+
+// V4 Instructions
+def M2_vraddh : T_MType_dd <"vraddh", 0b001, 0b111, 0>;
+def M2_mpysu_up : T_MType_rr1 <"mpysu", 0b011, 0b001, 0>;
+def M2_mpy_up_s1 : T_MType_rr1 <"mpy", 0b101, 0b010, 0>;
+def M2_mpy_up_s1_sat : T_MType_rr1 <"mpy", 0b111, 0b000, 1>;
+
+def M2_hmmpyh_s1 : T_MType_rr2 <"mpy", 0b101, 0b000, 1, 0, ".h">;
+def M2_hmmpyl_s1 : T_MType_rr2 <"mpy", 0b101, 0b001, 1, 0, ".l">;
+
+def: Pat<(i32 (mul I32:$src1, I32:$src2)), (M2_mpyi I32:$src1, I32:$src2)>;
+def: Pat<(i32 (mulhs I32:$src1, I32:$src2)), (M2_mpy_up I32:$src1, I32:$src2)>;
+def: Pat<(i32 (mulhu I32:$src1, I32:$src2)), (M2_mpyu_up I32:$src1, I32:$src2)>;
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_MType_mpy_ri <bit isNeg, Operand ImmOp, list<dag> pattern>
+ : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, ImmOp:$u8),
+ "$Rd ="#!if(isNeg, "- ", "+ ")#"mpyi($Rs, #$u8)" ,
+ pattern, "", M_tc_3x_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<8> u8;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b0000;
+ let Inst{23} = isNeg;
+ let Inst{13} = 0b0;
+ let Inst{4-0} = Rd;
+ let Inst{20-16} = Rs;
+ let Inst{12-5} = u8;
+ }
+
+let isExtendable = 1, opExtentBits = 8, opExtendable = 2 in
+def M2_mpysip : T_MType_mpy_ri <0, u8Ext,
+ [(set (i32 IntRegs:$Rd), (mul IntRegs:$Rs, u8ExtPred:$u8))]>;
+
+def M2_mpysin : T_MType_mpy_ri <1, u8Imm,
+ [(set (i32 IntRegs:$Rd), (ineg (mul IntRegs:$Rs,
+ u8ImmPred:$u8)))]>;
+
+// Assember mapped to M2_mpyi
+let isAsmParserOnly = 1 in
+def M2_mpyui : MInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpyui($src1, $src2)">;
// Rd=mpyi(Rs,#m9)
// s9 is NOT the same as m9 - but it works.. so far.
-// Assembler maps to either Rd=+mpyi(Rs,#u8 or Rd=-mpyi(Rs,#u8)
+// Assembler maps to either Rd=+mpyi(Rs,#u8) or Rd=-mpyi(Rs,#u8)
// depending on the value of m9. See Arch Spec.
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 9,
-CextOpcode = "MPYI", InputType = "imm" in
-def MPYI_ri : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2),
- "$dst = mpyi($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
- s9ExtPred:$src2))]>, ImmRegRel;
-
-// Rd=mpyi(Rs,Rt)
-let CextOpcode = "MPYI", InputType = "reg" in
-def MPYI : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = mpyi($src1, $src2)",
- [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>, ImmRegRel;
-
-// Rx+=mpyi(Rs,#u8)
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8,
-CextOpcode = "MPYI_acc", InputType = "imm" in
-def MPYI_acc_ri : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3),
- "$dst += mpyi($src2, #$src3)",
- [(set (i32 IntRegs:$dst),
- (add (mul (i32 IntRegs:$src2), u8ExtPred:$src3),
- (i32 IntRegs:$src1)))],
- "$src1 = $dst">, ImmRegRel;
+ CextOpcode = "mpyi", InputType = "imm", hasNewValue = 1,
+ isAsmParserOnly = 1 in
+def M2_mpysmi : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2),
+ "$dst = mpyi($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
+ s9ExtPred:$src2))]>, ImmRegRel;
+
+let hasNewValue = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 3,
+ InputType = "imm" in
+class T_MType_acc_ri <string mnemonic, bits<3> MajOp, Operand ImmOp,
+ list<dag> pattern = []>
+ : MInst < (outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, ImmOp:$src3),
+ "$dst "#mnemonic#"($src2, #$src3)",
+ pattern, "$src1 = $dst", M_tc_2_SLOT23> {
+ bits<5> dst;
+ bits<5> src2;
+ bits<8> src3;
+
+ let IClass = 0b1110;
+
+ let Inst{27-26} = 0b00;
+ let Inst{25-23} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{13} = 0b0;
+ let Inst{12-5} = src3;
+ let Inst{4-0} = dst;
+ }
-// Rx+=mpyi(Rs,Rt)
-let CextOpcode = "MPYI_acc", InputType = "reg" in
-def MPYI_acc_rr : MInst_acc<(outs IntRegs:$dst),
+let InputType = "reg", hasNewValue = 1 in
+class T_MType_acc_rr <string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit isSwap = 0, list<dag> pattern = [], bit hasNot = 0,
+ bit isSat = 0, bit isShift = 0>
+ : MInst < (outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
- "$dst += mpyi($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
- (i32 IntRegs:$src1)))],
- "$src1 = $dst">, ImmRegRel;
-
-// Rx-=mpyi(Rs,#u8)
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8 in
-def MPYI_sub_ri : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3),
- "$dst -= mpyi($src2, #$src3)",
- [(set (i32 IntRegs:$dst),
- (sub (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
- u8ExtPred:$src3)))],
- "$src1 = $dst">;
-
-// Multiply and use upper result.
-// Rd=mpy(Rs,Rt.H):<<1:rnd:sat
-// Rd=mpy(Rs,Rt.L):<<1:rnd:sat
-// Rd=mpy(Rs,Rt)
-def MPY : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = mpy($src1, $src2)",
- [(set (i32 IntRegs:$dst), (mulhs (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-// Rd=mpy(Rs,Rt):rnd
-// Rd=mpyu(Rs,Rt)
-def MPYU : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = mpyu($src1, $src2)",
- [(set (i32 IntRegs:$dst), (mulhu (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-// Multiply and use full result.
-// Rdd=mpyu(Rs,Rt)
-def MPYU64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = mpyu($src1, $src2)",
- [(set (i64 DoubleRegs:$dst),
- (mul (i64 (anyext (i32 IntRegs:$src1))),
- (i64 (anyext (i32 IntRegs:$src2)))))]>;
-
-// Rdd=mpy(Rs,Rt)
-def MPY64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = mpy($src1, $src2)",
- [(set (i64 DoubleRegs:$dst),
- (mul (i64 (sext (i32 IntRegs:$src1))),
- (i64 (sext (i32 IntRegs:$src2)))))]>;
+ "$dst "#mnemonic#"($src2, "#!if(hasNot, "~$src3)","$src3)")
+ #!if(isShift, ":<<1", "")
+ #!if(isSat, ":sat", ""),
+ pattern, "$src1 = $dst", M_tc_2_SLOT23 > {
+ bits<5> dst;
+ bits<5> src2;
+ bits<5> src3;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b1111;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = !if(isSwap, src3, src2);
+ let Inst{13} = 0b0;
+ let Inst{12-8} = !if(isSwap, src2, src3);
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = dst;
+ }
+
+let CextOpcode = "MPYI_acc", Itinerary = M_tc_3x_SLOT23 in {
+ def M2_macsip : T_MType_acc_ri <"+= mpyi", 0b010, u8Ext,
+ [(set (i32 IntRegs:$dst),
+ (add (mul IntRegs:$src2, u8ExtPred:$src3),
+ IntRegs:$src1))]>, ImmRegRel;
+
+ def M2_maci : T_MType_acc_rr <"+= mpyi", 0b000, 0b000, 0,
+ [(set (i32 IntRegs:$dst),
+ (add (mul IntRegs:$src2, IntRegs:$src3),
+ IntRegs:$src1))]>, ImmRegRel;
+}
+
+let CextOpcode = "ADD_acc" in {
+ let isExtentSigned = 1 in
+ def M2_accii : T_MType_acc_ri <"+= add", 0b100, s8Ext,
+ [(set (i32 IntRegs:$dst),
+ (add (add (i32 IntRegs:$src2), s8_16ExtPred:$src3),
+ (i32 IntRegs:$src1)))]>, ImmRegRel;
+
+ def M2_acci : T_MType_acc_rr <"+= add", 0b000, 0b001, 0,
+ [(set (i32 IntRegs:$dst),
+ (add (add (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
+ (i32 IntRegs:$src1)))]>, ImmRegRel;
+}
+
+let CextOpcode = "SUB_acc" in {
+ let isExtentSigned = 1 in
+ def M2_naccii : T_MType_acc_ri <"-= add", 0b101, s8Ext>, ImmRegRel;
+
+ def M2_nacci : T_MType_acc_rr <"-= add", 0b100, 0b001, 0>, ImmRegRel;
+}
+
+let Itinerary = M_tc_3x_SLOT23 in
+def M2_macsin : T_MType_acc_ri <"-= mpyi", 0b011, u8Ext>;
+
+def M2_xor_xacc : T_MType_acc_rr < "^= xor", 0b100, 0b011, 0>;
+def M2_subacc : T_MType_acc_rr <"+= sub", 0b000, 0b011, 1>;
+
+class T_MType_acc_pat1 <InstHexagon MI, SDNode firstOp, SDNode secOp,
+ PatLeaf ImmPred>
+ : Pat <(secOp IntRegs:$src1, (firstOp IntRegs:$src2, ImmPred:$src3)),
+ (MI IntRegs:$src1, IntRegs:$src2, ImmPred:$src3)>;
+
+class T_MType_acc_pat2 <InstHexagon MI, SDNode firstOp, SDNode secOp>
+ : Pat <(i32 (secOp IntRegs:$src1, (firstOp IntRegs:$src2, IntRegs:$src3))),
+ (MI IntRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
+
+def : T_MType_acc_pat2 <M2_xor_xacc, xor, xor>;
+def : T_MType_acc_pat1 <M2_macsin, mul, sub, u8ExtPred>;
+
+def : T_MType_acc_pat1 <M2_naccii, add, sub, s8_16ExtPred>;
+def : T_MType_acc_pat2 <M2_nacci, add, sub>;
+
+//===----------------------------------------------------------------------===//
+// Template Class -- XType Vector Instructions
+//===----------------------------------------------------------------------===//
+class T_XTYPE_Vect < string opc, bits<3> MajOp, bits<3> MinOp, bit isConj >
+ : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
+ "$Rdd = "#opc#"($Rss, $Rtt"#!if(isConj,"*)",")"),
+ [] > {
+ bits<5> Rdd;
+ bits<5> Rss;
+ bits<5> Rtt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b1000;
+ let Inst{23-21} = MajOp;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rdd;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rtt;
+ }
+
+class T_XTYPE_Vect_acc < string opc, bits<3> MajOp, bits<3> MinOp, bit isConj >
+ : MInst <(outs DoubleRegs:$Rdd),
+ (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
+ "$Rdd += "#opc#"($Rss, $Rtt"#!if(isConj,"*)",")"),
+ [], "$dst2 = $Rdd",M_tc_3x_SLOT23 > {
+ bits<5> Rdd;
+ bits<5> Rss;
+ bits<5> Rtt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b1010;
+ let Inst{23-21} = MajOp;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rdd;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rtt;
+ }
+
+class T_XTYPE_Vect_diff < bits<3> MajOp, string opc >
+ : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rtt, DoubleRegs:$Rss),
+ "$Rdd = "#opc#"($Rtt, $Rss)",
+ [], "",M_tc_2_SLOT23 > {
+ bits<5> Rdd;
+ bits<5> Rss;
+ bits<5> Rtt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b1000;
+ let Inst{23-21} = MajOp;
+ let Inst{7-5} = 0b000;
+ let Inst{4-0} = Rdd;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rtt;
+ }
+
+// Vector reduce add unsigned bytes: Rdd32=vrmpybu(Rss32,Rtt32)
+def A2_vraddub: T_XTYPE_Vect <"vraddub", 0b010, 0b001, 0>;
+def A2_vraddub_acc: T_XTYPE_Vect_acc <"vraddub", 0b010, 0b001, 0>;
+
+// Vector sum of absolute differences unsigned bytes: Rdd=vrsadub(Rss,Rtt)
+def A2_vrsadub: T_XTYPE_Vect <"vrsadub", 0b010, 0b010, 0>;
+def A2_vrsadub_acc: T_XTYPE_Vect_acc <"vrsadub", 0b010, 0b010, 0>;
+
+// Vector absolute difference: Rdd=vabsdiffh(Rtt,Rss)
+def M2_vabsdiffh: T_XTYPE_Vect_diff<0b011, "vabsdiffh">;
+
+// Vector absolute difference words: Rdd=vabsdiffw(Rtt,Rss)
+def M2_vabsdiffw: T_XTYPE_Vect_diff<0b001, "vabsdiffw">;
+
+// Vector reduce complex multiply real or imaginary:
+// Rdd[+]=vrcmpy[ir](Rss,Rtt[*])
+def M2_vrcmpyi_s0: T_XTYPE_Vect <"vrcmpyi", 0b000, 0b000, 0>;
+def M2_vrcmpyi_s0c: T_XTYPE_Vect <"vrcmpyi", 0b010, 0b000, 1>;
+def M2_vrcmaci_s0: T_XTYPE_Vect_acc <"vrcmpyi", 0b000, 0b000, 0>;
+def M2_vrcmaci_s0c: T_XTYPE_Vect_acc <"vrcmpyi", 0b010, 0b000, 1>;
+
+def M2_vrcmpyr_s0: T_XTYPE_Vect <"vrcmpyr", 0b000, 0b001, 0>;
+def M2_vrcmpyr_s0c: T_XTYPE_Vect <"vrcmpyr", 0b011, 0b001, 1>;
+def M2_vrcmacr_s0: T_XTYPE_Vect_acc <"vrcmpyr", 0b000, 0b001, 0>;
+def M2_vrcmacr_s0c: T_XTYPE_Vect_acc <"vrcmpyr", 0b011, 0b001, 1>;
+
+// Vector reduce halfwords:
+// Rdd[+]=vrmpyh(Rss,Rtt)
+def M2_vrmpy_s0: T_XTYPE_Vect <"vrmpyh", 0b000, 0b010, 0>;
+def M2_vrmac_s0: T_XTYPE_Vect_acc <"vrmpyh", 0b000, 0b010, 0>;
+
+//===----------------------------------------------------------------------===//
+// Template Class -- Vector Multipy with accumulation.
+// Used for complex multiply real or imaginary, dual multiply and even halfwords
+//===----------------------------------------------------------------------===//
+let Defs = [USR_OVF] in
+class T_M2_vmpy_acc_sat < string opc, bits<3> MajOp, bits<3> MinOp,
+ bit hasShift, bit isRnd >
+ : MInst <(outs DoubleRegs:$Rxx),
+ (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
+ "$Rxx += "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","")
+ #!if(isRnd,":rnd","")#":sat",
+ [], "$dst2 = $Rxx",M_tc_3x_SLOT23 > {
+ bits<5> Rxx;
+ bits<5> Rss;
+ bits<5> Rtt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b1010;
+ let Inst{23-21} = MajOp;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rxx;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rtt;
+ }
+
+class T_M2_vmpy_acc < string opc, bits<3> MajOp, bits<3> MinOp,
+ bit hasShift, bit isRnd >
+ : MInst <(outs DoubleRegs:$Rxx),
+ (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
+ "$Rxx += "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","")
+ #!if(isRnd,":rnd",""),
+ [], "$dst2 = $Rxx",M_tc_3x_SLOT23 > {
+ bits<5> Rxx;
+ bits<5> Rss;
+ bits<5> Rtt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b1010;
+ let Inst{23-21} = MajOp;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rxx;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rtt;
+ }
+
+// Vector multiply word by signed half with accumulation
+// Rxx+=vmpyw[eo]h(Rss,Rtt)[:<<1][:rnd]:sat
+def M2_mmacls_s1: T_M2_vmpy_acc_sat <"vmpyweh", 0b100, 0b101, 1, 0>;
+def M2_mmacls_s0: T_M2_vmpy_acc_sat <"vmpyweh", 0b000, 0b101, 0, 0>;
+def M2_mmacls_rs1: T_M2_vmpy_acc_sat <"vmpyweh", 0b101, 0b101, 1, 1>;
+def M2_mmacls_rs0: T_M2_vmpy_acc_sat <"vmpyweh", 0b001, 0b101, 0, 1>;
+
+def M2_mmachs_s1: T_M2_vmpy_acc_sat <"vmpywoh", 0b100, 0b111, 1, 0>;
+def M2_mmachs_s0: T_M2_vmpy_acc_sat <"vmpywoh", 0b000, 0b111, 0, 0>;
+def M2_mmachs_rs1: T_M2_vmpy_acc_sat <"vmpywoh", 0b101, 0b111, 1, 1>;
+def M2_mmachs_rs0: T_M2_vmpy_acc_sat <"vmpywoh", 0b001, 0b111, 0, 1>;
+
+// Vector multiply word by unsigned half with accumulation
+// Rxx+=vmpyw[eo]uh(Rss,Rtt)[:<<1][:rnd]:sat
+def M2_mmaculs_s1: T_M2_vmpy_acc_sat <"vmpyweuh", 0b110, 0b101, 1, 0>;
+def M2_mmaculs_s0: T_M2_vmpy_acc_sat <"vmpyweuh", 0b010, 0b101, 0, 0>;
+def M2_mmaculs_rs1: T_M2_vmpy_acc_sat <"vmpyweuh", 0b111, 0b101, 1, 1>;
+def M2_mmaculs_rs0: T_M2_vmpy_acc_sat <"vmpyweuh", 0b011, 0b101, 0, 1>;
+
+def M2_mmacuhs_s1: T_M2_vmpy_acc_sat <"vmpywouh", 0b110, 0b111, 1, 0>;
+def M2_mmacuhs_s0: T_M2_vmpy_acc_sat <"vmpywouh", 0b010, 0b111, 0, 0>;
+def M2_mmacuhs_rs1: T_M2_vmpy_acc_sat <"vmpywouh", 0b111, 0b111, 1, 1>;
+def M2_mmacuhs_rs0: T_M2_vmpy_acc_sat <"vmpywouh", 0b011, 0b111, 0, 1>;
+
+// Vector multiply even halfwords with accumulation
+// Rxx+=vmpyeh(Rss,Rtt)[:<<1][:sat]
+def M2_vmac2es: T_M2_vmpy_acc <"vmpyeh", 0b001, 0b010, 0, 0>;
+def M2_vmac2es_s1: T_M2_vmpy_acc_sat <"vmpyeh", 0b100, 0b110, 1, 0>;
+def M2_vmac2es_s0: T_M2_vmpy_acc_sat <"vmpyeh", 0b000, 0b110, 0, 0>;
+
+// Vector dual multiply with accumulation
+// Rxx+=vdmpy(Rss,Rtt)[:sat]
+def M2_vdmacs_s1: T_M2_vmpy_acc_sat <"vdmpy", 0b100, 0b100, 1, 0>;
+def M2_vdmacs_s0: T_M2_vmpy_acc_sat <"vdmpy", 0b000, 0b100, 0, 0>;
+
+// Vector complex multiply real or imaginary with accumulation
+// Rxx+=vcmpy[ir](Rss,Rtt):sat
+def M2_vcmac_s0_sat_r: T_M2_vmpy_acc_sat <"vcmpyr", 0b001, 0b100, 0, 0>;
+def M2_vcmac_s0_sat_i: T_M2_vmpy_acc_sat <"vcmpyi", 0b010, 0b100, 0, 0>;
+
+//===----------------------------------------------------------------------===//
+// Template Class -- Multiply signed/unsigned halfwords with and without
+// saturation and rounding
+//===----------------------------------------------------------------------===//
+class T_M2_mpyd < bits<2> LHbits, bit isRnd, bit hasShift, bit isUnsigned >
+ : MInst < (outs DoubleRegs:$Rdd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rdd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l")
+ #", $Rt."#!if(LHbits{0},"h)","l)")
+ #!if(hasShift,":<<1","")
+ #!if(isRnd,":rnd",""),
+ [] > {
+ bits<5> Rdd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b0100;
+ let Inst{23} = hasShift;
+ let Inst{22} = isUnsigned;
+ let Inst{21} = isRnd;
+ let Inst{6-5} = LHbits;
+ let Inst{4-0} = Rdd;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+}
+
+def M2_mpyd_hh_s0: T_M2_mpyd<0b11, 0, 0, 0>;
+def M2_mpyd_hl_s0: T_M2_mpyd<0b10, 0, 0, 0>;
+def M2_mpyd_lh_s0: T_M2_mpyd<0b01, 0, 0, 0>;
+def M2_mpyd_ll_s0: T_M2_mpyd<0b00, 0, 0, 0>;
+
+def M2_mpyd_hh_s1: T_M2_mpyd<0b11, 0, 1, 0>;
+def M2_mpyd_hl_s1: T_M2_mpyd<0b10, 0, 1, 0>;
+def M2_mpyd_lh_s1: T_M2_mpyd<0b01, 0, 1, 0>;
+def M2_mpyd_ll_s1: T_M2_mpyd<0b00, 0, 1, 0>;
+
+def M2_mpyd_rnd_hh_s0: T_M2_mpyd<0b11, 1, 0, 0>;
+def M2_mpyd_rnd_hl_s0: T_M2_mpyd<0b10, 1, 0, 0>;
+def M2_mpyd_rnd_lh_s0: T_M2_mpyd<0b01, 1, 0, 0>;
+def M2_mpyd_rnd_ll_s0: T_M2_mpyd<0b00, 1, 0, 0>;
+
+def M2_mpyd_rnd_hh_s1: T_M2_mpyd<0b11, 1, 1, 0>;
+def M2_mpyd_rnd_hl_s1: T_M2_mpyd<0b10, 1, 1, 0>;
+def M2_mpyd_rnd_lh_s1: T_M2_mpyd<0b01, 1, 1, 0>;
+def M2_mpyd_rnd_ll_s1: T_M2_mpyd<0b00, 1, 1, 0>;
+
+//Rdd=mpyu(Rs.[HL],Rt.[HL])[:<<1]
+def M2_mpyud_hh_s0: T_M2_mpyd<0b11, 0, 0, 1>;
+def M2_mpyud_hl_s0: T_M2_mpyd<0b10, 0, 0, 1>;
+def M2_mpyud_lh_s0: T_M2_mpyd<0b01, 0, 0, 1>;
+def M2_mpyud_ll_s0: T_M2_mpyd<0b00, 0, 0, 1>;
+
+def M2_mpyud_hh_s1: T_M2_mpyd<0b11, 0, 1, 1>;
+def M2_mpyud_hl_s1: T_M2_mpyd<0b10, 0, 1, 1>;
+def M2_mpyud_lh_s1: T_M2_mpyd<0b01, 0, 1, 1>;
+def M2_mpyud_ll_s1: T_M2_mpyd<0b00, 0, 1, 1>;
+
+//===----------------------------------------------------------------------===//
+// Template Class for xtype mpy:
+// Vector multiply
+// Complex multiply
+// multiply 32X32 and use full result
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_XTYPE_mpy64 <string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit isSat, bit hasShift, bit isConj>
+ : MInst <(outs DoubleRegs:$Rdd),
+ (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rdd = "#mnemonic#"($Rs, $Rt"#!if(isConj,"*)",")")
+ #!if(hasShift,":<<1","")
+ #!if(isSat,":sat",""),
+ [] > {
+ bits<5> Rdd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b0101;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rdd;
+ }
+
+//===----------------------------------------------------------------------===//
+// Template Class for xtype mpy with accumulation into 64-bit:
+// Vector multiply
+// Complex multiply
+// multiply 32X32 and use full result
+//===----------------------------------------------------------------------===//
+class T_XTYPE_mpy64_acc <string op1, string op2, bits<3> MajOp, bits<3> MinOp,
+ bit isSat, bit hasShift, bit isConj>
+ : MInst <(outs DoubleRegs:$Rxx),
+ (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
+ "$Rxx "#op2#"= "#op1#"($Rs, $Rt"#!if(isConj,"*)",")")
+ #!if(hasShift,":<<1","")
+ #!if(isSat,":sat",""),
+
+ [] , "$dst2 = $Rxx" > {
+ bits<5> Rxx;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b0111;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rxx;
+ }
+
+// MPY - Multiply and use full result
+// Rdd = mpy[u](Rs,Rt)
+def M2_dpmpyss_s0 : T_XTYPE_mpy64 < "mpy", 0b000, 0b000, 0, 0, 0>;
+def M2_dpmpyuu_s0 : T_XTYPE_mpy64 < "mpyu", 0b010, 0b000, 0, 0, 0>;
+
+// Rxx[+-]= mpy[u](Rs,Rt)
+def M2_dpmpyss_acc_s0 : T_XTYPE_mpy64_acc < "mpy", "+", 0b000, 0b000, 0, 0, 0>;
+def M2_dpmpyss_nac_s0 : T_XTYPE_mpy64_acc < "mpy", "-", 0b001, 0b000, 0, 0, 0>;
+def M2_dpmpyuu_acc_s0 : T_XTYPE_mpy64_acc < "mpyu", "+", 0b010, 0b000, 0, 0, 0>;
+def M2_dpmpyuu_nac_s0 : T_XTYPE_mpy64_acc < "mpyu", "-", 0b011, 0b000, 0, 0, 0>;
+
+// Complex multiply real or imaginary
+// Rxx=cmpy[ir](Rs,Rt)
+def M2_cmpyi_s0 : T_XTYPE_mpy64 < "cmpyi", 0b000, 0b001, 0, 0, 0>;
+def M2_cmpyr_s0 : T_XTYPE_mpy64 < "cmpyr", 0b000, 0b010, 0, 0, 0>;
+
+// Rxx+=cmpy[ir](Rs,Rt)
+def M2_cmaci_s0 : T_XTYPE_mpy64_acc < "cmpyi", "+", 0b000, 0b001, 0, 0, 0>;
+def M2_cmacr_s0 : T_XTYPE_mpy64_acc < "cmpyr", "+", 0b000, 0b010, 0, 0, 0>;
+
+// Complex multiply
+// Rdd=cmpy(Rs,Rt)[:<<]:sat
+def M2_cmpys_s0 : T_XTYPE_mpy64 < "cmpy", 0b000, 0b110, 1, 0, 0>;
+def M2_cmpys_s1 : T_XTYPE_mpy64 < "cmpy", 0b100, 0b110, 1, 1, 0>;
+
+// Rdd=cmpy(Rs,Rt*)[:<<]:sat
+def M2_cmpysc_s0 : T_XTYPE_mpy64 < "cmpy", 0b010, 0b110, 1, 0, 1>;
+def M2_cmpysc_s1 : T_XTYPE_mpy64 < "cmpy", 0b110, 0b110, 1, 1, 1>;
+
+// Rxx[-+]=cmpy(Rs,Rt)[:<<1]:sat
+def M2_cmacs_s0 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b000, 0b110, 1, 0, 0>;
+def M2_cnacs_s0 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b000, 0b111, 1, 0, 0>;
+def M2_cmacs_s1 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b100, 0b110, 1, 1, 0>;
+def M2_cnacs_s1 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b100, 0b111, 1, 1, 0>;
+
+// Rxx[-+]=cmpy(Rs,Rt*)[:<<1]:sat
+def M2_cmacsc_s0 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b010, 0b110, 1, 0, 1>;
+def M2_cnacsc_s0 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b010, 0b111, 1, 0, 1>;
+def M2_cmacsc_s1 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b110, 0b110, 1, 1, 1>;
+def M2_cnacsc_s1 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b110, 0b111, 1, 1, 1>;
+
+// Vector multiply halfwords
+// Rdd=vmpyh(Rs,Rt)[:<<]:sat
+//let Defs = [USR_OVF] in {
+ def M2_vmpy2s_s1 : T_XTYPE_mpy64 < "vmpyh", 0b100, 0b101, 1, 1, 0>;
+ def M2_vmpy2s_s0 : T_XTYPE_mpy64 < "vmpyh", 0b000, 0b101, 1, 0, 0>;
+//}
+
+// Rxx+=vmpyh(Rs,Rt)[:<<1][:sat]
+def M2_vmac2 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b001, 0b001, 0, 0, 0>;
+def M2_vmac2s_s1 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b100, 0b101, 1, 1, 0>;
+def M2_vmac2s_s0 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b000, 0b101, 1, 0, 0>;
+
+def: Pat<(i64 (mul (i64 (anyext (i32 IntRegs:$src1))),
+ (i64 (anyext (i32 IntRegs:$src2))))),
+ (M2_dpmpyuu_s0 IntRegs:$src1, IntRegs:$src2)>;
+
+def: Pat<(i64 (mul (i64 (sext (i32 IntRegs:$src1))),
+ (i64 (sext (i32 IntRegs:$src2))))),
+ (M2_dpmpyss_s0 IntRegs:$src1, IntRegs:$src2)>;
+
+def: Pat<(i64 (mul (is_sext_i32:$src1),
+ (is_sext_i32:$src2))),
+ (M2_dpmpyss_s0 (LoReg DoubleRegs:$src1), (LoReg DoubleRegs:$src2))>;
// Multiply and accumulate, use full result.
// Rxx[+-]=mpy(Rs,Rt)
-// Rxx+=mpy(Rs,Rt)
-def MPY64_acc : MInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
- "$dst += mpy($src2, $src3)",
- [(set (i64 DoubleRegs:$dst),
- (add (mul (i64 (sext (i32 IntRegs:$src2))),
- (i64 (sext (i32 IntRegs:$src3)))),
- (i64 DoubleRegs:$src1)))],
- "$src1 = $dst">;
-
-// Rxx-=mpy(Rs,Rt)
-def MPY64_sub : MInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
- "$dst -= mpy($src2, $src3)",
- [(set (i64 DoubleRegs:$dst),
- (sub (i64 DoubleRegs:$src1),
- (mul (i64 (sext (i32 IntRegs:$src2))),
- (i64 (sext (i32 IntRegs:$src3))))))],
- "$src1 = $dst">;
-
-// Rxx[+-]=mpyu(Rs,Rt)
-// Rxx+=mpyu(Rs,Rt)
-def MPYU64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- IntRegs:$src2, IntRegs:$src3),
- "$dst += mpyu($src2, $src3)",
- [(set (i64 DoubleRegs:$dst),
- (add (mul (i64 (anyext (i32 IntRegs:$src2))),
- (i64 (anyext (i32 IntRegs:$src3)))),
- (i64 DoubleRegs:$src1)))], "$src1 = $dst">;
-
-// Rxx-=mpyu(Rs,Rt)
-def MPYU64_sub : MInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
- "$dst -= mpyu($src2, $src3)",
- [(set (i64 DoubleRegs:$dst),
- (sub (i64 DoubleRegs:$src1),
- (mul (i64 (anyext (i32 IntRegs:$src2))),
- (i64 (anyext (i32 IntRegs:$src3))))))],
- "$src1 = $dst">;
-
-
-let InputType = "reg", CextOpcode = "ADD_acc" in
-def ADDrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
- IntRegs:$src2, IntRegs:$src3),
- "$dst += add($src2, $src3)",
- [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2),
- (i32 IntRegs:$src3)),
- (i32 IntRegs:$src1)))],
- "$src1 = $dst">, ImmRegRel;
-
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
-InputType = "imm", CextOpcode = "ADD_acc" in
-def ADDri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
- IntRegs:$src2, s8Ext:$src3),
- "$dst += add($src2, #$src3)",
- [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2),
- s8_16ExtPred:$src3),
- (i32 IntRegs:$src1)))],
- "$src1 = $dst">, ImmRegRel;
-
-let CextOpcode = "SUB_acc", InputType = "reg" in
-def SUBrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
- IntRegs:$src2, IntRegs:$src3),
- "$dst -= add($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">, ImmRegRel;
-
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
-CextOpcode = "SUB_acc", InputType = "imm" in
-def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
- IntRegs:$src2, s8Ext:$src3),
- "$dst -= add($src2, #$src3)",
- [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1),
- (add (i32 IntRegs:$src2),
- s8_16ExtPred:$src3)))],
- "$src1 = $dst">, ImmRegRel;
+
+def: Pat<(i64 (add (i64 DoubleRegs:$src1),
+ (mul (i64 (sext (i32 IntRegs:$src2))),
+ (i64 (sext (i32 IntRegs:$src3)))))),
+ (M2_dpmpyss_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
+
+def: Pat<(i64 (sub (i64 DoubleRegs:$src1),
+ (mul (i64 (sext (i32 IntRegs:$src2))),
+ (i64 (sext (i32 IntRegs:$src3)))))),
+ (M2_dpmpyss_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
+
+def: Pat<(i64 (add (i64 DoubleRegs:$src1),
+ (mul (i64 (anyext (i32 IntRegs:$src2))),
+ (i64 (anyext (i32 IntRegs:$src3)))))),
+ (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
+
+def: Pat<(i64 (add (i64 DoubleRegs:$src1),
+ (mul (i64 (zext (i32 IntRegs:$src2))),
+ (i64 (zext (i32 IntRegs:$src3)))))),
+ (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
+
+def: Pat<(i64 (sub (i64 DoubleRegs:$src1),
+ (mul (i64 (anyext (i32 IntRegs:$src2))),
+ (i64 (anyext (i32 IntRegs:$src3)))))),
+ (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
+
+def: Pat<(i64 (sub (i64 DoubleRegs:$src1),
+ (mul (i64 (zext (i32 IntRegs:$src2))),
+ (i64 (zext (i32 IntRegs:$src3)))))),
+ (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
//===----------------------------------------------------------------------===//
// MTYPE/MPYH -
@@ -1464,321 +3250,1134 @@ def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
//===----------------------------------------------------------------------===//
///
// Store doubleword.
-
//===----------------------------------------------------------------------===//
-// Post increment store
+// Template class for non-predicated post increment stores with immediate offset
//===----------------------------------------------------------------------===//
+let isPredicable = 1, hasSideEffects = 0, addrMode = PostInc in
+class T_store_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<4> MajOp, bit isHalf >
+ : STInst <(outs IntRegs:$_dst_),
+ (ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
+ mnemonic#"($src1++#$offset) = $src2"#!if(isHalf, ".h", ""),
+ [], "$src1 = $_dst_" >,
+ AddrModeRel {
+ bits<5> src1;
+ bits<5> src2;
+ bits<7> offset;
+ bits<4> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
+ !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
+ !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0})));
+ let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
+
+ let IClass = 0b1010;
+
+ let Inst{27-25} = 0b101;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = src2;
+ let Inst{7} = 0b0;
+ let Inst{6-3} = offsetBits;
+ let Inst{1} = 0b0;
+ }
-multiclass ST_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp,
- bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : STInst2PI<(outs IntRegs:$dst),
+//===----------------------------------------------------------------------===//
+// Template class for predicated post increment stores with immediate offset
+//===----------------------------------------------------------------------===//
+let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in
+class T_pstore_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<4> MajOp, bit isHalf, bit isPredNot, bit isPredNew >
+ : STInst <(outs IntRegs:$_dst_),
(ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"($src2++#$offset) = $src3",
- [],
- "$src2 = $dst">;
-}
+ !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2++#$offset) = $src3"#!if(isHalf, ".h", ""),
+ [], "$src2 = $_dst_" >,
+ AddrModeRel {
+ bits<2> src1;
+ bits<5> src2;
+ bits<7> offset;
+ bits<5> src3;
+ bits<4> offsetBits;
-multiclass ST_PostInc_Pred<string mnemonic, RegisterClass RC,
- Operand ImmOp, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>;
- // Predicate new
- let Predicates = [HasV4T], validSubTargets = HasV4SubT in
- defm _cdn#NAME#_V4 : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>;
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
+ !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
+ !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0})));
+
+ let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
+ let isPredicatedNew = isPredNew;
+ let isPredicatedFalse = isPredNot;
+
+ let IClass = 0b1010;
+
+ let Inst{27-25} = 0b101;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{13} = 0b1;
+ let Inst{12-8} = src3;
+ let Inst{7} = isPredNew;
+ let Inst{6-3} = offsetBits;
+ let Inst{2} = isPredNot;
+ let Inst{1-0} = src1;
}
-}
-let hasCtrlDep = 1, isNVStorable = 1, neverHasSideEffects = 1 in
multiclass ST_PostInc<string mnemonic, string BaseOp, RegisterClass RC,
- Operand ImmOp> {
+ Operand ImmOp, bits<4> MajOp, bit isHalf = 0 > {
- let hasCtrlDep = 1, BaseOpcode = "POST_"#BaseOp in {
- let isPredicable = 1 in
- def NAME : STInst2PI<(outs IntRegs:$dst),
- (ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
- mnemonic#"($src1++#$offset) = $src2",
- [],
- "$src1 = $dst">;
-
- let isPredicated = 1 in {
- defm Pt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 0 >;
- defm NotPt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 1 >;
- }
+ let BaseOpcode = "POST_"#BaseOp in {
+ def S2_#NAME#_pi : T_store_pi <mnemonic, RC, ImmOp, MajOp, isHalf>;
+
+ // Predicated
+ def S2_p#NAME#t_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp, isHalf, 0, 0>;
+ def S2_p#NAME#f_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp, isHalf, 1, 0>;
+
+ // Predicated new
+ def S2_p#NAME#tnew_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp,
+ isHalf, 0, 1>;
+ def S2_p#NAME#fnew_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp,
+ isHalf, 1, 1>;
}
}
-defm POST_STbri: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm>, AddrModeRel;
-defm POST_SThri: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm>, AddrModeRel;
-defm POST_STwri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel;
+let accessSize = ByteAccess in
+defm storerb: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm, 0b1000>;
-let isNVStorable = 0 in
-defm POST_STdri: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm>, AddrModeRel;
+let accessSize = HalfWordAccess in
+defm storerh: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm, 0b1010>;
-def : Pat<(post_truncsti8 (i32 IntRegs:$src1), IntRegs:$src2,
- s4_3ImmPred:$offset),
- (POST_STbri IntRegs:$src2, s4_0ImmPred:$offset, IntRegs:$src1)>;
+let accessSize = WordAccess in
+defm storeri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm, 0b1100>;
-def : Pat<(post_truncsti16 (i32 IntRegs:$src1), IntRegs:$src2,
- s4_3ImmPred:$offset),
- (POST_SThri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>;
+let accessSize = DoubleWordAccess in
+defm storerd: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm, 0b1110>;
-def : Pat<(post_store (i32 IntRegs:$src1), IntRegs:$src2, s4_2ImmPred:$offset),
- (POST_STwri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>;
+let accessSize = HalfWordAccess, isNVStorable = 0 in
+defm storerf: ST_PostInc <"memh", "STrih_H", IntRegs, s4_1Imm, 0b1011, 1>;
-def : Pat<(post_store (i64 DoubleRegs:$src1), IntRegs:$src2,
- s4_3ImmPred:$offset),
- (POST_STdri IntRegs:$src2, s4_3ImmPred:$offset, DoubleRegs:$src1)>;
+class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset,
+ InstHexagon MI>
+ : Pat<(Store Value:$src1, I32:$src2, Offset:$offset),
+ (MI I32:$src2, imm:$offset, Value:$src1)>;
+
+def: Storepi_pat<post_truncsti8, I32, s4_0ImmPred, S2_storerb_pi>;
+def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
+def: Storepi_pat<post_store, I32, s4_2ImmPred, S2_storeri_pi>;
+def: Storepi_pat<post_store, I64, s4_3ImmPred, S2_storerd_pi>;
//===----------------------------------------------------------------------===//
-// multiclass for the store instructions with MEMri operand.
+// Template class for post increment stores with register offset.
//===----------------------------------------------------------------------===//
-multiclass ST_MEMri_Pbase<string mnemonic, RegisterClass RC, bit isNot,
- bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : STInst2<(outs),
- (ins PredRegs:$src1, MEMri:$addr, RC: $src2),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"($addr) = $src2",
- []>;
-}
+let isNVStorable = 1 in
+class T_store_pr <string mnemonic, RegisterClass RC, bits<3> MajOp,
+ MemAccessSize AccessSz, bit isHalf = 0>
+ : STInst <(outs IntRegs:$_dst_),
+ (ins IntRegs:$src1, ModRegs:$src2, RC:$src3),
+ mnemonic#"($src1++$src2) = $src3"#!if(isHalf, ".h", ""),
+ [], "$src1 = $_dst_" > {
+ bits<5> src1;
+ bits<1> src2;
+ bits<5> src3;
+ let accessSize = AccessSz;
+
+ let IClass = 0b1010;
-multiclass ST_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ST_MEMri_Pbase<mnemonic, RC, PredNot, 0>;
+ let Inst{27-24} = 0b1101;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13} = src2;
+ let Inst{12-8} = src3;
+ let Inst{7} = 0b0;
+ }
- // Predicate new
- let validSubTargets = HasV4SubT, Predicates = [HasV4T] in
- defm _cdn#NAME#_V4 : ST_MEMri_Pbase<mnemonic, RC, PredNot, 1>;
+def S2_storerb_pr : T_store_pr<"memb", IntRegs, 0b000, ByteAccess>;
+def S2_storerh_pr : T_store_pr<"memh", IntRegs, 0b010, HalfWordAccess>;
+def S2_storeri_pr : T_store_pr<"memw", IntRegs, 0b100, WordAccess>;
+def S2_storerd_pr : T_store_pr<"memd", DoubleRegs, 0b110, DoubleWordAccess>;
+
+def S2_storerf_pr : T_store_pr<"memh", IntRegs, 0b011, HalfWordAccess, 1>;
+
+let opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in
+class T_store_io <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<3>MajOp, bit isH = 0>
+ : STInst <(outs),
+ (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
+ mnemonic#"($src1+#$src2) = $src3"#!if(isH,".h","")>,
+ AddrModeRel, ImmRegRel {
+ bits<5> src1;
+ bits<14> src2; // Actual address offset
+ bits<5> src3;
+ bits<11> offsetBits; // Represents offset encoding
+
+ string ImmOpStr = !cast<string>(ImmOp);
+
+ let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14,
+ !if (!eq(ImmOpStr, "s11_2Ext"), 13,
+ !if (!eq(ImmOpStr, "s11_1Ext"), 12,
+ /* s11_0Ext */ 11)));
+ let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), src2{13-3},
+ !if (!eq(ImmOpStr, "s11_2Ext"), src2{12-2},
+ !if (!eq(ImmOpStr, "s11_1Ext"), src2{11-1},
+ /* s11_0Ext */ src2{10-0})));
+ let IClass = 0b1010;
+
+ let Inst{27} = 0b0;
+ let Inst{26-25} = offsetBits{10-9};
+ let Inst{24} = 0b1;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13} = offsetBits{8};
+ let Inst{12-8} = src3;
+ let Inst{7-0} = offsetBits{7-0};
}
-}
-let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in
-multiclass ST_MEMri<string mnemonic, string CextOp, RegisterClass RC,
- bits<5> ImmBits, bits<5> PredImmBits> {
+let opExtendable = 2, isPredicated = 1 in
+class T_pstore_io <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<3>MajOp, bit PredNot, bit isPredNew, bit isH = 0>
+ : STInst <(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$src3, RC:$src4),
+ !if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2+#$src3) = $src4"#!if(isH,".h",""),
+ [],"",V2LDST_tc_st_SLOT01 >,
+ AddrModeRel, ImmRegRel {
+ bits<2> src1;
+ bits<5> src2;
+ bits<9> src3; // Actual address offset
+ bits<5> src4;
+ bits<6> offsetBits; // Represents offset encoding
+
+ let isPredicatedNew = isPredNew;
+ let isPredicatedFalse = PredNot;
- let CextOpcode = CextOp, BaseOpcode = CextOp in {
- let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
- isPredicable = 1 in
- def NAME : STInst2<(outs),
- (ins MEMri:$addr, RC:$src),
- mnemonic#"($addr) = $src",
- []>;
-
- let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
- isPredicated = 1 in {
- defm Pt : ST_MEMri_Pred<mnemonic, RC, 0>;
- defm NotPt : ST_MEMri_Pred<mnemonic, RC, 1>;
- }
+ string ImmOpStr = !cast<string>(ImmOp);
+ let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9,
+ !if (!eq(ImmOpStr, "u6_2Ext"), 8,
+ !if (!eq(ImmOpStr, "u6_1Ext"), 7,
+ /* u6_0Ext */ 6)));
+ let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), src3{8-3},
+ !if (!eq(ImmOpStr, "u6_2Ext"), src3{7-2},
+ !if (!eq(ImmOpStr, "u6_1Ext"), src3{6-1},
+ /* u6_0Ext */ src3{5-0})));
+ let IClass = 0b0100;
+
+ let Inst{27} = 0b0;
+ let Inst{26} = PredNot;
+ let Inst{25} = isPredNew;
+ let Inst{24} = 0b0;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{13} = offsetBits{5};
+ let Inst{12-8} = src4;
+ let Inst{7-3} = offsetBits{4-0};
+ let Inst{1-0} = src1;
+ }
+
+let isExtendable = 1, isNVStorable = 1, hasSideEffects = 0 in
+multiclass ST_Idxd<string mnemonic, string CextOp, RegisterClass RC,
+ Operand ImmOp, Operand predImmOp, bits<3> MajOp, bit isH = 0> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
+ def S2_#NAME#_io : T_store_io <mnemonic, RC, ImmOp, MajOp, isH>;
+
+ // Predicated
+ def S2_p#NAME#t_io : T_pstore_io<mnemonic, RC, predImmOp, MajOp, 0, 0, isH>;
+ def S2_p#NAME#f_io : T_pstore_io<mnemonic, RC, predImmOp, MajOp, 1, 0, isH>;
+
+ // Predicated new
+ def S4_p#NAME#tnew_io : T_pstore_io <mnemonic, RC, predImmOp,
+ MajOp, 0, 1, isH>;
+ def S4_p#NAME#fnew_io : T_pstore_io <mnemonic, RC, predImmOp,
+ MajOp, 1, 1, isH>;
}
}
-let addrMode = BaseImmOffset, isMEMri = "true" in {
+let addrMode = BaseImmOffset, InputType = "imm" in {
let accessSize = ByteAccess in
- defm STrib: ST_MEMri < "memb", "STrib", IntRegs, 11, 6>, AddrModeRel;
+ defm storerb: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext, u6_0Ext, 0b000>;
+
+ let accessSize = HalfWordAccess, opExtentAlign = 1 in
+ defm storerh: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext, u6_1Ext, 0b010>;
+
+ let accessSize = WordAccess, opExtentAlign = 2 in
+ defm storeri: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext, u6_2Ext, 0b100>;
- let accessSize = HalfWordAccess in
- defm STrih: ST_MEMri < "memh", "STrih", IntRegs, 12, 7>, AddrModeRel;
+ let accessSize = DoubleWordAccess, isNVStorable = 0, opExtentAlign = 3 in
+ defm storerd: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext,
+ u6_3Ext, 0b110>;
- let accessSize = WordAccess in
- defm STriw: ST_MEMri < "memw", "STriw", IntRegs, 13, 8>, AddrModeRel;
+ let accessSize = HalfWordAccess, opExtentAlign = 1 in
+ defm storerf: ST_Idxd < "memh", "STrif", IntRegs, s11_1Ext,
+ u6_1Ext, 0b011, 1>;
+}
- let accessSize = DoubleWordAccess, isNVStorable = 0 in
- defm STrid: ST_MEMri < "memd", "STrid", DoubleRegs, 14, 9>, AddrModeRel;
+// Patterns for generating stores, where the address takes different forms:
+// - frameindex,,
+// - base + offset,
+// - simple (base address without offset).
+// These would usually be used together (via Storex_pat defined below), but
+// in some cases one may want to apply different properties (such as
+// AddedComplexity) to the individual patterns.
+class Storex_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
+ : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;
+class Storex_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
+ InstHexagon MI>
+ : Pat<(Store Value:$Rt, (add (i32 IntRegs:$Rs), ImmPred:$Off)),
+ (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
+class Storex_simple_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
+ : Pat<(Store Value:$Rt, (i32 IntRegs:$Rs)),
+ (MI IntRegs:$Rs, 0, Value:$Rt)>;
+
+// Patterns for generating stores, where the address takes different forms,
+// and where the value being stored is transformed through the value modifier
+// ValueMod. The address forms are same as above.
+class Storexm_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
+ InstHexagon MI>
+ : Pat<(Store Value:$Rs, AddrFI:$fi),
+ (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;
+class Storexm_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
+ PatFrag ValueMod, InstHexagon MI>
+ : Pat<(Store Value:$Rt, (add (i32 IntRegs:$Rs), ImmPred:$Off)),
+ (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
+class Storexm_simple_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
+ InstHexagon MI>
+ : Pat<(Store Value:$Rt, (i32 IntRegs:$Rs)),
+ (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;
+
+multiclass Storex_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
+ InstHexagon MI> {
+ def: Storex_fi_pat <Store, Value, MI>;
+ def: Storex_add_pat <Store, Value, ImmPred, MI>;
}
-def : Pat<(truncstorei8 (i32 IntRegs:$src1), ADDRriS11_0:$addr),
- (STrib ADDRriS11_0:$addr, (i32 IntRegs:$src1))>;
+multiclass Storexm_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
+ PatFrag ValueMod, InstHexagon MI> {
+ def: Storexm_fi_pat <Store, Value, ValueMod, MI>;
+ def: Storexm_add_pat <Store, Value, ImmPred, ValueMod, MI>;
+}
-def : Pat<(truncstorei16 (i32 IntRegs:$src1), ADDRriS11_1:$addr),
- (STrih ADDRriS11_1:$addr, (i32 IntRegs:$src1))>;
+// Regular stores in the DAG have two operands: value and address.
+// Atomic stores also have two, but they are reversed: address, value.
+// To use atomic stores with the patterns, they need to have their operands
+// swapped. This relies on the knowledge that the F.Fragment uses names
+// "ptr" and "val".
+class SwapSt<PatFrag F>
+ : PatFrag<(ops node:$val, node:$ptr), F.Fragment>;
-def : Pat<(store (i32 IntRegs:$src1), ADDRriS11_2:$addr),
- (STriw ADDRriS11_2:$addr, (i32 IntRegs:$src1))>;
+let AddedComplexity = 20 in {
+ defm: Storex_pat<truncstorei8, I32, s11_0ExtPred, S2_storerb_io>;
+ defm: Storex_pat<truncstorei16, I32, s11_1ExtPred, S2_storerh_io>;
+ defm: Storex_pat<store, I32, s11_2ExtPred, S2_storeri_io>;
+ defm: Storex_pat<store, I64, s11_3ExtPred, S2_storerd_io>;
+
+ defm: Storex_pat<SwapSt<atomic_store_8>, I32, s11_0ExtPred, S2_storerb_io>;
+ defm: Storex_pat<SwapSt<atomic_store_16>, I32, s11_1ExtPred, S2_storerh_io>;
+ defm: Storex_pat<SwapSt<atomic_store_32>, I32, s11_2ExtPred, S2_storeri_io>;
+ defm: Storex_pat<SwapSt<atomic_store_64>, I64, s11_3ExtPred, S2_storerd_io>;
+}
-def : Pat<(store (i64 DoubleRegs:$src1), ADDRriS11_3:$addr),
- (STrid ADDRriS11_3:$addr, (i64 DoubleRegs:$src1))>;
+// Simple patterns should be tried with the least priority.
+def: Storex_simple_pat<truncstorei8, I32, S2_storerb_io>;
+def: Storex_simple_pat<truncstorei16, I32, S2_storerh_io>;
+def: Storex_simple_pat<store, I32, S2_storeri_io>;
+def: Storex_simple_pat<store, I64, S2_storerd_io>;
+def: Storex_simple_pat<SwapSt<atomic_store_8>, I32, S2_storerb_io>;
+def: Storex_simple_pat<SwapSt<atomic_store_16>, I32, S2_storerh_io>;
+def: Storex_simple_pat<SwapSt<atomic_store_32>, I32, S2_storeri_io>;
+def: Storex_simple_pat<SwapSt<atomic_store_64>, I64, S2_storerd_io>;
+
+let AddedComplexity = 20 in {
+ defm: Storexm_pat<truncstorei8, I64, s11_0ExtPred, LoReg, S2_storerb_io>;
+ defm: Storexm_pat<truncstorei16, I64, s11_1ExtPred, LoReg, S2_storerh_io>;
+ defm: Storexm_pat<truncstorei32, I64, s11_2ExtPred, LoReg, S2_storeri_io>;
+}
+
+def: Storexm_simple_pat<truncstorei8, I64, LoReg, S2_storerb_io>;
+def: Storexm_simple_pat<truncstorei16, I64, LoReg, S2_storerh_io>;
+def: Storexm_simple_pat<truncstorei32, I64, LoReg, S2_storeri_io>;
+
+// Store predicate.
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13,
+ isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
+def STriw_pred : STInst<(outs),
+ (ins IntRegs:$addr, s11_2Ext:$off, PredRegs:$src1),
+ ".error \"should not emit\"", []>;
+
+// S2_allocframe: Allocate stack frame.
+let Defs = [R29, R30], Uses = [R29, R31, R30],
+ hasSideEffects = 0, accessSize = DoubleWordAccess in
+def S2_allocframe: ST0Inst <
+ (outs), (ins u11_3Imm:$u11_3),
+ "allocframe(#$u11_3)" > {
+ bits<14> u11_3;
+
+ let IClass = 0b1010;
+ let Inst{27-16} = 0b000010011101;
+ let Inst{13-11} = 0b000;
+ let Inst{10-0} = u11_3{13-3};
+ }
+
+// S2_storer[bhwdf]_pci: Store byte/half/word/double.
+// S2_storer[bhwdf]_pci -> S2_storerbnew_pci
+let Uses = [CS], isNVStorable = 1 in
+class T_store_pci <string mnemonic, RegisterClass RC,
+ Operand Imm, bits<4>MajOp,
+ MemAccessSize AlignSize, string RegSrc = "Rt">
+ : STInst <(outs IntRegs:$_dst_),
+ (ins IntRegs:$Rz, Imm:$offset, ModRegs:$Mu, RC:$Rt),
+ #mnemonic#"($Rz ++ #$offset:circ($Mu)) = $"#RegSrc#"",
+ [] ,
+ "$Rz = $_dst_" > {
+ bits<5> Rz;
+ bits<7> offset;
+ bits<1> Mu;
+ bits<5> Rt;
+ let accessSize = AlignSize;
+
+ let IClass = 0b1010;
+ let Inst{27-25} = 0b100;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12-8} = Rt;
+ let Inst{7} = 0b0;
+ let Inst{6-3} =
+ !if (!eq(!cast<string>(AlignSize), "DoubleWordAccess"), offset{6-3},
+ !if (!eq(!cast<string>(AlignSize), "WordAccess"), offset{5-2},
+ !if (!eq(!cast<string>(AlignSize), "HalfWordAccess"), offset{4-1},
+ /* ByteAccess */ offset{3-0})));
+ let Inst{1} = 0b0;
+ }
+
+def S2_storerb_pci : T_store_pci<"memb", IntRegs, s4_0Imm, 0b1000,
+ ByteAccess>;
+def S2_storerh_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1010,
+ HalfWordAccess>;
+def S2_storerf_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1011,
+ HalfWordAccess, "Rt.h">;
+def S2_storeri_pci : T_store_pci<"memw", IntRegs, s4_2Imm, 0b1100,
+ WordAccess>;
+def S2_storerd_pci : T_store_pci<"memd", DoubleRegs, s4_3Imm, 0b1110,
+ DoubleWordAccess>;
+
+let Uses = [CS], isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 4 in
+class T_storenew_pci <string mnemonic, Operand Imm,
+ bits<2>MajOp, MemAccessSize AlignSize>
+ : NVInst < (outs IntRegs:$_dst_),
+ (ins IntRegs:$Rz, Imm:$offset, ModRegs:$Mu, IntRegs:$Nt),
+ #mnemonic#"($Rz ++ #$offset:circ($Mu)) = $Nt.new",
+ [],
+ "$Rz = $_dst_"> {
+ bits<5> Rz;
+ bits<6> offset;
+ bits<1> Mu;
+ bits<3> Nt;
+
+ let accessSize = AlignSize;
+
+ let IClass = 0b1010;
+ let Inst{27-21} = 0b1001101;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12-11} = MajOp;
+ let Inst{10-8} = Nt;
+ let Inst{7} = 0b0;
+ let Inst{6-3} =
+ !if (!eq(!cast<string>(AlignSize), "WordAccess"), offset{5-2},
+ !if (!eq(!cast<string>(AlignSize), "HalfWordAccess"), offset{4-1},
+ /* ByteAccess */ offset{3-0}));
+ let Inst{1} = 0b0;
+ }
+
+def S2_storerbnew_pci : T_storenew_pci <"memb", s4_0Imm, 0b00, ByteAccess>;
+def S2_storerhnew_pci : T_storenew_pci <"memh", s4_1Imm, 0b01, HalfWordAccess>;
+def S2_storerinew_pci : T_storenew_pci <"memw", s4_2Imm, 0b10, WordAccess>;
+
+//===----------------------------------------------------------------------===//
+// Circular stores - Pseudo
+//
+// Please note that the input operand order in the pseudo instructions
+// doesn't match with the real instructions. Pseudo instructions operand
+// order should mimics the ordering in the intrinsics.
+//===----------------------------------------------------------------------===//
+let isCodeGenOnly = 1, mayStore = 1, hasSideEffects = 0, isPseudo = 1 in
+class T_store_pci_pseudo <string opc, RegisterClass RC>
+ : STInstPI<(outs IntRegs:$_dst_),
+ (ins IntRegs:$src1, RC:$src2, IntRegs:$src3, s4Imm:$src4),
+ ".error \""#opc#"($src1++#$src4:circ($src3)) = $src2\"",
+ [], "$_dst_ = $src1">;
+
+def S2_storerb_pci_pseudo : T_store_pci_pseudo <"memb", IntRegs>;
+def S2_storerh_pci_pseudo : T_store_pci_pseudo <"memh", IntRegs>;
+def S2_storerf_pci_pseudo : T_store_pci_pseudo <"memh", IntRegs>;
+def S2_storeri_pci_pseudo : T_store_pci_pseudo <"memw", IntRegs>;
+def S2_storerd_pci_pseudo : T_store_pci_pseudo <"memd", DoubleRegs>;
//===----------------------------------------------------------------------===//
-// multiclass for the store instructions with base+immediate offset
-// addressing mode
+// Circular stores with auto-increment register
//===----------------------------------------------------------------------===//
-multiclass ST_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp,
- bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : STInst2<(outs),
- (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC: $src4),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"($src2+#$src3) = $src4",
- []>;
+let Uses = [CS], isNVStorable = 1 in
+class T_store_pcr <string mnemonic, RegisterClass RC, bits<4>MajOp,
+ MemAccessSize AlignSize, string RegSrc = "Rt">
+ : STInst <(outs IntRegs:$_dst_),
+ (ins IntRegs:$Rz, ModRegs:$Mu, RC:$Rt),
+ #mnemonic#"($Rz ++ I:circ($Mu)) = $"#RegSrc#"",
+ [],
+ "$Rz = $_dst_" > {
+ bits<5> Rz;
+ bits<1> Mu;
+ bits<5> Rt;
+
+ let accessSize = AlignSize;
+
+ let IClass = 0b1010;
+ let Inst{27-25} = 0b100;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12-8} = Rt;
+ let Inst{7} = 0b0;
+ let Inst{1} = 0b1;
+ }
+
+def S2_storerb_pcr : T_store_pcr<"memb", IntRegs, 0b1000, ByteAccess>;
+def S2_storerh_pcr : T_store_pcr<"memh", IntRegs, 0b1010, HalfWordAccess>;
+def S2_storeri_pcr : T_store_pcr<"memw", IntRegs, 0b1100, WordAccess>;
+def S2_storerd_pcr : T_store_pcr<"memd", DoubleRegs, 0b1110, DoubleWordAccess>;
+def S2_storerf_pcr : T_store_pcr<"memh", IntRegs, 0b1011,
+ HalfWordAccess, "Rt.h">;
+
+//===----------------------------------------------------------------------===//
+// Circular .new stores with auto-increment register
+//===----------------------------------------------------------------------===//
+let Uses = [CS], isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3 in
+class T_storenew_pcr <string mnemonic, bits<2>MajOp,
+ MemAccessSize AlignSize>
+ : NVInst <(outs IntRegs:$_dst_),
+ (ins IntRegs:$Rz, ModRegs:$Mu, IntRegs:$Nt),
+ #mnemonic#"($Rz ++ I:circ($Mu)) = $Nt.new" ,
+ [] ,
+ "$Rz = $_dst_"> {
+ bits<5> Rz;
+ bits<1> Mu;
+ bits<3> Nt;
+
+ let accessSize = AlignSize;
+
+ let IClass = 0b1010;
+ let Inst{27-21} = 0b1001101;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12-11} = MajOp;
+ let Inst{10-8} = Nt;
+ let Inst{7} = 0b0;
+ let Inst{1} = 0b1;
+ }
+
+def S2_storerbnew_pcr : T_storenew_pcr <"memb", 0b00, ByteAccess>;
+def S2_storerhnew_pcr : T_storenew_pcr <"memh", 0b01, HalfWordAccess>;
+def S2_storerinew_pcr : T_storenew_pcr <"memw", 0b10, WordAccess>;
+
+//===----------------------------------------------------------------------===//
+// Bit-reversed stores with auto-increment register
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_store_pbr<string mnemonic, RegisterClass RC,
+ MemAccessSize addrSize, bits<3> majOp,
+ bit isHalf = 0>
+ : STInst
+ <(outs IntRegs:$_dst_),
+ (ins IntRegs:$Rz, ModRegs:$Mu, RC:$src),
+ #mnemonic#"($Rz ++ $Mu:brev) = $src"#!if (!eq(isHalf, 1), ".h", ""),
+ [], "$Rz = $_dst_" > {
+
+ let accessSize = addrSize;
+
+ bits<5> Rz;
+ bits<1> Mu;
+ bits<5> src;
+
+ let IClass = 0b1010;
+
+ let Inst{27-24} = 0b1111;
+ let Inst{23-21} = majOp;
+ let Inst{7} = 0b0;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12-8} = src;
+ }
+
+let isNVStorable = 1 in {
+ let BaseOpcode = "S2_storerb_pbr" in
+ def S2_storerb_pbr : T_store_pbr<"memb", IntRegs, ByteAccess,
+ 0b000>, NewValueRel;
+ let BaseOpcode = "S2_storerh_pbr" in
+ def S2_storerh_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess,
+ 0b010>, NewValueRel;
+ let BaseOpcode = "S2_storeri_pbr" in
+ def S2_storeri_pbr : T_store_pbr<"memw", IntRegs, WordAccess,
+ 0b100>, NewValueRel;
}
-multiclass ST_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp,
- bit PredNot> {
- let isPredicatedFalse = PredNot, isPredicated = 1 in {
- defm _c#NAME : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>;
+def S2_storerf_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess, 0b011, 1>;
+def S2_storerd_pbr : T_store_pbr<"memd", DoubleRegs, DoubleWordAccess, 0b110>;
- // Predicate new
- let validSubTargets = HasV4SubT, Predicates = [HasV4T] in
- defm _cdn#NAME#_V4 : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>;
+//===----------------------------------------------------------------------===//
+// Bit-reversed .new stores with auto-increment register
+//===----------------------------------------------------------------------===//
+let isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3,
+ hasSideEffects = 0 in
+class T_storenew_pbr<string mnemonic, MemAccessSize addrSize, bits<2> majOp>
+ : NVInst <(outs IntRegs:$_dst_),
+ (ins IntRegs:$Rz, ModRegs:$Mu, IntRegs:$Nt),
+ #mnemonic#"($Rz ++ $Mu:brev) = $Nt.new", [],
+ "$Rz = $_dst_">, NewValueRel {
+ let accessSize = addrSize;
+ bits<5> Rz;
+ bits<1> Mu;
+ bits<3> Nt;
+
+ let IClass = 0b1010;
+
+ let Inst{27-21} = 0b1111101;
+ let Inst{12-11} = majOp;
+ let Inst{7} = 0b0;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{10-8} = Nt;
}
+
+let BaseOpcode = "S2_storerb_pbr" in
+def S2_storerbnew_pbr : T_storenew_pbr<"memb", ByteAccess, 0b00>;
+
+let BaseOpcode = "S2_storerh_pbr" in
+def S2_storerhnew_pbr : T_storenew_pbr<"memh", HalfWordAccess, 0b01>;
+
+let BaseOpcode = "S2_storeri_pbr" in
+def S2_storerinew_pbr : T_storenew_pbr<"memw", WordAccess, 0b10>;
+
+//===----------------------------------------------------------------------===//
+// Bit-reversed stores - Pseudo
+//
+// Please note that the input operand order in the pseudo instructions
+// doesn't match with the real instructions. Pseudo instructions operand
+// order should mimics the ordering in the intrinsics.
+//===----------------------------------------------------------------------===//
+let isCodeGenOnly = 1, mayStore = 1, hasSideEffects = 0, isPseudo = 1 in
+class T_store_pbr_pseudo <string opc, RegisterClass RC>
+ : STInstPI<(outs IntRegs:$_dst_),
+ (ins IntRegs:$src1, RC:$src2, IntRegs:$src3),
+ ".error \""#opc#"($src1++$src3:brev) = $src2\"",
+ [], "$_dst_ = $src1">;
+
+def S2_storerb_pbr_pseudo : T_store_pbr_pseudo <"memb", IntRegs>;
+def S2_storerh_pbr_pseudo : T_store_pbr_pseudo <"memh", IntRegs>;
+def S2_storeri_pbr_pseudo : T_store_pbr_pseudo <"memw", IntRegs>;
+def S2_storerf_pbr_pseudo : T_store_pbr_pseudo <"memh", IntRegs>;
+def S2_storerd_pbr_pseudo : T_store_pbr_pseudo <"memd", DoubleRegs>;
+
+//===----------------------------------------------------------------------===//
+// ST -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Template class for S_2op instructions.
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_S2op_1 <string mnemonic, bits<4> RegTyBits, RegisterClass RCOut,
+ RegisterClass RCIn, bits<2> MajOp, bits<3> MinOp, bit isSat>
+ : SInst <(outs RCOut:$dst), (ins RCIn:$src),
+ "$dst = "#mnemonic#"($src)"#!if(isSat, ":sat", ""),
+ [], "", S_2op_tc_1_SLOT23 > {
+ bits<5> dst;
+ bits<5> src;
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = RegTyBits;
+ let Inst{23-22} = MajOp;
+ let Inst{21} = 0b0;
+ let Inst{20-16} = src;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = dst;
+ }
+
+class T_S2op_1_di <string mnemonic, bits<2> MajOp, bits<3> MinOp>
+ : T_S2op_1 <mnemonic, 0b0100, DoubleRegs, IntRegs, MajOp, MinOp, 0>;
+
+let hasNewValue = 1 in
+class T_S2op_1_id <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit isSat = 0>
+ : T_S2op_1 <mnemonic, 0b1000, IntRegs, DoubleRegs, MajOp, MinOp, isSat>;
+
+let hasNewValue = 1 in
+class T_S2op_1_ii <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit isSat = 0>
+ : T_S2op_1 <mnemonic, 0b1100, IntRegs, IntRegs, MajOp, MinOp, isSat>;
+
+// Vector sign/zero extend
+let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
+ def S2_vsxtbh : T_S2op_1_di <"vsxtbh", 0b00, 0b000>;
+ def S2_vsxthw : T_S2op_1_di <"vsxthw", 0b00, 0b100>;
+ def S2_vzxtbh : T_S2op_1_di <"vzxtbh", 0b00, 0b010>;
+ def S2_vzxthw : T_S2op_1_di <"vzxthw", 0b00, 0b110>;
}
-let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in
-multiclass ST_Idxd<string mnemonic, string CextOp, RegisterClass RC,
- Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
- bits<5> PredImmBits> {
+// Vector splat bytes/halfwords
+let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
+ def S2_vsplatrb : T_S2op_1_ii <"vsplatb", 0b01, 0b111>;
+ def S2_vsplatrh : T_S2op_1_di <"vsplath", 0b01, 0b010>;
+}
- let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
- let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
- isPredicable = 1 in
- def NAME : STInst2<(outs),
- (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
- mnemonic#"($src1+#$src2) = $src3",
- []>;
+// Sign extend word to doubleword
+def A2_sxtw : T_S2op_1_di <"sxtw", 0b01, 0b000>;
- let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits in {
- defm Pt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 0>;
- defm NotPt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 1>;
- }
+def: Pat <(i64 (sext I32:$src)), (A2_sxtw I32:$src)>;
+
+// Vector saturate and pack
+let Defs = [USR_OVF] in {
+ def S2_svsathb : T_S2op_1_ii <"vsathb", 0b10, 0b000>;
+ def S2_svsathub : T_S2op_1_ii <"vsathub", 0b10, 0b010>;
+ def S2_vsathb : T_S2op_1_id <"vsathb", 0b00, 0b110>;
+ def S2_vsathub : T_S2op_1_id <"vsathub", 0b00, 0b000>;
+ def S2_vsatwh : T_S2op_1_id <"vsatwh", 0b00, 0b010>;
+ def S2_vsatwuh : T_S2op_1_id <"vsatwuh", 0b00, 0b100>;
+}
+
+// Vector truncate
+def S2_vtrunohb : T_S2op_1_id <"vtrunohb", 0b10, 0b000>;
+def S2_vtrunehb : T_S2op_1_id <"vtrunehb", 0b10, 0b010>;
+
+// Swizzle the bytes of a word
+def A2_swiz : T_S2op_1_ii <"swiz", 0b10, 0b111>;
+
+// Saturate
+let Defs = [USR_OVF] in {
+ def A2_sat : T_S2op_1_id <"sat", 0b11, 0b000>;
+ def A2_satb : T_S2op_1_ii <"satb", 0b11, 0b111>;
+ def A2_satub : T_S2op_1_ii <"satub", 0b11, 0b110>;
+ def A2_sath : T_S2op_1_ii <"sath", 0b11, 0b100>;
+ def A2_satuh : T_S2op_1_ii <"satuh", 0b11, 0b101>;
+ def A2_roundsat : T_S2op_1_id <"round", 0b11, 0b001, 0b1>;
+}
+
+let Itinerary = S_2op_tc_2_SLOT23 in {
+ // Vector round and pack
+ def S2_vrndpackwh : T_S2op_1_id <"vrndwh", 0b10, 0b100>;
+
+ let Defs = [USR_OVF] in
+ def S2_vrndpackwhs : T_S2op_1_id <"vrndwh", 0b10, 0b110, 1>;
+
+ // Bit reverse
+ def S2_brev : T_S2op_1_ii <"brev", 0b01, 0b110>;
+
+ // Absolute value word
+ def A2_abs : T_S2op_1_ii <"abs", 0b10, 0b100>;
+
+ let Defs = [USR_OVF] in
+ def A2_abssat : T_S2op_1_ii <"abs", 0b10, 0b101, 1>;
+
+ // Negate with saturation
+ let Defs = [USR_OVF] in
+ def A2_negsat : T_S2op_1_ii <"neg", 0b10, 0b110, 1>;
+}
+
+def: Pat<(i32 (select (i1 (setlt (i32 IntRegs:$src), 0)),
+ (i32 (sub 0, (i32 IntRegs:$src))),
+ (i32 IntRegs:$src))),
+ (A2_abs IntRegs:$src)>;
+
+let AddedComplexity = 50 in
+def: Pat<(i32 (xor (add (sra (i32 IntRegs:$src), (i32 31)),
+ (i32 IntRegs:$src)),
+ (sra (i32 IntRegs:$src), (i32 31)))),
+ (A2_abs IntRegs:$src)>;
+
+class T_S2op_2 <string mnemonic, bits<4> RegTyBits, RegisterClass RCOut,
+ RegisterClass RCIn, bits<3> MajOp, bits<3> MinOp,
+ bit isSat, bit isRnd, list<dag> pattern = []>
+ : SInst <(outs RCOut:$dst),
+ (ins RCIn:$src, u5Imm:$u5),
+ "$dst = "#mnemonic#"($src, #$u5)"#!if(isSat, ":sat", "")
+ #!if(isRnd, ":rnd", ""),
+ pattern, "", S_2op_tc_2_SLOT23> {
+ bits<5> dst;
+ bits<5> src;
+ bits<5> u5;
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = RegTyBits;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = u5;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = dst;
}
+
+class T_S2op_2_di <string mnemonic, bits<3> MajOp, bits<3> MinOp>
+ : T_S2op_2 <mnemonic, 0b1000, DoubleRegs, IntRegs, MajOp, MinOp, 0, 0>;
+
+let hasNewValue = 1 in
+class T_S2op_2_id <string mnemonic, bits<3> MajOp, bits<3> MinOp>
+ : T_S2op_2 <mnemonic, 0b1000, IntRegs, DoubleRegs, MajOp, MinOp, 0, 0>;
+
+let hasNewValue = 1 in
+class T_S2op_2_ii <string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit isSat = 0, bit isRnd = 0, list<dag> pattern = []>
+ : T_S2op_2 <mnemonic, 0b1100, IntRegs, IntRegs, MajOp, MinOp,
+ isSat, isRnd, pattern>;
+
+class T_S2op_shift <string mnemonic, bits<3> MajOp, bits<3> MinOp, SDNode OpNd>
+ : T_S2op_2_ii <mnemonic, MajOp, MinOp, 0, 0,
+ [(set (i32 IntRegs:$dst), (OpNd (i32 IntRegs:$src),
+ (u5ImmPred:$u5)))]>;
+
+// Vector arithmetic shift right by immediate with truncate and pack
+def S2_asr_i_svw_trun : T_S2op_2_id <"vasrw", 0b110, 0b010>;
+
+// Arithmetic/logical shift right/left by immediate
+let Itinerary = S_2op_tc_1_SLOT23 in {
+ def S2_asr_i_r : T_S2op_shift <"asr", 0b000, 0b000, sra>;
+ def S2_lsr_i_r : T_S2op_shift <"lsr", 0b000, 0b001, srl>;
+ def S2_asl_i_r : T_S2op_shift <"asl", 0b000, 0b010, shl>;
}
-let addrMode = BaseImmOffset, InputType = "reg" in {
- let accessSize = ByteAccess in
- defm STrib_indexed: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext,
- u6_0Ext, 11, 6>, AddrModeRel, ImmRegRel;
+// Shift left by immediate with saturation
+let Defs = [USR_OVF] in
+def S2_asl_i_r_sat : T_S2op_2_ii <"asl", 0b010, 0b010, 1>;
+
+// Shift right with round
+def S2_asr_i_r_rnd : T_S2op_2_ii <"asr", 0b010, 0b000, 0, 1>;
+
+let isAsmParserOnly = 1 in
+def S2_asr_i_r_rnd_goodsyntax
+ : SInst <(outs IntRegs:$dst), (ins IntRegs:$src, u5Imm:$u5),
+ "$dst = asrrnd($src, #$u5)",
+ [], "", S_2op_tc_1_SLOT23>;
+
+let isAsmParserOnly = 1 in
+def A2_not: ALU32_rr<(outs IntRegs:$dst),(ins IntRegs:$src),
+ "$dst = not($src)">;
+
+def: Pat<(i32 (sra (i32 (add (i32 (sra I32:$src1, u5ImmPred:$src2)),
+ (i32 1))),
+ (i32 1))),
+ (S2_asr_i_r_rnd IntRegs:$src1, u5ImmPred:$src2)>;
+
+class T_S2op_3<string opc, bits<2>MajOp, bits<3>minOp, bits<1> sat = 0>
+ : SInst<(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss),
+ "$Rdd = "#opc#"($Rss)"#!if(!eq(sat, 1),":sat","")> {
+ bits<5> Rss;
+ bits<5> Rdd;
+ let IClass = 0b1000;
+ let Inst{27-24} = 0;
+ let Inst{23-22} = MajOp;
+ let Inst{20-16} = Rss;
+ let Inst{7-5} = minOp;
+ let Inst{4-0} = Rdd;
+}
+
+def A2_absp : T_S2op_3 <"abs", 0b10, 0b110>;
+def A2_negp : T_S2op_3 <"neg", 0b10, 0b101>;
+def A2_notp : T_S2op_3 <"not", 0b10, 0b100>;
+
+// Innterleave/deinterleave
+def S2_interleave : T_S2op_3 <"interleave", 0b11, 0b101>;
+def S2_deinterleave : T_S2op_3 <"deinterleave", 0b11, 0b100>;
+
+// Vector Complex conjugate
+def A2_vconj : T_S2op_3 <"vconj", 0b10, 0b111, 1>;
+
+// Vector saturate without pack
+def S2_vsathb_nopack : T_S2op_3 <"vsathb", 0b00, 0b111>;
+def S2_vsathub_nopack : T_S2op_3 <"vsathub", 0b00, 0b100>;
+def S2_vsatwh_nopack : T_S2op_3 <"vsatwh", 0b00, 0b110>;
+def S2_vsatwuh_nopack : T_S2op_3 <"vsatwuh", 0b00, 0b101>;
+
+// Vector absolute value halfwords with and without saturation
+// Rdd64=vabsh(Rss64)[:sat]
+def A2_vabsh : T_S2op_3 <"vabsh", 0b01, 0b100>;
+def A2_vabshsat : T_S2op_3 <"vabsh", 0b01, 0b101, 1>;
+
+// Vector absolute value words with and without saturation
+def A2_vabsw : T_S2op_3 <"vabsw", 0b01, 0b110>;
+def A2_vabswsat : T_S2op_3 <"vabsw", 0b01, 0b111, 1>;
+
+def : Pat<(not (i64 DoubleRegs:$src1)),
+ (A2_notp DoubleRegs:$src1)>;
+
+//===----------------------------------------------------------------------===//
+// STYPE/BIT +
+//===----------------------------------------------------------------------===//
+// Bit count
+
+let hasSideEffects = 0, hasNewValue = 1 in
+class T_COUNT_LEADING<string MnOp, bits<3> MajOp, bits<3> MinOp, bit Is32,
+ dag Out, dag Inp>
+ : SInst<Out, Inp, "$Rd = "#MnOp#"($Rs)", [], "", S_2op_tc_1_SLOT23> {
+ bits<5> Rs;
+ bits<5> Rd;
+ let IClass = 0b1000;
+ let Inst{27} = 0b1;
+ let Inst{26} = Is32;
+ let Inst{25-24} = 0b00;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rd;
+}
- let accessSize = HalfWordAccess in
- defm STrih_indexed: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext,
- u6_1Ext, 12, 7>, AddrModeRel, ImmRegRel;
+class T_COUNT_LEADING_32<string MnOp, bits<3> MajOp, bits<3> MinOp>
+ : T_COUNT_LEADING<MnOp, MajOp, MinOp, 0b1,
+ (outs IntRegs:$Rd), (ins IntRegs:$Rs)>;
+
+class T_COUNT_LEADING_64<string MnOp, bits<3> MajOp, bits<3> MinOp>
+ : T_COUNT_LEADING<MnOp, MajOp, MinOp, 0b0,
+ (outs IntRegs:$Rd), (ins DoubleRegs:$Rs)>;
+
+def S2_cl0 : T_COUNT_LEADING_32<"cl0", 0b000, 0b101>;
+def S2_cl1 : T_COUNT_LEADING_32<"cl1", 0b000, 0b110>;
+def S2_ct0 : T_COUNT_LEADING_32<"ct0", 0b010, 0b100>;
+def S2_ct1 : T_COUNT_LEADING_32<"ct1", 0b010, 0b101>;
+def S2_cl0p : T_COUNT_LEADING_64<"cl0", 0b010, 0b010>;
+def S2_cl1p : T_COUNT_LEADING_64<"cl1", 0b010, 0b100>;
+def S2_clb : T_COUNT_LEADING_32<"clb", 0b000, 0b100>;
+def S2_clbp : T_COUNT_LEADING_64<"clb", 0b010, 0b000>;
+def S2_clbnorm : T_COUNT_LEADING_32<"normamt", 0b000, 0b111>;
+
+def: Pat<(i32 (ctlz I32:$Rs)), (S2_cl0 I32:$Rs)>;
+def: Pat<(i32 (ctlz (not I32:$Rs))), (S2_cl1 I32:$Rs)>;
+def: Pat<(i32 (cttz I32:$Rs)), (S2_ct0 I32:$Rs)>;
+def: Pat<(i32 (cttz (not I32:$Rs))), (S2_ct1 I32:$Rs)>;
+def: Pat<(i32 (trunc (ctlz I64:$Rss))), (S2_cl0p I64:$Rss)>;
+def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
+
+// Bit set/clear/toggle
- let accessSize = WordAccess in
- defm STriw_indexed: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext,
- u6_2Ext, 13, 8>, AddrModeRel, ImmRegRel;
+let hasSideEffects = 0, hasNewValue = 1 in
+class T_SCT_BIT_IMM<string MnOp, bits<3> MinOp>
+ : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, u5Imm:$u5),
+ "$Rd = "#MnOp#"($Rs, #$u5)", [], "", S_2op_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> u5;
+ let IClass = 0b1000;
+ let Inst{27-21} = 0b1100110;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = u5;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rd;
+}
- let accessSize = DoubleWordAccess, isNVStorable = 0 in
- defm STrid_indexed: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext,
- u6_3Ext, 14, 9>, AddrModeRel;
+let hasSideEffects = 0, hasNewValue = 1 in
+class T_SCT_BIT_REG<string MnOp, bits<2> MinOp>
+ : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = "#MnOp#"($Rs, $Rt)", [], "", S_3op_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rt;
+ let IClass = 0b1100;
+ let Inst{27-22} = 0b011010;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{7-6} = MinOp;
+ let Inst{4-0} = Rd;
}
-let AddedComplexity = 10 in {
-def : Pat<(truncstorei8 (i32 IntRegs:$src1), (add IntRegs:$src2,
- s11_0ExtPred:$offset)),
- (STrib_indexed IntRegs:$src2, s11_0ImmPred:$offset,
- (i32 IntRegs:$src1))>;
+def S2_clrbit_i : T_SCT_BIT_IMM<"clrbit", 0b001>;
+def S2_setbit_i : T_SCT_BIT_IMM<"setbit", 0b000>;
+def S2_togglebit_i : T_SCT_BIT_IMM<"togglebit", 0b010>;
+def S2_clrbit_r : T_SCT_BIT_REG<"clrbit", 0b01>;
+def S2_setbit_r : T_SCT_BIT_REG<"setbit", 0b00>;
+def S2_togglebit_r : T_SCT_BIT_REG<"togglebit", 0b10>;
+
+def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, u5ImmPred:$u5)))),
+ (S2_clrbit_i IntRegs:$Rs, u5ImmPred:$u5)>;
+def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))),
+ (S2_setbit_i IntRegs:$Rs, u5ImmPred:$u5)>;
+def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))),
+ (S2_togglebit_i IntRegs:$Rs, u5ImmPred:$u5)>;
+def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, (i32 IntRegs:$Rt))))),
+ (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
+def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))),
+ (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
+def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))),
+ (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
+
+// Bit test
+
+let hasSideEffects = 0 in
+class T_TEST_BIT_IMM<string MnOp, bits<3> MajOp>
+ : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u5Imm:$u5),
+ "$Pd = "#MnOp#"($Rs, #$u5)",
+ [], "", S_2op_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<5> u5;
+ let IClass = 0b1000;
+ let Inst{27-24} = 0b0101;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0;
+ let Inst{12-8} = u5;
+ let Inst{1-0} = Pd;
+}
-def : Pat<(truncstorei16 (i32 IntRegs:$src1), (add IntRegs:$src2,
- s11_1ExtPred:$offset)),
- (STrih_indexed IntRegs:$src2, s11_1ImmPred:$offset,
- (i32 IntRegs:$src1))>;
+let hasSideEffects = 0 in
+class T_TEST_BIT_REG<string MnOp, bit IsNeg>
+ : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Pd = "#MnOp#"($Rs, $Rt)",
+ [], "", S_3op_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<5> Rt;
+ let IClass = 0b1100;
+ let Inst{27-22} = 0b011100;
+ let Inst{21} = IsNeg;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{1-0} = Pd;
+}
-def : Pat<(store (i32 IntRegs:$src1), (add IntRegs:$src2,
- s11_2ExtPred:$offset)),
- (STriw_indexed IntRegs:$src2, s11_2ImmPred:$offset,
- (i32 IntRegs:$src1))>;
+def S2_tstbit_i : T_TEST_BIT_IMM<"tstbit", 0b000>;
+def S2_tstbit_r : T_TEST_BIT_REG<"tstbit", 0>;
+
+let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
+ def: Pat<(i1 (setne (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)),
+ (S2_tstbit_i IntRegs:$Rs, u5ImmPred:$u5)>;
+ def: Pat<(i1 (setne (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)),
+ (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
+ def: Pat<(i1 (trunc (i32 IntRegs:$Rs))),
+ (S2_tstbit_i IntRegs:$Rs, 0)>;
+ def: Pat<(i1 (trunc (i64 DoubleRegs:$Rs))),
+ (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
+}
-def : Pat<(store (i64 DoubleRegs:$src1), (add IntRegs:$src2,
- s11_3ExtPred:$offset)),
- (STrid_indexed IntRegs:$src2, s11_3ImmPred:$offset,
- (i64 DoubleRegs:$src1))>;
+let hasSideEffects = 0 in
+class T_TEST_BITS_IMM<string MnOp, bits<2> MajOp, bit IsNeg>
+ : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u6Imm:$u6),
+ "$Pd = "#MnOp#"($Rs, #$u6)",
+ [], "", S_2op_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<6> u6;
+ let IClass = 0b1000;
+ let Inst{27-24} = 0b0101;
+ let Inst{23-22} = MajOp;
+ let Inst{21} = IsNeg;
+ let Inst{20-16} = Rs;
+ let Inst{13-8} = u6;
+ let Inst{1-0} = Pd;
}
-// memh(Rx++#s4:1)=Rt.H
+let hasSideEffects = 0 in
+class T_TEST_BITS_REG<string MnOp, bits<2> MajOp, bit IsNeg>
+ : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Pd = "#MnOp#"($Rs, $Rt)",
+ [], "", S_3op_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<5> Rt;
+ let IClass = 0b1100;
+ let Inst{27-24} = 0b0111;
+ let Inst{23-22} = MajOp;
+ let Inst{21} = IsNeg;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{1-0} = Pd;
+}
-// Store word.
-// Store predicate.
-let Defs = [R10,R11,D5], neverHasSideEffects = 1 in
-def STriw_pred : STInst2<(outs),
- (ins MEMri:$addr, PredRegs:$src1),
- "Error; should not emit",
- []>;
+def C2_bitsclri : T_TEST_BITS_IMM<"bitsclr", 0b10, 0>;
+def C2_bitsclr : T_TEST_BITS_REG<"bitsclr", 0b10, 0>;
+def C2_bitsset : T_TEST_BITS_REG<"bitsset", 0b01, 0>;
-// Allocate stack frame.
-let Defs = [R29, R30], Uses = [R31, R30], neverHasSideEffects = 1 in {
- def ALLOCFRAME : STInst2<(outs),
- (ins i32imm:$amt),
- "allocframe(#$amt)",
- []>;
+let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
+ def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), u6ImmPred:$u6), 0)),
+ (C2_bitsclri IntRegs:$Rs, u6ImmPred:$u6)>;
+ def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), 0)),
+ (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
}
+
+let AddedComplexity = 10 in // Complexity greater than compare reg-reg.
+def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), IntRegs:$Rt)),
+ (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;
+
//===----------------------------------------------------------------------===//
-// ST -
+// STYPE/BIT -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
-// STYPE/ALU +
+// STYPE/COMPLEX +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// STYPE/COMPLEX -
//===----------------------------------------------------------------------===//
-// Logical NOT.
-def NOT_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1),
- "$dst = not($src1)",
- [(set (i64 DoubleRegs:$dst), (not (i64 DoubleRegs:$src1)))]>;
+//===----------------------------------------------------------------------===//
+// XTYPE/PERM +
+//===----------------------------------------------------------------------===//
-// Sign extend word to doubleword.
-def SXTW : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1),
- "$dst = sxtw($src1)",
- [(set (i64 DoubleRegs:$dst), (sext (i32 IntRegs:$src1)))]>;
//===----------------------------------------------------------------------===//
-// STYPE/ALU -
+// XTYPE/PERM -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
-// STYPE/BIT +
+// STYPE/PRED +
//===----------------------------------------------------------------------===//
-// clrbit.
-def CLRBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = clrbit($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
- (not
- (shl 1, u5ImmPred:$src2))))]>;
-
-def CLRBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = clrbit($src1, #$src2)",
- []>;
-
-// Map from r0 = and(r1, 2147483647) to r0 = clrbit(r1, #31).
-def : Pat <(and (i32 IntRegs:$src1), 2147483647),
- (CLRBIT_31 (i32 IntRegs:$src1), 31)>;
-
-// setbit.
-def SETBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = setbit($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
- (shl 1, u5ImmPred:$src2)))]>;
-
-// Map from r0 = or(r1, -2147483648) to r0 = setbit(r1, #31).
-def SETBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = setbit($src1, #$src2)",
- []>;
-
-def : Pat <(or (i32 IntRegs:$src1), -2147483648),
- (SETBIT_31 (i32 IntRegs:$src1), 31)>;
-
-// togglebit.
-def TOGBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = setbit($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1),
- (shl 1, u5ImmPred:$src2)))]>;
-
-// Map from r0 = xor(r1, -2147483648) to r0 = togglebit(r1, #31).
-def TOGBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = togglebit($src1, #$src2)",
- []>;
-
-def : Pat <(xor (i32 IntRegs:$src1), -2147483648),
- (TOGBIT_31 (i32 IntRegs:$src1), 31)>;
// Predicate transfer.
-let neverHasSideEffects = 1 in
-def TFR_RsPd : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1),
- "$dst = $src1 /* Should almost never emit this. */",
- []>;
+let hasSideEffects = 0, hasNewValue = 1 in
+def C2_tfrpr : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps),
+ "$Rd = $Ps", [], "", S_2op_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<2> Ps;
+
+ let IClass = 0b1000;
+ let Inst{27-24} = 0b1001;
+ let Inst{22} = 0b1;
+ let Inst{17-16} = Ps;
+ let Inst{4-0} = Rd;
+}
+
+// Transfer general register to predicate.
+let hasSideEffects = 0 in
+def C2_tfrrp: SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs),
+ "$Pd = $Rs", [], "", S_2op_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<5> Rs;
+
+ let IClass = 0b1000;
+ let Inst{27-21} = 0b0101010;
+ let Inst{20-16} = Rs;
+ let Inst{1-0} = Pd;
+}
+
+let hasSideEffects = 0, isCodeGenOnly = 1 in
+def C2_pxfer_map: SInst<(outs PredRegs:$dst), (ins PredRegs:$src),
+ "$dst = $src">;
+
+
+// Patterns for loads of i1:
+def: Pat<(i1 (load AddrFI:$fi)),
+ (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
+def: Pat<(i1 (load (add (i32 IntRegs:$Rs), s11_0ExtPred:$Off))),
+ (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
+def: Pat<(i1 (load (i32 IntRegs:$Rs))),
+ (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;
+
+def I1toI32: OutPatFrag<(ops node:$Rs),
+ (C2_muxii (i1 $Rs), 1, 0)>;
+
+def I32toI1: OutPatFrag<(ops node:$Rs),
+ (i1 (C2_tfrrp (i32 $Rs)))>;
+
+defm: Storexm_pat<store, I1, s11_0ExtPred, I1toI32, S2_storerb_io>;
+def: Storexm_simple_pat<store, I1, I1toI32, S2_storerb_io>;
-def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1),
- "$dst = $src1 /* Should almost never emit this. */",
- [(set (i1 PredRegs:$dst), (trunc (i32 IntRegs:$src1)))]>;
//===----------------------------------------------------------------------===//
// STYPE/PRED -
//===----------------------------------------------------------------------===//
@@ -1786,88 +4385,56 @@ def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1),
//===----------------------------------------------------------------------===//
// STYPE/SHIFT +
//===----------------------------------------------------------------------===//
+class S_2OpInstImm<string Mnemonic, bits<3>MajOp, bits<3>MinOp,
+ Operand Imm, list<dag> pattern = [], bit isRnd = 0>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, Imm:$src2),
+ "$dst = "#Mnemonic#"($src1, #$src2)"#!if(isRnd, ":rnd", ""),
+ pattern> {
+ bits<5> src1;
+ bits<5> dst;
+ let IClass = 0b1000;
+ let Inst{27-24} = 0;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = dst;
+}
+
+class S_2OpInstImmI6<string Mnemonic, SDNode OpNode, bits<3>MinOp>
+ : S_2OpInstImm<Mnemonic, 0b000, MinOp, u6Imm,
+ [(set (i64 DoubleRegs:$dst), (OpNode (i64 DoubleRegs:$src1),
+ u6ImmPred:$src2))]> {
+ bits<6> src2;
+ let Inst{13-8} = src2;
+}
+
// Shift by immediate.
-def ASR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = asr($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1),
- u5ImmPred:$src2))]>;
-
-def ASRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
- "$dst = asr($src1, #$src2)",
- [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1),
- u6ImmPred:$src2))]>;
-
-def ASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = asl($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
- u5ImmPred:$src2))]>;
-
-def ASLd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
- "$dst = asl($src1, #$src2)",
- [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
- u6ImmPred:$src2))]>;
-
-def LSR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = lsr($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1),
- u5ImmPred:$src2))]>;
-
-def LSRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
- "$dst = lsr($src1, #$src2)",
- [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1),
- u6ImmPred:$src2))]>;
-
-// Shift by immediate and add.
-let AddedComplexity = 100 in
-def ADDASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
- u3Imm:$src3),
- "$dst = addasl($src1, $src2, #$src3)",
- [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1),
- (shl (i32 IntRegs:$src2),
- u3ImmPred:$src3)))]>;
-
-// Shift by register.
-def ASL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = asl($src1, $src2)",
- [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def ASR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = asr($src1, $src2)",
- [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def LSL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = lsl($src1, $src2)",
- [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def LSR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = lsr($src1, $src2)",
- [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def ASLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
- "$dst = asl($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def LSLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
- "$dst = lsl($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def ASRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- IntRegs:$src2),
- "$dst = asr($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- IntRegs:$src2),
- "$dst = lsr($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1),
- (i32 IntRegs:$src2)))]>;
+def S2_asr_i_p : S_2OpInstImmI6<"asr", sra, 0b000>;
+def S2_asl_i_p : S_2OpInstImmI6<"asl", shl, 0b010>;
+def S2_lsr_i_p : S_2OpInstImmI6<"lsr", srl, 0b001>;
+
+// Shift left by small amount and add.
+let AddedComplexity = 100, hasNewValue = 1, hasSideEffects = 0 in
+def S2_addasl_rrri: SInst <(outs IntRegs:$Rd),
+ (ins IntRegs:$Rt, IntRegs:$Rs, u3Imm:$u3),
+ "$Rd = addasl($Rt, $Rs, #$u3)" ,
+ [(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rt),
+ (shl (i32 IntRegs:$Rs), u3ImmPred:$u3)))],
+ "", S_3op_tc_2_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rt;
+ bits<5> Rs;
+ bits<3> u3;
+
+ let IClass = 0b1100;
+
+ let Inst{27-21} = 0b0100000;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = u3;
+ let Inst{4-0} = Rd;
+ }
//===----------------------------------------------------------------------===//
// STYPE/SHIFT -
@@ -1894,39 +4461,222 @@ def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
//===----------------------------------------------------------------------===//
// SYSTEM/USER +
//===----------------------------------------------------------------------===//
-def SDHexagonBARRIER: SDTypeProfile<0, 0, []>;
-def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDHexagonBARRIER,
- [SDNPHasChain]>;
+def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
-let hasSideEffects = 1, isSolo = 1 in
-def BARRIER : SYSInst<(outs), (ins),
+let hasSideEffects = 1, isSoloAX = 1 in
+def Y2_barrier : SYSInst<(outs), (ins),
"barrier",
- [(HexagonBARRIER)]>;
+ [(HexagonBARRIER)],"",ST_tc_st_SLOT0> {
+ let Inst{31-28} = 0b1010;
+ let Inst{27-21} = 0b1000000;
+}
//===----------------------------------------------------------------------===//
// SYSTEM/SUPER -
//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// CRUSER - Type.
+//===----------------------------------------------------------------------===//
+// HW loop
+let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
+ opExtendable = 0, hasSideEffects = 0 in
+class LOOP_iBase<string mnemonic, Operand brOp, bit mustExtend = 0>
+ : CRInst<(outs), (ins brOp:$offset, u10Imm:$src2),
+ #mnemonic#"($offset, #$src2)",
+ [], "" , CR_tc_3x_SLOT3> {
+ bits<9> offset;
+ bits<10> src2;
+
+ let IClass = 0b0110;
+
+ let Inst{27-22} = 0b100100;
+ let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
+ let Inst{20-16} = src2{9-5};
+ let Inst{12-8} = offset{8-4};
+ let Inst{7-5} = src2{4-2};
+ let Inst{4-3} = offset{3-2};
+ let Inst{1-0} = src2{1-0};
+}
-// TFRI64 - assembly mapped.
-let isReMaterializable = 1 in
-def TFRI64 : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1),
- "$dst = #$src1",
- [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>;
-
-// Pseudo instruction to encode a set of conditional transfers.
-// This instruction is used instead of a mux and trades-off codesize
-// for performance. We conduct this transformation optimistically in
-// the hope that these instructions get promoted to dot-new transfers.
-let AddedComplexity = 100, isPredicated = 1 in
-def TFR_condset_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
- IntRegs:$src2,
- IntRegs:$src3),
- "Error; should not emit",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 PredRegs:$src1),
- (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))]>;
-let AddedComplexity = 100, isPredicated = 1 in
+let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
+ opExtendable = 0, hasSideEffects = 0 in
+class LOOP_rBase<string mnemonic, Operand brOp, bit mustExtend = 0>
+ : CRInst<(outs), (ins brOp:$offset, IntRegs:$src2),
+ #mnemonic#"($offset, $src2)",
+ [], "" ,CR_tc_3x_SLOT3> {
+ bits<9> offset;
+ bits<5> src2;
+
+ let IClass = 0b0110;
+
+ let Inst{27-22} = 0b000000;
+ let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
+ let Inst{20-16} = src2;
+ let Inst{12-8} = offset{8-4};
+ let Inst{4-3} = offset{3-2};
+ }
+
+multiclass LOOP_ri<string mnemonic> {
+ def i : LOOP_iBase<mnemonic, brtarget>;
+ def r : LOOP_rBase<mnemonic, brtarget>;
+}
+
+
+let Defs = [SA0, LC0, USR] in
+defm J2_loop0 : LOOP_ri<"loop0">;
+
+// Interestingly only loop0's appear to set usr.lpcfg
+let Defs = [SA1, LC1] in
+defm J2_loop1 : LOOP_ri<"loop1">;
+
+let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
+ Defs = [PC, LC0], Uses = [SA0, LC0] in {
+def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset),
+ ":endloop0",
+ []>;
+}
+
+let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
+ Defs = [PC, LC1], Uses = [SA1, LC1] in {
+def ENDLOOP1 : Endloop<(outs), (ins brtarget:$offset),
+ ":endloop1",
+ []>;
+}
+
+// Pipelined loop instructions, sp[123]loop0
+let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0,
+ isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2,
+ opExtendable = 0, isPredicateLate = 1 in
+class SPLOOP_iBase<string SP, bits<2> op>
+ : CRInst <(outs), (ins brtarget:$r7_2, u10Imm:$U10),
+ "p3 = sp"#SP#"loop0($r7_2, #$U10)" > {
+ bits<9> r7_2;
+ bits<10> U10;
+
+ let IClass = 0b0110;
+
+ let Inst{22-21} = op;
+ let Inst{27-23} = 0b10011;
+ let Inst{20-16} = U10{9-5};
+ let Inst{12-8} = r7_2{8-4};
+ let Inst{7-5} = U10{4-2};
+ let Inst{4-3} = r7_2{3-2};
+ let Inst{1-0} = U10{1-0};
+ }
+
+let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0,
+ isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2,
+ opExtendable = 0, isPredicateLate = 1 in
+class SPLOOP_rBase<string SP, bits<2> op>
+ : CRInst <(outs), (ins brtarget:$r7_2, IntRegs:$Rs),
+ "p3 = sp"#SP#"loop0($r7_2, $Rs)" > {
+ bits<9> r7_2;
+ bits<5> Rs;
+
+ let IClass = 0b0110;
+
+ let Inst{22-21} = op;
+ let Inst{27-23} = 0b00001;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = r7_2{8-4};
+ let Inst{4-3} = r7_2{3-2};
+ }
+
+multiclass SPLOOP_ri<string mnemonic, bits<2> op> {
+ def i : SPLOOP_iBase<mnemonic, op>;
+ def r : SPLOOP_rBase<mnemonic, op>;
+}
+
+defm J2_ploop1s : SPLOOP_ri<"1", 0b01>;
+defm J2_ploop2s : SPLOOP_ri<"2", 0b10>;
+defm J2_ploop3s : SPLOOP_ri<"3", 0b11>;
+
+// if (Rs[!>=<]=#0) jump:[t/nt]
+let Defs = [PC], isPredicated = 1, isBranch = 1, hasSideEffects = 0,
+ hasSideEffects = 0 in
+class J2_jump_0_Base<string compare, bit isTak, bits<2> op>
+ : CRInst <(outs), (ins IntRegs:$Rs, brtarget:$r13_2),
+ "if ($Rs"#compare#"#0) jump"#!if(isTak, ":t", ":nt")#" $r13_2" > {
+ bits<5> Rs;
+ bits<15> r13_2;
+
+ let IClass = 0b0110;
+
+ let Inst{27-24} = 0b0001;
+ let Inst{23-22} = op;
+ let Inst{12} = isTak;
+ let Inst{21} = r13_2{14};
+ let Inst{20-16} = Rs;
+ let Inst{11-1} = r13_2{12-2};
+ let Inst{13} = r13_2{13};
+ }
+
+multiclass J2_jump_compare_0<string compare, bits<2> op> {
+ def NAME : J2_jump_0_Base<compare, 0, op>;
+ def NAME#pt : J2_jump_0_Base<compare, 1, op>;
+}
+
+defm J2_jumprz : J2_jump_compare_0<"!=", 0b00>;
+defm J2_jumprgtez : J2_jump_compare_0<">=", 0b01>;
+defm J2_jumprnz : J2_jump_compare_0<"==", 0b10>;
+defm J2_jumprltez : J2_jump_compare_0<"<=", 0b11>;
+
+// Transfer to/from Control/GPR Guest/GPR
+let hasSideEffects = 0 in
+class TFR_CR_RS_base<RegisterClass CTRC, RegisterClass RC, bit isDouble>
+ : CRInst <(outs CTRC:$dst), (ins RC:$src),
+ "$dst = $src", [], "", CR_tc_3x_SLOT3> {
+ bits<5> dst;
+ bits<5> src;
+
+ let IClass = 0b0110;
+
+ let Inst{27-25} = 0b001;
+ let Inst{24} = isDouble;
+ let Inst{23-21} = 0b001;
+ let Inst{20-16} = src;
+ let Inst{4-0} = dst;
+ }
+
+def A2_tfrrcr : TFR_CR_RS_base<CtrRegs, IntRegs, 0b0>;
+def A4_tfrpcp : TFR_CR_RS_base<CtrRegs64, DoubleRegs, 0b1>;
+def : InstAlias<"m0 = $Rs", (A2_tfrrcr C6, IntRegs:$Rs)>;
+def : InstAlias<"m1 = $Rs", (A2_tfrrcr C7, IntRegs:$Rs)>;
+
+let hasSideEffects = 0 in
+class TFR_RD_CR_base<RegisterClass RC, RegisterClass CTRC, bit isSingle>
+ : CRInst <(outs RC:$dst), (ins CTRC:$src),
+ "$dst = $src", [], "", CR_tc_3x_SLOT3> {
+ bits<5> dst;
+ bits<5> src;
+
+ let IClass = 0b0110;
+
+ let Inst{27-26} = 0b10;
+ let Inst{25} = isSingle;
+ let Inst{24-21} = 0b0000;
+ let Inst{20-16} = src;
+ let Inst{4-0} = dst;
+ }
+
+let hasNewValue = 1, opNewValue = 0 in
+def A2_tfrcrr : TFR_RD_CR_base<IntRegs, CtrRegs, 1>;
+def A4_tfrcpp : TFR_RD_CR_base<DoubleRegs, CtrRegs64, 0>;
+def : InstAlias<"$Rd = m0", (A2_tfrcrr IntRegs:$Rd, C6)>;
+def : InstAlias<"$Rd = m1", (A2_tfrcrr IntRegs:$Rd, C7)>;
+
+// Y4_trace: Send value to etm trace.
+let isSoloAX = 1, hasSideEffects = 0 in
+def Y4_trace: CRInst <(outs), (ins IntRegs:$Rs),
+ "trace($Rs)"> {
+ bits<5> Rs;
+
+ let IClass = 0b0110;
+ let Inst{27-21} = 0b0010010;
+ let Inst{20-16} = Rs;
+ }
+
+let AddedComplexity = 100, isPredicated = 1, isCodeGenOnly = 1 in
def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$src1, IntRegs:$src2, s12Imm:$src3),
"Error; should not emit",
@@ -1934,7 +4684,7 @@ def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst),
(i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
s12ImmPred:$src3)))]>;
-let AddedComplexity = 100, isPredicated = 1 in
+let AddedComplexity = 100, isPredicated = 1, isCodeGenOnly = 1 in
def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$src1, s12Imm:$src2, IntRegs:$src3),
"Error; should not emit",
@@ -1942,7 +4692,7 @@ def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst),
(i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2,
(i32 IntRegs:$src3))))]>;
-let AddedComplexity = 100, isPredicated = 1 in
+let AddedComplexity = 100, isPredicated = 1, isCodeGenOnly = 1 in
def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$src1, s12Imm:$src2, s12Imm:$src3),
"Error; should not emit",
@@ -1951,115 +4701,109 @@ def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst),
s12ImmPred:$src3)))]>;
// Generate frameindex addresses.
-let isReMaterializable = 1 in
+let isReMaterializable = 1, isCodeGenOnly = 1 in
def TFR_FI : ALU32_ri<(outs IntRegs:$dst), (ins FrameIndex:$src1),
"$dst = add($src1)",
[(set (i32 IntRegs:$dst), ADDRri:$src1)]>;
-//
-// CR - Type.
-//
-let neverHasSideEffects = 1, Defs = [SA0, LC0] in {
-def LOOP0_i : CRInst<(outs), (ins brtarget:$offset, u10Imm:$src2),
- "loop0($offset, #$src2)",
- []>;
-}
+// Support for generating global address.
+// Taken from X86InstrInfo.td.
+def SDTHexagonCONST32 : SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
+ SDTCisVT<1, i32>,
+ SDTCisPtrTy<0>]>;
+def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>;
+def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>;
-let neverHasSideEffects = 1, Defs = [SA0, LC0] in {
-def LOOP0_r : CRInst<(outs), (ins brtarget:$offset, IntRegs:$src2),
- "loop0($offset, $src2)",
- []>;
-}
+// HI/LO Instructions
+let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0,
+ hasNewValue = 1, opNewValue = 0 in
+class REG_IMMED<string RegHalf, string Op, bit Rs, bits<3> MajOp, bit MinOp>
+ : ALU32_ri<(outs IntRegs:$dst),
+ (ins i32imm:$imm_value),
+ "$dst"#RegHalf#" = #"#Op#"($imm_value)", []> {
+ bits<5> dst;
+ bits<32> imm_value;
+ let IClass = 0b0111;
-let isBranch = 1, isTerminator = 1, neverHasSideEffects = 1,
- Defs = [PC, LC0], Uses = [SA0, LC0] in {
-def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset),
- ":endloop0",
- []>;
+ let Inst{27} = Rs;
+ let Inst{26-24} = MajOp;
+ let Inst{21} = MinOp;
+ let Inst{20-16} = dst;
+ let Inst{23-22} = !if (!eq(Op, "LO"), imm_value{15-14}, imm_value{31-30});
+ let Inst{13-0} = !if (!eq(Op, "LO"), imm_value{13-0}, imm_value{29-16});
}
-// Support for generating global address.
-// Taken from X86InstrInfo.td.
-def SDTHexagonCONST32 : SDTypeProfile<1, 1, [
- SDTCisVT<0, i32>,
- SDTCisVT<1, i32>,
- SDTCisPtrTy<0>]>;
-def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>;
-def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>;
+let isAsmParserOnly = 1 in {
+ def LO : REG_IMMED<".l", "LO", 0b0, 0b001, 0b1>;
+ def LO_H : REG_IMMED<".l", "HI", 0b0, 0b001, 0b1>;
+ def HI : REG_IMMED<".h", "HI", 0b0, 0b010, 0b1>;
+ def HI_L : REG_IMMED<".h", "LO", 0b0, 0b010, 0b1>;
+}
-// HI/LO Instructions
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
-def LO : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
- "$dst.l = #LO($global)",
- []>;
+let isMoveImm = 1, isCodeGenOnly = 1 in
+def LO_PIC : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
+ "$dst.l = #LO($label@GOTREL)",
+ []>;
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
-def HI : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
- "$dst.h = #HI($global)",
- []>;
+let isMoveImm = 1, isCodeGenOnly = 1 in
+def HI_PIC : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
+ "$dst.h = #HI($label@GOTREL)",
+ []>;
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0,
+ isAsmParserOnly = 1 in
def LOi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value),
"$dst.l = #LO($imm_value)",
[]>;
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0,
+ isAsmParserOnly = 1 in
def HIi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value),
"$dst.h = #HI($imm_value)",
[]>;
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0,
+ isAsmParserOnly = 1 in
def LO_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt),
"$dst.l = #LO($jt)",
[]>;
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0,
+ isAsmParserOnly = 1 in
def HI_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt),
"$dst.h = #HI($jt)",
[]>;
-
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
-def LO_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
- "$dst.l = #LO($label)",
- []>;
-
-let isReMaterializable = 1, isMoveImm = 1 , neverHasSideEffects = 1 in
-def HI_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
- "$dst.h = #HI($label)",
- []>;
-
// This pattern is incorrect. When we add small data, we should change
// this pattern to use memw(#foo).
// This is for sdata.
-let isMoveImm = 1 in
-def CONST32 : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global),
+let isMoveImm = 1, isAsmParserOnly = 1 in
+def CONST32 : CONSTLDInst<(outs IntRegs:$dst), (ins globaladdress:$global),
"$dst = CONST32(#$global)",
[(set (i32 IntRegs:$dst),
(load (HexagonCONST32 tglobaltlsaddr:$global)))]>;
-// This is for non-sdata.
let isReMaterializable = 1, isMoveImm = 1 in
def CONST32_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global),
"$dst = CONST32(#$global)",
[(set (i32 IntRegs:$dst),
(HexagonCONST32 tglobaladdr:$global))]>;
-let isReMaterializable = 1, isMoveImm = 1 in
-def CONST32_set_jt : LDInst2<(outs IntRegs:$dst), (ins jumptablebase:$jt),
+let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in
+def CONST32_set_jt : CONSTLDInst<(outs IntRegs:$dst), (ins jumptablebase:$jt),
"$dst = CONST32(#$jt)",
[(set (i32 IntRegs:$dst),
(HexagonCONST32 tjumptable:$jt))]>;
-let isReMaterializable = 1, isMoveImm = 1 in
+let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in
def CONST32GP_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global),
"$dst = CONST32(#$global)",
[(set (i32 IntRegs:$dst),
(HexagonCONST32_GP tglobaladdr:$global))]>;
-let isReMaterializable = 1, isMoveImm = 1 in
-def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global),
+let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in
+def CONST32_Int_Real : CONSTLDInst<(outs IntRegs:$dst), (ins i32imm:$global),
"$dst = CONST32(#$global)",
[(set (i32 IntRegs:$dst), imm:$global) ]>;
@@ -2067,839 +4811,921 @@ def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global),
def : Pat<(HexagonCONST32_GP tblockaddress:$addr),
(CONST32_Int_Real tblockaddress:$addr)>;
-let isReMaterializable = 1, isMoveImm = 1 in
+let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in
def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label),
"$dst = CONST32($label)",
[(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>;
-let isReMaterializable = 1, isMoveImm = 1 in
-def CONST64_Int_Real : LDInst2<(outs DoubleRegs:$dst), (ins i64imm:$global),
+let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in
+def CONST64_Int_Real : CONSTLDInst<(outs DoubleRegs:$dst), (ins i64imm:$global),
"$dst = CONST64(#$global)",
- [(set (i64 DoubleRegs:$dst), imm:$global) ]>;
+ [(set (i64 DoubleRegs:$dst), imm:$global)]>;
-def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins),
- "$dst = xor($dst, $dst)",
- [(set (i1 PredRegs:$dst), 0)]>;
+let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
+ isCodeGenOnly = 1 in
+def TFR_PdTrue : SInst<(outs PredRegs:$dst), (ins), "",
+ [(set (i1 PredRegs:$dst), 1)]>;
-def MPY_trsext : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = mpy($src1, $src2)",
- [(set (i32 IntRegs:$dst),
- (trunc (i64 (srl (i64 (mul (i64 (sext (i32 IntRegs:$src1))),
- (i64 (sext (i32 IntRegs:$src2))))),
- (i32 32)))))]>;
+let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
+ isCodeGenOnly = 1 in
+def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins), "$dst = xor($dst, $dst)",
+ [(set (i1 PredRegs:$dst), 0)]>;
// Pseudo instructions.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
-
-def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
+def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>;
-def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
- [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
-
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
-def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
-
-def call : SDNode<"HexagonISD::CALL", SDT_SPCall,
- [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
+def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
// For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain,
// Optional Flag and Variable Arguments.
// Its 1 Operand has pointer type.
-def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
- [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
-
-let Defs = [R29, R30], Uses = [R31, R30, R29] in {
- def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
- "Should never be emitted",
- [(callseq_start timm:$amt)]>;
-}
-
-let Defs = [R29, R30, R31], Uses = [R29] in {
- def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
- "Should never be emitted",
- [(callseq_end timm:$amt1, timm:$amt2)]>;
-}
-// Call subroutine.
-let isCall = 1, neverHasSideEffects = 1,
- Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
- R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
- def CALL : JInst<(outs), (ins calltarget:$dst),
- "call $dst", []>;
-}
-
-// Call subroutine from register.
-let isCall = 1, neverHasSideEffects = 1,
- Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
- R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
- def CALLR : JRInst<(outs), (ins IntRegs:$dst),
- "callr $dst",
- []>;
- }
+def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+let Defs = [R29, R30], Uses = [R31, R30, R29], isPseudo = 1 in
+def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
+ ".error \"should not emit\" ",
+ [(callseq_start timm:$amt)]>;
+let Defs = [R29, R30, R31], Uses = [R29], isPseudo = 1 in
+def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ ".error \"should not emit\" ",
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+
+// Call subroutine indirectly.
+let Defs = VolatileV3.Regs in
+def J2_callr : JUMPR_MISC_CALLR<0, 1>;
// Indirect tail-call.
-let isCodeGenOnly = 1, isCall = 1, isReturn = 1 in
-def TCRETURNR : T_JMPr;
+let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
+ isTerminator = 1, isCodeGenOnly = 1 in
+def TCRETURNr : T_JMPr;
// Direct tail-calls.
let isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
isTerminator = 1, isCodeGenOnly = 1 in {
- def TCRETURNtg : T_JMP<(ins calltarget:$dst)>;
- def TCRETURNtext : T_JMP<(ins calltarget:$dst)>;
+ def TCRETURNtg : JInst<(outs), (ins calltarget:$dst), "jump $dst",
+ [], "", J_tc_2early_SLOT23>;
+ def TCRETURNtext : JInst<(outs), (ins calltarget:$dst), "jump $dst",
+ [], "", J_tc_2early_SLOT23>;
}
-// Map call instruction.
-def : Pat<(call (i32 IntRegs:$dst)),
- (CALLR (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>;
-def : Pat<(call tglobaladdr:$dst),
- (CALL tglobaladdr:$dst)>, Requires<[HasV2TOnly]>;
-def : Pat<(call texternalsym:$dst),
- (CALL texternalsym:$dst)>, Requires<[HasV2TOnly]>;
//Tail calls.
-def : Pat<(HexagonTCRet tglobaladdr:$dst),
- (TCRETURNtg tglobaladdr:$dst)>;
-def : Pat<(HexagonTCRet texternalsym:$dst),
- (TCRETURNtext texternalsym:$dst)>;
-def : Pat<(HexagonTCRet (i32 IntRegs:$dst)),
- (TCRETURNR (i32 IntRegs:$dst))>;
-
-// Atomic load and store support
-// 8 bit atomic load
-def : Pat<(atomic_load_8 ADDRriS11_0:$src1),
- (i32 (LDriub ADDRriS11_0:$src1))>;
-
-def : Pat<(atomic_load_8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset)),
- (i32 (LDriub_indexed (i32 IntRegs:$src1), s11_0ImmPred:$offset))>;
-
-// 16 bit atomic load
-def : Pat<(atomic_load_16 ADDRriS11_1:$src1),
- (i32 (LDriuh ADDRriS11_1:$src1))>;
-
-def : Pat<(atomic_load_16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset)),
- (i32 (LDriuh_indexed (i32 IntRegs:$src1), s11_1ImmPred:$offset))>;
-
-def : Pat<(atomic_load_32 ADDRriS11_2:$src1),
- (i32 (LDriw ADDRriS11_2:$src1))>;
-
-def : Pat<(atomic_load_32 (add (i32 IntRegs:$src1), s11_2ImmPred:$offset)),
- (i32 (LDriw_indexed (i32 IntRegs:$src1), s11_2ImmPred:$offset))>;
-
-// 64 bit atomic load
-def : Pat<(atomic_load_64 ADDRriS11_3:$src1),
- (i64 (LDrid ADDRriS11_3:$src1))>;
-
-def : Pat<(atomic_load_64 (add (i32 IntRegs:$src1), s11_3ImmPred:$offset)),
- (i64 (LDrid_indexed (i32 IntRegs:$src1), s11_3ImmPred:$offset))>;
-
-
-def : Pat<(atomic_store_8 ADDRriS11_0:$src2, (i32 IntRegs:$src1)),
- (STrib ADDRriS11_0:$src2, (i32 IntRegs:$src1))>;
-
-def : Pat<(atomic_store_8 (add (i32 IntRegs:$src2), s11_0ImmPred:$offset),
- (i32 IntRegs:$src1)),
- (STrib_indexed (i32 IntRegs:$src2), s11_0ImmPred:$offset,
- (i32 IntRegs:$src1))>;
-
-
-def : Pat<(atomic_store_16 ADDRriS11_1:$src2, (i32 IntRegs:$src1)),
- (STrih ADDRriS11_1:$src2, (i32 IntRegs:$src1))>;
-
-def : Pat<(atomic_store_16 (i32 IntRegs:$src1),
- (add (i32 IntRegs:$src2), s11_1ImmPred:$offset)),
- (STrih_indexed (i32 IntRegs:$src2), s11_1ImmPred:$offset,
- (i32 IntRegs:$src1))>;
-
-def : Pat<(atomic_store_32 ADDRriS11_2:$src2, (i32 IntRegs:$src1)),
- (STriw ADDRriS11_2:$src2, (i32 IntRegs:$src1))>;
-
-def : Pat<(atomic_store_32 (add (i32 IntRegs:$src2), s11_2ImmPred:$offset),
- (i32 IntRegs:$src1)),
- (STriw_indexed (i32 IntRegs:$src2), s11_2ImmPred:$offset,
- (i32 IntRegs:$src1))>;
-
-
-
-
-def : Pat<(atomic_store_64 ADDRriS11_3:$src2, (i64 DoubleRegs:$src1)),
- (STrid ADDRriS11_3:$src2, (i64 DoubleRegs:$src1))>;
-
-def : Pat<(atomic_store_64 (add (i32 IntRegs:$src2), s11_3ImmPred:$offset),
- (i64 DoubleRegs:$src1)),
- (STrid_indexed (i32 IntRegs:$src2), s11_3ImmPred:$offset,
- (i64 DoubleRegs:$src1))>;
+def: Pat<(HexagonTCRet tglobaladdr:$dst),
+ (TCRETURNtg tglobaladdr:$dst)>;
+def: Pat<(HexagonTCRet texternalsym:$dst),
+ (TCRETURNtext texternalsym:$dst)>;
+def: Pat<(HexagonTCRet (i32 IntRegs:$dst)),
+ (TCRETURNr (i32 IntRegs:$dst))>;
// Map from r0 = and(r1, 65535) to r0 = zxth(r1)
-def : Pat <(and (i32 IntRegs:$src1), 65535),
- (ZXTH (i32 IntRegs:$src1))>;
+def: Pat<(and (i32 IntRegs:$src1), 65535),
+ (A2_zxth IntRegs:$src1)>;
// Map from r0 = and(r1, 255) to r0 = zxtb(r1).
-def : Pat <(and (i32 IntRegs:$src1), 255),
- (ZXTB (i32 IntRegs:$src1))>;
+def: Pat<(and (i32 IntRegs:$src1), 255),
+ (A2_zxtb IntRegs:$src1)>;
// Map Add(p1, true) to p1 = not(p1).
// Add(p1, false) should never be produced,
// if it does, it got to be mapped to NOOP.
-def : Pat <(add (i1 PredRegs:$src1), -1),
- (NOT_p (i1 PredRegs:$src1))>;
-
-// Map from p0 = setlt(r0, r1) r2 = mux(p0, r3, r4) =>
-// p0 = cmp.lt(r0, r1), r0 = mux(p0, r2, r1).
-// cmp.lt(r0, r1) -> cmp.gt(r1, r0)
-def : Pat <(select (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i32 IntRegs:$src3),
- (i32 IntRegs:$src4)),
- (i32 (TFR_condset_rr (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)),
- (i32 IntRegs:$src4), (i32 IntRegs:$src3)))>,
- Requires<[HasV2TOnly]>;
+def: Pat<(add (i1 PredRegs:$src1), -1),
+ (C2_not PredRegs:$src1)>;
// Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i).
-def : Pat <(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ImmPred:$src3),
- (i32 (TFR_condset_ii (i1 PredRegs:$src1), s8ImmPred:$src3,
- s8ImmPred:$src2))>;
+def: Pat<(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ExtPred:$src3),
+ (C2_muxii PredRegs:$src1, s8ExtPred:$src3, s8ImmPred:$src2)>;
// Map from p0 = pnot(p0); r0 = select(p0, #i, r1)
-// => r0 = TFR_condset_ri(p0, r1, #i)
-def : Pat <(select (not (i1 PredRegs:$src1)), s12ImmPred:$src2,
- (i32 IntRegs:$src3)),
- (i32 (TFR_condset_ri (i1 PredRegs:$src1), (i32 IntRegs:$src3),
- s12ImmPred:$src2))>;
+// => r0 = C2_muxir(p0, r1, #i)
+def: Pat<(select (not (i1 PredRegs:$src1)), s8ExtPred:$src2,
+ (i32 IntRegs:$src3)),
+ (C2_muxir PredRegs:$src1, IntRegs:$src3, s8ExtPred:$src2)>;
// Map from p0 = pnot(p0); r0 = mux(p0, r1, #i)
-// => r0 = TFR_condset_ir(p0, #i, r1)
-def : Pat <(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s12ImmPred:$src3),
- (i32 (TFR_condset_ir (i1 PredRegs:$src1), s12ImmPred:$src3,
- (i32 IntRegs:$src2)))>;
+// => r0 = C2_muxri (p0, #i, r1)
+def: Pat<(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s8ExtPred:$src3),
+ (C2_muxri PredRegs:$src1, s8ExtPred:$src3, IntRegs:$src2)>;
// Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump.
-def : Pat <(brcond (not (i1 PredRegs:$src1)), bb:$offset),
- (JMP_f (i1 PredRegs:$src1), bb:$offset)>;
+def: Pat<(brcond (not (i1 PredRegs:$src1)), bb:$offset),
+ (J2_jumpf PredRegs:$src1, bb:$offset)>;
-// Map from p2 = pnot(p2); p1 = and(p0, p2) => p1 = and(p0, !p2).
-def : Pat <(and (i1 PredRegs:$src1), (not (i1 PredRegs:$src2))),
- (i1 (AND_pnotp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
+// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = A2_sxtw(Rss.lo).
+def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)),
+ (A2_sxtw (LoReg DoubleRegs:$src1))>;
+// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = A2_sxtw(A2_sxth(Rss.lo)).
+def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)),
+ (A2_sxtw (A2_sxth (LoReg DoubleRegs:$src1)))>;
-let AddedComplexity = 100 in
-def : Pat <(i64 (zextloadi1 (HexagonCONST32 tglobaladdr:$global))),
- (i64 (COMBINE_rr (TFRI 0),
- (LDriub_indexed (CONST32_set tglobaladdr:$global), 0)))>,
- Requires<[NoV4T]>;
-
-// Map from i1 loads to 32 bits. This assumes that the i1* is byte aligned.
-let AddedComplexity = 10 in
-def : Pat <(i32 (zextloadi1 ADDRriS11_0:$addr)),
- (i32 (A2_and (i32 (LDrib ADDRriS11_0:$addr)), (TFRI 0x1)))>;
-
-// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = SXTW(Rss.lo).
-def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)),
- (i64 (SXTW (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>;
-
-// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = SXTW(SXTH(Rss.lo)).
-def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)),
- (i64 (SXTW (i32 (SXTH (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
- subreg_loreg))))))>;
-
-// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = SXTW(SXTB(Rss.lo)).
-def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)),
- (i64 (SXTW (i32 (SXTB (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
- subreg_loreg))))))>;
+// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = A2_sxtw(A2_sxtb(Rss.lo)).
+def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)),
+ (A2_sxtw (A2_sxtb (LoReg DoubleRegs:$src1)))>;
// We want to prevent emitting pnot's as much as possible.
-// Map brcond with an unsupported setcc to a JMP_f.
+// Map brcond with an unsupported setcc to a J2_jumpf.
def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
bb:$offset),
- (JMP_f (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
+ (J2_jumpf (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
bb:$offset)>;
def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)),
bb:$offset),
- (JMP_f (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>;
+ (J2_jumpf (C2_cmpeqi (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>;
-def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset),
- (JMP_f (i1 PredRegs:$src1), bb:$offset)>;
+def: Pat<(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset),
+ (J2_jumpf PredRegs:$src1, bb:$offset)>;
-def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset),
- (JMP_t (i1 PredRegs:$src1), bb:$offset)>;
+def: Pat<(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset),
+ (J2_jumpt PredRegs:$src1, bb:$offset)>;
// cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1)
-def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)),
- bb:$offset),
- (JMP_f (CMPGTri (i32 IntRegs:$src1),
- (DEC_CONST_SIGNED s8ImmPred:$src2)), bb:$offset)>;
+def: Pat<(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), bb:$offset),
+ (J2_jumpf (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s8ImmPred:$src2)),
+ bb:$offset)>;
// cmp.lt(r0, r1) -> cmp.gt(r1, r0)
def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
bb:$offset),
- (JMP_t (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)), bb:$offset)>;
+ (J2_jumpt (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)), bb:$offset)>;
def : Pat <(brcond (i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
bb:$offset),
- (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)),
+ (J2_jumpf (C2_cmpgtup (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)),
bb:$offset)>;
def : Pat <(brcond (i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
bb:$offset),
- (JMP_f (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
+ (J2_jumpf (C2_cmpgtu (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
bb:$offset)>;
def : Pat <(brcond (i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
bb:$offset),
- (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
+ (J2_jumpf (C2_cmpgtup (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
bb:$offset)>;
// Map from a 64-bit select to an emulated 64-bit mux.
// Hexagon does not support 64-bit MUXes; so emulate with combines.
-def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src3)),
- (i64 (COMBINE_rr (i32 (MUX_rr (i1 PredRegs:$src1),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
- subreg_hireg)),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3),
- subreg_hireg)))),
- (i32 (MUX_rr (i1 PredRegs:$src1),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
- subreg_loreg)),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3),
- subreg_loreg))))))>;
+def: Pat<(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src3)),
+ (A2_combinew (C2_mux PredRegs:$src1, (HiReg DoubleRegs:$src2),
+ (HiReg DoubleRegs:$src3)),
+ (C2_mux PredRegs:$src1, (LoReg DoubleRegs:$src2),
+ (LoReg DoubleRegs:$src3)))>;
// Map from a 1-bit select to logical ops.
// From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3).
-def : Pat <(select (i1 PredRegs:$src1), (i1 PredRegs:$src2),
- (i1 PredRegs:$src3)),
- (OR_pp (AND_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)),
- (AND_pp (NOT_p (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>;
+def: Pat<(select (i1 PredRegs:$src1), (i1 PredRegs:$src2), (i1 PredRegs:$src3)),
+ (C2_or (C2_and PredRegs:$src1, PredRegs:$src2),
+ (C2_and (C2_not PredRegs:$src1), PredRegs:$src3))>;
// Map Pd = load(addr) -> Rs = load(addr); Pd = Rs.
def : Pat<(i1 (load ADDRriS11_2:$addr)),
- (i1 (TFR_PdRs (i32 (LDrib ADDRriS11_2:$addr))))>;
+ (i1 (C2_tfrrp (i32 (L2_loadrb_io AddrFI:$addr, 0))))>;
// Map for truncating from 64 immediates to 32 bit immediates.
-def : Pat<(i32 (trunc (i64 DoubleRegs:$src))),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))>;
+def: Pat<(i32 (trunc (i64 DoubleRegs:$src))),
+ (LoReg DoubleRegs:$src)>;
// Map for truncating from i64 immediates to i1 bit immediates.
-def : Pat<(i1 (trunc (i64 DoubleRegs:$src))),
- (i1 (TFR_PdRs (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
- subreg_loreg))))>;
+def: Pat<(i1 (trunc (i64 DoubleRegs:$src))),
+ (C2_tfrrp (LoReg DoubleRegs:$src))>;
// Map memb(Rs) = Rdd -> memb(Rs) = Rt.
def : Pat<(truncstorei8 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
- (STrib ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ (S2_storerb_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg)))>;
// Map memh(Rs) = Rdd -> memh(Rs) = Rt.
def : Pat<(truncstorei16 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
- (STrih ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ (S2_storerh_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg)))>;
// Map memw(Rs) = Rdd -> memw(Rs) = Rt
def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
- (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ (S2_storeri_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg)))>;
// Map memw(Rs) = Rdd -> memw(Rs) = Rt.
def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
- (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ (S2_storeri_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg)))>;
// Map from i1 = constant<-1>; memw(addr) = i1 -> r0 = 1; memw(addr) = r0.
def : Pat<(store (i1 -1), ADDRriS11_2:$addr),
- (STrib ADDRriS11_2:$addr, (TFRI 1))>;
+ (S2_storerb_io AddrFI:$addr, 0, (A2_tfrsi 1))>;
// Map from i1 = constant<-1>; store i1 -> r0 = 1; store r0.
def : Pat<(store (i1 -1), ADDRriS11_2:$addr),
- (STrib ADDRriS11_2:$addr, (TFRI 1))>;
+ (S2_storerb_io AddrFI:$addr, 0, (A2_tfrsi 1))>;
// Map from memb(Rs) = Pd -> Rt = mux(Pd, #0, #1); store Rt.
def : Pat<(store (i1 PredRegs:$src1), ADDRriS11_2:$addr),
- (STrib ADDRriS11_2:$addr, (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0)) )>;
-
-// Map Rdd = anyext(Rs) -> Rdd = sxtw(Rs).
-// Hexagon_TODO: We can probably use combine but that will cost 2 instructions.
-// Better way to do this?
-def : Pat<(i64 (anyext (i32 IntRegs:$src1))),
- (i64 (SXTW (i32 IntRegs:$src1)))>;
+ (S2_storerb_io AddrFI:$addr, 0, (i32 (C2_muxii (i1 PredRegs:$src1), 1, 0)) )>;
-// Map cmple -> cmpgt.
// rs <= rt -> !(rs > rt).
-def : Pat<(i1 (setle (i32 IntRegs:$src1), s10ExtPred:$src2)),
- (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), s10ExtPred:$src2)))>;
+let AddedComplexity = 30 in
+def: Pat<(i1 (setle (i32 IntRegs:$src1), s10ExtPred:$src2)),
+ (C2_not (C2_cmpgti IntRegs:$src1, s10ExtPred:$src2))>;
// rs <= rt -> !(rs > rt).
def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (NOT_p (CMPGTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
+ (i1 (C2_not (C2_cmpgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
// Rss <= Rtt -> !(Rss > Rtt).
-def : Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (NOT_p (CMPGT64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
+def: Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (C2_not (C2_cmpgtp DoubleRegs:$src1, DoubleRegs:$src2))>;
// Map cmpne -> cmpeq.
// Hexagon_TODO: We should improve on this.
// rs != rt -> !(rs == rt).
-def : Pat <(i1 (setne (i32 IntRegs:$src1), s10ExtPred:$src2)),
- (i1 (NOT_p(i1 (CMPEQri (i32 IntRegs:$src1), s10ExtPred:$src2))))>;
+let AddedComplexity = 30 in
+def: Pat<(i1 (setne (i32 IntRegs:$src1), s10ExtPred:$src2)),
+ (C2_not (C2_cmpeqi IntRegs:$src1, s10ExtPred:$src2))>;
// Map cmpne(Rs) -> !cmpeqe(Rs).
// rs != rt -> !(rs == rt).
def : Pat <(i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (NOT_p (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>;
+ (i1 (C2_not (i1 (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>;
// Convert setne back to xor for hexagon since we compute w/ pred registers.
-def : Pat <(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))),
- (i1 (XOR_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
+def: Pat<(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))),
+ (C2_xor PredRegs:$src1, PredRegs:$src2)>;
// Map cmpne(Rss) -> !cmpew(Rss).
// rs != rt -> !(rs == rt).
-def : Pat <(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (NOT_p (i1 (CMPEHexagon4rr (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2)))))>;
+def: Pat<(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (C2_not (C2_cmpeqp DoubleRegs:$src1, DoubleRegs:$src2))>;
// Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt).
// rs >= rt -> !(rt > rs).
def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (NOT_p (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>;
+ (i1 (C2_not (i1 (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>;
// cmpge(Rs, Imm) -> cmpgt(Rs, Imm-1)
-def : Pat <(i1 (setge (i32 IntRegs:$src1), s8ExtPred:$src2)),
- (i1 (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2)))>;
+let AddedComplexity = 30 in
+def: Pat<(i1 (setge (i32 IntRegs:$src1), s8ExtPred:$src2)),
+ (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s8ExtPred:$src2))>;
// Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss).
// rss >= rtt -> !(rtt > rss).
-def : Pat <(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (NOT_p (i1 (CMPGT64rr (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src1)))))>;
+def: Pat<(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (C2_not (C2_cmpgtp DoubleRegs:$src2, DoubleRegs:$src1))>;
// Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm).
// !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1).
// rs < rt -> !(rs >= rt).
-def : Pat <(i1 (setlt (i32 IntRegs:$src1), s8ExtPred:$src2)),
- (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2))))>;
-
-// Map cmplt(Rs, Rt) -> cmpgt(Rt, Rs).
-// rs < rt -> rt > rs.
-// We can let assembler map it, or we can do in the compiler itself.
-def : Pat <(i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
-
-// Map cmplt(Rss, Rtt) -> cmpgt(Rtt, Rss).
-// rss < rtt -> (rtt > rss).
-def : Pat <(i1 (setlt (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
-
-// Map from cmpltu(Rs, Rd) -> cmpgtu(Rd, Rs)
-// rs < rt -> rt > rs.
-// We can let assembler map it, or we can do in the compiler itself.
-def : Pat <(i1 (setult (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
-
-// Map from cmpltu(Rss, Rdd) -> cmpgtu(Rdd, Rss).
-// rs < rt -> rt > rs.
-def : Pat <(i1 (setult (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
+let AddedComplexity = 30 in
+def: Pat<(i1 (setlt (i32 IntRegs:$src1), s8ExtPred:$src2)),
+ (C2_not (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s8ExtPred:$src2)))>;
// Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs)
-def : Pat <(i1 (setuge (i32 IntRegs:$src1), 0)),
- (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src1)))>;
+def: Pat<(i1 (setuge (i32 IntRegs:$src1), 0)),
+ (C2_cmpeq IntRegs:$src1, IntRegs:$src1)>;
// Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1)
-def : Pat <(i1 (setuge (i32 IntRegs:$src1), u8ExtPred:$src2)),
- (i1 (CMPGTUri (i32 IntRegs:$src1), (DEC_CONST_UNSIGNED u8ExtPred:$src2)))>;
+def: Pat<(i1 (setuge (i32 IntRegs:$src1), u8ExtPred:$src2)),
+ (C2_cmpgtui IntRegs:$src1, (DEC_CONST_UNSIGNED u8ExtPred:$src2))>;
// Generate cmpgtu(Rs, #u9)
-def : Pat <(i1 (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)),
- (i1 (CMPGTUri (i32 IntRegs:$src1), u9ExtPred:$src2))>;
-
-// Map from Rs >= Rt -> !(Rt > Rs).
-// rs >= rt -> !(rt > rs).
-def : Pat <(i1 (setuge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>;
+def: Pat<(i1 (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)),
+ (C2_cmpgtui IntRegs:$src1, u9ExtPred:$src2)>;
// Map from Rs >= Rt -> !(Rt > Rs).
// rs >= rt -> !(rt > rs).
-def : Pat <(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>;
-
-// Map from cmpleu(Rs, Rt) -> !cmpgtu(Rs, Rt).
-// Map from (Rs <= Rt) -> !(Rs > Rt).
-def : Pat <(i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
+def: Pat<(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (C2_not (C2_cmpgtup DoubleRegs:$src2, DoubleRegs:$src1))>;
// Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1).
// Map from (Rs <= Rt) -> !(Rs > Rt).
-def : Pat <(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
+def: Pat<(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (C2_not (C2_cmpgtup DoubleRegs:$src1, DoubleRegs:$src2))>;
// Sign extends.
// i1 -> i32
-def : Pat <(i32 (sext (i1 PredRegs:$src1))),
- (i32 (MUX_ii (i1 PredRegs:$src1), -1, 0))>;
+def: Pat<(i32 (sext (i1 PredRegs:$src1))),
+ (C2_muxii PredRegs:$src1, -1, 0)>;
// i1 -> i64
-def : Pat <(i64 (sext (i1 PredRegs:$src1))),
- (i64 (COMBINE_rr (TFRI -1), (MUX_ii (i1 PredRegs:$src1), -1, 0)))>;
-
-// Convert sign-extended load back to load and sign extend.
-// i8 -> i64
-def: Pat <(i64 (sextloadi8 ADDRriS11_0:$src1)),
- (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>;
-
-// Convert any-extended load back to load and sign extend.
-// i8 -> i64
-def: Pat <(i64 (extloadi8 ADDRriS11_0:$src1)),
- (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>;
-
-// Convert sign-extended load back to load and sign extend.
-// i16 -> i64
-def: Pat <(i64 (sextloadi16 ADDRriS11_1:$src1)),
- (i64 (SXTW (LDrih ADDRriS11_1:$src1)))>;
+def: Pat<(i64 (sext (i1 PredRegs:$src1))),
+ (A2_combinew (A2_tfrsi -1), (C2_muxii PredRegs:$src1, -1, 0))>;
// Convert sign-extended load back to load and sign extend.
// i32 -> i64
def: Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)),
- (i64 (SXTW (LDriw ADDRriS11_2:$src1)))>;
-
+ (i64 (A2_sxtw (L2_loadri_io AddrFI:$src1, 0)))>;
// Zero extends.
// i1 -> i32
-def : Pat <(i32 (zext (i1 PredRegs:$src1))),
- (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
+def: Pat<(i32 (zext (i1 PredRegs:$src1))),
+ (C2_muxii PredRegs:$src1, 1, 0)>;
-// i1 -> i64
-def : Pat <(i64 (zext (i1 PredRegs:$src1))),
- (i64 (COMBINE_rr (TFRI 0), (MUX_ii (i1 PredRegs:$src1), 1, 0)))>,
- Requires<[NoV4T]>;
+// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
+def: Pat<(i32 (anyext (i1 PredRegs:$src1))),
+ (C2_muxii PredRegs:$src1, 1, 0)>;
-// i32 -> i64
-def : Pat <(i64 (zext (i32 IntRegs:$src1))),
- (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>,
- Requires<[NoV4T]>;
+// Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0))
+def: Pat<(i64 (anyext (i1 PredRegs:$src1))),
+ (A2_sxtw (C2_muxii PredRegs:$src1, 1, 0))>;
-// i8 -> i64
-def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)),
- (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>,
- Requires<[NoV4T]>;
+def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
+ (i32 32))),
+ (i64 (zextloadi32 ADDRriS11_2:$srcLow)))),
+ (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ (L2_loadri_io AddrFI:$srcLow, 0)))>;
-let AddedComplexity = 20 in
-def: Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1),
- s11_0ExtPred:$offset))),
- (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1,
- s11_0ExtPred:$offset)))>,
- Requires<[NoV4T]>;
+// Multiply 64-bit unsigned and use upper result.
+def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
+ (A2_addp
+ (M2_dpmpyuu_acc_s0
+ (S2_lsr_i_p
+ (A2_addp
+ (M2_dpmpyuu_acc_s0
+ (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $src1), (LoReg $src2)), 32),
+ (HiReg $src1),
+ (LoReg $src2)),
+ (A2_combinew (A2_tfrsi 0),
+ (LoReg (M2_dpmpyuu_s0 (LoReg $src1), (HiReg $src2))))),
+ 32),
+ (HiReg $src1),
+ (HiReg $src2)),
+ (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $src1), (HiReg $src2)), 32)
+)>;
-// i1 -> i64
-def: Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)),
- (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>,
- Requires<[NoV4T]>;
+// Hexagon specific ISD nodes.
+def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
+ SDTCisVT<1, i32>]>;
+def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>;
-let AddedComplexity = 20 in
-def: Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1),
- s11_0ExtPred:$offset))),
- (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1,
- s11_0ExtPred:$offset)))>,
- Requires<[NoV4T]>;
+def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC",
+ SDTHexagonADJDYNALLOC>;
+def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>;
-// i16 -> i64
-def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)),
- (i64 (COMBINE_rr (TFRI 0), (LDriuh ADDRriS11_1:$src1)))>,
- Requires<[NoV4T]>;
+// Needed to tag these instructions for stack layout.
+let isCodeGenOnly = 1, usesCustomInserter = 1 in
+def ADJDYNALLOC : T_Addri<s6Imm>;
-let AddedComplexity = 20 in
-def: Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1),
- s11_1ExtPred:$offset))),
- (i64 (COMBINE_rr (TFRI 0), (LDriuh_indexed IntRegs:$src1,
- s11_1ExtPred:$offset)))>,
- Requires<[NoV4T]>;
+def: Pat<(Hexagon_ADJDYNALLOC I32:$Rs, s16ImmPred:$s16),
+ (ADJDYNALLOC I32:$Rs, imm:$s16)>;
-// i32 -> i64
-def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)),
- (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>,
- Requires<[NoV4T]>;
+let isCodeGenOnly = 1 in
+def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = $src1",
+ [(set (i32 IntRegs:$dst),
+ (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>;
let AddedComplexity = 100 in
-def: Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
- (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1,
- s11_2ExtPred:$offset)))>,
- Requires<[NoV4T]>;
+def: Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)),
+ (i32 IntRegs:$src1)>;
-let AddedComplexity = 10 in
-def: Pat <(i32 (zextloadi1 ADDRriS11_0:$src1)),
- (i32 (LDriw ADDRriS11_0:$src1))>;
+def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>;
-// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
-def : Pat <(i32 (zext (i1 PredRegs:$src1))),
- (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
+def : Pat<(HexagonWrapperJT tjumptable:$dst),
+ (i32 (CONST32_set_jt tjumptable:$dst))>;
-// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
-def : Pat <(i32 (anyext (i1 PredRegs:$src1))),
- (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
+// XTYPE/SHIFT
+//
+//===----------------------------------------------------------------------===//
+// Template Class
+// Shift by immediate/register and accumulate/logical
+//===----------------------------------------------------------------------===//
-// Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0))
-def : Pat <(i64 (anyext (i1 PredRegs:$src1))),
- (i64 (SXTW (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))))>;
+// Rx[+-&|]=asr(Rs,#u5)
+// Rx[+-&|^]=lsr(Rs,#u5)
+// Rx[+-&|^]=asl(Rs,#u5)
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_shift_imm_acc_r <string opc1, string opc2, SDNode OpNode1,
+ SDNode OpNode2, bits<3> majOp, bits<2> minOp>
+ : SInst_acc<(outs IntRegs:$Rx),
+ (ins IntRegs:$src1, IntRegs:$Rs, u5Imm:$u5),
+ "$Rx "#opc2#opc1#"($Rs, #$u5)",
+ [(set (i32 IntRegs:$Rx),
+ (OpNode2 (i32 IntRegs:$src1),
+ (OpNode1 (i32 IntRegs:$Rs), u5ImmPred:$u5)))],
+ "$src1 = $Rx", S_2op_tc_2_SLOT23> {
+ bits<5> Rx;
+ bits<5> Rs;
+ bits<5> u5;
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = 0b1110;
+ let Inst{23-22} = majOp{2-1};
+ let Inst{13} = 0b0;
+ let Inst{7} = majOp{0};
+ let Inst{6-5} = minOp;
+ let Inst{4-0} = Rx;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = u5;
+ }
+// Rx[+-&|]=asr(Rs,Rt)
+// Rx[+-&|^]=lsr(Rs,Rt)
+// Rx[+-&|^]=asl(Rs,Rt)
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_shift_reg_acc_r <string opc1, string opc2, SDNode OpNode1,
+ SDNode OpNode2, bits<2> majOp, bits<2> minOp>
+ : SInst_acc<(outs IntRegs:$Rx),
+ (ins IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt),
+ "$Rx "#opc2#opc1#"($Rs, $Rt)",
+ [(set (i32 IntRegs:$Rx),
+ (OpNode2 (i32 IntRegs:$src1),
+ (OpNode1 (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))],
+ "$src1 = $Rx", S_3op_tc_2_SLOT23 > {
+ bits<5> Rx;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1100;
-let AddedComplexity = 100 in
-def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
- (i32 32))),
- (i64 (zextloadi32 (i32 (add IntRegs:$src2,
- s11_2ExtPred:$offset2)))))),
- (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
- (LDriw_indexed IntRegs:$src2,
- s11_2ExtPred:$offset2)))>;
+ let Inst{27-24} = 0b1100;
+ let Inst{23-22} = majOp;
+ let Inst{7-6} = minOp;
+ let Inst{4-0} = Rx;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ }
-def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
- (i32 32))),
- (i64 (zextloadi32 ADDRriS11_2:$srcLow)))),
- (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
- (LDriw ADDRriS11_2:$srcLow)))>;
+// Rxx[+-&|]=asr(Rss,#u6)
+// Rxx[+-&|^]=lsr(Rss,#u6)
+// Rxx[+-&|^]=asl(Rss,#u6)
+
+class T_shift_imm_acc_p <string opc1, string opc2, SDNode OpNode1,
+ SDNode OpNode2, bits<3> majOp, bits<2> minOp>
+ : SInst_acc<(outs DoubleRegs:$Rxx),
+ (ins DoubleRegs:$src1, DoubleRegs:$Rss, u6Imm:$u6),
+ "$Rxx "#opc2#opc1#"($Rss, #$u6)",
+ [(set (i64 DoubleRegs:$Rxx),
+ (OpNode2 (i64 DoubleRegs:$src1),
+ (OpNode1 (i64 DoubleRegs:$Rss), u6ImmPred:$u6)))],
+ "$src1 = $Rxx", S_2op_tc_2_SLOT23> {
+ bits<5> Rxx;
+ bits<5> Rss;
+ bits<6> u6;
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = 0b0010;
+ let Inst{23-22} = majOp{2-1};
+ let Inst{7} = majOp{0};
+ let Inst{6-5} = minOp;
+ let Inst{4-0} = Rxx;
+ let Inst{20-16} = Rss;
+ let Inst{13-8} = u6;
+ }
-def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
- (i32 32))),
- (i64 (zext (i32 IntRegs:$srcLow))))),
- (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
- IntRegs:$srcLow))>;
-let AddedComplexity = 100 in
-def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
- (i32 32))),
- (i64 (zextloadi32 (i32 (add IntRegs:$src2,
- s11_2ExtPred:$offset2)))))),
- (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
- (LDriw_indexed IntRegs:$src2,
- s11_2ExtPred:$offset2)))>;
+// Rxx[+-&|]=asr(Rss,Rt)
+// Rxx[+-&|^]=lsr(Rss,Rt)
+// Rxx[+-&|^]=asl(Rss,Rt)
+// Rxx[+-&|^]=lsl(Rss,Rt)
+
+class T_shift_reg_acc_p <string opc1, string opc2, SDNode OpNode1,
+ SDNode OpNode2, bits<3> majOp, bits<2> minOp>
+ : SInst_acc<(outs DoubleRegs:$Rxx),
+ (ins DoubleRegs:$src1, DoubleRegs:$Rss, IntRegs:$Rt),
+ "$Rxx "#opc2#opc1#"($Rss, $Rt)",
+ [(set (i64 DoubleRegs:$Rxx),
+ (OpNode2 (i64 DoubleRegs:$src1),
+ (OpNode1 (i64 DoubleRegs:$Rss), (i32 IntRegs:$Rt))))],
+ "$src1 = $Rxx", S_3op_tc_2_SLOT23> {
+ bits<5> Rxx;
+ bits<5> Rss;
+ bits<5> Rt;
+
+ let IClass = 0b1100;
+
+ let Inst{27-24} = 0b1011;
+ let Inst{23-21} = majOp;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rt;
+ let Inst{7-6} = minOp;
+ let Inst{4-0} = Rxx;
+ }
-def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
- (i32 32))),
- (i64 (zextloadi32 ADDRriS11_2:$srcLow)))),
- (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
- (LDriw ADDRriS11_2:$srcLow)))>;
+//===----------------------------------------------------------------------===//
+// Multi-class for the shift instructions with logical/arithmetic operators.
+//===----------------------------------------------------------------------===//
-def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
- (i32 32))),
- (i64 (zext (i32 IntRegs:$srcLow))))),
- (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
- IntRegs:$srcLow))>;
-
-// Any extended 64-bit load.
-// anyext i32 -> i64
-def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
- (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>,
- Requires<[NoV4T]>;
-
-// When there is an offset we should prefer the pattern below over the pattern above.
-// The complexity of the above is 13 (gleaned from HexagonGenDAGIsel.inc)
-// So this complexity below is comfortably higher to allow for choosing the below.
-// If this is not done then we generate addresses such as
-// ********************************************
-// r1 = add (r0, #4)
-// r1 = memw(r1 + #0)
-// instead of
-// r1 = memw(r0 + #4)
-// ********************************************
+multiclass xtype_imm_base<string OpcStr1, string OpcStr2, SDNode OpNode1,
+ SDNode OpNode2, bits<3> majOp, bits<2> minOp > {
+ def _i_r#NAME : T_shift_imm_acc_r< OpcStr1, OpcStr2, OpNode1,
+ OpNode2, majOp, minOp >;
+ def _i_p#NAME : T_shift_imm_acc_p< OpcStr1, OpcStr2, OpNode1,
+ OpNode2, majOp, minOp >;
+}
+
+multiclass xtype_imm_acc<string opc1, SDNode OpNode, bits<2>minOp> {
+ let AddedComplexity = 100 in
+ defm _acc : xtype_imm_base< opc1, "+= ", OpNode, add, 0b001, minOp>;
+
+ defm _nac : xtype_imm_base< opc1, "-= ", OpNode, sub, 0b000, minOp>;
+ defm _and : xtype_imm_base< opc1, "&= ", OpNode, and, 0b010, minOp>;
+ defm _or : xtype_imm_base< opc1, "|= ", OpNode, or, 0b011, minOp>;
+}
+
+multiclass xtype_xor_imm_acc<string opc1, SDNode OpNode, bits<2>minOp> {
let AddedComplexity = 100 in
-def: Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
- (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1,
- s11_2ExtPred:$offset)))>,
- Requires<[NoV4T]>;
+ defm _xacc : xtype_imm_base< opc1, "^= ", OpNode, xor, 0b100, minOp>;
+}
-// anyext i16 -> i64.
-def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)),
- (i64 (COMBINE_rr (TFRI 0), (LDrih ADDRriS11_2:$src1)))>,
- Requires<[NoV4T]>;
+defm S2_asr : xtype_imm_acc<"asr", sra, 0b00>;
-let AddedComplexity = 20 in
-def: Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1),
- s11_1ExtPred:$offset))),
- (i64 (COMBINE_rr (TFRI 0), (LDrih_indexed IntRegs:$src1,
- s11_1ExtPred:$offset)))>,
- Requires<[NoV4T]>;
+defm S2_lsr : xtype_imm_acc<"lsr", srl, 0b01>,
+ xtype_xor_imm_acc<"lsr", srl, 0b01>;
-// Map from Rdd = zxtw(Rs) -> Rdd = combine(0, Rs).
-def : Pat<(i64 (zext (i32 IntRegs:$src1))),
- (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>,
- Requires<[NoV4T]>;
+defm S2_asl : xtype_imm_acc<"asl", shl, 0b10>,
+ xtype_xor_imm_acc<"asl", shl, 0b10>;
-// Multiply 64-bit unsigned and use upper result.
-def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
- (i64
- (MPYU64_acc
- (i64
- (COMBINE_rr
- (TFRI 0),
- (i32
- (EXTRACT_SUBREG
- (i64
- (LSRd_ri
- (i64
- (MPYU64_acc
- (i64
- (MPYU64_acc
- (i64
- (COMBINE_rr (TFRI 0),
- (i32
- (EXTRACT_SUBREG
- (i64
- (LSRd_ri
- (i64
- (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
- subreg_loreg)),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
- subreg_loreg)))), 32)),
- subreg_loreg)))),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))),
- 32)), subreg_loreg)))),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>;
-
-// Multiply 64-bit signed and use upper result.
-def : Pat <(mulhs (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
- (i64
- (MPY64_acc
- (i64
- (COMBINE_rr (TFRI 0),
- (i32
- (EXTRACT_SUBREG
- (i64
- (LSRd_ri
- (i64
- (MPY64_acc
- (i64
- (MPY64_acc
- (i64
- (COMBINE_rr (TFRI 0),
- (i32
- (EXTRACT_SUBREG
- (i64
- (LSRd_ri
- (i64
- (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
- subreg_loreg)),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
- subreg_loreg)))), 32)),
- subreg_loreg)))),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))),
- 32)), subreg_loreg)))),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
- (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>;
+multiclass xtype_reg_acc_r<string opc1, SDNode OpNode, bits<2>minOp> {
+ let AddedComplexity = 100 in
+ def _acc : T_shift_reg_acc_r <opc1, "+= ", OpNode, add, 0b11, minOp>;
-// Hexagon specific ISD nodes.
-//def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>]>;
-def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2,
- [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
-def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC",
- SDTHexagonADJDYNALLOC>;
-// Needed to tag these instructions for stack layout.
-let usesCustomInserter = 1 in
-def ADJDYNALLOC : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1,
- s16Imm:$src2),
- "$dst = add($src1, #$src2)",
- [(set (i32 IntRegs:$dst),
- (Hexagon_ADJDYNALLOC (i32 IntRegs:$src1),
- s16ImmPred:$src2))]>;
+ def _nac : T_shift_reg_acc_r <opc1, "-= ", OpNode, sub, 0b10, minOp>;
+ def _and : T_shift_reg_acc_r <opc1, "&= ", OpNode, and, 0b01, minOp>;
+ def _or : T_shift_reg_acc_r <opc1, "|= ", OpNode, or, 0b00, minOp>;
+}
-def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>;
-def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>;
-def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1),
- "$dst = $src1",
- [(set (i32 IntRegs:$dst),
- (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>;
+multiclass xtype_reg_acc_p<string opc1, SDNode OpNode, bits<2>minOp> {
+ let AddedComplexity = 100 in
+ def _acc : T_shift_reg_acc_p <opc1, "+= ", OpNode, add, 0b110, minOp>;
-let AddedComplexity = 100 in
-def : Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)),
- (COPY (i32 IntRegs:$src1))>;
+ def _nac : T_shift_reg_acc_p <opc1, "-= ", OpNode, sub, 0b100, minOp>;
+ def _and : T_shift_reg_acc_p <opc1, "&= ", OpNode, and, 0b010, minOp>;
+ def _or : T_shift_reg_acc_p <opc1, "|= ", OpNode, or, 0b000, minOp>;
+ def _xor : T_shift_reg_acc_p <opc1, "^= ", OpNode, xor, 0b011, minOp>;
+}
-def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>;
+multiclass xtype_reg_acc<string OpcStr, SDNode OpNode, bits<2> minOp > {
+ defm _r_r : xtype_reg_acc_r <OpcStr, OpNode, minOp>;
+ defm _r_p : xtype_reg_acc_p <OpcStr, OpNode, minOp>;
+}
-def : Pat<(HexagonWrapperJT tjumptable:$dst),
- (i32 (CONST32_set_jt tjumptable:$dst))>;
+defm S2_asl : xtype_reg_acc<"asl", shl, 0b10>;
+defm S2_asr : xtype_reg_acc<"asr", sra, 0b00>;
+defm S2_lsr : xtype_reg_acc<"lsr", srl, 0b01>;
+defm S2_lsl : xtype_reg_acc<"lsl", shl, 0b11>;
-// XTYPE/SHIFT
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_S3op_1 <string mnemonic, RegisterClass RC, bits<2> MajOp, bits<3> MinOp,
+ bit SwapOps, bit isSat = 0, bit isRnd = 0, bit hasShift = 0>
+ : SInst <(outs RC:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ "$dst = "#mnemonic#"($src1, $src2)"#!if(isRnd, ":rnd", "")
+ #!if(hasShift,":>>1","")
+ #!if(isSat, ":sat", ""),
+ [], "", S_3op_tc_2_SLOT23 > {
+ bits<5> dst;
+ bits<5> src1;
+ bits<5> src2;
-// Multi-class for logical operators :
-// Shift by immediate/register and accumulate/logical
-multiclass xtype_imm<string OpcStr, SDNode OpNode1, SDNode OpNode2> {
- def _ri : SInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2, u5Imm:$src3),
- !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")),
- [(set (i32 IntRegs:$dst),
- (OpNode2 (i32 IntRegs:$src1),
- (OpNode1 (i32 IntRegs:$src2),
- u5ImmPred:$src3)))],
- "$src1 = $dst">;
-
- def d_ri : SInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2, u6Imm:$src3),
- !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")),
- [(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1),
- (OpNode1 (i64 DoubleRegs:$src2), u6ImmPred:$src3)))],
- "$src1 = $dst">;
-}
-
-// Multi-class for logical operators :
-// Shift by register and accumulate/logical (32/64 bits)
-multiclass xtype_reg<string OpcStr, SDNode OpNode1, SDNode OpNode2> {
- def _rr : SInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
- !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")),
- [(set (i32 IntRegs:$dst),
- (OpNode2 (i32 IntRegs:$src1),
- (OpNode1 (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">;
+ let IClass = 0b1100;
- def d_rr : SInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
- !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")),
- [(set (i64 DoubleRegs:$dst),
- (OpNode2 (i64 DoubleRegs:$src1),
- (OpNode1 (i64 DoubleRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">;
+ let Inst{27-24} = 0b0001;
+ let Inst{23-22} = MajOp;
+ let Inst{20-16} = !if (SwapOps, src2, src1);
+ let Inst{12-8} = !if (SwapOps, src1, src2);
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = dst;
+ }
-}
+class T_S3op_64 <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit SwapOps,
+ bit isSat = 0, bit isRnd = 0, bit hasShift = 0 >
+ : T_S3op_1 <mnemonic, DoubleRegs, MajOp, MinOp, SwapOps,
+ isSat, isRnd, hasShift>;
-multiclass basic_xtype_imm<string OpcStr, SDNode OpNode> {
-let AddedComplexity = 100 in
- defm _ADD : xtype_imm< !strconcat("+= ", OpcStr), OpNode, add>;
- defm _SUB : xtype_imm< !strconcat("-= ", OpcStr), OpNode, sub>;
- defm _AND : xtype_imm< !strconcat("&= ", OpcStr), OpNode, and>;
- defm _OR : xtype_imm< !strconcat("|= ", OpcStr), OpNode, or>;
+let Itinerary = S_3op_tc_1_SLOT23 in {
+ def S2_shuffeb : T_S3op_64 < "shuffeb", 0b00, 0b010, 0>;
+ def S2_shuffeh : T_S3op_64 < "shuffeh", 0b00, 0b110, 0>;
+ def S2_shuffob : T_S3op_64 < "shuffob", 0b00, 0b100, 1>;
+ def S2_shuffoh : T_S3op_64 < "shuffoh", 0b10, 0b000, 1>;
+
+ def S2_vtrunewh : T_S3op_64 < "vtrunewh", 0b10, 0b010, 0>;
+ def S2_vtrunowh : T_S3op_64 < "vtrunowh", 0b10, 0b100, 0>;
}
-multiclass basic_xtype_reg<string OpcStr, SDNode OpNode> {
-let AddedComplexity = 100 in
- defm _ADD : xtype_reg< !strconcat("+= ", OpcStr), OpNode, add>;
- defm _SUB : xtype_reg< !strconcat("-= ", OpcStr), OpNode, sub>;
- defm _AND : xtype_reg< !strconcat("&= ", OpcStr), OpNode, and>;
- defm _OR : xtype_reg< !strconcat("|= ", OpcStr), OpNode, or>;
+def S2_lfsp : T_S3op_64 < "lfs", 0b10, 0b110, 0>;
+
+let hasSideEffects = 0 in
+class T_S3op_2 <string mnemonic, bits<3> MajOp, bit SwapOps>
+ : SInst < (outs DoubleRegs:$Rdd),
+ (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, PredRegs:$Pu),
+ "$Rdd = "#mnemonic#"($Rss, $Rtt, $Pu)",
+ [], "", S_3op_tc_1_SLOT23 > {
+ bits<5> Rdd;
+ bits<5> Rss;
+ bits<5> Rtt;
+ bits<2> Pu;
+
+ let IClass = 0b1100;
+
+ let Inst{27-24} = 0b0010;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = !if (SwapOps, Rtt, Rss);
+ let Inst{12-8} = !if (SwapOps, Rss, Rtt);
+ let Inst{6-5} = Pu;
+ let Inst{4-0} = Rdd;
+ }
+
+def S2_valignrb : T_S3op_2 < "valignb", 0b000, 1>;
+def S2_vsplicerb : T_S3op_2 < "vspliceb", 0b100, 0>;
+
+//===----------------------------------------------------------------------===//
+// Template class used by vector shift, vector rotate, vector neg,
+// 32-bit shift, 64-bit shifts, etc.
+//===----------------------------------------------------------------------===//
+
+let hasSideEffects = 0 in
+class T_S3op_3 <string mnemonic, RegisterClass RC, bits<2> MajOp,
+ bits<2> MinOp, bit isSat = 0, list<dag> pattern = [] >
+ : SInst <(outs RC:$dst),
+ (ins RC:$src1, IntRegs:$src2),
+ "$dst = "#mnemonic#"($src1, $src2)"#!if(isSat, ":sat", ""),
+ pattern, "", S_3op_tc_1_SLOT23> {
+ bits<5> dst;
+ bits<5> src1;
+ bits<5> src2;
+
+ let IClass = 0b1100;
+
+ let Inst{27-24} = !if(!eq(!cast<string>(RC), "IntRegs"), 0b0110, 0b0011);
+ let Inst{23-22} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{12-8} = src2;
+ let Inst{7-6} = MinOp;
+ let Inst{4-0} = dst;
+ }
+
+let hasNewValue = 1 in
+class T_S3op_shift32 <string mnemonic, SDNode OpNode, bits<2> MinOp>
+ : T_S3op_3 <mnemonic, IntRegs, 0b01, MinOp, 0,
+ [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23 in
+class T_S3op_shift32_Sat <string mnemonic, bits<2> MinOp>
+ : T_S3op_3 <mnemonic, IntRegs, 0b00, MinOp, 1, []>;
+
+
+class T_S3op_shift64 <string mnemonic, SDNode OpNode, bits<2> MinOp>
+ : T_S3op_3 <mnemonic, DoubleRegs, 0b10, MinOp, 0,
+ [(set (i64 DoubleRegs:$dst), (OpNode (i64 DoubleRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+
+class T_S3op_shiftVect <string mnemonic, bits<2> MajOp, bits<2> MinOp>
+ : T_S3op_3 <mnemonic, DoubleRegs, MajOp, MinOp, 0, []>;
+
+
+// Shift by register
+// Rdd=[asr|lsr|asl|lsl](Rss,Rt)
+
+def S2_asr_r_p : T_S3op_shift64 < "asr", sra, 0b00>;
+def S2_lsr_r_p : T_S3op_shift64 < "lsr", srl, 0b01>;
+def S2_asl_r_p : T_S3op_shift64 < "asl", shl, 0b10>;
+def S2_lsl_r_p : T_S3op_shift64 < "lsl", shl, 0b11>;
+
+// Rd=[asr|lsr|asl|lsl](Rs,Rt)
+
+def S2_asr_r_r : T_S3op_shift32<"asr", sra, 0b00>;
+def S2_lsr_r_r : T_S3op_shift32<"lsr", srl, 0b01>;
+def S2_asl_r_r : T_S3op_shift32<"asl", shl, 0b10>;
+def S2_lsl_r_r : T_S3op_shift32<"lsl", shl, 0b11>;
+
+// Shift by register with saturation
+// Rd=asr(Rs,Rt):sat
+// Rd=asl(Rs,Rt):sat
+
+let Defs = [USR_OVF] in {
+ def S2_asr_r_r_sat : T_S3op_shift32_Sat<"asr", 0b00>;
+ def S2_asl_r_r_sat : T_S3op_shift32_Sat<"asl", 0b10>;
}
-multiclass xtype_xor_imm<string OpcStr, SDNode OpNode> {
-let AddedComplexity = 100 in
- defm _XOR : xtype_imm< !strconcat("^= ", OpcStr), OpNode, xor>;
+let hasNewValue = 1, hasSideEffects = 0 in
+class T_S3op_8 <string opc, bits<3> MinOp, bit isSat, bit isRnd, bit hasShift, bit hasSplat = 0>
+ : SInst < (outs IntRegs:$Rd),
+ (ins DoubleRegs:$Rss, IntRegs:$Rt),
+ "$Rd = "#opc#"($Rss, $Rt"#!if(hasSplat, "*", "")#")"
+ #!if(hasShift, ":<<1", "")
+ #!if(isRnd, ":rnd", "")
+ #!if(isSat, ":sat", ""),
+ [], "", S_3op_tc_1_SLOT23 > {
+ bits<5> Rd;
+ bits<5> Rss;
+ bits<5> Rt;
+
+ let IClass = 0b1100;
+
+ let Inst{27-24} = 0b0101;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rd;
+ }
+
+def S2_asr_r_svw_trun : T_S3op_8<"vasrw", 0b010, 0, 0, 0>;
+
+let Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23 in
+def S2_vcrotate : T_S3op_shiftVect < "vcrotate", 0b11, 0b00>;
+
+let hasSideEffects = 0 in
+class T_S3op_7 <string mnemonic, bit MajOp >
+ : SInst <(outs DoubleRegs:$Rdd),
+ (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, u3Imm:$u3),
+ "$Rdd = "#mnemonic#"($Rss, $Rtt, #$u3)" ,
+ [], "", S_3op_tc_1_SLOT23 > {
+ bits<5> Rdd;
+ bits<5> Rss;
+ bits<5> Rtt;
+ bits<3> u3;
+
+ let IClass = 0b1100;
+
+ let Inst{27-24} = 0b0000;
+ let Inst{23} = MajOp;
+ let Inst{20-16} = !if(MajOp, Rss, Rtt);
+ let Inst{12-8} = !if(MajOp, Rtt, Rss);
+ let Inst{7-5} = u3;
+ let Inst{4-0} = Rdd;
+ }
+
+def S2_valignib : T_S3op_7 < "valignb", 0>;
+def S2_vspliceib : T_S3op_7 < "vspliceb", 1>;
+
+//===----------------------------------------------------------------------===//
+// Template class for 'insert bitfield' instructions
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_S3op_insert <string mnemonic, RegisterClass RC>
+ : SInst <(outs RC:$dst),
+ (ins RC:$src1, RC:$src2, DoubleRegs:$src3),
+ "$dst = "#mnemonic#"($src2, $src3)" ,
+ [], "$src1 = $dst", S_3op_tc_1_SLOT23 > {
+ bits<5> dst;
+ bits<5> src2;
+ bits<5> src3;
+
+ let IClass = 0b1100;
+
+ let Inst{27-26} = 0b10;
+ let Inst{25-24} = !if(!eq(!cast<string>(RC), "IntRegs"), 0b00, 0b10);
+ let Inst{23} = 0b0;
+ let Inst{20-16} = src2;
+ let Inst{12-8} = src3;
+ let Inst{4-0} = dst;
+ }
+
+let hasSideEffects = 0 in
+class T_S2op_insert <bits<4> RegTyBits, RegisterClass RC, Operand ImmOp>
+ : SInst <(outs RC:$dst), (ins RC:$dst2, RC:$src1, ImmOp:$src2, ImmOp:$src3),
+ "$dst = insert($src1, #$src2, #$src3)",
+ [], "$dst2 = $dst", S_2op_tc_2_SLOT23> {
+ bits<5> dst;
+ bits<5> src1;
+ bits<6> src2;
+ bits<6> src3;
+ bit bit23;
+ bit bit13;
+ string ImmOpStr = !cast<string>(ImmOp);
+
+ let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5}, 0);
+ let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0);
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = RegTyBits;
+ let Inst{23} = bit23;
+ let Inst{22-21} = src3{4-3};
+ let Inst{20-16} = src1;
+ let Inst{13} = bit13;
+ let Inst{12-8} = src2{4-0};
+ let Inst{7-5} = src3{2-0};
+ let Inst{4-0} = dst;
+ }
+
+// Rx=insert(Rs,Rtt)
+// Rx=insert(Rs,#u5,#U5)
+let hasNewValue = 1 in {
+ def S2_insert_rp : T_S3op_insert <"insert", IntRegs>;
+ def S2_insert : T_S2op_insert <0b1111, IntRegs, u5Imm>;
}
-defm ASL : basic_xtype_imm<"asl", shl>, basic_xtype_reg<"asl", shl>,
- xtype_xor_imm<"asl", shl>;
+// Rxx=insert(Rss,Rtt)
+// Rxx=insert(Rss,#u6,#U6)
+def S2_insertp_rp : T_S3op_insert<"insert", DoubleRegs>;
+def S2_insertp : T_S2op_insert <0b0011, DoubleRegs, u6Imm>;
-defm LSR : basic_xtype_imm<"lsr", srl>, basic_xtype_reg<"lsr", srl>,
- xtype_xor_imm<"lsr", srl>;
+//===----------------------------------------------------------------------===//
+// Template class for 'extract bitfield' instructions
+//===----------------------------------------------------------------------===//
+let hasNewValue = 1, hasSideEffects = 0 in
+class T_S3op_extract <string mnemonic, bits<2> MinOp>
+ : SInst <(outs IntRegs:$Rd), (ins IntRegs:$Rs, DoubleRegs:$Rtt),
+ "$Rd = "#mnemonic#"($Rs, $Rtt)",
+ [], "", S_3op_tc_2_SLOT23 > {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rtt;
+
+ let IClass = 0b1100;
+
+ let Inst{27-22} = 0b100100;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rtt;
+ let Inst{7-6} = MinOp;
+ let Inst{4-0} = Rd;
+ }
+
+let hasSideEffects = 0 in
+class T_S2op_extract <string mnemonic, bits<4> RegTyBits,
+ RegisterClass RC, Operand ImmOp>
+ : SInst <(outs RC:$dst), (ins RC:$src1, ImmOp:$src2, ImmOp:$src3),
+ "$dst = "#mnemonic#"($src1, #$src2, #$src3)",
+ [], "", S_2op_tc_2_SLOT23> {
+ bits<5> dst;
+ bits<5> src1;
+ bits<6> src2;
+ bits<6> src3;
+ bit bit23;
+ bit bit13;
+ string ImmOpStr = !cast<string>(ImmOp);
+
+ let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5},
+ !if (!eq(mnemonic, "extractu"), 0, 1));
+
+ let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0);
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = RegTyBits;
+ let Inst{23} = bit23;
+ let Inst{22-21} = src3{4-3};
+ let Inst{20-16} = src1;
+ let Inst{13} = bit13;
+ let Inst{12-8} = src2{4-0};
+ let Inst{7-5} = src3{2-0};
+ let Inst{4-0} = dst;
+ }
-defm ASR : basic_xtype_imm<"asr", sra>, basic_xtype_reg<"asr", sra>;
-defm LSL : basic_xtype_reg<"lsl", shl>;
+// Extract bitfield
+
+// Rdd=extractu(Rss,Rtt)
+// Rdd=extractu(Rss,#u6,#U6)
+def S2_extractup_rp : T_S3op_64 < "extractu", 0b00, 0b000, 0>;
+def S2_extractup : T_S2op_extract <"extractu", 0b0001, DoubleRegs, u6Imm>;
+
+// Rd=extractu(Rs,Rtt)
+// Rd=extractu(Rs,#u5,#U5)
+let hasNewValue = 1 in {
+ def S2_extractu_rp : T_S3op_extract<"extractu", 0b00>;
+ def S2_extractu : T_S2op_extract <"extractu", 0b1101, IntRegs, u5Imm>;
+}
// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
-def : Pat <(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)),
- (i32 (MPYI_rin (i32 IntRegs:$src1), u8ImmPred:$src2))>;
+def: Pat<(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)),
+ (M2_mpysin IntRegs:$src1, u8ImmPred:$src2)>;
+
+//===----------------------------------------------------------------------===//
+// :raw for of tableindx[bdhw] insns
+//===----------------------------------------------------------------------===//
+
+let hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
+class tableidxRaw<string OpStr, bits<2>MinOp>
+ : SInst <(outs IntRegs:$Rx),
+ (ins IntRegs:$_dst_, IntRegs:$Rs, u4Imm:$u4, s6Imm:$S6),
+ "$Rx = "#OpStr#"($Rs, #$u4, #$S6):raw",
+ [], "$Rx = $_dst_" > {
+ bits<5> Rx;
+ bits<5> Rs;
+ bits<4> u4;
+ bits<6> S6;
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = 0b0111;
+ let Inst{23-22} = MinOp;
+ let Inst{21} = u4{3};
+ let Inst{20-16} = Rs;
+ let Inst{13-8} = S6;
+ let Inst{7-5} = u4{2-0};
+ let Inst{4-0} = Rx;
+ }
+
+def S2_tableidxb : tableidxRaw<"tableidxb", 0b00>;
+def S2_tableidxh : tableidxRaw<"tableidxh", 0b01>;
+def S2_tableidxw : tableidxRaw<"tableidxw", 0b10>;
+def S2_tableidxd : tableidxRaw<"tableidxd", 0b11>;
//===----------------------------------------------------------------------===//
// V3 Instructions +
@@ -2930,3 +5756,9 @@ include "HexagonInstrInfoV5.td"
//===----------------------------------------------------------------------===//
// V5 Instructions -
//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ALU32/64/Vector +
+//===----------------------------------------------------------------------===///
+
+include "HexagonInstrInfoVector.td" \ No newline at end of file