diff options
Diffstat (limited to 'lib/Transforms/Utils/SimplifyLibCalls.cpp')
| -rw-r--r-- | lib/Transforms/Utils/SimplifyLibCalls.cpp | 1894 |
1 files changed, 1894 insertions, 0 deletions
diff --git a/lib/Transforms/Utils/SimplifyLibCalls.cpp b/lib/Transforms/Utils/SimplifyLibCalls.cpp new file mode 100644 index 0000000..83c74e7 --- /dev/null +++ b/lib/Transforms/Utils/SimplifyLibCalls.cpp @@ -0,0 +1,1894 @@ +//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This is a utility pass used for testing the InstructionSimplify analysis. +// The analysis is applied to every instruction, and if it simplifies then the +// instruction is replaced by the simplification. If you are looking for a pass +// that performs serious instruction folding, use the instcombine pass instead. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/SimplifyLibCalls.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/Target/TargetLibraryInfo.h" +#include "llvm/Transforms/Utils/BuildLibCalls.h" + +using namespace llvm; + +/// This class is the abstract base class for the set of optimizations that +/// corresponds to one library call. +namespace { +class LibCallOptimization { +protected: + Function *Caller; + const DataLayout *TD; + const TargetLibraryInfo *TLI; + const LibCallSimplifier *LCS; + LLVMContext* Context; +public: + LibCallOptimization() { } + virtual ~LibCallOptimization() {} + + /// callOptimizer - This pure virtual method is implemented by base classes to + /// do various optimizations. If this returns null then no transformation was + /// performed. If it returns CI, then it transformed the call and CI is to be + /// deleted. If it returns something else, replace CI with the new value and + /// delete CI. + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) + =0; + + Value *optimizeCall(CallInst *CI, const DataLayout *TD, + const TargetLibraryInfo *TLI, + const LibCallSimplifier *LCS, IRBuilder<> &B) { + Caller = CI->getParent()->getParent(); + this->TD = TD; + this->TLI = TLI; + this->LCS = LCS; + if (CI->getCalledFunction()) + Context = &CI->getCalledFunction()->getContext(); + + // We never change the calling convention. + if (CI->getCallingConv() != llvm::CallingConv::C) + return NULL; + + return callOptimizer(CI->getCalledFunction(), CI, B); + } +}; + +//===----------------------------------------------------------------------===// +// Helper Functions +//===----------------------------------------------------------------------===// + +/// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the +/// value is equal or not-equal to zero. +static bool isOnlyUsedInZeroEqualityComparison(Value *V) { + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); + UI != E; ++UI) { + if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) + if (IC->isEquality()) + if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) + if (C->isNullValue()) + continue; + // Unknown instruction. + return false; + } + return true; +} + +/// isOnlyUsedInEqualityComparison - Return true if it is only used in equality +/// comparisons with With. +static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); + UI != E; ++UI) { + if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) + if (IC->isEquality() && IC->getOperand(1) == With) + continue; + // Unknown instruction. + return false; + } + return true; +} + +static bool callHasFloatingPointArgument(const CallInst *CI) { + for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); + it != e; ++it) { + if ((*it)->getType()->isFloatingPointTy()) + return true; + } + return false; +} + +//===----------------------------------------------------------------------===// +// Fortified Library Call Optimizations +//===----------------------------------------------------------------------===// + +struct FortifiedLibCallOptimization : public LibCallOptimization { +protected: + virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, + bool isString) const = 0; +}; + +struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization { + CallInst *CI; + + bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const { + if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp)) + return true; + if (ConstantInt *SizeCI = + dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) { + if (SizeCI->isAllOnesValue()) + return true; + if (isString) { + uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp)); + // If the length is 0 we don't know how long it is and so we can't + // remove the check. + if (Len == 0) return false; + return SizeCI->getZExtValue() >= Len; + } + if (ConstantInt *Arg = dyn_cast<ConstantInt>( + CI->getArgOperand(SizeArgOp))) + return SizeCI->getZExtValue() >= Arg->getZExtValue(); + } + return false; + } +}; + +struct MemCpyChkOpt : public InstFortifiedLibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + this->CI = CI; + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != TD->getIntPtrType(Context) || + FT->getParamType(3) != TD->getIntPtrType(Context)) + return 0; + + if (isFoldable(3, 2, false)) { + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } + return 0; + } +}; + +struct MemMoveChkOpt : public InstFortifiedLibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + this->CI = CI; + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != TD->getIntPtrType(Context) || + FT->getParamType(3) != TD->getIntPtrType(Context)) + return 0; + + if (isFoldable(3, 2, false)) { + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } + return 0; + } +}; + +struct MemSetChkOpt : public InstFortifiedLibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + this->CI = CI; + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isIntegerTy() || + FT->getParamType(2) != TD->getIntPtrType(Context) || + FT->getParamType(3) != TD->getIntPtrType(Context)) + return 0; + + if (isFoldable(3, 2, false)) { + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), + false); + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } + return 0; + } +}; + +struct StrCpyChkOpt : public InstFortifiedLibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + this->CI = CI; + StringRef Name = Callee->getName(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 3 || + FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != Type::getInt8PtrTy(Context) || + FT->getParamType(2) != TD->getIntPtrType(Context)) + return 0; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) // __strcpy_chk(x,x) -> x + return Src; + + // If a) we don't have any length information, or b) we know this will + // fit then just lower to a plain strcpy. Otherwise we'll keep our + // strcpy_chk call which may fail at runtime if the size is too long. + // TODO: It might be nice to get a maximum length out of the possible + // string lengths for varying. + if (isFoldable(2, 1, true)) { + Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6)); + return Ret; + } else { + // Maybe we can stil fold __strcpy_chk to __memcpy_chk. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return 0; + + // This optimization require DataLayout. + if (!TD) return 0; + + Value *Ret = + EmitMemCpyChk(Dst, Src, + ConstantInt::get(TD->getIntPtrType(Context), Len), + CI->getArgOperand(2), B, TD, TLI); + return Ret; + } + return 0; + } +}; + +struct StpCpyChkOpt : public InstFortifiedLibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + this->CI = CI; + StringRef Name = Callee->getName(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 3 || + FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != Type::getInt8PtrTy(Context) || + FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0))) + return 0; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) + Value *StrLen = EmitStrLen(Src, B, TD, TLI); + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0; + } + + // If a) we don't have any length information, or b) we know this will + // fit then just lower to a plain stpcpy. Otherwise we'll keep our + // stpcpy_chk call which may fail at runtime if the size is too long. + // TODO: It might be nice to get a maximum length out of the possible + // string lengths for varying. + if (isFoldable(2, 1, true)) { + Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6)); + return Ret; + } else { + // Maybe we can stil fold __stpcpy_chk to __memcpy_chk. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return 0; + + // This optimization require DataLayout. + if (!TD) return 0; + + Type *PT = FT->getParamType(0); + Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len); + Value *DstEnd = B.CreateGEP(Dst, + ConstantInt::get(TD->getIntPtrType(PT), + Len - 1)); + if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, TD, TLI)) + return 0; + return DstEnd; + } + return 0; + } +}; + +struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + this->CI = CI; + StringRef Name = Callee->getName(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != Type::getInt8PtrTy(Context) || + !FT->getParamType(2)->isIntegerTy() || + FT->getParamType(3) != TD->getIntPtrType(Context)) + return 0; + + if (isFoldable(3, 2, false)) { + Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), B, TD, TLI, + Name.substr(2, 7)); + return Ret; + } + return 0; + } +}; + +//===----------------------------------------------------------------------===// +// String and Memory Library Call Optimizations +//===----------------------------------------------------------------------===// + +struct StrCatOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strcat" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + FT->getParamType(1) != FT->getReturnType()) + return 0; + + // Extract some information from the instruction + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return 0; + --Len; // Unbias length. + + // Handle the simple, do-nothing case: strcat(x, "") -> x + if (Len == 0) + return Dst; + + // These optimizations require DataLayout. + if (!TD) return 0; + + return emitStrLenMemCpy(Src, Dst, Len, B); + } + + Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, + IRBuilder<> &B) { + // We need to find the end of the destination string. That's where the + // memory is to be moved to. We just generate a call to strlen. + Value *DstLen = EmitStrLen(Dst, B, TD, TLI); + if (!DstLen) + return 0; + + // Now that we have the destination's length, we must index into the + // destination's pointer to get the actual memcpy destination (end of + // the string .. we're concatenating). + Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); + + // We have enough information to now generate the memcpy call to do the + // concatenation for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy(CpyDst, Src, + ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1); + return Dst; + } +}; + +struct StrNCatOpt : public StrCatOpt { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strncat" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + FT->getParamType(1) != FT->getReturnType() || + !FT->getParamType(2)->isIntegerTy()) + return 0; + + // Extract some information from the instruction + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + uint64_t Len; + + // We don't do anything if length is not constant + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) + Len = LengthArg->getZExtValue(); + else + return 0; + + // See if we can get the length of the input string. + uint64_t SrcLen = GetStringLength(Src); + if (SrcLen == 0) return 0; + --SrcLen; // Unbias length. + + // Handle the simple, do-nothing cases: + // strncat(x, "", c) -> x + // strncat(x, c, 0) -> x + if (SrcLen == 0 || Len == 0) return Dst; + + // These optimizations require DataLayout. + if (!TD) return 0; + + // We don't optimize this case + if (Len < SrcLen) return 0; + + // strncat(x, s, c) -> strcat(x, s) + // s is constant so the strcat can be optimized further + return emitStrLenMemCpy(Src, Dst, SrcLen, B); + } +}; + +struct StrChrOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strchr" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + !FT->getParamType(1)->isIntegerTy(32)) + return 0; + + Value *SrcStr = CI->getArgOperand(0); + + // If the second operand is non-constant, see if we can compute the length + // of the input string and turn this into memchr. + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + if (CharC == 0) { + // These optimizations require DataLayout. + if (!TD) return 0; + + uint64_t Len = GetStringLength(SrcStr); + if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32. + return 0; + + return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. + ConstantInt::get(TD->getIntPtrType(*Context), Len), + B, TD, TLI); + } + + // Otherwise, the character is a constant, see if the first argument is + // a string literal. If so, we can constant fold. + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str)) + return 0; + + // Compute the offset, make sure to handle the case when we're searching for + // zero (a weird way to spell strlen). + size_t I = CharC->getSExtValue() == 0 ? + Str.size() : Str.find(CharC->getSExtValue()); + if (I == StringRef::npos) // Didn't find the char. strchr returns null. + return Constant::getNullValue(CI->getType()); + + // strchr(s+n,c) -> gep(s+n+i,c) + return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); + } +}; + +struct StrRChrOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strrchr" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + !FT->getParamType(1)->isIntegerTy(32)) + return 0; + + Value *SrcStr = CI->getArgOperand(0); + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + + // Cannot fold anything if we're not looking for a constant. + if (!CharC) + return 0; + + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str)) { + // strrchr(s, 0) -> strchr(s, 0) + if (TD && CharC->isZero()) + return EmitStrChr(SrcStr, '\0', B, TD, TLI); + return 0; + } + + // Compute the offset. + size_t I = CharC->getSExtValue() == 0 ? + Str.size() : Str.rfind(CharC->getSExtValue()); + if (I == StringRef::npos) // Didn't find the char. Return null. + return Constant::getNullValue(CI->getType()); + + // strrchr(s+n,c) -> gep(s+n+i,c) + return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); + } +}; + +struct StrCmpOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strcmp" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + !FT->getReturnType()->isIntegerTy(32) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy()) + return 0; + + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); + if (Str1P == Str2P) // strcmp(x,x) -> 0 + return ConstantInt::get(CI->getType(), 0); + + StringRef Str1, Str2; + bool HasStr1 = getConstantStringInfo(Str1P, Str1); + bool HasStr2 = getConstantStringInfo(Str2P, Str2); + + // strcmp(x, y) -> cnst (if both x and y are constant strings) + if (HasStr1 && HasStr2) + return ConstantInt::get(CI->getType(), Str1.compare(Str2)); + + if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x + return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), + CI->getType())); + + if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); + + // strcmp(P, "x") -> memcmp(P, "x", 2) + uint64_t Len1 = GetStringLength(Str1P); + uint64_t Len2 = GetStringLength(Str2P); + if (Len1 && Len2) { + // These optimizations require DataLayout. + if (!TD) return 0; + + return EmitMemCmp(Str1P, Str2P, + ConstantInt::get(TD->getIntPtrType(*Context), + std::min(Len1, Len2)), B, TD, TLI); + } + + return 0; + } +}; + +struct StrNCmpOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strncmp" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || + !FT->getReturnType()->isIntegerTy(32) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy() || + !FT->getParamType(2)->isIntegerTy()) + return 0; + + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); + if (Str1P == Str2P) // strncmp(x,x,n) -> 0 + return ConstantInt::get(CI->getType(), 0); + + // Get the length argument if it is constant. + uint64_t Length; + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) + Length = LengthArg->getZExtValue(); + else + return 0; + + if (Length == 0) // strncmp(x,y,0) -> 0 + return ConstantInt::get(CI->getType(), 0); + + if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) + return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI); + + StringRef Str1, Str2; + bool HasStr1 = getConstantStringInfo(Str1P, Str1); + bool HasStr2 = getConstantStringInfo(Str2P, Str2); + + // strncmp(x, y) -> cnst (if both x and y are constant strings) + if (HasStr1 && HasStr2) { + StringRef SubStr1 = Str1.substr(0, Length); + StringRef SubStr2 = Str2.substr(0, Length); + return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); + } + + if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x + return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), + CI->getType())); + + if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); + + return 0; + } +}; + +struct StrCpyOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strcpy" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy()) + return 0; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) // strcpy(x,x) -> x + return Src; + + // These optimizations require DataLayout. + if (!TD) return 0; + + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return 0; + + // We have enough information to now generate the memcpy call to do the + // copy for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy(Dst, Src, + ConstantInt::get(TD->getIntPtrType(*Context), Len), 1); + return Dst; + } +}; + +struct StpCpyOpt: public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "stpcpy" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy()) + return 0; + + // These optimizations require DataLayout. + if (!TD) return 0; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) + Value *StrLen = EmitStrLen(Src, B, TD, TLI); + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0; + } + + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return 0; + + Type *PT = FT->getParamType(0); + Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len); + Value *DstEnd = B.CreateGEP(Dst, + ConstantInt::get(TD->getIntPtrType(PT), + Len - 1)); + + // We have enough information to now generate the memcpy call to do the + // copy for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy(Dst, Src, LenV, 1); + return DstEnd; + } +}; + +struct StrNCpyOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy() || + !FT->getParamType(2)->isIntegerTy()) + return 0; + + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + Value *LenOp = CI->getArgOperand(2); + + // See if we can get the length of the input string. + uint64_t SrcLen = GetStringLength(Src); + if (SrcLen == 0) return 0; + --SrcLen; + + if (SrcLen == 0) { + // strncpy(x, "", y) -> memset(x, '\0', y, 1) + B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); + return Dst; + } + + uint64_t Len; + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) + Len = LengthArg->getZExtValue(); + else + return 0; + + if (Len == 0) return Dst; // strncpy(x, y, 0) -> x + + // These optimizations require DataLayout. + if (!TD) return 0; + + // Let strncpy handle the zero padding + if (Len > SrcLen+1) return 0; + + Type *PT = FT->getParamType(0); + // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] + B.CreateMemCpy(Dst, Src, + ConstantInt::get(TD->getIntPtrType(PT), Len), 1); + + return Dst; + } +}; + +struct StrLenOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 1 || + FT->getParamType(0) != B.getInt8PtrTy() || + !FT->getReturnType()->isIntegerTy()) + return 0; + + Value *Src = CI->getArgOperand(0); + + // Constant folding: strlen("xyz") -> 3 + if (uint64_t Len = GetStringLength(Src)) + return ConstantInt::get(CI->getType(), Len-1); + + // strlen(x) != 0 --> *x != 0 + // strlen(x) == 0 --> *x == 0 + if (isOnlyUsedInZeroEqualityComparison(CI)) + return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); + return 0; + } +}; + +struct StrPBrkOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getParamType(0) != B.getInt8PtrTy() || + FT->getParamType(1) != FT->getParamType(0) || + FT->getReturnType() != FT->getParamType(0)) + return 0; + + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strpbrk(s, "") -> NULL + // strpbrk("", s) -> NULL + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t I = S1.find_first_of(S2); + if (I == std::string::npos) // No match. + return Constant::getNullValue(CI->getType()); + + return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); + } + + // strpbrk(s, "a") -> strchr(s, 'a') + if (TD && HasS2 && S2.size() == 1) + return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD, TLI); + + return 0; + } +}; + +struct StrToOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy()) + return 0; + + Value *EndPtr = CI->getArgOperand(1); + if (isa<ConstantPointerNull>(EndPtr)) { + // With a null EndPtr, this function won't capture the main argument. + // It would be readonly too, except that it still may write to errno. + CI->addAttribute(1, Attribute::get(Callee->getContext(), + Attribute::NoCapture)); + } + + return 0; + } +}; + +struct StrSpnOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getParamType(0) != B.getInt8PtrTy() || + FT->getParamType(1) != FT->getParamType(0) || + !FT->getReturnType()->isIntegerTy()) + return 0; + + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strspn(s, "") -> 0 + // strspn("", s) -> 0 + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t Pos = S1.find_first_not_of(S2); + if (Pos == StringRef::npos) Pos = S1.size(); + return ConstantInt::get(CI->getType(), Pos); + } + + return 0; + } +}; + +struct StrCSpnOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getParamType(0) != B.getInt8PtrTy() || + FT->getParamType(1) != FT->getParamType(0) || + !FT->getReturnType()->isIntegerTy()) + return 0; + + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strcspn("", s) -> 0 + if (HasS1 && S1.empty()) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t Pos = S1.find_first_of(S2); + if (Pos == StringRef::npos) Pos = S1.size(); + return ConstantInt::get(CI->getType(), Pos); + } + + // strcspn(s, "") -> strlen(s) + if (TD && HasS2 && S2.empty()) + return EmitStrLen(CI->getArgOperand(0), B, TD, TLI); + + return 0; + } +}; + +struct StrStrOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isPointerTy()) + return 0; + + // fold strstr(x, x) -> x. + if (CI->getArgOperand(0) == CI->getArgOperand(1)) + return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); + + // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 + if (TD && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { + Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD, TLI); + if (!StrLen) + return 0; + Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), + StrLen, B, TD, TLI); + if (!StrNCmp) + return 0; + for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end(); + UI != UE; ) { + ICmpInst *Old = cast<ICmpInst>(*UI++); + Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp, + ConstantInt::getNullValue(StrNCmp->getType()), + "cmp"); + LCS->replaceAllUsesWith(Old, Cmp); + } + return CI; + } + + // See if either input string is a constant string. + StringRef SearchStr, ToFindStr; + bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); + bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); + + // fold strstr(x, "") -> x. + if (HasStr2 && ToFindStr.empty()) + return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); + + // If both strings are known, constant fold it. + if (HasStr1 && HasStr2) { + std::string::size_type Offset = SearchStr.find(ToFindStr); + + if (Offset == StringRef::npos) // strstr("foo", "bar") -> null + return Constant::getNullValue(CI->getType()); + + // strstr("abcd", "bc") -> gep((char*)"abcd", 1) + Value *Result = CastToCStr(CI->getArgOperand(0), B); + Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); + return B.CreateBitCast(Result, CI->getType()); + } + + // fold strstr(x, "y") -> strchr(x, 'y'). + if (HasStr2 && ToFindStr.size() == 1) { + Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TD, TLI); + return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : 0; + } + return 0; + } +}; + +struct MemCmpOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isIntegerTy(32)) + return 0; + + Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); + + if (LHS == RHS) // memcmp(s,s,x) -> 0 + return Constant::getNullValue(CI->getType()); + + // Make sure we have a constant length. + ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); + if (!LenC) return 0; + uint64_t Len = LenC->getZExtValue(); + + if (Len == 0) // memcmp(s1,s2,0) -> 0 + return Constant::getNullValue(CI->getType()); + + // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS + if (Len == 1) { + Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), + CI->getType(), "lhsv"); + Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), + CI->getType(), "rhsv"); + return B.CreateSub(LHSV, RHSV, "chardiff"); + } + + // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) + StringRef LHSStr, RHSStr; + if (getConstantStringInfo(LHS, LHSStr) && + getConstantStringInfo(RHS, RHSStr)) { + // Make sure we're not reading out-of-bounds memory. + if (Len > LHSStr.size() || Len > RHSStr.size()) + return 0; + // Fold the memcmp and normalize the result. This way we get consistent + // results across multiple platforms. + uint64_t Ret = 0; + int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); + if (Cmp < 0) + Ret = -1; + else if (Cmp > 0) + Ret = 1; + return ConstantInt::get(CI->getType(), Ret); + } + + return 0; + } +}; + +struct MemCpyOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // These optimizations require DataLayout. + if (!TD) return 0; + + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != TD->getIntPtrType(*Context)) + return 0; + + // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } +}; + +struct MemMoveOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // These optimizations require DataLayout. + if (!TD) return 0; + + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != TD->getIntPtrType(*Context)) + return 0; + + // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } +}; + +struct MemSetOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // These optimizations require DataLayout. + if (!TD) return 0; + + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isIntegerTy() || + FT->getParamType(2) != TD->getIntPtrType(*Context)) + return 0; + + // memset(p, v, n) -> llvm.memset(p, v, n, 1) + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } +}; + +//===----------------------------------------------------------------------===// +// Math Library Optimizations +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Double -> Float Shrinking Optimizations for Unary Functions like 'floor' + +struct UnaryDoubleFPOpt : public LibCallOptimization { + bool CheckRetType; + UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {} + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || + !FT->getParamType(0)->isDoubleTy()) + return 0; + + if (CheckRetType) { + // Check if all the uses for function like 'sin' are converted to float. + for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end(); + ++UseI) { + FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI); + if (Cast == 0 || !Cast->getType()->isFloatTy()) + return 0; + } + } + + // If this is something like 'floor((double)floatval)', convert to floorf. + FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0)); + if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy()) + return 0; + + // floor((double)floatval) -> (double)floorf(floatval) + Value *V = Cast->getOperand(0); + V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); + return B.CreateFPExt(V, B.getDoubleTy()); + } +}; + +struct UnsafeFPLibCallOptimization : public LibCallOptimization { + bool UnsafeFPShrink; + UnsafeFPLibCallOptimization(bool UnsafeFPShrink) { + this->UnsafeFPShrink = UnsafeFPShrink; + } +}; + +struct CosOpt : public UnsafeFPLibCallOptimization { + CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + Value *Ret = NULL; + if (UnsafeFPShrink && Callee->getName() == "cos" && + TLI->has(LibFunc::cosf)) { + UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); + Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); + } + + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 1 argument of FP type, which matches the + // result type. + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isFloatingPointTy()) + return Ret; + + // cos(-x) -> cos(x) + Value *Op1 = CI->getArgOperand(0); + if (BinaryOperator::isFNeg(Op1)) { + BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); + return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); + } + return Ret; + } +}; + +struct PowOpt : public UnsafeFPLibCallOptimization { + PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + Value *Ret = NULL; + if (UnsafeFPShrink && Callee->getName() == "pow" && + TLI->has(LibFunc::powf)) { + UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); + Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); + } + + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 2 arguments of the same FP type, which match the + // result type. + if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + !FT->getParamType(0)->isFloatingPointTy()) + return Ret; + + Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); + if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { + if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0 + return Op1C; + if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x) + return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); + } + + ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); + if (Op2C == 0) return Ret; + + if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 + return ConstantFP::get(CI->getType(), 1.0); + + if (Op2C->isExactlyValue(0.5)) { + // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). + // This is faster than calling pow, and still handles negative zero + // and negative infinity correctly. + // TODO: In fast-math mode, this could be just sqrt(x). + // TODO: In finite-only mode, this could be just fabs(sqrt(x)). + Value *Inf = ConstantFP::getInfinity(CI->getType()); + Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); + Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, + Callee->getAttributes()); + Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B, + Callee->getAttributes()); + Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); + Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); + return Sel; + } + + if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x + return Op1; + if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x + return B.CreateFMul(Op1, Op1, "pow2"); + if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x + return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), + Op1, "powrecip"); + return 0; + } +}; + +struct Exp2Opt : public UnsafeFPLibCallOptimization { + Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + Value *Ret = NULL; + if (UnsafeFPShrink && Callee->getName() == "exp2" && + TLI->has(LibFunc::exp2)) { + UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); + Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); + } + + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 1 argument of FP type, which matches the + // result type. + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isFloatingPointTy()) + return Ret; + + Value *Op = CI->getArgOperand(0); + // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 + // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 + Value *LdExpArg = 0; + if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { + if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) + LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); + } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { + if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) + LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); + } + + if (LdExpArg) { + const char *Name; + if (Op->getType()->isFloatTy()) + Name = "ldexpf"; + else if (Op->getType()->isDoubleTy()) + Name = "ldexp"; + else + Name = "ldexpl"; + + Constant *One = ConstantFP::get(*Context, APFloat(1.0f)); + if (!Op->getType()->isFloatTy()) + One = ConstantExpr::getFPExtend(One, Op->getType()); + + Module *M = Caller->getParent(); + Value *Callee = M->getOrInsertFunction(Name, Op->getType(), + Op->getType(), + B.getInt32Ty(), NULL); + CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); + if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) + CI->setCallingConv(F->getCallingConv()); + + return CI; + } + return Ret; + } +}; + +//===----------------------------------------------------------------------===// +// Integer Library Call Optimizations +//===----------------------------------------------------------------------===// + +struct FFSOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 2 arguments of the same FP type, which match the + // result type. + if (FT->getNumParams() != 1 || + !FT->getReturnType()->isIntegerTy(32) || + !FT->getParamType(0)->isIntegerTy()) + return 0; + + Value *Op = CI->getArgOperand(0); + + // Constant fold. + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { + if (CI->isZero()) // ffs(0) -> 0. + return B.getInt32(0); + // ffs(c) -> cttz(c)+1 + return B.getInt32(CI->getValue().countTrailingZeros() + 1); + } + + // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 + Type *ArgType = Op->getType(); + Value *F = Intrinsic::getDeclaration(Callee->getParent(), + Intrinsic::cttz, ArgType); + Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz"); + V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); + V = B.CreateIntCast(V, B.getInt32Ty(), false); + + Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); + return B.CreateSelect(Cond, V, B.getInt32(0)); + } +}; + +struct AbsOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + // We require integer(integer) where the types agree. + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || + FT->getParamType(0) != FT->getReturnType()) + return 0; + + // abs(x) -> x >s -1 ? x : -x + Value *Op = CI->getArgOperand(0); + Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), + "ispos"); + Value *Neg = B.CreateNeg(Op, "neg"); + return B.CreateSelect(Pos, Op, Neg); + } +}; + +struct IsDigitOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + // We require integer(i32) + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || + !FT->getParamType(0)->isIntegerTy(32)) + return 0; + + // isdigit(c) -> (c-'0') <u 10 + Value *Op = CI->getArgOperand(0); + Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); + Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); + return B.CreateZExt(Op, CI->getType()); + } +}; + +struct IsAsciiOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + // We require integer(i32) + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || + !FT->getParamType(0)->isIntegerTy(32)) + return 0; + + // isascii(c) -> c <u 128 + Value *Op = CI->getArgOperand(0); + Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); + return B.CreateZExt(Op, CI->getType()); + } +}; + +struct ToAsciiOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + // We require i32(i32) + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isIntegerTy(32)) + return 0; + + // toascii(c) -> c & 0x7f + return B.CreateAnd(CI->getArgOperand(0), + ConstantInt::get(CI->getType(),0x7F)); + } +}; + +//===----------------------------------------------------------------------===// +// Formatting and IO Library Call Optimizations +//===----------------------------------------------------------------------===// + +struct PrintFOpt : public LibCallOptimization { + Value *optimizeFixedFormatString(Function *Callee, CallInst *CI, + IRBuilder<> &B) { + // Check for a fixed format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) + return 0; + + // Empty format string -> noop. + if (FormatStr.empty()) // Tolerate printf's declared void. + return CI->use_empty() ? (Value*)CI : + ConstantInt::get(CI->getType(), 0); + + // Do not do any of the following transformations if the printf return value + // is used, in general the printf return value is not compatible with either + // putchar() or puts(). + if (!CI->use_empty()) + return 0; + + // printf("x") -> putchar('x'), even for '%'. + if (FormatStr.size() == 1) { + Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD, TLI); + if (CI->use_empty() || !Res) return Res; + return B.CreateIntCast(Res, CI->getType(), true); + } + + // printf("foo\n") --> puts("foo") + if (FormatStr[FormatStr.size()-1] == '\n' && + FormatStr.find('%') == std::string::npos) { // no format characters. + // Create a string literal with no \n on it. We expect the constant merge + // pass to be run after this pass, to merge duplicate strings. + FormatStr = FormatStr.drop_back(); + Value *GV = B.CreateGlobalString(FormatStr, "str"); + Value *NewCI = EmitPutS(GV, B, TD, TLI); + return (CI->use_empty() || !NewCI) ? + NewCI : + ConstantInt::get(CI->getType(), FormatStr.size()+1); + } + + // Optimize specific format strings. + // printf("%c", chr) --> putchar(chr) + if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && + CI->getArgOperand(1)->getType()->isIntegerTy()) { + Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD, TLI); + + if (CI->use_empty() || !Res) return Res; + return B.CreateIntCast(Res, CI->getType(), true); + } + + // printf("%s\n", str) --> puts(str) + if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && + CI->getArgOperand(1)->getType()->isPointerTy()) { + return EmitPutS(CI->getArgOperand(1), B, TD, TLI); + } + return 0; + } + + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Require one fixed pointer argument and an integer/void result. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || + !(FT->getReturnType()->isIntegerTy() || + FT->getReturnType()->isVoidTy())) + return 0; + + if (Value *V = optimizeFixedFormatString(Callee, CI, B)) { + return V; + } + + // printf(format, ...) -> iprintf(format, ...) if no floating point + // arguments. + if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + Constant *IPrintFFn = + M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); + CallInst *New = cast<CallInst>(CI->clone()); + New->setCalledFunction(IPrintFFn); + B.Insert(New); + return New; + } + return 0; + } +}; + +struct SPrintFOpt : public LibCallOptimization { + Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, + IRBuilder<> &B) { + // Check for a fixed format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) + return 0; + + // If we just have a format string (nothing else crazy) transform it. + if (CI->getNumArgOperands() == 2) { + // Make sure there's no % in the constant array. We could try to handle + // %% -> % in the future if we cared. + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) + if (FormatStr[i] == '%') + return 0; // we found a format specifier, bail out. + + // These optimizations require DataLayout. + if (!TD) return 0; + + // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), + ConstantInt::get(TD->getIntPtrType(*Context), // Copy the + FormatStr.size() + 1), 1); // nul byte. + return ConstantInt::get(CI->getType(), FormatStr.size()); + } + + // The remaining optimizations require the format string to be "%s" or "%c" + // and have an extra operand. + if (FormatStr.size() != 2 || FormatStr[0] != '%' || + CI->getNumArgOperands() < 3) + return 0; + + // Decode the second character of the format string. + if (FormatStr[1] == 'c') { + // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 + if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0; + Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); + Value *Ptr = CastToCStr(CI->getArgOperand(0), B); + B.CreateStore(V, Ptr); + Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul"); + B.CreateStore(B.getInt8(0), Ptr); + + return ConstantInt::get(CI->getType(), 1); + } + + if (FormatStr[1] == 's') { + // These optimizations require DataLayout. + if (!TD) return 0; + + // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) + if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0; + + Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD, TLI); + if (!Len) + return 0; + Value *IncLen = B.CreateAdd(Len, + ConstantInt::get(Len->getType(), 1), + "leninc"); + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); + + // The sprintf result is the unincremented number of bytes in the string. + return B.CreateIntCast(Len, CI->getType(), false); + } + return 0; + } + + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Require two fixed pointer arguments and an integer result. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isIntegerTy()) + return 0; + + if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { + return V; + } + + // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating + // point arguments. + if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + Constant *SIPrintFFn = + M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); + CallInst *New = cast<CallInst>(CI->clone()); + New->setCalledFunction(SIPrintFFn); + B.Insert(New); + return New; + } + return 0; + } +}; + +struct FPrintFOpt : public LibCallOptimization { + Value *optimizeFixedFormatString(Function *Callee, CallInst *CI, + IRBuilder<> &B) { + // All the optimizations depend on the format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) + return 0; + + // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) + if (CI->getNumArgOperands() == 2) { + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) + if (FormatStr[i] == '%') // Could handle %% -> % if we cared. + return 0; // We found a format specifier. + + // These optimizations require DataLayout. + if (!TD) return 0; + + Value *NewCI = EmitFWrite(CI->getArgOperand(1), + ConstantInt::get(TD->getIntPtrType(*Context), + FormatStr.size()), + CI->getArgOperand(0), B, TD, TLI); + return NewCI ? ConstantInt::get(CI->getType(), FormatStr.size()) : 0; + } + + // The remaining optimizations require the format string to be "%s" or "%c" + // and have an extra operand. + if (FormatStr.size() != 2 || FormatStr[0] != '%' || + CI->getNumArgOperands() < 3) + return 0; + + // Decode the second character of the format string. + if (FormatStr[1] == 'c') { + // fprintf(F, "%c", chr) --> fputc(chr, F) + if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0; + Value *NewCI = EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, + TD, TLI); + return NewCI ? ConstantInt::get(CI->getType(), 1) : 0; + } + + if (FormatStr[1] == 's') { + // fprintf(F, "%s", str) --> fputs(str, F) + if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty()) + return 0; + return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI); + } + return 0; + } + + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Require two fixed paramters as pointers and integer result. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isIntegerTy()) + return 0; + + if (Value *V = optimizeFixedFormatString(Callee, CI, B)) { + return V; + } + + // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no + // floating point arguments. + if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + Constant *FIPrintFFn = + M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); + CallInst *New = cast<CallInst>(CI->clone()); + New->setCalledFunction(FIPrintFFn); + B.Insert(New); + return New; + } + return 0; + } +}; + +struct FWriteOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Require a pointer, an integer, an integer, a pointer, returning integer. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isIntegerTy() || + !FT->getParamType(2)->isIntegerTy() || + !FT->getParamType(3)->isPointerTy() || + !FT->getReturnType()->isIntegerTy()) + return 0; + + // Get the element size and count. + ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); + if (!SizeC || !CountC) return 0; + uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue(); + + // If this is writing zero records, remove the call (it's a noop). + if (Bytes == 0) + return ConstantInt::get(CI->getType(), 0); + + // If this is writing one byte, turn it into fputc. + // This optimisation is only valid, if the return value is unused. + if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) + Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); + Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TD, TLI); + return NewCI ? ConstantInt::get(CI->getType(), 1) : 0; + } + + return 0; + } +}; + +struct FPutsOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // These optimizations require DataLayout. + if (!TD) return 0; + + // Require two pointers. Also, we can't optimize if return value is used. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !CI->use_empty()) + return 0; + + // fputs(s,F) --> fwrite(s,1,strlen(s),F) + uint64_t Len = GetStringLength(CI->getArgOperand(0)); + if (!Len) return 0; + // Known to have no uses (see above). + return EmitFWrite(CI->getArgOperand(0), + ConstantInt::get(TD->getIntPtrType(*Context), Len-1), + CI->getArgOperand(1), B, TD, TLI); + } +}; + +struct PutsOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Require one fixed pointer argument and an integer/void result. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || + !(FT->getReturnType()->isIntegerTy() || + FT->getReturnType()->isVoidTy())) + return 0; + + // Check for a constant string. + StringRef Str; + if (!getConstantStringInfo(CI->getArgOperand(0), Str)) + return 0; + + if (Str.empty() && CI->use_empty()) { + // puts("") -> putchar('\n') + Value *Res = EmitPutChar(B.getInt32('\n'), B, TD, TLI); + if (CI->use_empty() || !Res) return Res; + return B.CreateIntCast(Res, CI->getType(), true); + } + + return 0; + } +}; + +} // End anonymous namespace. + +namespace llvm { + +class LibCallSimplifierImpl { + const DataLayout *TD; + const TargetLibraryInfo *TLI; + const LibCallSimplifier *LCS; + bool UnsafeFPShrink; + StringMap<LibCallOptimization*> Optimizations; + + // Fortified library call optimizations. + MemCpyChkOpt MemCpyChk; + MemMoveChkOpt MemMoveChk; + MemSetChkOpt MemSetChk; + StrCpyChkOpt StrCpyChk; + StpCpyChkOpt StpCpyChk; + StrNCpyChkOpt StrNCpyChk; + + // String library call optimizations. + StrCatOpt StrCat; + StrNCatOpt StrNCat; + StrChrOpt StrChr; + StrRChrOpt StrRChr; + StrCmpOpt StrCmp; + StrNCmpOpt StrNCmp; + StrCpyOpt StrCpy; + StpCpyOpt StpCpy; + StrNCpyOpt StrNCpy; + StrLenOpt StrLen; + StrPBrkOpt StrPBrk; + StrToOpt StrTo; + StrSpnOpt StrSpn; + StrCSpnOpt StrCSpn; + StrStrOpt StrStr; + + // Memory library call optimizations. + MemCmpOpt MemCmp; + MemCpyOpt MemCpy; + MemMoveOpt MemMove; + MemSetOpt MemSet; + + // Math library call optimizations. + UnaryDoubleFPOpt UnaryDoubleFP, UnsafeUnaryDoubleFP; + CosOpt Cos; PowOpt Pow; Exp2Opt Exp2; + + // Integer library call optimizations. + FFSOpt FFS; + AbsOpt Abs; + IsDigitOpt IsDigit; + IsAsciiOpt IsAscii; + ToAsciiOpt ToAscii; + + // Formatting and IO library call optimizations. + PrintFOpt PrintF; + SPrintFOpt SPrintF; + FPrintFOpt FPrintF; + FWriteOpt FWrite; + FPutsOpt FPuts; + PutsOpt Puts; + + void initOptimizations(); + void addOpt(LibFunc::Func F, LibCallOptimization* Opt); + void addOpt(LibFunc::Func F1, LibFunc::Func F2, LibCallOptimization* Opt); +public: + LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI, + const LibCallSimplifier *LCS, + bool UnsafeFPShrink = false) + : UnaryDoubleFP(false), UnsafeUnaryDoubleFP(true), + Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) { + this->TD = TD; + this->TLI = TLI; + this->LCS = LCS; + this->UnsafeFPShrink = UnsafeFPShrink; + } + + Value *optimizeCall(CallInst *CI); +}; + +void LibCallSimplifierImpl::initOptimizations() { + // Fortified library call optimizations. + Optimizations["__memcpy_chk"] = &MemCpyChk; + Optimizations["__memmove_chk"] = &MemMoveChk; + Optimizations["__memset_chk"] = &MemSetChk; + Optimizations["__strcpy_chk"] = &StrCpyChk; + Optimizations["__stpcpy_chk"] = &StpCpyChk; + Optimizations["__strncpy_chk"] = &StrNCpyChk; + Optimizations["__stpncpy_chk"] = &StrNCpyChk; + + // String library call optimizations. + addOpt(LibFunc::strcat, &StrCat); + addOpt(LibFunc::strncat, &StrNCat); + addOpt(LibFunc::strchr, &StrChr); + addOpt(LibFunc::strrchr, &StrRChr); + addOpt(LibFunc::strcmp, &StrCmp); + addOpt(LibFunc::strncmp, &StrNCmp); + addOpt(LibFunc::strcpy, &StrCpy); + addOpt(LibFunc::stpcpy, &StpCpy); + addOpt(LibFunc::strncpy, &StrNCpy); + addOpt(LibFunc::strlen, &StrLen); + addOpt(LibFunc::strpbrk, &StrPBrk); + addOpt(LibFunc::strtol, &StrTo); + addOpt(LibFunc::strtod, &StrTo); + addOpt(LibFunc::strtof, &StrTo); + addOpt(LibFunc::strtoul, &StrTo); + addOpt(LibFunc::strtoll, &StrTo); + addOpt(LibFunc::strtold, &StrTo); + addOpt(LibFunc::strtoull, &StrTo); + addOpt(LibFunc::strspn, &StrSpn); + addOpt(LibFunc::strcspn, &StrCSpn); + addOpt(LibFunc::strstr, &StrStr); + + // Memory library call optimizations. + addOpt(LibFunc::memcmp, &MemCmp); + addOpt(LibFunc::memcpy, &MemCpy); + addOpt(LibFunc::memmove, &MemMove); + addOpt(LibFunc::memset, &MemSet); + + // Math library call optimizations. + addOpt(LibFunc::ceil, LibFunc::ceilf, &UnaryDoubleFP); + addOpt(LibFunc::fabs, LibFunc::fabsf, &UnaryDoubleFP); + addOpt(LibFunc::floor, LibFunc::floorf, &UnaryDoubleFP); + addOpt(LibFunc::rint, LibFunc::rintf, &UnaryDoubleFP); + addOpt(LibFunc::round, LibFunc::roundf, &UnaryDoubleFP); + addOpt(LibFunc::nearbyint, LibFunc::nearbyintf, &UnaryDoubleFP); + addOpt(LibFunc::trunc, LibFunc::truncf, &UnaryDoubleFP); + + if(UnsafeFPShrink) { + addOpt(LibFunc::acos, LibFunc::acosf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::acosh, LibFunc::acoshf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::asin, LibFunc::asinf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::asinh, LibFunc::asinhf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::atan, LibFunc::atanf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::atanh, LibFunc::atanhf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::cbrt, LibFunc::cbrtf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::cosh, LibFunc::coshf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::exp, LibFunc::expf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::exp10, LibFunc::exp10f, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::expm1, LibFunc::expm1f, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::log, LibFunc::logf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::log10, LibFunc::log10f, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::log1p, LibFunc::log1pf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::log2, LibFunc::log2f, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::logb, LibFunc::logbf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::sin, LibFunc::sinf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::sinh, LibFunc::sinhf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::sqrt, LibFunc::sqrtf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::tan, LibFunc::tanf, &UnsafeUnaryDoubleFP); + addOpt(LibFunc::tanh, LibFunc::tanhf, &UnsafeUnaryDoubleFP); + } + + addOpt(LibFunc::cosf, &Cos); + addOpt(LibFunc::cos, &Cos); + addOpt(LibFunc::cosl, &Cos); + addOpt(LibFunc::powf, &Pow); + addOpt(LibFunc::pow, &Pow); + addOpt(LibFunc::powl, &Pow); + Optimizations["llvm.pow.f32"] = &Pow; + Optimizations["llvm.pow.f64"] = &Pow; + Optimizations["llvm.pow.f80"] = &Pow; + Optimizations["llvm.pow.f128"] = &Pow; + Optimizations["llvm.pow.ppcf128"] = &Pow; + addOpt(LibFunc::exp2l, &Exp2); + addOpt(LibFunc::exp2, &Exp2); + addOpt(LibFunc::exp2f, &Exp2); + Optimizations["llvm.exp2.ppcf128"] = &Exp2; + Optimizations["llvm.exp2.f128"] = &Exp2; + Optimizations["llvm.exp2.f80"] = &Exp2; + Optimizations["llvm.exp2.f64"] = &Exp2; + Optimizations["llvm.exp2.f32"] = &Exp2; + + // Integer library call optimizations. + addOpt(LibFunc::ffs, &FFS); + addOpt(LibFunc::ffsl, &FFS); + addOpt(LibFunc::ffsll, &FFS); + addOpt(LibFunc::abs, &Abs); + addOpt(LibFunc::labs, &Abs); + addOpt(LibFunc::llabs, &Abs); + addOpt(LibFunc::isdigit, &IsDigit); + addOpt(LibFunc::isascii, &IsAscii); + addOpt(LibFunc::toascii, &ToAscii); + + // Formatting and IO library call optimizations. + addOpt(LibFunc::printf, &PrintF); + addOpt(LibFunc::sprintf, &SPrintF); + addOpt(LibFunc::fprintf, &FPrintF); + addOpt(LibFunc::fwrite, &FWrite); + addOpt(LibFunc::fputs, &FPuts); + addOpt(LibFunc::puts, &Puts); +} + +Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) { + if (Optimizations.empty()) + initOptimizations(); + + Function *Callee = CI->getCalledFunction(); + LibCallOptimization *LCO = Optimizations.lookup(Callee->getName()); + if (LCO) { + IRBuilder<> Builder(CI); + return LCO->optimizeCall(CI, TD, TLI, LCS, Builder); + } + return 0; +} + +void LibCallSimplifierImpl::addOpt(LibFunc::Func F, LibCallOptimization* Opt) { + if (TLI->has(F)) + Optimizations[TLI->getName(F)] = Opt; +} + +void LibCallSimplifierImpl::addOpt(LibFunc::Func F1, LibFunc::Func F2, + LibCallOptimization* Opt) { + if (TLI->has(F1) && TLI->has(F2)) + Optimizations[TLI->getName(F1)] = Opt; +} + +LibCallSimplifier::LibCallSimplifier(const DataLayout *TD, + const TargetLibraryInfo *TLI, + bool UnsafeFPShrink) { + Impl = new LibCallSimplifierImpl(TD, TLI, this, UnsafeFPShrink); +} + +LibCallSimplifier::~LibCallSimplifier() { + delete Impl; +} + +Value *LibCallSimplifier::optimizeCall(CallInst *CI) { + return Impl->optimizeCall(CI); +} + +void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const { + I->replaceAllUsesWith(With); + I->eraseFromParent(); +} + +} |
