aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/StraightLineStrengthReduce.cpp')
-rw-r--r--lib/Transforms/Scalar/StraightLineStrengthReduce.cpp395
1 files changed, 328 insertions, 67 deletions
diff --git a/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp b/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
index 4edc86c..e71031c 100644
--- a/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
+++ b/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
@@ -15,19 +15,30 @@
//
// There are many optimizations we can perform in the domain of SLSR. This file
// for now contains only an initial step. Specifically, we look for strength
-// reduction candidate in the form of
+// reduction candidates in two forms:
//
-// (B + i) * S
+// Form 1: (B + i) * S
+// Form 2: &B[i * S]
//
-// where B and S are integer constants or variables, and i is a constant
-// integer. If we found two such candidates
+// where S is an integer variable, and i is a constant integer. If we found two
+// candidates
//
-// S1: X = (B + i) * S S2: Y = (B + i') * S
+// S1: X = (B + i) * S
+// S2: Y = (B + i') * S
+//
+// or
+//
+// S1: X = &B[i * S]
+// S2: Y = &B[i' * S]
//
// and S1 dominates S2, we call S1 a basis of S2, and can replace S2 with
//
// Y = X + (i' - i) * S
//
+// or
+//
+// Y = &X[(i' - i) * S]
+//
// where (i' - i) * S is folded to the extent possible. When S2 has multiple
// bases, we pick the one that is closest to S2, or S2's "immediate" basis.
//
@@ -35,8 +46,6 @@
//
// - Handle candidates in the form of B + i * S
//
-// - Handle candidates in the form of pointer arithmetics. e.g., B[i * S]
-//
// - Floating point arithmetics when fast math is enabled.
//
// - SLSR may decrease ILP at the architecture level. Targets that are very
@@ -45,6 +54,10 @@
#include <vector>
#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
@@ -58,14 +71,30 @@ using namespace PatternMatch;
namespace {
class StraightLineStrengthReduce : public FunctionPass {
- public:
+public:
// SLSR candidate. Such a candidate must be in the form of
// (Base + Index) * Stride
+ // or
+ // Base[..][Index * Stride][..]
struct Candidate : public ilist_node<Candidate> {
- Candidate(Value *B = nullptr, ConstantInt *Idx = nullptr,
- Value *S = nullptr, Instruction *I = nullptr)
- : Base(B), Index(Idx), Stride(S), Ins(I), Basis(nullptr) {}
- Value *Base;
+ enum Kind {
+ Invalid, // reserved for the default constructor
+ Mul, // (B + i) * S
+ GEP, // &B[..][i * S][..]
+ };
+
+ Candidate()
+ : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
+ Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
+ Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
+ Instruction *I)
+ : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
+ Basis(nullptr) {}
+ Kind CandidateKind;
+ const SCEV *Base;
+ // Note that Index and Stride of a GEP candidate may not have the same
+ // integer type. In that case, during rewriting, Stride will be
+ // sign-extended or truncated to Index's type.
ConstantInt *Index;
Value *Stride;
// The instruction this candidate corresponds to. It helps us to rewrite a
@@ -90,33 +119,70 @@ class StraightLineStrengthReduce : public FunctionPass {
static char ID;
- StraightLineStrengthReduce() : FunctionPass(ID), DT(nullptr) {
+ StraightLineStrengthReduce()
+ : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
// We do not modify the shape of the CFG.
AU.setPreservesCFG();
}
+ bool doInitialization(Module &M) override {
+ DL = &M.getDataLayout();
+ return false;
+ }
+
bool runOnFunction(Function &F) override;
- private:
+private:
// Returns true if Basis is a basis for C, i.e., Basis dominates C and they
// share the same base and stride.
bool isBasisFor(const Candidate &Basis, const Candidate &C);
// Checks whether I is in a candidate form. If so, adds all the matching forms
// to Candidates, and tries to find the immediate basis for each of them.
void allocateCandidateAndFindBasis(Instruction *I);
- // Given that I is in the form of "(B + Idx) * S", adds this form to
- // Candidates, and finds its immediate basis.
- void allocateCandidateAndFindBasis(Value *B, ConstantInt *Idx, Value *S,
+ // Allocate candidates and find bases for Mul instructions.
+ void allocateCandidateAndFindBasisForMul(Instruction *I);
+ // Splits LHS into Base + Index and, if succeeds, calls
+ // allocateCandidateAndFindBasis.
+ void allocateCandidateAndFindBasisForMul(Value *LHS, Value *RHS,
+ Instruction *I);
+ // Allocate candidates and find bases for GetElementPtr instructions.
+ void allocateCandidateAndFindBasisForGEP(GetElementPtrInst *GEP);
+ // A helper function that scales Idx with ElementSize before invoking
+ // allocateCandidateAndFindBasis.
+ void allocateCandidateAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
+ Value *S, uint64_t ElementSize,
+ Instruction *I);
+ // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
+ // basis.
+ void allocateCandidateAndFindBasis(Candidate::Kind CT, const SCEV *B,
+ ConstantInt *Idx, Value *S,
Instruction *I);
// Rewrites candidate C with respect to Basis.
void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
+ // A helper function that factors ArrayIdx to a product of a stride and a
+ // constant index, and invokes allocateCandidateAndFindBasis with the
+ // factorings.
+ void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
+ GetElementPtrInst *GEP);
+ // Emit code that computes the "bump" from Basis to C. If the candidate is a
+ // GEP and the bump is not divisible by the element size of the GEP, this
+ // function sets the BumpWithUglyGEP flag to notify its caller to bump the
+ // basis using an ugly GEP.
+ static Value *emitBump(const Candidate &Basis, const Candidate &C,
+ IRBuilder<> &Builder, const DataLayout *DL,
+ bool &BumpWithUglyGEP);
+ const DataLayout *DL;
DominatorTree *DT;
+ ScalarEvolution *SE;
+ TargetTransformInfo *TTI;
ilist<Candidate> Candidates;
// Temporarily holds all instructions that are unlinked (but not deleted) by
// rewriteCandidateWithBasis. These instructions will be actually removed
@@ -129,6 +195,8 @@ char StraightLineStrengthReduce::ID = 0;
INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
"Straight line strength reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
"Straight line strength reduction", false, false)
@@ -141,9 +209,47 @@ bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
return (Basis.Ins != C.Ins && // skip the same instruction
// Basis must dominate C in order to rewrite C with respect to Basis.
DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
- // They share the same base and stride.
+ // They share the same base, stride, and candidate kind.
Basis.Base == C.Base &&
- Basis.Stride == C.Stride);
+ Basis.Stride == C.Stride &&
+ Basis.CandidateKind == C.CandidateKind);
+}
+
+static bool isCompletelyFoldable(GetElementPtrInst *GEP,
+ const TargetTransformInfo *TTI,
+ const DataLayout *DL) {
+ GlobalVariable *BaseGV = nullptr;
+ int64_t BaseOffset = 0;
+ bool HasBaseReg = false;
+ int64_t Scale = 0;
+
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
+ BaseGV = GV;
+ else
+ HasBaseReg = true;
+
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
+ if (isa<SequentialType>(*GTI)) {
+ int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
+ if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
+ BaseOffset += ConstIdx->getSExtValue() * ElementSize;
+ } else {
+ // Needs scale register.
+ if (Scale != 0) {
+ // No addressing mode takes two scale registers.
+ return false;
+ }
+ Scale = ElementSize;
+ }
+ } else {
+ StructType *STy = cast<StructType>(*GTI);
+ uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
+ BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
+ }
+ }
+ return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
+ BaseOffset, HasBaseReg, Scale);
}
// TODO: We currently implement an algorithm whose time complexity is linear to
@@ -153,11 +259,17 @@ bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
// table is indexed by the base and the stride of a candidate. Therefore,
// finding the immediate basis of a candidate boils down to one hash-table look
// up.
-void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Value *B,
- ConstantInt *Idx,
- Value *S,
- Instruction *I) {
- Candidate C(B, Idx, S, I);
+void StraightLineStrengthReduce::allocateCandidateAndFindBasis(
+ Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
+ Instruction *I) {
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
+ // If &B[Idx * S] fits into an addressing mode, do not turn it into
+ // non-free computation.
+ if (isCompletelyFoldable(GEP, TTI, DL))
+ return;
+ }
+
+ Candidate C(CT, B, Idx, S, I);
// Try to compute the immediate basis of C.
unsigned NumIterations = 0;
// Limit the scan radius to avoid running forever.
@@ -176,60 +288,209 @@ void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Value *B,
}
void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Instruction *I) {
+ switch (I->getOpcode()) {
+ case Instruction::Mul:
+ allocateCandidateAndFindBasisForMul(I);
+ break;
+ case Instruction::GetElementPtr:
+ allocateCandidateAndFindBasisForGEP(cast<GetElementPtrInst>(I));
+ break;
+ }
+}
+
+void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
+ Value *LHS, Value *RHS, Instruction *I) {
Value *B = nullptr;
ConstantInt *Idx = nullptr;
- // "(Base + Index) * Stride" must be a Mul instruction at the first hand.
- if (I->getOpcode() == Instruction::Mul) {
- if (IntegerType *ITy = dyn_cast<IntegerType>(I->getType())) {
- Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
- for (unsigned Swapped = 0; Swapped < 2; ++Swapped) {
- // Only handle the canonical operand ordering.
- if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) {
- // If LHS is in the form of "Base + Index", then I is in the form of
- // "(Base + Index) * RHS".
- allocateCandidateAndFindBasis(B, Idx, RHS, I);
- } else {
- // Otherwise, at least try the form (LHS + 0) * RHS.
- allocateCandidateAndFindBasis(LHS, ConstantInt::get(ITy, 0), RHS, I);
- }
- // Swap LHS and RHS so that we also cover the cases where LHS is the
- // stride.
- if (LHS == RHS)
- break;
- std::swap(LHS, RHS);
- }
- }
+ // Only handle the canonical operand ordering.
+ if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) {
+ // If LHS is in the form of "Base + Index", then I is in the form of
+ // "(Base + Index) * RHS".
+ allocateCandidateAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
+ } else {
+ // Otherwise, at least try the form (LHS + 0) * RHS.
+ ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
+ allocateCandidateAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
+ I);
+ }
+}
+
+void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
+ Instruction *I) {
+ // Try matching (B + i) * S.
+ // TODO: we could extend SLSR to float and vector types.
+ if (!isa<IntegerType>(I->getType()))
+ return;
+
+ Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
+ allocateCandidateAndFindBasisForMul(LHS, RHS, I);
+ if (LHS != RHS) {
+ // Symmetrically, try to split RHS to Base + Index.
+ allocateCandidateAndFindBasisForMul(RHS, LHS, I);
+ }
+}
+
+void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP(
+ const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
+ Instruction *I) {
+ // I = B + sext(Idx *nsw S) *nsw ElementSize
+ // = B + (sext(Idx) * ElementSize) * sext(S)
+ // Casting to IntegerType is safe because we skipped vector GEPs.
+ IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
+ ConstantInt *ScaledIdx = ConstantInt::get(
+ IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
+ allocateCandidateAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
+}
+
+void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
+ const SCEV *Base,
+ uint64_t ElementSize,
+ GetElementPtrInst *GEP) {
+ // At least, ArrayIdx = ArrayIdx *s 1.
+ allocateCandidateAndFindBasisForGEP(
+ Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
+ ArrayIdx, ElementSize, GEP);
+ Value *LHS = nullptr;
+ ConstantInt *RHS = nullptr;
+ // TODO: handle shl. e.g., we could treat (S << 2) as (S * 4).
+ //
+ // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
+ // itself. This would allow us to handle the shl case for free. However,
+ // matching SCEVs has two issues:
+ //
+ // 1. this would complicate rewriting because the rewriting procedure
+ // would have to translate SCEVs back to IR instructions. This translation
+ // is difficult when LHS is further evaluated to a composite SCEV.
+ //
+ // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
+ // to strip nsw/nuw flags which are critical for SLSR to trace into
+ // sext'ed multiplication.
+ if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
+ // SLSR is currently unsafe if i * S may overflow.
+ // GEP = Base + sext(LHS *nsw RHS) *nsw ElementSize
+ allocateCandidateAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
+ }
+}
+
+void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP(
+ GetElementPtrInst *GEP) {
+ // TODO: handle vector GEPs
+ if (GEP->getType()->isVectorTy())
+ return;
+
+ const SCEV *GEPExpr = SE->getSCEV(GEP);
+ Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
+
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
+ if (!isa<SequentialType>(*GTI++))
+ continue;
+ Value *ArrayIdx = *I;
+ // Compute the byte offset of this index.
+ uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
+ const SCEV *ElementSizeExpr = SE->getSizeOfExpr(IntPtrTy, *GTI);
+ const SCEV *ArrayIdxExpr = SE->getSCEV(ArrayIdx);
+ ArrayIdxExpr = SE->getTruncateOrSignExtend(ArrayIdxExpr, IntPtrTy);
+ const SCEV *LocalOffset =
+ SE->getMulExpr(ArrayIdxExpr, ElementSizeExpr, SCEV::FlagNSW);
+ // The base of this candidate equals GEPExpr less the byte offset of this
+ // index.
+ const SCEV *Base = SE->getMinusSCEV(GEPExpr, LocalOffset);
+ factorArrayIndex(ArrayIdx, Base, ElementSize, GEP);
+ // When ArrayIdx is the sext of a value, we try to factor that value as
+ // well. Handling this case is important because array indices are
+ // typically sign-extended to the pointer size.
+ Value *TruncatedArrayIdx = nullptr;
+ if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))))
+ factorArrayIndex(TruncatedArrayIdx, Base, ElementSize, GEP);
}
}
+// A helper function that unifies the bitwidth of A and B.
+static void unifyBitWidth(APInt &A, APInt &B) {
+ if (A.getBitWidth() < B.getBitWidth())
+ A = A.sext(B.getBitWidth());
+ else if (A.getBitWidth() > B.getBitWidth())
+ B = B.sext(A.getBitWidth());
+}
+
+Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
+ const Candidate &C,
+ IRBuilder<> &Builder,
+ const DataLayout *DL,
+ bool &BumpWithUglyGEP) {
+ APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
+ unifyBitWidth(Idx, BasisIdx);
+ APInt IndexOffset = Idx - BasisIdx;
+
+ BumpWithUglyGEP = false;
+ if (Basis.CandidateKind == Candidate::GEP) {
+ APInt ElementSize(
+ IndexOffset.getBitWidth(),
+ DL->getTypeAllocSize(
+ cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType()));
+ APInt Q, R;
+ APInt::sdivrem(IndexOffset, ElementSize, Q, R);
+ if (R.getSExtValue() == 0)
+ IndexOffset = Q;
+ else
+ BumpWithUglyGEP = true;
+ }
+ // Compute Bump = C - Basis = (i' - i) * S.
+ // Common case 1: if (i' - i) is 1, Bump = S.
+ if (IndexOffset.getSExtValue() == 1)
+ return C.Stride;
+ // Common case 2: if (i' - i) is -1, Bump = -S.
+ if (IndexOffset.getSExtValue() == -1)
+ return Builder.CreateNeg(C.Stride);
+ // Otherwise, Bump = (i' - i) * sext/trunc(S).
+ ConstantInt *Delta = ConstantInt::get(Basis.Ins->getContext(), IndexOffset);
+ Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, Delta->getType());
+ return Builder.CreateMul(ExtendedStride, Delta);
+}
+
void StraightLineStrengthReduce::rewriteCandidateWithBasis(
const Candidate &C, const Candidate &Basis) {
+ assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
+ C.Stride == Basis.Stride);
+
// An instruction can correspond to multiple candidates. Therefore, instead of
// simply deleting an instruction when we rewrite it, we mark its parent as
// nullptr (i.e. unlink it) so that we can skip the candidates whose
// instruction is already rewritten.
if (!C.Ins->getParent())
return;
- assert(C.Base == Basis.Base && C.Stride == Basis.Stride);
- // Basis = (B + i) * S
- // C = (B + i') * S
- // ==>
- // C = Basis + (i' - i) * S
+
IRBuilder<> Builder(C.Ins);
- ConstantInt *IndexOffset = ConstantInt::get(
- C.Ins->getContext(), C.Index->getValue() - Basis.Index->getValue());
- Value *Reduced;
- // TODO: preserve nsw/nuw in some cases.
- if (IndexOffset->isOne()) {
- // If (i' - i) is 1, fold C into Basis + S.
- Reduced = Builder.CreateAdd(Basis.Ins, C.Stride);
- } else if (IndexOffset->isMinusOne()) {
- // If (i' - i) is -1, fold C into Basis - S.
- Reduced = Builder.CreateSub(Basis.Ins, C.Stride);
- } else {
- Value *Bump = Builder.CreateMul(C.Stride, IndexOffset);
+ bool BumpWithUglyGEP;
+ Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
+ Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
+ switch (C.CandidateKind) {
+ case Candidate::Mul:
Reduced = Builder.CreateAdd(Basis.Ins, Bump);
- }
+ break;
+ case Candidate::GEP:
+ {
+ Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
+ if (BumpWithUglyGEP) {
+ // C = (char *)Basis + Bump
+ unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
+ Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
+ Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
+ // We only considered inbounds GEP as candidates.
+ Reduced = Builder.CreateInBoundsGEP(Reduced, Bump);
+ Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
+ } else {
+ // C = gep Basis, Bump
+ // Canonicalize bump to pointer size.
+ Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
+ Reduced = Builder.CreateInBoundsGEP(Basis.Ins, Bump);
+ }
+ }
+ break;
+ default:
+ llvm_unreachable("C.CandidateKind is invalid");
+ };
Reduced->takeName(C.Ins);
C.Ins->replaceAllUsesWith(Reduced);
C.Ins->dropAllReferences();
@@ -243,15 +504,15 @@ bool StraightLineStrengthReduce::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
+ TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ SE = &getAnalysis<ScalarEvolution>();
// Traverse the dominator tree in the depth-first order. This order makes sure
// all bases of a candidate are in Candidates when we process it.
for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
- BasicBlock *B = node->getBlock();
- for (auto I = B->begin(); I != B->end(); ++I) {
- allocateCandidateAndFindBasis(I);
- }
+ for (auto &I : *node->getBlock())
+ allocateCandidateAndFindBasis(&I);
}
// Rewrite candidates in the reverse depth-first order. This order makes sure