aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms')
-rw-r--r--lib/Transforms/Hello/Hello.cpp4
-rw-r--r--lib/Transforms/IPO/ArgumentPromotion.cpp90
-rw-r--r--lib/Transforms/IPO/BarrierNoopPass.cpp47
-rw-r--r--lib/Transforms/IPO/CMakeLists.txt1
-rw-r--r--lib/Transforms/IPO/ConstantMerge.cpp16
-rw-r--r--lib/Transforms/IPO/DeadArgumentElimination.cpp141
-rw-r--r--lib/Transforms/IPO/ExtractGV.cpp73
-rw-r--r--lib/Transforms/IPO/FunctionAttrs.cpp46
-rw-r--r--lib/Transforms/IPO/GlobalDCE.cpp6
-rw-r--r--lib/Transforms/IPO/GlobalOpt.cpp145
-rw-r--r--lib/Transforms/IPO/IPConstantPropagation.cpp12
-rw-r--r--lib/Transforms/IPO/IPO.cpp7
-rw-r--r--lib/Transforms/IPO/InlineAlways.cpp75
-rw-r--r--lib/Transforms/IPO/InlineSimple.cpp17
-rw-r--r--lib/Transforms/IPO/Inliner.cpp55
-rw-r--r--lib/Transforms/IPO/Internalize.cpp52
-rw-r--r--lib/Transforms/IPO/LoopExtractor.cpp8
-rw-r--r--lib/Transforms/IPO/MergeFunctions.cpp54
-rw-r--r--lib/Transforms/IPO/PartialInlining.cpp10
-rw-r--r--lib/Transforms/IPO/PassManagerBuilder.cpp68
-rw-r--r--lib/Transforms/IPO/PruneEH.cpp26
-rw-r--r--lib/Transforms/IPO/StripDeadPrototypes.cpp4
-rw-r--r--lib/Transforms/IPO/StripSymbols.cpp16
-rw-r--r--lib/Transforms/InstCombine/InstCombine.h33
-rw-r--r--lib/Transforms/InstCombine/InstCombineAddSub.cpp817
-rw-r--r--lib/Transforms/InstCombine/InstCombineAndOrXor.cpp364
-rw-r--r--lib/Transforms/InstCombine/InstCombineCalls.cpp219
-rw-r--r--lib/Transforms/InstCombine/InstCombineCasts.cpp35
-rw-r--r--lib/Transforms/InstCombine/InstCombineCompares.cpp45
-rw-r--r--lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp100
-rw-r--r--lib/Transforms/InstCombine/InstCombineMulDivRem.cpp254
-rw-r--r--lib/Transforms/InstCombine/InstCombinePHI.cpp6
-rw-r--r--lib/Transforms/InstCombine/InstCombineSelect.cpp32
-rw-r--r--lib/Transforms/InstCombine/InstCombineShifts.cpp175
-rw-r--r--lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp354
-rw-r--r--lib/Transforms/InstCombine/InstCombineVectorOps.cpp7
-rw-r--r--lib/Transforms/InstCombine/InstCombineWorklist.h12
-rw-r--r--lib/Transforms/InstCombine/InstructionCombining.cpp487
-rw-r--r--lib/Transforms/Instrumentation/AddressSanitizer.cpp873
-rw-r--r--lib/Transforms/Instrumentation/BlackList.cpp48
-rw-r--r--lib/Transforms/Instrumentation/BlackList.h3
-rw-r--r--lib/Transforms/Instrumentation/BoundsChecking.cpp27
-rw-r--r--lib/Transforms/Instrumentation/CMakeLists.txt1
-rw-r--r--lib/Transforms/Instrumentation/EdgeProfiling.cpp11
-rw-r--r--lib/Transforms/Instrumentation/GCOVProfiling.cpp106
-rw-r--r--lib/Transforms/Instrumentation/Instrumentation.cpp2
-rw-r--r--lib/Transforms/Instrumentation/MaximumSpanningTree.h4
-rw-r--r--lib/Transforms/Instrumentation/MemorySanitizer.cpp1857
-rw-r--r--lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp21
-rw-r--r--lib/Transforms/Instrumentation/PathProfiling.cpp23
-rw-r--r--lib/Transforms/Instrumentation/ProfilingUtils.cpp10
-rw-r--r--lib/Transforms/Instrumentation/ThreadSanitizer.cpp213
-rw-r--r--lib/Transforms/Scalar/ADCE.cpp12
-rw-r--r--lib/Transforms/Scalar/BasicBlockPlacement.cpp6
-rw-r--r--lib/Transforms/Scalar/CMakeLists.txt1
-rw-r--r--lib/Transforms/Scalar/CodeGenPrepare.cpp724
-rw-r--r--lib/Transforms/Scalar/ConstantProp.cpp12
-rw-r--r--lib/Transforms/Scalar/CorrelatedValuePropagation.cpp15
-rw-r--r--lib/Transforms/Scalar/DCE.cpp15
-rw-r--r--lib/Transforms/Scalar/DeadStoreElimination.cpp225
-rw-r--r--lib/Transforms/Scalar/EarlyCSE.cpp130
-rw-r--r--lib/Transforms/Scalar/GVN.cpp85
-rw-r--r--lib/Transforms/Scalar/GlobalMerge.cpp63
-rw-r--r--lib/Transforms/Scalar/IndVarSimplify.cpp53
-rw-r--r--lib/Transforms/Scalar/JumpThreading.cpp51
-rw-r--r--lib/Transforms/Scalar/LICM.cpp56
-rw-r--r--lib/Transforms/Scalar/LoopDeletion.cpp6
-rw-r--r--lib/Transforms/Scalar/LoopIdiomRecognize.cpp546
-rw-r--r--lib/Transforms/Scalar/LoopInstSimplify.cpp10
-rw-r--r--lib/Transforms/Scalar/LoopRotation.cpp22
-rw-r--r--lib/Transforms/Scalar/LoopStrengthReduce.cpp502
-rw-r--r--lib/Transforms/Scalar/LoopUnrollPass.cpp24
-rw-r--r--lib/Transforms/Scalar/LoopUnswitch.cpp43
-rw-r--r--lib/Transforms/Scalar/LowerAtomic.cpp6
-rw-r--r--lib/Transforms/Scalar/MemCpyOptimizer.cpp80
-rw-r--r--lib/Transforms/Scalar/ObjCARC.cpp233
-rw-r--r--lib/Transforms/Scalar/Reassociate.cpp132
-rw-r--r--lib/Transforms/Scalar/Reg2Mem.cpp14
-rw-r--r--lib/Transforms/Scalar/SCCP.cpp36
-rw-r--r--lib/Transforms/Scalar/SROA.cpp3711
-rw-r--r--lib/Transforms/Scalar/Scalar.cpp11
-rw-r--r--lib/Transforms/Scalar/ScalarReplAggregates.cpp46
-rw-r--r--lib/Transforms/Scalar/SimplifyCFGPass.cpp51
-rw-r--r--lib/Transforms/Scalar/SimplifyLibCalls.cpp1616
-rw-r--r--lib/Transforms/Scalar/Sink.cpp6
-rw-r--r--lib/Transforms/Scalar/TailRecursionElimination.cpp24
-rw-r--r--lib/Transforms/Utils/AddrModeMatcher.cpp577
-rw-r--r--lib/Transforms/Utils/BasicBlockUtils.cpp55
-rw-r--r--lib/Transforms/Utils/BreakCriticalEdges.cpp12
-rw-r--r--lib/Transforms/Utils/BuildLibCalls.cpp172
-rw-r--r--lib/Transforms/Utils/BypassSlowDivision.cpp31
-rw-r--r--lib/Transforms/Utils/CMakeLists.txt4
-rw-r--r--lib/Transforms/Utils/CloneFunction.cpp36
-rw-r--r--lib/Transforms/Utils/CloneModule.cpp10
-rw-r--r--lib/Transforms/Utils/CmpInstAnalysis.cpp4
-rw-r--r--lib/Transforms/Utils/CodeExtractor.cpp22
-rw-r--r--lib/Transforms/Utils/DemoteRegToStack.cpp13
-rw-r--r--lib/Transforms/Utils/InlineFunction.cpp45
-rw-r--r--lib/Transforms/Utils/InstructionNamer.cpp4
-rw-r--r--lib/Transforms/Utils/IntegerDivision.cpp420
-rw-r--r--lib/Transforms/Utils/LCSSA.cpp29
-rw-r--r--lib/Transforms/Utils/Local.cpp150
-rw-r--r--lib/Transforms/Utils/LoopSimplify.cpp31
-rw-r--r--lib/Transforms/Utils/LoopUnroll.cpp2
-rw-r--r--lib/Transforms/Utils/LoopUnrollRuntime.cpp2
-rw-r--r--lib/Transforms/Utils/LowerExpectIntrinsic.cpp20
-rw-r--r--lib/Transforms/Utils/LowerInvoke.cpp18
-rw-r--r--lib/Transforms/Utils/LowerSwitch.cpp12
-rw-r--r--lib/Transforms/Utils/Mem2Reg.cpp8
-rw-r--r--lib/Transforms/Utils/MetaRenamer.cpp131
-rw-r--r--lib/Transforms/Utils/ModuleUtils.cpp8
-rw-r--r--lib/Transforms/Utils/PromoteMemoryToRegister.cpp46
-rw-r--r--lib/Transforms/Utils/SSAUpdater.cpp8
-rw-r--r--lib/Transforms/Utils/SimplifyCFG.cpp1206
-rw-r--r--lib/Transforms/Utils/SimplifyIndVar.cpp14
-rw-r--r--lib/Transforms/Utils/SimplifyInstructions.cpp12
-rw-r--r--lib/Transforms/Utils/SimplifyLibCalls.cpp1894
-rw-r--r--lib/Transforms/Utils/UnifyFunctionExitNodes.cpp10
-rw-r--r--lib/Transforms/Utils/Utils.cpp1
-rw-r--r--lib/Transforms/Utils/ValueMapper.cpp12
-rw-r--r--lib/Transforms/Vectorize/BBVectorize.cpp1110
-rw-r--r--lib/Transforms/Vectorize/CMakeLists.txt1
-rw-r--r--lib/Transforms/Vectorize/LoopVectorize.cpp3080
-rw-r--r--lib/Transforms/Vectorize/Vectorize.cpp18
124 files changed, 19313 insertions, 5594 deletions
diff --git a/lib/Transforms/Hello/Hello.cpp b/lib/Transforms/Hello/Hello.cpp
index b0e22de..9f2343b 100644
--- a/lib/Transforms/Hello/Hello.cpp
+++ b/lib/Transforms/Hello/Hello.cpp
@@ -13,10 +13,10 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "hello"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
-#include "llvm/Function.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(HelloCounter, "Counts number of functions greeted");
diff --git a/lib/Transforms/IPO/ArgumentPromotion.cpp b/lib/Transforms/IPO/ArgumentPromotion.cpp
index b94dd69..385544a 100644
--- a/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ b/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -31,21 +31,21 @@
#define DEBUG_TYPE "argpromotion"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/CallGraphSCCPass.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
-#include "llvm/Support/CallSite.h"
+#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
#include <set>
using namespace llvm;
@@ -153,7 +153,8 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
SmallPtrSet<Argument*, 8> ArgsToPromote;
SmallPtrSet<Argument*, 8> ByValArgsToTransform;
for (unsigned i = 0; i != PointerArgs.size(); ++i) {
- bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
+ bool isByVal=F->getAttributes().
+ hasAttribute(PointerArgs[i].second+1, Attribute::ByVal);
Argument *PtrArg = PointerArgs[i].first;
Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
@@ -510,15 +511,17 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
// what the new GEP/Load instructions we are inserting look like.
std::map<IndicesVector, LoadInst*> OriginalLoads;
- // Attributes - Keep track of the parameter attributes for the arguments
+ // Attribute - Keep track of the parameter attributes for the arguments
// that we are *not* promoting. For the ones that we do promote, the parameter
// attributes are lost
SmallVector<AttributeWithIndex, 8> AttributesVec;
- const AttrListPtr &PAL = F->getAttributes();
+ const AttributeSet &PAL = F->getAttributes();
// Add any return attributes.
- if (Attributes attrs = PAL.getRetAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
+ Attribute attrs = PAL.getRetAttributes();
+ if (attrs.hasAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::ReturnIndex,
+ attrs));
// First, determine the new argument list
unsigned ArgIndex = 1;
@@ -534,7 +537,8 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
} else if (!ArgsToPromote.count(I)) {
// Unchanged argument
Params.push_back(I->getType());
- if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
+ Attribute attrs = PAL.getParamAttributes(ArgIndex);
+ if (attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
} else if (I->use_empty()) {
// Dead argument (which are always marked as promotable)
@@ -587,19 +591,13 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
}
// Add any function attributes.
- if (Attributes attrs = PAL.getFnAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
+ attrs = PAL.getFnAttributes();
+ if (attrs.hasAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::FunctionIndex,
+ attrs));
Type *RetTy = FTy->getReturnType();
- // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
- // have zero fixed arguments.
- bool ExtraArgHack = false;
- if (Params.empty() && FTy->isVarArg()) {
- ExtraArgHack = true;
- Params.push_back(Type::getInt32Ty(F->getContext()));
- }
-
// Construct the new function type using the new arguments.
FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
@@ -613,7 +611,7 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
// Recompute the parameter attributes list based on the new arguments for
// the function.
- NF->setAttributes(AttrListPtr::get(AttributesVec));
+ NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
AttributesVec.clear();
F->getParent()->getFunctionList().insert(F, NF);
@@ -638,11 +636,13 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
CallSite CS(F->use_back());
assert(CS.getCalledFunction() == F);
Instruction *Call = CS.getInstruction();
- const AttrListPtr &CallPAL = CS.getAttributes();
+ const AttributeSet &CallPAL = CS.getAttributes();
// Add any return attributes.
- if (Attributes attrs = CallPAL.getRetAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
+ Attribute attrs = CallPAL.getRetAttributes();
+ if (attrs.hasAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::ReturnIndex,
+ attrs));
// Loop over the operands, inserting GEP and loads in the caller as
// appropriate.
@@ -653,7 +653,8 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
Args.push_back(*AI); // Unmodified argument
- if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
+ Attribute Attrs = CallPAL.getParamAttributes(ArgIndex);
+ if (Attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
} else if (ByValArgsToTransform.count(I)) {
@@ -711,30 +712,32 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
}
}
- if (ExtraArgHack)
- Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
-
// Push any varargs arguments on the list.
for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
Args.push_back(*AI);
- if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
+ Attribute Attrs = CallPAL.getParamAttributes(ArgIndex);
+ if (Attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
}
// Add any function attributes.
- if (Attributes attrs = CallPAL.getFnAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
+ attrs = CallPAL.getFnAttributes();
+ if (attrs.hasAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::FunctionIndex,
+ attrs));
Instruction *New;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args, "", Call);
cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
- cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec));
+ cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
+ AttributesVec));
} else {
New = CallInst::Create(NF, Args, "", Call);
cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
- cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec));
+ cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
+ AttributesVec));
if (cast<CallInst>(Call)->isTailCall())
cast<CallInst>(New)->setTailCall();
}
@@ -870,16 +873,9 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
}
// Increment I2 past all of the arguments added for this promoted pointer.
- for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
- ++I2;
+ std::advance(I2, ArgIndices.size());
}
- // Notify the alias analysis implementation that we inserted a new argument.
- if (ExtraArgHack)
- AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())),
- NF->arg_begin());
-
-
// Tell the alias analysis that the old function is about to disappear.
AA.replaceWithNewValue(F, NF);
diff --git a/lib/Transforms/IPO/BarrierNoopPass.cpp b/lib/Transforms/IPO/BarrierNoopPass.cpp
new file mode 100644
index 0000000..2e32240
--- /dev/null
+++ b/lib/Transforms/IPO/BarrierNoopPass.cpp
@@ -0,0 +1,47 @@
+//===- BarrierNoopPass.cpp - A barrier pass for the pass manager ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// NOTE: DO NOT USE THIS IF AVOIDABLE
+//
+// This pass is a nonce pass intended to allow manipulation of the implicitly
+// nesting pass manager. For example, it can be used to cause a CGSCC pass
+// manager to be closed prior to running a new collection of function passes.
+//
+// FIXME: This is a huge HACK. This should be removed when the pass manager's
+// nesting is made explicit instead of implicit.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Pass.h"
+#include "llvm/Transforms/IPO.h"
+using namespace llvm;
+
+namespace {
+/// \brief A nonce module pass used to place a barrier in a pass manager.
+///
+/// There is no mechanism for ending a CGSCC pass manager once one is started.
+/// This prevents extension points from having clear deterministic ordering
+/// when they are phrased as non-module passes.
+class BarrierNoop : public ModulePass {
+public:
+ static char ID; // Pass identification.
+
+ BarrierNoop() : ModulePass(ID) {
+ initializeBarrierNoopPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnModule(Module &M) { return false; }
+};
+}
+
+ModulePass *llvm::createBarrierNoopPass() { return new BarrierNoop(); }
+
+char BarrierNoop::ID = 0;
+INITIALIZE_PASS(BarrierNoop, "barrier", "A No-Op Barrier Pass",
+ false, false)
diff --git a/lib/Transforms/IPO/CMakeLists.txt b/lib/Transforms/IPO/CMakeLists.txt
index 3f6b1de..90c1c33 100644
--- a/lib/Transforms/IPO/CMakeLists.txt
+++ b/lib/Transforms/IPO/CMakeLists.txt
@@ -1,5 +1,6 @@
add_llvm_library(LLVMipo
ArgumentPromotion.cpp
+ BarrierNoopPass.cpp
ConstantMerge.cpp
DeadArgumentElimination.cpp
ExtractGV.cpp
diff --git a/lib/Transforms/IPO/ConstantMerge.cpp b/lib/Transforms/IPO/ConstantMerge.cpp
index d8fae8a..8336d3a 100644
--- a/lib/Transforms/IPO/ConstantMerge.cpp
+++ b/lib/Transforms/IPO/ConstantMerge.cpp
@@ -19,15 +19,15 @@
#define DEBUG_TYPE "constmerge"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
using namespace llvm;
STATISTIC(NumMerged, "Number of global constants merged");
@@ -50,7 +50,7 @@ namespace {
// alignment to a concrete value.
unsigned getAlignment(GlobalVariable *GV) const;
- const TargetData *TD;
+ const DataLayout *TD;
};
}
@@ -98,7 +98,7 @@ unsigned ConstantMerge::getAlignment(GlobalVariable *GV) const {
}
bool ConstantMerge::runOnModule(Module &M) {
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
// Find all the globals that are marked "used". These cannot be merged.
SmallPtrSet<const GlobalValue*, 8> UsedGlobals;
@@ -107,7 +107,7 @@ bool ConstantMerge::runOnModule(Module &M) {
// Map unique <constants, has-unknown-alignment> pairs to globals. We don't
// want to merge globals of unknown alignment with those of explicit
- // alignment. If we have TargetData, we always know the alignment.
+ // alignment. If we have DataLayout, we always know the alignment.
DenseMap<PointerIntPair<Constant*, 1, bool>, GlobalVariable*> CMap;
// Replacements - This vector contains a list of replacements to perform.
diff --git a/lib/Transforms/IPO/DeadArgumentElimination.cpp b/lib/Transforms/IPO/DeadArgumentElimination.cpp
index fd23a93..ff040e7 100644
--- a/lib/Transforms/IPO/DeadArgumentElimination.cpp
+++ b/lib/Transforms/IPO/DeadArgumentElimination.cpp
@@ -19,20 +19,23 @@
#define DEBUG_TYPE "deadargelim"
#include "llvm/Transforms/IPO.h"
-#include "llvm/CallingConv.h"
-#include "llvm/Constant.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
#include <map>
#include <set>
using namespace llvm;
@@ -121,6 +124,15 @@ namespace {
typedef SmallVector<RetOrArg, 5> UseVector;
+ // Map each LLVM function to corresponding metadata with debug info. If
+ // the function is replaced with another one, we should patch the pointer
+ // to LLVM function in metadata.
+ // As the code generation for module is finished (and DIBuilder is
+ // finalized) we assume that subprogram descriptors won't be changed, and
+ // they are stored in map for short duration anyway.
+ typedef DenseMap<Function*, DISubprogram> FunctionDIMap;
+ FunctionDIMap FunctionDIs;
+
protected:
// DAH uses this to specify a different ID.
explicit DAE(char &ID) : ModulePass(ID) {}
@@ -141,6 +153,7 @@ namespace {
unsigned RetValNum = 0);
Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
+ void CollectFunctionDIs(Module &M);
void SurveyFunction(const Function &F);
void MarkValue(const RetOrArg &RA, Liveness L,
const UseVector &MaybeLiveUses);
@@ -180,6 +193,33 @@ INITIALIZE_PASS(DAH, "deadarghaX0r",
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
+/// CollectFunctionDIs - Map each function in the module to its debug info
+/// descriptor.
+void DAE::CollectFunctionDIs(Module &M) {
+ FunctionDIs.clear();
+
+ for (Module::named_metadata_iterator I = M.named_metadata_begin(),
+ E = M.named_metadata_end(); I != E; ++I) {
+ NamedMDNode &NMD = *I;
+ for (unsigned MDIndex = 0, MDNum = NMD.getNumOperands();
+ MDIndex < MDNum; ++MDIndex) {
+ MDNode *Node = NMD.getOperand(MDIndex);
+ if (!DIDescriptor(Node).isCompileUnit())
+ continue;
+ DICompileUnit CU(Node);
+ const DIArray &SPs = CU.getSubprograms();
+ for (unsigned SPIndex = 0, SPNum = SPs.getNumElements();
+ SPIndex < SPNum; ++SPIndex) {
+ DISubprogram SP(SPs.getElement(SPIndex));
+ if (!SP.Verify())
+ continue;
+ if (Function *F = SP.getFunction())
+ FunctionDIs[F] = SP;
+ }
+ }
+ }
+}
+
/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
/// llvm.vastart is never called, the varargs list is dead for the function.
bool DAE::DeleteDeadVarargs(Function &Fn) {
@@ -231,14 +271,16 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
// Drop any attributes that were on the vararg arguments.
- AttrListPtr PAL = CS.getAttributes();
+ AttributeSet PAL = CS.getAttributes();
if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
SmallVector<AttributeWithIndex, 8> AttributesVec;
for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
AttributesVec.push_back(PAL.getSlot(i));
- if (Attributes FnAttrs = PAL.getFnAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
- PAL = AttrListPtr::get(AttributesVec);
+ Attribute FnAttrs = PAL.getFnAttributes();
+ if (FnAttrs.hasAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::FunctionIndex,
+ FnAttrs));
+ PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
}
Instruction *New;
@@ -284,6 +326,11 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
I2->takeName(I);
}
+ // Patch the pointer to LLVM function in debug info descriptor.
+ FunctionDIMap::iterator DI = FunctionDIs.find(&Fn);
+ if (DI != FunctionDIs.end())
+ DI->second.replaceFunction(NF);
+
// Finally, nuke the old function.
Fn.eraseFromParent();
return true;
@@ -651,11 +698,11 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// Set up to build a new list of parameter attributes.
SmallVector<AttributeWithIndex, 8> AttributesVec;
- const AttrListPtr &PAL = F->getAttributes();
+ const AttributeSet &PAL = F->getAttributes();
// The existing function return attributes.
- Attributes RAttrs = PAL.getRetAttributes();
- Attributes FnAttrs = PAL.getFnAttributes();
+ Attribute RAttrs = PAL.getRetAttributes();
+ Attribute FnAttrs = PAL.getFnAttributes();
// Find out the new return value.
@@ -717,13 +764,17 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// here. Currently, this should not be possible, but special handling might be
// required when new return value attributes are added.
if (NRetTy->isVoidTy())
- RAttrs &= ~Attribute::typeIncompatible(NRetTy);
+ RAttrs =
+ Attribute::get(NRetTy->getContext(), AttrBuilder(RAttrs).
+ removeAttributes(Attribute::typeIncompatible(NRetTy)));
else
- assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
- && "Return attributes no longer compatible?");
+ assert(!AttrBuilder(RAttrs).
+ hasAttributes(Attribute::typeIncompatible(NRetTy)) &&
+ "Return attributes no longer compatible?");
- if (RAttrs)
- AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
+ if (RAttrs.hasAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::ReturnIndex,
+ RAttrs));
// Remember which arguments are still alive.
SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
@@ -740,7 +791,8 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// Get the original parameter attributes (skipping the first one, that is
// for the return value.
- if (Attributes Attrs = PAL.getParamAttributes(i + 1))
+ Attribute Attrs = PAL.getParamAttributes(i + 1);
+ if (Attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
} else {
++NumArgumentsEliminated;
@@ -749,11 +801,12 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
}
}
- if (FnAttrs != Attribute::None)
- AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
+ if (FnAttrs.hasAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::FunctionIndex,
+ FnAttrs));
// Reconstruct the AttributesList based on the vector we constructed.
- AttrListPtr NewPAL = AttrListPtr::get(AttributesVec);
+ AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
// Create the new function type based on the recomputed parameters.
FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
@@ -780,15 +833,18 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
Instruction *Call = CS.getInstruction();
AttributesVec.clear();
- const AttrListPtr &CallPAL = CS.getAttributes();
+ const AttributeSet &CallPAL = CS.getAttributes();
// The call return attributes.
- Attributes RAttrs = CallPAL.getRetAttributes();
- Attributes FnAttrs = CallPAL.getFnAttributes();
+ Attribute RAttrs = CallPAL.getRetAttributes();
+ Attribute FnAttrs = CallPAL.getFnAttributes();
// Adjust in case the function was changed to return void.
- RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
- if (RAttrs)
- AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
+ RAttrs =
+ Attribute::get(NF->getContext(), AttrBuilder(RAttrs).
+ removeAttributes(Attribute::typeIncompatible(NF->getReturnType())));
+ if (RAttrs.hasAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::ReturnIndex,
+ RAttrs));
// Declare these outside of the loops, so we can reuse them for the second
// loop, which loops the varargs.
@@ -800,22 +856,25 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
if (ArgAlive[i]) {
Args.push_back(*I);
// Get original parameter attributes, but skip return attributes.
- if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
+ Attribute Attrs = CallPAL.getParamAttributes(i + 1);
+ if (Attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
}
// Push any varargs arguments on the list. Don't forget their attributes.
for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
Args.push_back(*I);
- if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
+ Attribute Attrs = CallPAL.getParamAttributes(i + 1);
+ if (Attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
}
- if (FnAttrs != Attribute::None)
- AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
+ if (FnAttrs.hasAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::FunctionIndex,
+ FnAttrs));
// Reconstruct the AttributesList based on the vector we constructed.
- AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec);
+ AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
Instruction *New;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
@@ -952,6 +1011,11 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
BB->getInstList().erase(RI);
}
+ // Patch the pointer to LLVM function in debug info descriptor.
+ FunctionDIMap::iterator DI = FunctionDIs.find(F);
+ if (DI != FunctionDIs.end())
+ DI->second.replaceFunction(NF);
+
// Now that the old function is dead, delete it.
F->eraseFromParent();
@@ -961,6 +1025,9 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
bool DAE::runOnModule(Module &M) {
bool Changed = false;
+ // Collect debug info descriptors for functions.
+ CollectFunctionDIs(M);
+
// First pass: Do a simple check to see if any functions can have their "..."
// removed. We can do this if they never call va_start. This loop cannot be
// fused with the next loop, because deleting a function invalidates
diff --git a/lib/Transforms/IPO/ExtractGV.cpp b/lib/Transforms/IPO/ExtractGV.cpp
index 4c7f0ed..8a6bfc6 100644
--- a/lib/Transforms/IPO/ExtractGV.cpp
+++ b/lib/Transforms/IPO/ExtractGV.cpp
@@ -11,13 +11,13 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/Constants.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/SetVector.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include <algorithm>
using namespace llvm;
@@ -51,32 +51,75 @@ namespace {
// Visit the GlobalVariables.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
- if (deleteStuff == (bool)Named.count(I) && !I->isDeclaration()) {
- I->setInitializer(0);
- } else {
+ bool Delete =
+ deleteStuff == (bool)Named.count(I) && !I->isDeclaration();
+ if (!Delete) {
if (I->hasAvailableExternallyLinkage())
continue;
if (I->getName() == "llvm.global_ctors")
continue;
}
- if (I->hasLocalLinkage())
+ bool Local = I->hasLocalLinkage();
+ if (Local)
I->setVisibility(GlobalValue::HiddenVisibility);
- I->setLinkage(GlobalValue::ExternalLinkage);
+
+ if (Local || Delete)
+ I->setLinkage(GlobalValue::ExternalLinkage);
+
+ if (Delete)
+ I->setInitializer(0);
}
// Visit the Functions.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
- if (deleteStuff == (bool)Named.count(I) && !I->isDeclaration()) {
- I->deleteBody();
- } else {
+ bool Delete =
+ deleteStuff == (bool)Named.count(I) && !I->isDeclaration();
+ if (!Delete) {
if (I->hasAvailableExternallyLinkage())
continue;
}
- if (I->hasLocalLinkage())
+ bool Local = I->hasLocalLinkage();
+ if (Local)
I->setVisibility(GlobalValue::HiddenVisibility);
- I->setLinkage(GlobalValue::ExternalLinkage);
+
+ if (Local || Delete)
+ I->setLinkage(GlobalValue::ExternalLinkage);
+
+ if (Delete)
+ I->deleteBody();
+ }
+
+ // Visit the Aliases.
+ for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
+ I != E;) {
+ Module::alias_iterator CurI = I;
+ ++I;
+
+ if (CurI->hasLocalLinkage()) {
+ CurI->setVisibility(GlobalValue::HiddenVisibility);
+ CurI->setLinkage(GlobalValue::ExternalLinkage);
+ }
+
+ if (deleteStuff == (bool)Named.count(CurI)) {
+ Type *Ty = CurI->getType()->getElementType();
+
+ CurI->removeFromParent();
+ llvm::Value *Declaration;
+ if (FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
+ Declaration = Function::Create(FTy, GlobalValue::ExternalLinkage,
+ CurI->getName(), &M);
+
+ } else {
+ Declaration =
+ new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage,
+ 0, CurI->getName());
+
+ }
+ CurI->replaceAllUsesWith(Declaration);
+ delete CurI;
+ }
}
return true;
diff --git a/lib/Transforms/IPO/FunctionAttrs.cpp b/lib/Transforms/IPO/FunctionAttrs.cpp
index f3f6228..e9bc4ad 100644
--- a/lib/Transforms/IPO/FunctionAttrs.cpp
+++ b/lib/Transforms/IPO/FunctionAttrs.cpp
@@ -20,17 +20,17 @@
#define DEBUG_TYPE "functionattrs"
#include "llvm/Transforms/IPO.h"
-#include "llvm/CallGraphSCCPass.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/CallGraph.h"
-#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/UniqueVector.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/InstIterator.h"
using namespace llvm;
@@ -212,10 +212,17 @@ bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
MadeChange = true;
// Clear out any existing attributes.
- F->removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
+ AttrBuilder B;
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
+ F->removeAttribute(AttributeSet::FunctionIndex,
+ Attribute::get(F->getContext(), B));
// Add in the new attribute.
- F->addAttribute(~0, ReadsMemory? Attribute::ReadOnly : Attribute::ReadNone);
+ B.clear();
+ B.addAttribute(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
+ F->addAttribute(AttributeSet::FunctionIndex,
+ Attribute::get(F->getContext(), B));
if (ReadsMemory)
++NumReadOnly;
@@ -276,8 +283,6 @@ namespace {
void tooManyUses() { Captured = true; }
- bool shouldExplore(Use *U) { return true; }
-
bool captured(Use *U) {
CallSite CS(U->getUser());
if (!CS.getInstruction()) { Captured = true; return true; }
@@ -352,6 +357,9 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
ArgumentGraph AG;
+ AttrBuilder B;
+ B.addAttribute(Attribute::NoCapture);
+
// Check each function in turn, determining which pointer arguments are not
// captured.
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
@@ -373,7 +381,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end();
A != E; ++A) {
if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
- A->addAttr(Attribute::NoCapture);
+ A->addAttr(Attribute::get(F->getContext(), B));
++NumNoCapture;
Changed = true;
}
@@ -388,7 +396,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
if (!Tracker.Captured) {
if (Tracker.Uses.empty()) {
// If it's trivially not captured, mark it nocapture now.
- A->addAttr(Attribute::NoCapture);
+ A->addAttr(Attribute::get(F->getContext(), B));
++NumNoCapture;
Changed = true;
} else {
@@ -421,7 +429,9 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
// eg. "void f(int* x) { if (...) f(x); }"
if (ArgumentSCC[0]->Uses.size() == 1 &&
ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
- ArgumentSCC[0]->Definition->addAttr(Attribute::NoCapture);
+ ArgumentSCC[0]->
+ Definition->
+ addAttr(Attribute::get(ArgumentSCC[0]->Definition->getContext(), B));
++NumNoCapture;
Changed = true;
}
@@ -463,7 +473,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
Argument *A = ArgumentSCC[i]->Definition;
- A->addAttr(Attribute::NoCapture);
+ A->addAttr(Attribute::get(A->getContext(), B));
++NumNoCapture;
Changed = true;
}
@@ -476,13 +486,13 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
/// or a pointer that doesn't alias any other pointer visible to the caller.
bool FunctionAttrs::IsFunctionMallocLike(Function *F,
SmallPtrSet<Function*, 8> &SCCNodes) const {
- UniqueVector<Value *> FlowsToReturn;
+ SmallSetVector<Value *, 8> FlowsToReturn;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator()))
FlowsToReturn.insert(Ret->getReturnValue());
for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
- Value *RetVal = FlowsToReturn[i+1]; // UniqueVector[0] is reserved.
+ Value *RetVal = FlowsToReturn[i];
if (Constant *C = dyn_cast<Constant>(RetVal)) {
if (!C->isNullValue() && !isa<UndefValue>(C))
diff --git a/lib/Transforms/IPO/GlobalDCE.cpp b/lib/Transforms/IPO/GlobalDCE.cpp
index 18c1c7b..dc99492 100644
--- a/lib/Transforms/IPO/GlobalDCE.cpp
+++ b/lib/Transforms/IPO/GlobalDCE.cpp
@@ -17,11 +17,11 @@
#define DEBUG_TYPE "globaldce"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
using namespace llvm;
STATISTIC(NumAliases , "Number of global aliases removed");
diff --git a/lib/Transforms/IPO/GlobalOpt.cpp b/lib/Transforms/IPO/GlobalOpt.cpp
index b888e95..abd37c2 100644
--- a/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/lib/Transforms/IPO/GlobalOpt.cpp
@@ -15,29 +15,29 @@
#define DEBUG_TYPE "globalopt"
#include "llvm/Transforms/IPO.h"
-#include "llvm/CallingConv.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/Target/TargetLibraryInfo.h"
#include <algorithm>
using namespace llvm;
@@ -83,7 +83,7 @@ namespace {
const GlobalStatus &GS);
bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
- TargetData *TD;
+ DataLayout *TD;
TargetLibraryInfo *TLI;
};
}
@@ -148,17 +148,13 @@ struct GlobalStatus {
/// an instruction (e.g. a constant expr or GV initializer).
bool HasNonInstructionUser;
- /// HasPHIUser - Set to true if this global has a user that is a PHI node.
- bool HasPHIUser;
-
/// AtomicOrdering - Set to the strongest atomic ordering requirement.
AtomicOrdering Ordering;
GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
StoredOnceValue(0), AccessingFunction(0),
HasMultipleAccessingFunctions(false),
- HasNonInstructionUser(false), HasPHIUser(false),
- Ordering(NotAtomic) {}
+ HasNonInstructionUser(false), Ordering(NotAtomic) {}
};
}
@@ -200,11 +196,11 @@ static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
const User *U = *UI;
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
GS.HasNonInstructionUser = true;
-
+
// If the result of the constantexpr isn't pointer type, then we won't
// know to expect it in various places. Just reject early.
if (!isa<PointerType>(CE->getType())) return true;
-
+
if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
} else if (const Instruction *I = dyn_cast<Instruction>(U)) {
if (!GS.HasMultipleAccessingFunctions) {
@@ -225,6 +221,7 @@ static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
// Don't hack on volatile stores.
if (SI->isVolatile()) return true;
+
GS.Ordering = StrongerOrdering(GS.Ordering, SI->getOrdering());
// If this is a direct store to the global (i.e., the global is a scalar
@@ -234,6 +231,14 @@ static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
SI->getOperand(1))) {
Value *StoredVal = SI->getOperand(0);
+
+ if (Constant *C = dyn_cast<Constant>(StoredVal)) {
+ if (C->isThreadDependent()) {
+ // The stored value changes between threads; don't track it.
+ return true;
+ }
+ }
+
if (StoredVal == GV->getInitializer()) {
if (GS.StoredType < GlobalStatus::isInitializerStored)
GS.StoredType = GlobalStatus::isInitializerStored;
@@ -265,7 +270,6 @@ static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
// have to be careful about infinite recursion.
if (PHIUsers.insert(PN)) // Not already visited.
if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
- GS.HasPHIUser = true;
} else if (isa<CmpInst>(I)) {
GS.isCompared = true;
} else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
@@ -464,7 +468,7 @@ static bool CleanupPointerRootUsers(GlobalVariable *GV,
/// quick scan over the use list to clean up the easy and obvious cruft. This
/// returns true if it made a change.
static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
- TargetData *TD, TargetLibraryInfo *TLI) {
+ DataLayout *TD, TargetLibraryInfo *TLI) {
bool Changed = false;
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
User *U = *UI++;
@@ -656,7 +660,7 @@ static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
/// behavior of the program in a more fine-grained way. We have determined that
/// this transformation is safe already. We return the first global variable we
/// insert so that the caller can reprocess it.
-static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
+static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &TD) {
// Make sure this global only has simple uses that we can SRA.
if (!GlobalUsersSafeToSRA(GV))
return 0;
@@ -932,7 +936,7 @@ static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
/// if the loaded value is dynamically null, then we know that they cannot be
/// reachable with a null optimize away the load.
static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
- TargetData *TD,
+ DataLayout *TD,
TargetLibraryInfo *TLI) {
bool Changed = false;
@@ -962,7 +966,9 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
// If we get here we could have other crazy uses that are transitively
// loaded.
assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
- isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser)) &&
+ isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
+ isa<BitCastInst>(GlobalUser) ||
+ isa<GetElementPtrInst>(GlobalUser)) &&
"Only expect load and stores!");
}
}
@@ -994,7 +1000,7 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
/// instructions that are foldable.
static void ConstantPropUsersOf(Value *V,
- TargetData *TD, TargetLibraryInfo *TLI) {
+ DataLayout *TD, TargetLibraryInfo *TLI) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
if (Instruction *I = dyn_cast<Instruction>(*UI++))
if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) {
@@ -1017,7 +1023,7 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
CallInst *CI,
Type *AllocTy,
ConstantInt *NElements,
- TargetData *TD,
+ DataLayout *TD,
TargetLibraryInfo *TLI) {
DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n');
@@ -1466,7 +1472,7 @@ static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
/// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break
/// it up into multiple allocations of arrays of the fields.
static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
- Value *NElems, TargetData *TD,
+ Value *NElems, DataLayout *TD,
const TargetLibraryInfo *TLI) {
DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n');
Type *MAT = getMallocAllocatedType(CI, TLI);
@@ -1658,7 +1664,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
Type *AllocTy,
AtomicOrdering Ordering,
Module::global_iterator &GVI,
- TargetData *TD,
+ DataLayout *TD,
TargetLibraryInfo *TLI) {
if (!TD)
return false;
@@ -1757,7 +1763,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
AtomicOrdering Ordering,
Module::global_iterator &GVI,
- TargetData *TD, TargetLibraryInfo *TLI) {
+ DataLayout *TD, TargetLibraryInfo *TLI) {
// Ignore no-op GEPs and bitcasts.
StoredOnceVal = StoredOnceVal->stripPointerCasts();
@@ -2000,7 +2006,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
++NumMarked;
return true;
} else if (!GV->getInitializer()->getType()->isSingleValueType()) {
- if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
+ if (DataLayout *TD = getAnalysisIfAvailable<DataLayout>())
if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
GVI = FirstNewGV; // Don't skip the newly produced globals!
return true;
@@ -2059,25 +2065,26 @@ static void ChangeCalleesToFastCall(Function *F) {
}
}
-static AttrListPtr StripNest(const AttrListPtr &Attrs) {
+static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
- if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
+ if (!Attrs.getSlot(i).Attrs.hasAttribute(Attribute::Nest))
continue;
// There can be only one.
- return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
+ return Attrs.removeAttr(C, Attrs.getSlot(i).Index,
+ Attribute::get(C, Attribute::Nest));
}
return Attrs;
}
static void RemoveNestAttribute(Function *F) {
- F->setAttributes(StripNest(F->getAttributes()));
+ F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
if (isa<BlockAddress>(*UI))
continue;
CallSite User(cast<Instruction>(*UI));
- User.setAttributes(StripNest(User.getAttributes()));
+ User.setAttributes(StripNest(F->getContext(), User.getAttributes()));
}
}
@@ -2145,7 +2152,7 @@ bool GlobalOpt::OptimizeGlobalVars(Module &M) {
GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
if (GV == 0) return 0;
-
+
// Verify that the initializer is simple enough for us to handle. We are
// only allowed to optimize the initializer if it is unique.
if (!GV->hasUniqueInitializer()) return 0;
@@ -2251,10 +2258,10 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
}
-static inline bool
+static inline bool
isSimpleEnoughValueToCommit(Constant *C,
SmallPtrSet<Constant*, 8> &SimpleConstants,
- const TargetData *TD);
+ const DataLayout *TD);
/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
@@ -2267,13 +2274,13 @@ isSimpleEnoughValueToCommit(Constant *C,
/// time.
static bool isSimpleEnoughValueToCommitHelper(Constant *C,
SmallPtrSet<Constant*, 8> &SimpleConstants,
- const TargetData *TD) {
+ const DataLayout *TD) {
// Simple integer, undef, constant aggregate zero, global addresses, etc are
// all supported.
if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
isa<GlobalValue>(C))
return true;
-
+
// Aggregate values are safe if all their elements are.
if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
isa<ConstantVector>(C)) {
@@ -2284,7 +2291,7 @@ static bool isSimpleEnoughValueToCommitHelper(Constant *C,
}
return true;
}
-
+
// We don't know exactly what relocations are allowed in constant expressions,
// so we allow &global+constantoffset, which is safe and uniformly supported
// across targets.
@@ -2302,14 +2309,14 @@ static bool isSimpleEnoughValueToCommitHelper(Constant *C,
TD->getTypeSizeInBits(CE->getOperand(0)->getType()))
return false;
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
-
+
// GEP is fine if it is simple + constant offset.
case Instruction::GetElementPtr:
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
if (!isa<ConstantInt>(CE->getOperand(i)))
return false;
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
-
+
case Instruction::Add:
// We allow simple+cst.
if (!isa<ConstantInt>(CE->getOperand(1)))
@@ -2319,10 +2326,10 @@ static bool isSimpleEnoughValueToCommitHelper(Constant *C,
return false;
}
-static inline bool
+static inline bool
isSimpleEnoughValueToCommit(Constant *C,
SmallPtrSet<Constant*, 8> &SimpleConstants,
- const TargetData *TD) {
+ const DataLayout *TD) {
// If we already checked this constant, we win.
if (!SimpleConstants.insert(C)) return true;
// Check the constant.
@@ -2367,7 +2374,7 @@ static bool isSimpleEnoughPointerToCommit(Constant *C) {
return false;
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
-
+
// A constantexpr bitcast from a pointer to another pointer is a no-op,
// and we know how to evaluate it by moving the bitcast from the pointer
// operand to the value operand.
@@ -2378,7 +2385,7 @@ static bool isSimpleEnoughPointerToCommit(Constant *C) {
return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
}
}
-
+
return false;
}
@@ -2408,7 +2415,7 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
// Return the modified struct.
return ConstantStruct::get(STy, Elts);
}
-
+
ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
SequentialType *InitTy = cast<SequentialType>(Init->getType());
@@ -2453,7 +2460,7 @@ namespace {
/// Once an evaluation call fails, the evaluation object should not be reused.
class Evaluator {
public:
- Evaluator(const TargetData *TD, const TargetLibraryInfo *TLI)
+ Evaluator(const DataLayout *TD, const TargetLibraryInfo *TLI)
: TD(TD), TLI(TLI) {
ValueStack.push_back(new DenseMap<Value*, Constant*>);
}
@@ -2534,7 +2541,7 @@ private:
/// simple enough to live in a static initializer of a global.
SmallPtrSet<Constant*, 8> SimpleConstants;
- const TargetData *TD;
+ const DataLayout *TD;
const TargetLibraryInfo *TLI;
};
@@ -2585,23 +2592,23 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
if (!isSimpleEnoughPointerToCommit(Ptr))
// If this is too complex for us to commit, reject it.
return false;
-
+
Constant *Val = getVal(SI->getOperand(0));
// If this might be too difficult for the backend to handle (e.g. the addr
// of one global variable divided by another) then we can't commit it.
if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD))
return false;
-
+
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
if (CE->getOpcode() == Instruction::BitCast) {
// If we're evaluating a store through a bitcast, then we need
// to pull the bitcast off the pointer type and push it onto the
// stored value.
Ptr = CE->getOperand(0);
-
+
Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
-
+
// In order to push the bitcast onto the stored value, a bitcast
// from NewTy to Val's type must be legal. If it's not, we can try
// introspecting NewTy to find a legal conversion.
@@ -2626,12 +2633,12 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
return false;
}
}
-
+
// If we found compatible types, go ahead and push the bitcast
// onto the stored value.
Val = ConstantExpr::getBitCast(Val, NewTy);
}
-
+
MutatedMemory[Ptr] = Val;
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
InstResult = ConstantExpr::get(BO->getOpcode(),
@@ -2793,7 +2800,7 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
if (!CurInst->use_empty()) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
InstResult = ConstantFoldConstantExpression(CE, TD, TLI);
-
+
setVal(CurInst, InstResult);
}
@@ -2872,14 +2879,14 @@ bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
/// we can. Return true if we can, false otherwise.
-static bool EvaluateStaticConstructor(Function *F, const TargetData *TD,
+static bool EvaluateStaticConstructor(Function *F, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
// Call the function.
Evaluator Eval(TD, TLI);
Constant *RetValDummy;
bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
SmallVector<Constant*, 0>());
-
+
if (EvalSuccess) {
// We succeeded at evaluation: commit the result.
DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
@@ -2999,13 +3006,13 @@ static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
return 0;
Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
-
+
if (!Fn)
return 0;
FunctionType *FTy = Fn->getFunctionType();
-
- // Checking that the function has the right return type, the right number of
+
+ // Checking that the function has the right return type, the right number of
// parameters and that they all have pointer types should be enough.
if (!FTy->getReturnType()->isIntegerTy() ||
FTy->getNumParams() != 3 ||
@@ -3080,7 +3087,7 @@ bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
// and remove them.
bool Changed = false;
- for (Function::use_iterator I = CXAAtExitFn->use_begin(),
+ for (Function::use_iterator I = CXAAtExitFn->use_begin(),
E = CXAAtExitFn->use_end(); I != E;) {
// We're only interested in calls. Theoretically, we could handle invoke
// instructions as well, but neither llvm-gcc nor clang generate invokes
@@ -3089,7 +3096,7 @@ bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
if (!CI)
continue;
- Function *DtorFn =
+ Function *DtorFn =
dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
if (!DtorFn)
continue;
@@ -3113,7 +3120,7 @@ bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
bool GlobalOpt::runOnModule(Module &M) {
bool Changed = false;
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
// Try to find the llvm.globalctors list.
diff --git a/lib/Transforms/IPO/IPConstantPropagation.cpp b/lib/Transforms/IPO/IPConstantPropagation.cpp
index d757e1f..4ac1dfc 100644
--- a/lib/Transforms/IPO/IPConstantPropagation.cpp
+++ b/lib/Transforms/IPO/IPConstantPropagation.cpp
@@ -17,14 +17,14 @@
#define DEBUG_TYPE "ipconstprop"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/SmallVector.h"
using namespace llvm;
STATISTIC(NumArgumentsProped, "Number of args turned into constants");
diff --git a/lib/Transforms/IPO/IPO.cpp b/lib/Transforms/IPO/IPO.cpp
index 6233922..5d563d8 100644
--- a/lib/Transforms/IPO/IPO.cpp
+++ b/lib/Transforms/IPO/IPO.cpp
@@ -1,4 +1,4 @@
-//===-- Scalar.cpp --------------------------------------------------------===//
+//===-- IPO.cpp -----------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
@@ -95,7 +95,10 @@ void LLVMAddIPSCCPPass(LLVMPassManagerRef PM) {
}
void LLVMAddInternalizePass(LLVMPassManagerRef PM, unsigned AllButMain) {
- unwrap(PM)->add(createInternalizePass(AllButMain != 0));
+ std::vector<const char *> Export;
+ if (AllButMain)
+ Export.push_back("main");
+ unwrap(PM)->add(createInternalizePass(Export));
}
void LLVMAddStripDeadPrototypesPass(LLVMPassManagerRef PM) {
diff --git a/lib/Transforms/IPO/InlineAlways.cpp b/lib/Transforms/IPO/InlineAlways.cpp
index 664ddf6..2971803 100644
--- a/lib/Transforms/IPO/InlineAlways.cpp
+++ b/lib/Transforms/IPO/InlineAlways.cpp
@@ -13,18 +13,18 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "inline"
-#include "llvm/CallingConv.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CallSite.h"
-#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/InlinerPass.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/ADT/SmallPtrSet.h"
using namespace llvm;
@@ -32,6 +32,7 @@ namespace {
// AlwaysInliner only inlines functions that are mark as "always inline".
class AlwaysInliner : public Inliner {
+ InlineCostAnalyzer CA;
public:
// Use extremely low threshold.
AlwaysInliner() : Inliner(ID, -2000000000, /*InsertLifetime*/true) {
@@ -43,6 +44,10 @@ namespace {
}
static char ID; // Pass identification, replacement for typeid
virtual InlineCost getInlineCost(CallSite CS);
+
+ using llvm::Pass::doInitialization;
+ using llvm::Pass::doFinalization;
+
virtual bool doFinalization(CallGraph &CG) {
return removeDeadFunctions(CG, /*AlwaysInlineOnly=*/true);
}
@@ -63,35 +68,6 @@ Pass *llvm::createAlwaysInlinerPass(bool InsertLifetime) {
return new AlwaysInliner(InsertLifetime);
}
-/// \brief Minimal filter to detect invalid constructs for inlining.
-static bool isInlineViable(Function &F) {
- bool ReturnsTwice = F.hasFnAttr(Attribute::ReturnsTwice);
- for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
- // Disallow inlining of functions which contain an indirect branch.
- if (isa<IndirectBrInst>(BI->getTerminator()))
- return false;
-
- for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
- ++II) {
- CallSite CS(II);
- if (!CS)
- continue;
-
- // Disallow recursive calls.
- if (&F == CS.getCalledFunction())
- return false;
-
- // Disallow calls which expose returns-twice to a function not previously
- // attributed as such.
- if (!ReturnsTwice && CS.isCall() &&
- cast<CallInst>(CS.getInstruction())->canReturnTwice())
- return false;
- }
- }
-
- return true;
-}
-
/// \brief Get the inline cost for the always-inliner.
///
/// The always inliner *only* handles functions which are marked with the
@@ -106,27 +82,22 @@ static bool isInlineViable(Function &F) {
/// likely not worth it in practice.
InlineCost AlwaysInliner::getInlineCost(CallSite CS) {
Function *Callee = CS.getCalledFunction();
- // We assume indirect calls aren't calling an always-inline function.
- if (!Callee) return InlineCost::getNever();
-
- // We can't inline calls to external functions.
- // FIXME: We shouldn't even get here.
- if (Callee->isDeclaration()) return InlineCost::getNever();
-
- // Return never for anything not marked as always inline.
- if (!Callee->hasFnAttr(Attribute::AlwaysInline))
- return InlineCost::getNever();
- // Do some minimal analysis to preclude non-viable functions.
- if (!isInlineViable(*Callee))
- return InlineCost::getNever();
+ // Only inline direct calls to functions with always-inline attributes
+ // that are viable for inlining. FIXME: We shouldn't even get here for
+ // declarations.
+ if (Callee && !Callee->isDeclaration() &&
+ Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::AlwaysInline) &&
+ CA.isInlineViable(*Callee))
+ return InlineCost::getAlways();
- // Otherwise, force inlining.
- return InlineCost::getAlways();
+ return InlineCost::getNever();
}
// doInitialization - Initializes the vector of functions that have not
// been annotated with the "always inline" attribute.
bool AlwaysInliner::doInitialization(CallGraph &CG) {
+ CA.setDataLayout(getAnalysisIfAvailable<DataLayout>());
return false;
}
diff --git a/lib/Transforms/IPO/InlineSimple.cpp b/lib/Transforms/IPO/InlineSimple.cpp
index 50038d8..9682923 100644
--- a/lib/Transforms/IPO/InlineSimple.cpp
+++ b/lib/Transforms/IPO/InlineSimple.cpp
@@ -12,17 +12,17 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "inline"
-#include "llvm/CallingConv.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
+#include "llvm/Transforms/IPO.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CallSite.h"
-#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/InlinerPass.h"
-#include "llvm/Target/TargetData.h"
using namespace llvm;
@@ -42,6 +42,7 @@ namespace {
InlineCost getInlineCost(CallSite CS) {
return CA.getInlineCost(CS, getInlineThreshold(CS));
}
+ using llvm::Pass::doInitialization;
virtual bool doInitialization(CallGraph &CG);
};
}
@@ -62,7 +63,7 @@ Pass *llvm::createFunctionInliningPass(int Threshold) {
// doInitialization - Initializes the vector of functions that have been
// annotated with the noinline attribute.
bool SimpleInliner::doInitialization(CallGraph &CG) {
- CA.setTargetData(getAnalysisIfAvailable<TargetData>());
+ CA.setDataLayout(getAnalysisIfAvailable<DataLayout>());
return false;
}
diff --git a/lib/Transforms/IPO/Inliner.cpp b/lib/Transforms/IPO/Inliner.cpp
index 69a22fb..2187a2a 100644
--- a/lib/Transforms/IPO/Inliner.cpp
+++ b/lib/Transforms/IPO/Inliner.cpp
@@ -14,22 +14,22 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "inline"
-#include "llvm/Module.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/Transforms/IPO/InlinerPass.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/IPO/InlinerPass.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumInlined, "Number of functions inlined");
@@ -64,8 +64,8 @@ Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
/// getAnalysisUsage - For this class, we declare that we require and preserve
/// the call graph. If the derived class implements this method, it should
/// always explicitly call the implementation here.
-void Inliner::getAnalysisUsage(AnalysisUsage &Info) const {
- CallGraphSCCPass::getAnalysisUsage(Info);
+void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
+ CallGraphSCCPass::getAnalysisUsage(AU);
}
@@ -93,10 +93,13 @@ static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
// If the inlined function had a higher stack protection level than the
// calling function, then bump up the caller's stack protection level.
- if (Callee->hasFnAttr(Attribute::StackProtectReq))
+ if (Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtectReq))
Caller->addFnAttr(Attribute::StackProtectReq);
- else if (Callee->hasFnAttr(Attribute::StackProtect) &&
- !Caller->hasFnAttr(Attribute::StackProtectReq))
+ else if (Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtect) &&
+ !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtectReq))
Caller->addFnAttr(Attribute::StackProtect);
// Look at all of the allocas that we inlined through this call site. If we
@@ -209,15 +212,21 @@ unsigned Inliner::getInlineThreshold(CallSite CS) const {
// would decrease the threshold.
Function *Caller = CS.getCaller();
bool OptSize = Caller && !Caller->isDeclaration() &&
- Caller->hasFnAttr(Attribute::OptimizeForSize);
- if (!(InlineLimit.getNumOccurrences() > 0) && OptSize && OptSizeThreshold < thres)
+ Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize);
+ if (!(InlineLimit.getNumOccurrences() > 0) && OptSize &&
+ OptSizeThreshold < thres)
thres = OptSizeThreshold;
- // Listen to the inlinehint attribute when it would increase the threshold.
+ // Listen to the inlinehint attribute when it would increase the threshold
+ // and the caller does not need to minimize its size.
Function *Callee = CS.getCalledFunction();
bool InlineHint = Callee && !Callee->isDeclaration() &&
- Callee->hasFnAttr(Attribute::InlineHint);
- if (InlineHint && HintThreshold > thres)
+ Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::InlineHint);
+ if (InlineHint && HintThreshold > thres
+ && !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::MinSize))
thres = HintThreshold;
return thres;
@@ -339,7 +348,7 @@ static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
bool Inliner::runOnSCC(CallGraphSCC &SCC) {
CallGraph &CG = getAnalysis<CallGraph>();
- const TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
SmallPtrSet<Function*, 8> SCCFunctions;
@@ -532,7 +541,9 @@ bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
// Handle the case when this function is called and we only want to care
// about always-inline functions. This is a bit of a hack to share code
// between here and the InlineAlways pass.
- if (AlwaysInlineOnly && !F->hasFnAttr(Attribute::AlwaysInline))
+ if (AlwaysInlineOnly &&
+ !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::AlwaysInline))
continue;
// If the only remaining users of the function are dead constants, remove
diff --git a/lib/Transforms/IPO/Internalize.cpp b/lib/Transforms/IPO/Internalize.cpp
index fb5869e..70d55b0 100644
--- a/lib/Transforms/IPO/Internalize.cpp
+++ b/lib/Transforms/IPO/Internalize.cpp
@@ -7,21 +7,21 @@
//
//===----------------------------------------------------------------------===//
//
-// This pass loops over all of the functions in the input module, looking for a
-// main function. If a main function is found, all other functions and all
-// global variables with initializers are marked as internal.
+// This pass loops over all of the functions and variables in the input module.
+// If the function or variable is not in the list of external names given to
+// the pass it is marked as internal.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "internalize"
-#include "llvm/Analysis/CallGraph.h"
#include "llvm/Transforms/IPO.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
-#include "llvm/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/Statistic.h"
#include <fstream>
#include <set>
using namespace llvm;
@@ -45,13 +45,10 @@ APIList("internalize-public-api-list", cl::value_desc("list"),
namespace {
class InternalizePass : public ModulePass {
std::set<std::string> ExternalNames;
- /// If no api symbols were specified and a main function is defined,
- /// assume the main function is the only API
- bool AllButMain;
public:
static char ID; // Pass identification, replacement for typeid
- explicit InternalizePass(bool AllButMain = true);
- explicit InternalizePass(const std::vector <const char *>& exportList);
+ explicit InternalizePass();
+ explicit InternalizePass(ArrayRef<const char *> exportList);
void LoadFile(const char *Filename);
virtual bool runOnModule(Module &M);
@@ -66,8 +63,8 @@ char InternalizePass::ID = 0;
INITIALIZE_PASS(InternalizePass, "internalize",
"Internalize Global Symbols", false, false)
-InternalizePass::InternalizePass(bool AllButMain)
- : ModulePass(ID), AllButMain(AllButMain){
+InternalizePass::InternalizePass()
+ : ModulePass(ID) {
initializeInternalizePassPass(*PassRegistry::getPassRegistry());
if (!APIFile.empty()) // If a filename is specified, use it.
LoadFile(APIFile.c_str());
@@ -75,10 +72,10 @@ InternalizePass::InternalizePass(bool AllButMain)
ExternalNames.insert(APIList.begin(), APIList.end());
}
-InternalizePass::InternalizePass(const std::vector<const char *>&exportList)
- : ModulePass(ID), AllButMain(false){
+InternalizePass::InternalizePass(ArrayRef<const char *> exportList)
+ : ModulePass(ID){
initializeInternalizePassPass(*PassRegistry::getPassRegistry());
- for(std::vector<const char *>::const_iterator itr = exportList.begin();
+ for(ArrayRef<const char *>::const_iterator itr = exportList.begin();
itr != exportList.end(); itr++) {
ExternalNames.insert(*itr);
}
@@ -103,23 +100,6 @@ void InternalizePass::LoadFile(const char *Filename) {
bool InternalizePass::runOnModule(Module &M) {
CallGraph *CG = getAnalysisIfAvailable<CallGraph>();
CallGraphNode *ExternalNode = CG ? CG->getExternalCallingNode() : 0;
-
- if (ExternalNames.empty()) {
- // Return if we're not in 'all but main' mode and have no external api
- if (!AllButMain)
- return false;
- // If no list or file of symbols was specified, check to see if there is a
- // "main" symbol defined in the module. If so, use it, otherwise do not
- // internalize the module, it must be a library or something.
- //
- Function *MainFunc = M.getFunction("main");
- if (MainFunc == 0 || MainFunc->isDeclaration())
- return false; // No main found, must be a library...
-
- // Preserve main, internalize all else.
- ExternalNames.insert(MainFunc->getName());
- }
-
bool Changed = false;
// Never internalize functions which code-gen might insert.
@@ -189,10 +169,10 @@ bool InternalizePass::runOnModule(Module &M) {
return Changed;
}
-ModulePass *llvm::createInternalizePass(bool AllButMain) {
- return new InternalizePass(AllButMain);
+ModulePass *llvm::createInternalizePass() {
+ return new InternalizePass();
}
-ModulePass *llvm::createInternalizePass(const std::vector <const char *> &el) {
+ModulePass *llvm::createInternalizePass(ArrayRef<const char *> el) {
return new InternalizePass(el);
}
diff --git a/lib/Transforms/IPO/LoopExtractor.cpp b/lib/Transforms/IPO/LoopExtractor.cpp
index 97d7cdc..8282a8e 100644
--- a/lib/Transforms/IPO/LoopExtractor.cpp
+++ b/lib/Transforms/IPO/LoopExtractor.cpp
@@ -16,16 +16,16 @@
#define DEBUG_TYPE "loop-extract"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/CodeExtractor.h"
-#include "llvm/ADT/Statistic.h"
#include <fstream>
#include <set>
using namespace llvm;
diff --git a/lib/Transforms/IPO/MergeFunctions.cpp b/lib/Transforms/IPO/MergeFunctions.cpp
index 9f70f66..892100f 100644
--- a/lib/Transforms/IPO/MergeFunctions.cpp
+++ b/lib/Transforms/IPO/MergeFunctions.cpp
@@ -45,25 +45,25 @@
#define DEBUG_TYPE "mergefunc"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
#include <vector>
using namespace llvm;
@@ -92,19 +92,19 @@ static unsigned profileFunction(const Function *F) {
namespace {
/// ComparableFunction - A struct that pairs together functions with a
-/// TargetData so that we can keep them together as elements in the DenseSet.
+/// DataLayout so that we can keep them together as elements in the DenseSet.
class ComparableFunction {
public:
static const ComparableFunction EmptyKey;
static const ComparableFunction TombstoneKey;
- static TargetData * const LookupOnly;
+ static DataLayout * const LookupOnly;
- ComparableFunction(Function *Func, TargetData *TD)
+ ComparableFunction(Function *Func, DataLayout *TD)
: Func(Func), Hash(profileFunction(Func)), TD(TD) {}
Function *getFunc() const { return Func; }
unsigned getHash() const { return Hash; }
- TargetData *getTD() const { return TD; }
+ DataLayout *getTD() const { return TD; }
// Drops AssertingVH reference to the function. Outside of debug mode, this
// does nothing.
@@ -120,13 +120,13 @@ private:
AssertingVH<Function> Func;
unsigned Hash;
- TargetData *TD;
+ DataLayout *TD;
};
const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
const ComparableFunction ComparableFunction::TombstoneKey =
ComparableFunction(1);
-TargetData *const ComparableFunction::LookupOnly = (TargetData*)(-1);
+DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1);
}
@@ -150,12 +150,12 @@ namespace llvm {
namespace {
/// FunctionComparator - Compares two functions to determine whether or not
-/// they will generate machine code with the same behaviour. TargetData is
+/// they will generate machine code with the same behaviour. DataLayout is
/// used if available. The comparator always fails conservatively (erring on the
/// side of claiming that two functions are different).
class FunctionComparator {
public:
- FunctionComparator(const TargetData *TD, const Function *F1,
+ FunctionComparator(const DataLayout *TD, const Function *F1,
const Function *F2)
: F1(F1), F2(F2), TD(TD) {}
@@ -190,7 +190,7 @@ private:
// The two functions undergoing comparison.
const Function *F1, *F2;
- const TargetData *TD;
+ const DataLayout *TD;
DenseMap<const Value *, const Value *> id_map;
DenseSet<const Value *> seen_values;
@@ -346,13 +346,11 @@ bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
const GEPOperator *GEP2) {
// When we have target data, we can reduce the GEP down to the value in bytes
// added to the address.
- if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
- SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
- SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
- uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
- Indices1);
- uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
- Indices2);
+ unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 1;
+ APInt Offset1(BitWidth, 0), Offset2(BitWidth, 0);
+ if (TD &&
+ GEP1->accumulateConstantOffset(*TD, Offset1) &&
+ GEP2->accumulateConstantOffset(*TD, Offset2)) {
return Offset1 == Offset2;
}
@@ -591,8 +589,8 @@ private:
/// to modify it.
FnSetType FnSet;
- /// TargetData for more accurate GEP comparisons. May be NULL.
- TargetData *TD;
+ /// DataLayout for more accurate GEP comparisons. May be NULL.
+ DataLayout *TD;
/// Whether or not the target supports global aliases.
bool HasGlobalAliases;
@@ -609,7 +607,7 @@ ModulePass *llvm::createMergeFunctionsPass() {
bool MergeFunctions::runOnModule(Module &M) {
bool Changed = false;
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
diff --git a/lib/Transforms/IPO/PartialInlining.cpp b/lib/Transforms/IPO/PartialInlining.cpp
index 9c9910b..fa518cb 100644
--- a/lib/Transforms/IPO/PartialInlining.cpp
+++ b/lib/Transforms/IPO/PartialInlining.cpp
@@ -14,14 +14,14 @@
#define DEBUG_TYPE "partialinlining"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/CodeExtractor.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/CFG.h"
using namespace llvm;
STATISTIC(NumPartialInlined, "Number of functions partially inlined");
diff --git a/lib/Transforms/IPO/PassManagerBuilder.cpp b/lib/Transforms/IPO/PassManagerBuilder.cpp
index 43b4ab5..6dc1773 100644
--- a/lib/Transforms/IPO/PassManagerBuilder.cpp
+++ b/lib/Transforms/IPO/PassManagerBuilder.cpp
@@ -14,32 +14,36 @@
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
-
#include "llvm-c/Transforms/PassManagerBuilder.h"
-
-#include "llvm/PassManager.h"
-#include "llvm/DefaultPasses.h"
-#include "llvm/PassManager.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Verifier.h"
+#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ManagedStatic.h"
#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Vectorize.h"
-#include "llvm/Transforms/IPO.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Support/ManagedStatic.h"
using namespace llvm;
static cl::opt<bool>
-RunVectorization("vectorize", cl::desc("Run vectorization passes"));
+RunLoopVectorization("vectorize-loops",
+ cl::desc("Run the Loop vectorization passes"));
+
+static cl::opt<bool>
+RunBBVectorization("vectorize", cl::desc("Run the BB vectorization passes"));
static cl::opt<bool>
UseGVNAfterVectorization("use-gvn-after-vectorization",
cl::init(false), cl::Hidden,
cl::desc("Run GVN instead of Early CSE after vectorization passes"));
+static cl::opt<bool> UseNewSROA("use-new-sroa",
+ cl::init(true), cl::Hidden,
+ cl::desc("Enable the new, experimental SROA pass"));
+
PassManagerBuilder::PassManagerBuilder() {
OptLevel = 2;
SizeLevel = 0;
@@ -48,7 +52,8 @@ PassManagerBuilder::PassManagerBuilder() {
DisableSimplifyLibCalls = false;
DisableUnitAtATime = false;
DisableUnrollLoops = false;
- Vectorize = RunVectorization;
+ Vectorize = RunBBVectorization;
+ LoopVectorize = RunLoopVectorization;
}
PassManagerBuilder::~PassManagerBuilder() {
@@ -100,7 +105,10 @@ void PassManagerBuilder::populateFunctionPassManager(FunctionPassManager &FPM) {
addInitialAliasAnalysisPasses(FPM);
FPM.add(createCFGSimplificationPass());
- FPM.add(createScalarReplAggregatesPass());
+ if (UseNewSROA)
+ FPM.add(createSROAPass());
+ else
+ FPM.add(createScalarReplAggregatesPass());
FPM.add(createEarlyCSEPass());
FPM.add(createLowerExpectIntrinsicPass());
}
@@ -112,6 +120,14 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
MPM.add(Inliner);
Inliner = 0;
}
+
+ // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
+ // pass manager, but we don't want to add extensions into that pass manager.
+ // To prevent this we must insert a no-op module pass to reset the pass
+ // manager to get the same behavior as EP_OptimizerLast in non-O0 builds.
+ if (!GlobalExtensions->empty() || !Extensions.empty())
+ MPM.add(createBarrierNoopPass());
+
addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
return;
}
@@ -147,7 +163,10 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
// Start of function pass.
// Break up aggregate allocas, using SSAUpdater.
- MPM.add(createScalarReplAggregatesPass(-1, false));
+ if (UseNewSROA)
+ MPM.add(createSROAPass(/*RequiresDomTree*/ false));
+ else
+ MPM.add(createScalarReplAggregatesPass(-1, false));
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
if (!DisableSimplifyLibCalls)
MPM.add(createSimplifyLibCallsPass()); // Library Call Optimizations
@@ -166,6 +185,10 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars
MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
MPM.add(createLoopDeletionPass()); // Delete dead loops
+
+ if (LoopVectorize && OptLevel > 2)
+ MPM.add(createLoopVectorizePass());
+
if (!DisableUnrollLoops)
MPM.add(createLoopUnrollPass()); // Unroll small loops
addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
@@ -201,13 +224,12 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
// FIXME: We shouldn't bother with this anymore.
MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
- // GlobalOpt already deletes dead functions and globals, at -O3 try a
+ // GlobalOpt already deletes dead functions and globals, at -O2 try a
// late pass of GlobalDCE. It is capable of deleting dead cycles.
- if (OptLevel > 2)
+ if (OptLevel > 1) {
MPM.add(createGlobalDCEPass()); // Remove dead fns and globals.
-
- if (OptLevel > 1)
MPM.add(createConstantMergePass()); // Merge dup global constants
+ }
}
addExtensionsToPM(EP_OptimizerLast, MPM);
}
@@ -222,8 +244,11 @@ void PassManagerBuilder::populateLTOPassManager(PassManagerBase &PM,
// Now that composite has been compiled, scan through the module, looking
// for a main function. If main is defined, mark all other functions
// internal.
- if (Internalize)
- PM.add(createInternalizePass(true));
+ if (Internalize) {
+ std::vector<const char*> E;
+ E.push_back("main");
+ PM.add(createInternalizePass(E));
+ }
// Propagate constants at call sites into the functions they call. This
// opens opportunities for globalopt (and inlining) by substituting function
@@ -265,7 +290,10 @@ void PassManagerBuilder::populateLTOPassManager(PassManagerBase &PM,
PM.add(createInstructionCombiningPass());
PM.add(createJumpThreadingPass());
// Break up allocas
- PM.add(createScalarReplAggregatesPass());
+ if (UseNewSROA)
+ PM.add(createSROAPass());
+ else
+ PM.add(createScalarReplAggregatesPass());
// Run a few AA driven optimizations here and now, to cleanup the code.
PM.add(createFunctionAttrsPass()); // Add nocapture.
@@ -289,7 +317,7 @@ void PassManagerBuilder::populateLTOPassManager(PassManagerBase &PM,
PM.add(createGlobalDCEPass());
}
-LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate(void) {
+LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
PassManagerBuilder *PMB = new PassManagerBuilder();
return wrap(PMB);
}
diff --git a/lib/Transforms/IPO/PruneEH.cpp b/lib/Transforms/IPO/PruneEH.cpp
index c8cc8fd..d872f0c 100644
--- a/lib/Transforms/IPO/PruneEH.cpp
+++ b/lib/Transforms/IPO/PruneEH.cpp
@@ -16,16 +16,16 @@
#define DEBUG_TYPE "prune-eh"
#include "llvm/Transforms/IPO.h"
-#include "llvm/CallGraphSCCPass.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Analysis/CallGraph.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CFG.h"
#include <algorithm>
using namespace llvm;
@@ -137,16 +137,18 @@ bool PruneEH::runOnSCC(CallGraphSCC &SCC) {
// If the SCC doesn't unwind or doesn't throw, note this fact.
if (!SCCMightUnwind || !SCCMightReturn)
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
- Attributes NewAttributes = Attribute::None;
+ AttrBuilder NewAttributes;
if (!SCCMightUnwind)
- NewAttributes |= Attribute::NoUnwind;
+ NewAttributes.addAttribute(Attribute::NoUnwind);
if (!SCCMightReturn)
- NewAttributes |= Attribute::NoReturn;
+ NewAttributes.addAttribute(Attribute::NoReturn);
Function *F = (*I)->getFunction();
- const AttrListPtr &PAL = F->getAttributes();
- const AttrListPtr &NPAL = PAL.addAttr(~0, NewAttributes);
+ const AttributeSet &PAL = F->getAttributes();
+ const AttributeSet &NPAL = PAL.addAttr(F->getContext(), ~0,
+ Attribute::get(F->getContext(),
+ NewAttributes));
if (PAL != NPAL) {
MadeChange = true;
F->setAttributes(NPAL);
diff --git a/lib/Transforms/IPO/StripDeadPrototypes.cpp b/lib/Transforms/IPO/StripDeadPrototypes.cpp
index b5f09ec..f00830a 100644
--- a/lib/Transforms/IPO/StripDeadPrototypes.cpp
+++ b/lib/Transforms/IPO/StripDeadPrototypes.cpp
@@ -16,9 +16,9 @@
#define DEBUG_TYPE "strip-dead-prototypes"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Pass.h"
-#include "llvm/Module.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
using namespace llvm;
STATISTIC(NumDeadPrototypes, "Number of dead prototypes removed");
diff --git a/lib/Transforms/IPO/StripSymbols.cpp b/lib/Transforms/IPO/StripSymbols.cpp
index 80bfc1c..5f8681f 100644
--- a/lib/Transforms/IPO/StripSymbols.cpp
+++ b/lib/Transforms/IPO/StripSymbols.cpp
@@ -21,17 +21,17 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/TypeFinder.h"
+#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Pass.h"
-#include "llvm/TypeFinder.h"
-#include "llvm/ValueSymbolTable.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallPtrSet.h"
using namespace llvm;
namespace {
diff --git a/lib/Transforms/InstCombine/InstCombine.h b/lib/Transforms/InstCombine/InstCombine.h
index 0d5ef90..959daa2 100644
--- a/lib/Transforms/InstCombine/InstCombine.h
+++ b/lib/Transforms/InstCombine/InstCombine.h
@@ -11,17 +11,18 @@
#define INSTCOMBINE_INSTCOMBINE_H
#include "InstCombineWorklist.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Operator.h"
-#include "llvm/Pass.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Support/InstVisitor.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Pass.h"
#include "llvm/Support/TargetFolder.h"
+#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
namespace llvm {
class CallSite;
- class TargetData;
+ class DataLayout;
class TargetLibraryInfo;
class DbgDeclareInst;
class MemIntrinsic;
@@ -71,9 +72,11 @@ public:
class LLVM_LIBRARY_VISIBILITY InstCombiner
: public FunctionPass,
public InstVisitor<InstCombiner, Instruction*> {
- TargetData *TD;
+ DataLayout *TD;
TargetLibraryInfo *TLI;
bool MadeIRChange;
+ LibCallSimplifier *Simplifier;
+ bool MinimizeSize;
public:
/// Worklist - All of the instructions that need to be simplified.
InstCombineWorklist Worklist;
@@ -85,6 +88,7 @@ public:
static char ID; // Pass identification, replacement for typeid
InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
+ MinimizeSize = false;
initializeInstCombinerPass(*PassRegistry::getPassRegistry());
}
@@ -95,7 +99,7 @@ public:
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- TargetData *getTargetData() const { return TD; }
+ DataLayout *getDataLayout() const { return TD; }
TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
@@ -112,6 +116,8 @@ public:
Instruction *visitSub(BinaryOperator &I);
Instruction *visitFSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
+ Value *foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
+ Instruction *InsertBefore);
Instruction *visitFMul(BinaryOperator &I);
Instruction *visitURem(BinaryOperator &I);
Instruction *visitSRem(BinaryOperator &I);
@@ -218,7 +224,7 @@ private:
Type *Ty);
Instruction *visitCallSite(CallSite CS);
- Instruction *tryOptimizeCall(CallInst *CI, const TargetData *TD);
+ Instruction *tryOptimizeCall(CallInst *CI, const DataLayout *TD);
bool transformConstExprCastCall(CallSite CS);
Instruction *transformCallThroughTrampoline(CallSite CS,
IntrinsicInst *Tramp);
@@ -325,6 +331,11 @@ private:
bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
APInt& KnownZero, APInt& KnownOne,
unsigned Depth=0);
+ /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
+ /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
+ Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
+ APInt DemandedMask, APInt &KnownZero,
+ APInt &KnownOne);
/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
/// SimplifyDemandedBits knows about. See if the instruction has any
@@ -365,6 +376,10 @@ private:
Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
+
+ /// Descale - Return a value X such that Val = X * Scale, or null if none. If
+ /// the multiplication is known not to overflow then NoSignedWrap is set.
+ Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
};
diff --git a/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
index 99b62f8..f07c58d 100644
--- a/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -13,16 +13,719 @@
#include "InstCombine.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
+namespace {
+
+ /// Class representing coefficient of floating-point addend.
+ /// This class needs to be highly efficient, which is especially true for
+ /// the constructor. As of I write this comment, the cost of the default
+ /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
+ /// perform write-merging).
+ ///
+ class FAddendCoef {
+ public:
+ // The constructor has to initialize a APFloat, which is uncessary for
+ // most addends which have coefficient either 1 or -1. So, the constructor
+ // is expensive. In order to avoid the cost of the constructor, we should
+ // reuse some instances whenever possible. The pre-created instances
+ // FAddCombine::Add[0-5] embodies this idea.
+ //
+ FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
+ ~FAddendCoef();
+
+ void set(short C) {
+ assert(!insaneIntVal(C) && "Insane coefficient");
+ IsFp = false; IntVal = C;
+ }
+
+ void set(const APFloat& C);
+
+ void negate();
+
+ bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
+ Value *getValue(Type *) const;
+
+ // If possible, don't define operator+/operator- etc because these
+ // operators inevitably call FAddendCoef's constructor which is not cheap.
+ void operator=(const FAddendCoef &A);
+ void operator+=(const FAddendCoef &A);
+ void operator-=(const FAddendCoef &A);
+ void operator*=(const FAddendCoef &S);
+
+ bool isOne() const { return isInt() && IntVal == 1; }
+ bool isTwo() const { return isInt() && IntVal == 2; }
+ bool isMinusOne() const { return isInt() && IntVal == -1; }
+ bool isMinusTwo() const { return isInt() && IntVal == -2; }
+
+ private:
+ bool insaneIntVal(int V) { return V > 4 || V < -4; }
+ APFloat *getFpValPtr(void)
+ { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
+
+ const APFloat &getFpVal(void) const {
+ assert(IsFp && BufHasFpVal && "Incorret state");
+ return *reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]);
+ }
+
+ APFloat &getFpVal(void)
+ { assert(IsFp && BufHasFpVal && "Incorret state"); return *getFpValPtr(); }
+
+ bool isInt() const { return !IsFp; }
+
+ private:
+
+ bool IsFp;
+
+ // True iff FpValBuf contains an instance of APFloat.
+ bool BufHasFpVal;
+
+ // The integer coefficient of an individual addend is either 1 or -1,
+ // and we try to simplify at most 4 addends from neighboring at most
+ // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
+ // is overkill of this end.
+ short IntVal;
+
+ AlignedCharArrayUnion<APFloat> FpValBuf;
+ };
+
+ /// FAddend is used to represent floating-point addend. An addend is
+ /// represented as <C, V>, where the V is a symbolic value, and C is a
+ /// constant coefficient. A constant addend is represented as <C, 0>.
+ ///
+ class FAddend {
+ public:
+ FAddend() { Val = 0; }
+
+ Value *getSymVal (void) const { return Val; }
+ const FAddendCoef &getCoef(void) const { return Coeff; }
+
+ bool isConstant() const { return Val == 0; }
+ bool isZero() const { return Coeff.isZero(); }
+
+ void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
+ void set(const APFloat& Coefficient, Value *V)
+ { Coeff.set(Coefficient); Val = V; }
+ void set(const ConstantFP* Coefficient, Value *V)
+ { Coeff.set(Coefficient->getValueAPF()); Val = V; }
+
+ void negate() { Coeff.negate(); }
+
+ /// Drill down the U-D chain one step to find the definition of V, and
+ /// try to break the definition into one or two addends.
+ static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
+
+ /// Similar to FAddend::drillDownOneStep() except that the value being
+ /// splitted is the addend itself.
+ unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
+
+ void operator+=(const FAddend &T) {
+ assert((Val == T.Val) && "Symbolic-values disagree");
+ Coeff += T.Coeff;
+ }
+
+ private:
+ void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
+
+ // This addend has the value of "Coeff * Val".
+ Value *Val;
+ FAddendCoef Coeff;
+ };
+
+ /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
+ /// with its neighboring at most two instructions.
+ ///
+ class FAddCombine {
+ public:
+ FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(0) {}
+ Value *simplify(Instruction *FAdd);
+
+ private:
+ typedef SmallVector<const FAddend*, 4> AddendVect;
+
+ Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
+
+ /// Convert given addend to a Value
+ Value *createAddendVal(const FAddend &A, bool& NeedNeg);
+
+ /// Return the number of instructions needed to emit the N-ary addition.
+ unsigned calcInstrNumber(const AddendVect& Vect);
+ Value *createFSub(Value *Opnd0, Value *Opnd1);
+ Value *createFAdd(Value *Opnd0, Value *Opnd1);
+ Value *createFMul(Value *Opnd0, Value *Opnd1);
+ Value *createFNeg(Value *V);
+ Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
+ void createInstPostProc(Instruction *NewInst);
+
+ InstCombiner::BuilderTy *Builder;
+ Instruction *Instr;
+
+ private:
+ // Debugging stuff are clustered here.
+ #ifndef NDEBUG
+ unsigned CreateInstrNum;
+ void initCreateInstNum() { CreateInstrNum = 0; }
+ void incCreateInstNum() { CreateInstrNum++; }
+ #else
+ void initCreateInstNum() {}
+ void incCreateInstNum() {}
+ #endif
+ };
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Implementation of
+// {FAddendCoef, FAddend, FAddition, FAddCombine}.
+//
+//===----------------------------------------------------------------------===//
+FAddendCoef::~FAddendCoef() {
+ if (BufHasFpVal)
+ getFpValPtr()->~APFloat();
+}
+
+void FAddendCoef::set(const APFloat& C) {
+ APFloat *P = getFpValPtr();
+
+ if (isInt()) {
+ // As the buffer is meanless byte stream, we cannot call
+ // APFloat::operator=().
+ new(P) APFloat(C);
+ } else
+ *P = C;
+
+ IsFp = BufHasFpVal = true;
+}
+
+void FAddendCoef::operator=(const FAddendCoef& That) {
+ if (That.isInt())
+ set(That.IntVal);
+ else
+ set(That.getFpVal());
+}
+
+void FAddendCoef::operator+=(const FAddendCoef &That) {
+ enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
+ if (isInt() == That.isInt()) {
+ if (isInt())
+ IntVal += That.IntVal;
+ else
+ getFpVal().add(That.getFpVal(), RndMode);
+ return;
+ }
+
+ if (isInt()) {
+ const APFloat &T = That.getFpVal();
+ set(T);
+ getFpVal().add(APFloat(T.getSemantics(), IntVal), RndMode);
+ return;
+ }
+
+ APFloat &T = getFpVal();
+ T.add(APFloat(T.getSemantics(), That.IntVal), RndMode);
+}
+
+void FAddendCoef::operator-=(const FAddendCoef &That) {
+ enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
+ if (isInt() == That.isInt()) {
+ if (isInt())
+ IntVal -= That.IntVal;
+ else
+ getFpVal().subtract(That.getFpVal(), RndMode);
+ return;
+ }
+
+ if (isInt()) {
+ const APFloat &T = That.getFpVal();
+ set(T);
+ getFpVal().subtract(APFloat(T.getSemantics(), IntVal), RndMode);
+ return;
+ }
+
+ APFloat &T = getFpVal();
+ T.subtract(APFloat(T.getSemantics(), IntVal), RndMode);
+}
+
+void FAddendCoef::operator*=(const FAddendCoef &That) {
+ if (That.isOne())
+ return;
+
+ if (That.isMinusOne()) {
+ negate();
+ return;
+ }
+
+ if (isInt() && That.isInt()) {
+ int Res = IntVal * (int)That.IntVal;
+ assert(!insaneIntVal(Res) && "Insane int value");
+ IntVal = Res;
+ return;
+ }
+
+ const fltSemantics &Semantic =
+ isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
+
+ if (isInt())
+ set(APFloat(Semantic, IntVal));
+ APFloat &F0 = getFpVal();
+
+ if (That.isInt())
+ F0.multiply(APFloat(Semantic, That.IntVal), APFloat::rmNearestTiesToEven);
+ else
+ F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
+
+ return;
+}
+
+void FAddendCoef::negate() {
+ if (isInt())
+ IntVal = 0 - IntVal;
+ else
+ getFpVal().changeSign();
+}
+
+Value *FAddendCoef::getValue(Type *Ty) const {
+ return isInt() ?
+ ConstantFP::get(Ty, float(IntVal)) :
+ ConstantFP::get(Ty->getContext(), getFpVal());
+}
+
+// The definition of <Val> Addends
+// =========================================
+// A + B <1, A>, <1,B>
+// A - B <1, A>, <1,B>
+// 0 - B <-1, B>
+// C * A, <C, A>
+// A + C <1, A> <C, NULL>
+// 0 +/- 0 <0, NULL> (corner case)
+//
+// Legend: A and B are not constant, C is constant
+//
+unsigned FAddend::drillValueDownOneStep
+ (Value *Val, FAddend &Addend0, FAddend &Addend1) {
+ Instruction *I = 0;
+ if (Val == 0 || !(I = dyn_cast<Instruction>(Val)))
+ return 0;
+
+ unsigned Opcode = I->getOpcode();
+
+ if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
+ ConstantFP *C0, *C1;
+ Value *Opnd0 = I->getOperand(0);
+ Value *Opnd1 = I->getOperand(1);
+ if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
+ Opnd0 = 0;
+
+ if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
+ Opnd1 = 0;
+
+ if (Opnd0) {
+ if (!C0)
+ Addend0.set(1, Opnd0);
+ else
+ Addend0.set(C0, 0);
+ }
+
+ if (Opnd1) {
+ FAddend &Addend = Opnd0 ? Addend1 : Addend0;
+ if (!C1)
+ Addend.set(1, Opnd1);
+ else
+ Addend.set(C1, 0);
+ if (Opcode == Instruction::FSub)
+ Addend.negate();
+ }
+
+ if (Opnd0 || Opnd1)
+ return Opnd0 && Opnd1 ? 2 : 1;
+
+ // Both operands are zero. Weird!
+ Addend0.set(APFloat(C0->getValueAPF().getSemantics()), 0);
+ return 1;
+ }
+
+ if (I->getOpcode() == Instruction::FMul) {
+ Value *V0 = I->getOperand(0);
+ Value *V1 = I->getOperand(1);
+ if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
+ Addend0.set(C, V1);
+ return 1;
+ }
+
+ if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
+ Addend0.set(C, V0);
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+// Try to break *this* addend into two addends. e.g. Suppose this addend is
+// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
+// i.e. <2.3, X> and <2.3, Y>.
+//
+unsigned FAddend::drillAddendDownOneStep
+ (FAddend &Addend0, FAddend &Addend1) const {
+ if (isConstant())
+ return 0;
+
+ unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
+ if (!BreakNum || Coeff.isOne())
+ return BreakNum;
+
+ Addend0.Scale(Coeff);
+
+ if (BreakNum == 2)
+ Addend1.Scale(Coeff);
+
+ return BreakNum;
+}
+
+Value *FAddCombine::simplify(Instruction *I) {
+ assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
+
+ // Currently we are not able to handle vector type.
+ if (I->getType()->isVectorTy())
+ return 0;
+
+ assert((I->getOpcode() == Instruction::FAdd ||
+ I->getOpcode() == Instruction::FSub) && "Expect add/sub");
+
+ // Save the instruction before calling other member-functions.
+ Instr = I;
+
+ FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
+
+ unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
+
+ // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
+ unsigned Opnd0_ExpNum = 0;
+ unsigned Opnd1_ExpNum = 0;
+
+ if (!Opnd0.isConstant())
+ Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
+
+ // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
+ if (OpndNum == 2 && !Opnd1.isConstant())
+ Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
+
+ // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
+ if (Opnd0_ExpNum && Opnd1_ExpNum) {
+ AddendVect AllOpnds;
+ AllOpnds.push_back(&Opnd0_0);
+ AllOpnds.push_back(&Opnd1_0);
+ if (Opnd0_ExpNum == 2)
+ AllOpnds.push_back(&Opnd0_1);
+ if (Opnd1_ExpNum == 2)
+ AllOpnds.push_back(&Opnd1_1);
+
+ // Compute instruction quota. We should save at least one instruction.
+ unsigned InstQuota = 0;
+
+ Value *V0 = I->getOperand(0);
+ Value *V1 = I->getOperand(1);
+ InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
+ (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
+
+ if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
+ return R;
+ }
+
+ if (OpndNum != 2) {
+ // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
+ // splitted into two addends, say "V = X - Y", the instruction would have
+ // been optimized into "I = Y - X" in the previous steps.
+ //
+ const FAddendCoef &CE = Opnd0.getCoef();
+ return CE.isOne() ? Opnd0.getSymVal() : 0;
+ }
+
+ // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
+ if (Opnd1_ExpNum) {
+ AddendVect AllOpnds;
+ AllOpnds.push_back(&Opnd0);
+ AllOpnds.push_back(&Opnd1_0);
+ if (Opnd1_ExpNum == 2)
+ AllOpnds.push_back(&Opnd1_1);
+
+ if (Value *R = simplifyFAdd(AllOpnds, 1))
+ return R;
+ }
+
+ // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
+ if (Opnd0_ExpNum) {
+ AddendVect AllOpnds;
+ AllOpnds.push_back(&Opnd1);
+ AllOpnds.push_back(&Opnd0_0);
+ if (Opnd0_ExpNum == 2)
+ AllOpnds.push_back(&Opnd0_1);
+
+ if (Value *R = simplifyFAdd(AllOpnds, 1))
+ return R;
+ }
+
+ return 0;
+}
+
+Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
+
+ unsigned AddendNum = Addends.size();
+ assert(AddendNum <= 4 && "Too many addends");
+
+ // For saving intermediate results;
+ unsigned NextTmpIdx = 0;
+ FAddend TmpResult[3];
+
+ // Points to the constant addend of the resulting simplified expression.
+ // If the resulting expr has constant-addend, this constant-addend is
+ // desirable to reside at the top of the resulting expression tree. Placing
+ // constant close to supper-expr(s) will potentially reveal some optimization
+ // opportunities in super-expr(s).
+ //
+ const FAddend *ConstAdd = 0;
+
+ // Simplified addends are placed <SimpVect>.
+ AddendVect SimpVect;
+
+ // The outer loop works on one symbolic-value at a time. Suppose the input
+ // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
+ // The symbolic-values will be processed in this order: x, y, z.
+ //
+ for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
+
+ const FAddend *ThisAddend = Addends[SymIdx];
+ if (!ThisAddend) {
+ // This addend was processed before.
+ continue;
+ }
+
+ Value *Val = ThisAddend->getSymVal();
+ unsigned StartIdx = SimpVect.size();
+ SimpVect.push_back(ThisAddend);
+
+ // The inner loop collects addends sharing same symbolic-value, and these
+ // addends will be later on folded into a single addend. Following above
+ // example, if the symbolic value "y" is being processed, the inner loop
+ // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
+ // be later on folded into "<b1+b2, y>".
+ //
+ for (unsigned SameSymIdx = SymIdx + 1;
+ SameSymIdx < AddendNum; SameSymIdx++) {
+ const FAddend *T = Addends[SameSymIdx];
+ if (T && T->getSymVal() == Val) {
+ // Set null such that next iteration of the outer loop will not process
+ // this addend again.
+ Addends[SameSymIdx] = 0;
+ SimpVect.push_back(T);
+ }
+ }
+
+ // If multiple addends share same symbolic value, fold them together.
+ if (StartIdx + 1 != SimpVect.size()) {
+ FAddend &R = TmpResult[NextTmpIdx ++];
+ R = *SimpVect[StartIdx];
+ for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
+ R += *SimpVect[Idx];
+
+ // Pop all addends being folded and push the resulting folded addend.
+ SimpVect.resize(StartIdx);
+ if (Val != 0) {
+ if (!R.isZero()) {
+ SimpVect.push_back(&R);
+ }
+ } else {
+ // Don't push constant addend at this time. It will be the last element
+ // of <SimpVect>.
+ ConstAdd = &R;
+ }
+ }
+ }
+
+ assert((NextTmpIdx <= sizeof(TmpResult)/sizeof(TmpResult[0]) + 1) &&
+ "out-of-bound access");
+
+ if (ConstAdd)
+ SimpVect.push_back(ConstAdd);
+
+ Value *Result;
+ if (!SimpVect.empty())
+ Result = createNaryFAdd(SimpVect, InstrQuota);
+ else {
+ // The addition is folded to 0.0.
+ Result = ConstantFP::get(Instr->getType(), 0.0);
+ }
+
+ return Result;
+}
+
+Value *FAddCombine::createNaryFAdd
+ (const AddendVect &Opnds, unsigned InstrQuota) {
+ assert(!Opnds.empty() && "Expect at least one addend");
+
+ // Step 1: Check if the # of instructions needed exceeds the quota.
+ //
+ unsigned InstrNeeded = calcInstrNumber(Opnds);
+ if (InstrNeeded > InstrQuota)
+ return 0;
+
+ initCreateInstNum();
+
+ // step 2: Emit the N-ary addition.
+ // Note that at most three instructions are involved in Fadd-InstCombine: the
+ // addition in question, and at most two neighboring instructions.
+ // The resulting optimized addition should have at least one less instruction
+ // than the original addition expression tree. This implies that the resulting
+ // N-ary addition has at most two instructions, and we don't need to worry
+ // about tree-height when constructing the N-ary addition.
+
+ Value *LastVal = 0;
+ bool LastValNeedNeg = false;
+
+ // Iterate the addends, creating fadd/fsub using adjacent two addends.
+ for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
+ I != E; I++) {
+ bool NeedNeg;
+ Value *V = createAddendVal(**I, NeedNeg);
+ if (!LastVal) {
+ LastVal = V;
+ LastValNeedNeg = NeedNeg;
+ continue;
+ }
+
+ if (LastValNeedNeg == NeedNeg) {
+ LastVal = createFAdd(LastVal, V);
+ continue;
+ }
+
+ if (LastValNeedNeg)
+ LastVal = createFSub(V, LastVal);
+ else
+ LastVal = createFSub(LastVal, V);
+
+ LastValNeedNeg = false;
+ }
+
+ if (LastValNeedNeg) {
+ LastVal = createFNeg(LastVal);
+ }
+
+ #ifndef NDEBUG
+ assert(CreateInstrNum == InstrNeeded &&
+ "Inconsistent in instruction numbers");
+ #endif
+
+ return LastVal;
+}
+
+Value *FAddCombine::createFSub
+ (Value *Opnd0, Value *Opnd1) {
+ Value *V = Builder->CreateFSub(Opnd0, Opnd1);
+ createInstPostProc(cast<Instruction>(V));
+ return V;
+}
+
+Value *FAddCombine::createFNeg(Value *V) {
+ Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0));
+ return createFSub(Zero, V);
+}
+
+Value *FAddCombine::createFAdd
+ (Value *Opnd0, Value *Opnd1) {
+ Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
+ createInstPostProc(cast<Instruction>(V));
+ return V;
+}
+
+Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
+ Value *V = Builder->CreateFMul(Opnd0, Opnd1);
+ createInstPostProc(cast<Instruction>(V));
+ return V;
+}
+
+void FAddCombine::createInstPostProc(Instruction *NewInstr) {
+ NewInstr->setDebugLoc(Instr->getDebugLoc());
+
+ // Keep track of the number of instruction created.
+ incCreateInstNum();
+
+ // Propagate fast-math flags
+ NewInstr->setFastMathFlags(Instr->getFastMathFlags());
+}
+
+// Return the number of instruction needed to emit the N-ary addition.
+// NOTE: Keep this function in sync with createAddendVal().
+unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
+ unsigned OpndNum = Opnds.size();
+ unsigned InstrNeeded = OpndNum - 1;
+
+ // The number of addends in the form of "(-1)*x".
+ unsigned NegOpndNum = 0;
+
+ // Adjust the number of instructions needed to emit the N-ary add.
+ for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
+ I != E; I++) {
+ const FAddend *Opnd = *I;
+ if (Opnd->isConstant())
+ continue;
+
+ const FAddendCoef &CE = Opnd->getCoef();
+ if (CE.isMinusOne() || CE.isMinusTwo())
+ NegOpndNum++;
+
+ // Let the addend be "c * x". If "c == +/-1", the value of the addend
+ // is immediately available; otherwise, it needs exactly one instruction
+ // to evaluate the value.
+ if (!CE.isMinusOne() && !CE.isOne())
+ InstrNeeded++;
+ }
+ if (NegOpndNum == OpndNum)
+ InstrNeeded++;
+ return InstrNeeded;
+}
+
+// Input Addend Value NeedNeg(output)
+// ================================================================
+// Constant C C false
+// <+/-1, V> V coefficient is -1
+// <2/-2, V> "fadd V, V" coefficient is -2
+// <C, V> "fmul V, C" false
+//
+// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
+Value *FAddCombine::createAddendVal
+ (const FAddend &Opnd, bool &NeedNeg) {
+ const FAddendCoef &Coeff = Opnd.getCoef();
+
+ if (Opnd.isConstant()) {
+ NeedNeg = false;
+ return Coeff.getValue(Instr->getType());
+ }
+
+ Value *OpndVal = Opnd.getSymVal();
+
+ if (Coeff.isMinusOne() || Coeff.isOne()) {
+ NeedNeg = Coeff.isMinusOne();
+ return OpndVal;
+ }
+
+ if (Coeff.isTwo() || Coeff.isMinusTwo()) {
+ NeedNeg = Coeff.isMinusTwo();
+ return createFAdd(OpndVal, OpndVal);
+ }
+
+ NeedNeg = false;
+ return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
+}
+
/// AddOne - Add one to a ConstantInt.
static Constant *AddOne(Constant *C) {
return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
}
+
/// SubOne - Subtract one from a ConstantInt.
static Constant *SubOne(ConstantInt *C) {
return ConstantInt::get(C->getContext(), C->getValue()-1);
@@ -37,10 +740,10 @@ static Constant *SubOne(ConstantInt *C) {
static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
if (!V->hasOneUse() || !V->getType()->isIntegerTy())
return 0;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return 0;
-
+
if (I->getOpcode() == Instruction::Mul)
if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
return I->getOperand(0);
@@ -64,22 +767,22 @@ static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
// There are different heuristics we can use for this. Here are some simple
// ones.
-
- // Add has the property that adding any two 2's complement numbers can only
+
+ // Add has the property that adding any two 2's complement numbers can only
// have one carry bit which can change a sign. As such, if LHS and RHS each
// have at least two sign bits, we know that the addition of the two values
// will sign extend fine.
if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
return true;
-
-
+
+
// If one of the operands only has one non-zero bit, and if the other operand
// has a known-zero bit in a more significant place than it (not including the
// sign bit) the ripple may go up to and fill the zero, but won't change the
// sign. For example, (X & ~4) + 1.
-
+
// TODO: Implement.
-
+
return false;
}
@@ -100,7 +803,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
const APInt &Val = CI->getValue();
if (Val.isSignBit())
return BinaryOperator::CreateXor(LHS, RHS);
-
+
// See if SimplifyDemandedBits can simplify this. This handles stuff like
// (X & 254)+1 -> (X&254)|1
if (SimplifyDemandedInstructionBits(I))
@@ -110,7 +813,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
if (ZI->getSrcTy()->isIntegerTy(1))
return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
-
+
Value *XorLHS = 0; ConstantInt *XorRHS = 0;
if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
@@ -124,13 +827,13 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
else if (XorRHS->getValue().isPowerOf2())
ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
}
-
+
if (ExtendAmt) {
APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
if (!MaskedValueIsZero(XorLHS, Mask))
ExtendAmt = 0;
}
-
+
if (ExtendAmt) {
Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
@@ -175,7 +878,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
return BinaryOperator::CreateNeg(NewAdd);
}
-
+
return BinaryOperator::CreateSub(RHS, LHSV);
}
@@ -209,7 +912,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
APInt RHSKnownOne(IT->getBitWidth(), 0);
APInt RHSKnownZero(IT->getBitWidth(), 0);
ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
-
+
// No bits in common -> bitwise or.
if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
return BinaryOperator::CreateOr(LHS, RHS);
@@ -251,7 +954,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// See if all bits from the first bit set in the Add RHS up are included
// in the mask. First, get the rightmost bit.
const APInt &AddRHSV = CRHS->getValue();
-
+
// Form a mask of all bits from the lowest bit added through the top.
APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
@@ -289,7 +992,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the true select value.
return SelectInst::Create(SI->getCondition(), N, A);
-
+
if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the false select value.
return SelectInst::Create(SI->getCondition(), A, N);
@@ -301,18 +1004,18 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
// (add (sext x), cst) --> (sext (add x, cst'))
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
- Constant *CI =
+ Constant *CI =
ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
// Insert the new, smaller add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
CI, "addconv");
return new SExtInst(NewAdd, I.getType());
}
}
-
+
// (add (sext x), (sext y)) --> (sext (add int x, y))
if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
// Only do this if x/y have the same type, if at last one of them has a
@@ -323,7 +1026,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0))) {
// Insert the new integer add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0), "addconv");
return new SExtInst(NewAdd, I.getType());
}
@@ -351,18 +1054,12 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
- // X + 0 --> X
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
- if (CFP->isExactlyValue(ConstantFP::getNegativeZero
- (I.getType())->getValueAPF()))
- return ReplaceInstUsesWith(I, LHS);
- }
+ if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), TD))
+ return ReplaceInstUsesWith(I, V);
- if (isa<PHINode>(LHS))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
+ if (isa<Constant>(RHS) && isa<PHINode>(LHS))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
// -A + B --> B - A
// -A + -B --> -(A + B)
@@ -374,11 +1071,6 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
if (Value *V = dyn_castFNegVal(RHS))
return BinaryOperator::CreateFSub(LHS, V);
- // Check for X+0.0. Simplify it to X if we know X is not -0.0.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
- if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
- return ReplaceInstUsesWith(I, LHS);
-
// Check for (fadd double (sitofp x), y), see if we can merge this into an
// integer add followed by a promotion.
if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
@@ -388,7 +1080,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
// requires a constant pool load, and generally allows the add to be better
// instcombined.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
- Constant *CI =
+ Constant *CI =
ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
@@ -399,7 +1091,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
return new SIToFPInst(NewAdd, I.getType());
}
}
-
+
// (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
// Only do this if x/y have the same type, if at last one of them has a
@@ -410,13 +1102,18 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0))) {
// Insert the new integer add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0),"addconv");
return new SIToFPInst(NewAdd, I.getType());
}
}
}
-
+
+ if (I.hasUnsafeAlgebra()) {
+ if (Value *V = FAddCombine(Builder).simplify(&I))
+ return ReplaceInstUsesWith(I, V);
+ }
+
return Changed ? &I : 0;
}
@@ -428,7 +1125,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
Type *Ty) {
assert(TD && "Must have target data info for this");
-
+
// If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
// this.
bool Swapped = false;
@@ -451,7 +1148,7 @@ Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
}
}
}
-
+
if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
// X - (gep X, ...)
if (RHSGEP->getOperand(0) == LHS) {
@@ -467,16 +1164,16 @@ Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
}
}
}
-
+
// Avoid duplicating the arithmetic if GEP2 has non-constant indices and
// multiple users.
if (GEP1 == 0 ||
(GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
return 0;
-
+
// Emit the offset of the GEP and an intptr_t.
Value *Result = EmitGEPOffset(GEP1);
-
+
// If we had a constant expression GEP on the other side offsetting the
// pointer, subtract it from the offset we have.
if (GEP2) {
@@ -517,7 +1214,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// Replace (-1 - A) with (~A).
if (match(Op0, m_AllOnes()))
return BinaryOperator::CreateNot(Op1);
-
+
if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
// C - ~X == X + (1+C)
Value *X = 0;
@@ -553,18 +1250,18 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
return &I;
}
-
+
{ Value *Y;
// X-(X+Y) == -Y X-(Y+X) == -Y
if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
return BinaryOperator::CreateNeg(Y);
-
+
// (X-Y)-X == -Y
if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNeg(Y);
}
-
+
if (Op1->hasOneUse()) {
Value *X = 0, *Y = 0, *Z = 0;
Constant *C = 0;
@@ -581,7 +1278,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
return BinaryOperator::CreateAnd(Op0,
Builder->CreateNot(Y, Y->getName() + ".not"));
-
+
// 0 - (X sdiv C) -> (X sdiv -C)
if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
match(Op0, m_Zero()))
@@ -604,14 +1301,14 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
return BinaryOperator::CreateMul(Op0, C);
}
-
+
// X - A*-B -> X + A*B
// X - -A*B -> X + A*B
Value *A, *B;
if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
-
+
// X - A*CI -> X + A*-CI
// X - CI*A -> X + A*-CI
if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
@@ -630,7 +1327,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
if (X == dyn_castFoldableMul(Op1, C2))
return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
}
-
+
// Optimize pointer differences into the same array into a size. Consider:
// &A[10] - &A[0]: we should compile this to "10".
if (TD) {
@@ -639,23 +1336,31 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
match(Op1, m_PtrToInt(m_Value(RHSOp))))
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
return ReplaceInstUsesWith(I, Res);
-
+
// trunc(p)-trunc(q) -> trunc(p-q)
if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
return ReplaceInstUsesWith(I, Res);
}
-
+
return 0;
}
Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), TD))
+ return ReplaceInstUsesWith(I, V);
+
// If this is a 'B = x-(-A)', change to B = x+A...
if (Value *V = dyn_castFNegVal(Op1))
return BinaryOperator::CreateFAdd(Op0, V);
+ if (I.hasUnsafeAlgebra()) {
+ if (Value *V = FAddCombine(Builder).simplify(&I))
+ return ReplaceInstUsesWith(I, V);
+ }
+
return 0;
}
diff --git a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index 7d0af0d..c1e60d4 100644
--- a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -12,11 +12,11 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/Intrinsics.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
+#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/PatternMatch.h"
+#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
using namespace llvm;
using namespace PatternMatch;
@@ -36,15 +36,15 @@ static inline bool isFreeToInvert(Value *V) {
// ~(~(X)) -> X.
if (BinaryOperator::isNot(V))
return true;
-
+
// Constants can be considered to be not'ed values.
if (isa<ConstantInt>(V))
return true;
-
+
// Compares can be inverted if they have a single use.
if (CmpInst *CI = dyn_cast<CmpInst>(V))
return CI->hasOneUse();
-
+
return false;
}
@@ -56,7 +56,7 @@ static inline Value *dyn_castNotVal(Value *V) {
if (!isFreeToInvert(Operand))
return Operand;
}
-
+
// Constants can be considered to be not'ed values...
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
return ConstantInt::get(C->getType(), ~C->getValue());
@@ -91,7 +91,7 @@ static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
}
/// getNewICmpValue - This is the complement of getICmpCode, which turns an
-/// opcode and two operands into either a constant true or false, or a brand
+/// opcode and two operands into either a constant true or false, or a brand
/// new ICmp instruction. The sign is passed in to determine which kind
/// of predicate to use in the new icmp instruction.
static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
@@ -118,7 +118,7 @@ static Value *getFCmpValue(bool isordered, unsigned code,
case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
- case 7:
+ case 7:
if (!isordered) return ConstantInt::getTrue(LHS->getContext());
Pred = FCmpInst::FCMP_ORD; break;
}
@@ -154,7 +154,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
Or->takeName(Op);
return BinaryOperator::CreateAnd(Or, AndRHS);
}
-
+
ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
if (TogetherCI && !TogetherCI->isZero()){
// (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
@@ -166,7 +166,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
return BinaryOperator::CreateOr(And, OpRHS);
}
}
-
+
break;
case Instruction::Add:
if (Op->hasOneUse()) {
@@ -215,7 +215,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
if (CI->getValue() == ShlMask)
// Masking out bits that the shift already masks.
return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
-
+
if (CI != AndRHS) { // Reducing bits set in and.
TheAnd.setOperand(1, CI);
return &TheAnd;
@@ -236,7 +236,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
if (CI->getValue() == ShrMask)
// Masking out bits that the shift already masks.
return ReplaceInstUsesWith(TheAnd, Op);
-
+
if (CI != AndRHS) {
TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
return &TheAnd;
@@ -269,22 +269,22 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
/// true, otherwise (V < Lo || V >= Hi). In practice, we emit the more efficient
-/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
+/// (V-Lo) \<u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
/// whether to treat the V, Lo and HI as signed or not. IB is the location to
/// insert new instructions.
Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
bool isSigned, bool Inside) {
- assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
+ assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
"Lo is not <= Hi in range emission code!");
-
+
if (Inside) {
if (Lo == Hi) // Trivially false.
return ConstantInt::getFalse(V->getContext());
// V >= Min && V < Hi --> V < Hi
if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
- ICmpInst::Predicate pred = (isSigned ?
+ ICmpInst::Predicate pred = (isSigned ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
return Builder->CreateICmp(pred, V, Hi);
}
@@ -302,7 +302,7 @@ Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
// V < Min || V >= Hi -> V > Hi-1
Hi = SubOne(cast<ConstantInt>(Hi));
if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
- ICmpInst::Predicate pred = (isSigned ?
+ ICmpInst::Predicate pred = (isSigned ?
ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
return Builder->CreateICmp(pred, V, Hi);
}
@@ -327,14 +327,14 @@ static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
// look for the first zero bit after the run of ones
MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
// look for the first non-zero bit
- ME = V.getActiveBits();
+ ME = V.getActiveBits();
return true;
}
/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
/// where isSub determines whether the operator is a sub. If we can fold one of
/// the following xforms:
-///
+///
/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
@@ -355,8 +355,8 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
case Instruction::And:
if (ConstantExpr::getAnd(N, Mask) == Mask) {
// If the AndRHS is a power of two minus one (0+1+), this is simple.
- if ((Mask->getValue().countLeadingZeros() +
- Mask->getValue().countPopulation()) ==
+ if ((Mask->getValue().countLeadingZeros() +
+ Mask->getValue().countPopulation()) ==
Mask->getValue().getBitWidth())
break;
@@ -375,33 +375,33 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
case Instruction::Or:
case Instruction::Xor:
// If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
- if ((Mask->getValue().countLeadingZeros() +
+ if ((Mask->getValue().countLeadingZeros() +
Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
&& ConstantExpr::getAnd(N, Mask)->isNullValue())
break;
return 0;
}
-
+
if (isSub)
return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
}
/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
-/// One of A and B is considered the mask, the other the value. This is
-/// described as the "AMask" or "BMask" part of the enum. If the enum
+/// One of A and B is considered the mask, the other the value. This is
+/// described as the "AMask" or "BMask" part of the enum. If the enum
/// contains only "Mask", then both A and B can be considered masks.
/// If A is the mask, then it was proven, that (A & C) == C. This
/// is trivial if C == A, or C == 0. If both A and C are constants, this
/// proof is also easy.
/// For the following explanations we assume that A is the mask.
-/// The part "AllOnes" declares, that the comparison is true only
+/// The part "AllOnes" declares, that the comparison is true only
/// if (A & B) == A, or all bits of A are set in B.
/// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
-/// The part "AllZeroes" declares, that the comparison is true only
+/// The part "AllZeroes" declares, that the comparison is true only
/// if (A & B) == 0, or all bits of A are cleared in B.
/// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
-/// The part "Mixed" declares, that (A & B) == C and C might or might not
+/// The part "Mixed" declares, that (A & B) == C and C might or might not
/// contain any number of one bits and zero bits.
/// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
/// The Part "Not" means, that in above descriptions "==" should be replaced
@@ -425,16 +425,16 @@ enum MaskedICmpType {
/// return the set of pattern classes (from MaskedICmpType)
/// that (icmp SCC (A & B), C) satisfies
-static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
+static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
ICmpInst::Predicate SCC)
{
ConstantInt *ACst = dyn_cast<ConstantInt>(A);
ConstantInt *BCst = dyn_cast<ConstantInt>(B);
ConstantInt *CCst = dyn_cast<ConstantInt>(C);
bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
- bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
+ bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
ACst->getValue().isPowerOf2());
- bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
+ bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
BCst->getValue().isPowerOf2());
unsigned result = 0;
if (CCst != 0 && CCst->isZero()) {
@@ -449,12 +449,12 @@ static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
FoldMskICmp_BMask_NotMixed));
if (icmp_abit)
result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
- FoldMskICmp_AMask_NotMixed)
+ FoldMskICmp_AMask_NotMixed)
: (FoldMskICmp_AMask_AllOnes |
FoldMskICmp_AMask_Mixed));
if (icmp_bbit)
result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
- FoldMskICmp_BMask_NotMixed)
+ FoldMskICmp_BMask_NotMixed)
: (FoldMskICmp_BMask_AllOnes |
FoldMskICmp_BMask_Mixed));
return result;
@@ -469,26 +469,23 @@ static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
FoldMskICmp_AMask_NotMixed)
: (FoldMskICmp_Mask_AllZeroes |
FoldMskICmp_AMask_Mixed));
- }
- else if (ACst != 0 && CCst != 0 &&
- ConstantExpr::getAnd(ACst, CCst) == CCst) {
+ } else if (ACst != 0 && CCst != 0 &&
+ ConstantExpr::getAnd(ACst, CCst) == CCst) {
result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
: FoldMskICmp_AMask_NotMixed);
}
- if (B == C)
- {
+ if (B == C) {
result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
FoldMskICmp_BMask_Mixed)
: (FoldMskICmp_BMask_NotAllOnes |
FoldMskICmp_BMask_NotMixed));
if (icmp_bbit)
result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
- FoldMskICmp_BMask_NotMixed)
+ FoldMskICmp_BMask_NotMixed)
: (FoldMskICmp_Mask_AllZeroes |
FoldMskICmp_BMask_Mixed));
- }
- else if (BCst != 0 && CCst != 0 &&
- ConstantExpr::getAnd(BCst, CCst) == CCst) {
+ } else if (BCst != 0 && CCst != 0 &&
+ ConstantExpr::getAnd(BCst, CCst) == CCst) {
result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
: FoldMskICmp_BMask_NotMixed);
}
@@ -531,7 +528,7 @@ static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
/// return the set of pattern classes (from MaskedICmpType)
/// that both LHS and RHS satisfy
-static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
+static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
Value*& B, Value*& C,
Value*& D, Value*& E,
ICmpInst *LHS, ICmpInst *RHS,
@@ -542,10 +539,10 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
// Here comes the tricky part:
- // LHS might be of the form L11 & L12 == X, X == L21 & L22,
+ // LHS might be of the form L11 & L12 == X, X == L21 & L22,
// and L11 & L12 == L21 & L22. The same goes for RHS.
// Now we must find those components L** and R**, that are equal, so
- // that we can extract the parameters A, B, C, D, and E for the canonical
+ // that we can extract the parameters A, B, C, D, and E for the canonical
// above.
Value *L1 = LHS->getOperand(0);
Value *L2 = LHS->getOperand(1);
@@ -610,14 +607,11 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
if (L11 == A) {
B = L12; C = L2;
- }
- else if (L12 == A) {
+ } else if (L12 == A) {
B = L11; C = L2;
- }
- else if (L21 == A) {
+ } else if (L21 == A) {
B = L22; C = L1;
- }
- else if (L22 == A) {
+ } else if (L22 == A) {
B = L21; C = L1;
}
@@ -643,32 +637,32 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
mask >>= 1; // treat "Not"-states as normal states
if (mask & FoldMskICmp_Mask_AllZeroes) {
- // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
+ // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
// -> (icmp eq (A & (B|D)), 0)
Value* newOr = Builder->CreateOr(B, D);
Value* newAnd = Builder->CreateAnd(A, newOr);
// we can't use C as zero, because we might actually handle
- // (icmp ne (A & B), B) & (icmp ne (A & D), D)
+ // (icmp ne (A & B), B) & (icmp ne (A & D), D)
// with B and D, having a single bit set
Value* zero = Constant::getNullValue(A->getType());
return Builder->CreateICmp(NEWCC, newAnd, zero);
}
- else if (mask & FoldMskICmp_BMask_AllOnes) {
- // (icmp eq (A & B), B) & (icmp eq (A & D), D)
+ if (mask & FoldMskICmp_BMask_AllOnes) {
+ // (icmp eq (A & B), B) & (icmp eq (A & D), D)
// -> (icmp eq (A & (B|D)), (B|D))
Value* newOr = Builder->CreateOr(B, D);
Value* newAnd = Builder->CreateAnd(A, newOr);
return Builder->CreateICmp(NEWCC, newAnd, newOr);
- }
- else if (mask & FoldMskICmp_AMask_AllOnes) {
- // (icmp eq (A & B), A) & (icmp eq (A & D), A)
+ }
+ if (mask & FoldMskICmp_AMask_AllOnes) {
+ // (icmp eq (A & B), A) & (icmp eq (A & D), A)
// -> (icmp eq (A & (B&D)), A)
Value* newAnd1 = Builder->CreateAnd(B, D);
Value* newAnd = Builder->CreateAnd(A, newAnd1);
return Builder->CreateICmp(NEWCC, newAnd, A);
}
- else if (mask & FoldMskICmp_BMask_Mixed) {
- // (icmp eq (A & B), C) & (icmp eq (A & D), E)
+ if (mask & FoldMskICmp_BMask_Mixed) {
+ // (icmp eq (A & B), C) & (icmp eq (A & D), E)
// We already know that B & C == C && D & E == E.
// If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
// C and E, which are shared by both the mask B and the mask D, don't
@@ -680,7 +674,7 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
ConstantInt *DCst = dyn_cast<ConstantInt>(D);
if (DCst == 0) return 0;
// we can't simply use C and E, because we might actually handle
- // (icmp ne (A & B), B) & (icmp eq (A & D), D)
+ // (icmp ne (A & B), B) & (icmp eq (A & D), D)
// with B and D, having a single bit set
ConstantInt *CCst = dyn_cast<ConstantInt>(C);
@@ -727,13 +721,13 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
return V;
-
+
// This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
if (LHSCst == 0 || RHSCst == 0) return 0;
-
+
if (LHSCst == RHSCst && LHSCC == RHSCC) {
// (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
// where C is a power of 2
@@ -742,7 +736,7 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Value *NewOr = Builder->CreateOr(Val, Val2);
return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
}
-
+
// (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
Value *NewOr = Builder->CreateOr(Val, Val2);
@@ -759,14 +753,13 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
// (trunc x) == C1 & (and x, CA) == C2
+ // (and x, CA) == C2 & (trunc x) == C1
if (match(Val2, m_Trunc(m_Value(V))) &&
match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
SmallCst = RHSCst;
BigCst = LHSCst;
- }
- // (and x, CA) == C2 & (trunc x) == C1
- else if (match(Val, m_Trunc(m_Value(V))) &&
- match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
+ } else if (match(Val, m_Trunc(m_Value(V))) &&
+ match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
SmallCst = LHSCst;
BigCst = RHSCst;
}
@@ -789,7 +782,7 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// From here on, we only handle:
// (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
if (Val != Val2) return 0;
-
+
// ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
@@ -799,9 +792,9 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// Make a constant range that's the intersection of the two icmp ranges.
// If the intersection is empty, we know that the result is false.
- ConstantRange LHSRange =
+ ConstantRange LHSRange =
ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
- ConstantRange RHSRange =
+ ConstantRange RHSRange =
ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
if (LHSRange.intersectWith(RHSRange).isEmptySet())
@@ -810,16 +803,16 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// We can't fold (ugt x, C) & (sgt x, C2).
if (!PredicatesFoldable(LHSCC, RHSCC))
return 0;
-
+
// Ensure that the larger constant is on the RHS.
bool ShouldSwap;
if (CmpInst::isSigned(LHSCC) ||
- (ICmpInst::isEquality(LHSCC) &&
+ (ICmpInst::isEquality(LHSCC) &&
CmpInst::isSigned(RHSCC)))
ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
else
ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
-
+
if (ShouldSwap) {
std::swap(LHS, RHS);
std::swap(LHSCst, RHSCst);
@@ -829,8 +822,8 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// At this point, we know we have two icmp instructions
// comparing a value against two constants and and'ing the result
// together. Because of the above check, we know that we only have
- // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
- // (from the icmp folding check above), that the two constants
+ // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
+ // (from the icmp folding check above), that the two constants
// are not equal and that the larger constant is on the RHS
assert(LHSCst != RHSCst && "Compares not folded above?");
@@ -932,7 +925,7 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
}
break;
}
-
+
return 0;
}
@@ -951,7 +944,7 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return ConstantInt::getFalse(LHS->getContext());
return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
}
-
+
// Handle vector zeros. This occurs because the canonical form of
// "fcmp ord x,x" is "fcmp ord x, 0".
if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
@@ -959,18 +952,18 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
return 0;
}
-
+
Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
-
-
+
+
if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
// Swap RHS operands to match LHS.
Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
std::swap(Op1LHS, Op1RHS);
}
-
+
if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
// Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
if (Op0CC == Op1CC)
@@ -981,7 +974,7 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return RHS;
if (Op1CC == FCmpInst::FCMP_TRUE)
return LHS;
-
+
bool Op0Ordered;
bool Op1Ordered;
unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
@@ -1001,7 +994,7 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return LHS;
if (Op0Ordered && (Op0Ordered == Op1Ordered))
return RHS;
-
+
// uno && oeq -> uno && (ord && eq) -> false
if (!Op0Ordered)
return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
@@ -1025,10 +1018,10 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
+ // See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
- return &I;
+ return &I;
if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
const APInt &AndRHSMask = AndRHS->getValue();
@@ -1043,7 +1036,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
case Instruction::Or: {
// If the mask is only needed on one incoming arm, push it up.
if (!Op0I->hasOneUse()) break;
-
+
APInt NotAndRHS(~AndRHSMask);
if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
// Not masking anything out for the LHS, move to RHS.
@@ -1103,12 +1096,12 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
}
break;
}
-
+
if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
return Res;
}
-
+
// If this is an integer truncation, and if the source is an 'and' with
// immediate, transform it. This frequently occurs for bitfield accesses.
{
@@ -1116,7 +1109,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
// Change: and (trunc (and X, YC) to T), C2
// into : and (trunc X to T), trunc(YC) & C2
- // This will fold the two constants together, which may allow
+ // This will fold the two constants together, which may allow
// other simplifications.
Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
@@ -1143,7 +1136,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
I.getName()+".demorgan");
return BinaryOperator::CreateNot(Or);
}
-
+
{
Value *A = 0, *B = 0, *C = 0, *D = 0;
// (A|B) & ~(A&B) -> A^B
@@ -1151,13 +1144,13 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
((A == C && B == D) || (A == D && B == C)))
return BinaryOperator::CreateXor(A, B);
-
+
// ~(A&B) & (A|B) -> A^B
if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
((A == C && B == D) || (A == D && B == C)))
return BinaryOperator::CreateXor(A, B);
-
+
// A&(A^B) => A & ~B
{
Value *tmpOp0 = Op0;
@@ -1193,19 +1186,19 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
return BinaryOperator::CreateAnd(A, Op0);
}
-
+
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
if (Value *Res = FoldAndOfICmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
-
+
// If and'ing two fcmp, try combine them into one.
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
if (Value *Res = FoldAndOfFCmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
-
-
+
+
// fold (and (cast A), (cast B)) -> (cast (and A, B))
if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
@@ -1214,21 +1207,21 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
SrcTy == Op1C->getOperand(0)->getType() &&
SrcTy->isIntOrIntVectorTy()) {
Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
-
+
// Only do this if the casts both really cause code to be generated.
if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
-
+
// If this is and(cast(icmp), cast(icmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
if (Value *Res = FoldAndOfICmps(LHS, RHS))
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
-
+
// If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
@@ -1237,17 +1230,17 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
}
}
-
+
// (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
- if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
+ if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
SI0->getOperand(1) == SI1->getOperand(1) &&
(SI0->hasOneUse() || SI1->hasOneUse())) {
Value *NewOp =
Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
SI0->getName());
- return BinaryOperator::Create(SI1->getOpcode(), NewOp,
+ return BinaryOperator::Create(SI1->getOpcode(), NewOp,
SI1->getOperand(1));
}
}
@@ -1288,11 +1281,11 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
ByteValues);
}
-
+
// If this is a logical shift by a constant multiple of 8, recurse with
// OverallLeftShift and ByteMask adjusted.
if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
- unsigned ShAmt =
+ unsigned ShAmt =
cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
// Ensure the shift amount is defined and of a byte value.
if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
@@ -1313,7 +1306,7 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
if (OverallLeftShift >= (int)ByteValues.size()) return true;
if (OverallLeftShift <= -(int)ByteValues.size()) return true;
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
+ return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
ByteValues);
}
@@ -1325,20 +1318,20 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
unsigned NumBytes = ByteValues.size();
APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
-
+
for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
// If this byte is masked out by a later operation, we don't care what
// the and mask is.
if ((ByteMask & (1 << i)) == 0)
continue;
-
+
// If the AndMask is all zeros for this byte, clear the bit.
APInt MaskB = AndMask & Byte;
if (MaskB == 0) {
ByteMask &= ~(1U << i);
continue;
}
-
+
// If the AndMask is not all ones for this byte, it's not a bytezap.
if (MaskB != Byte)
return true;
@@ -1346,11 +1339,11 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
// Otherwise, this byte is kept.
}
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
+ return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
ByteValues);
}
}
-
+
// Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
// the input value to the bswap. Some observations: 1) if more than one byte
// is demanded from this input, then it could not be successfully assembled
@@ -1358,7 +1351,7 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
// their ultimate destination.
if (!isPowerOf2_32(ByteMask)) return true;
unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
-
+
// 2) The input and ultimate destinations must line up: if byte 3 of an i32
// is demanded, it needs to go into byte 0 of the result. This means that the
// byte needs to be shifted until it lands in the right byte bucket. The
@@ -1368,7 +1361,7 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
unsigned DestByteNo = InputByteNo + OverallLeftShift;
if (ByteValues.size()-1-DestByteNo != InputByteNo)
return true;
-
+
// If the destination byte value is already defined, the values are or'd
// together, which isn't a bswap (unless it's an or of the same bits).
if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
@@ -1381,25 +1374,25 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
/// If so, insert the new bswap intrinsic and return it.
Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
- if (!ITy || ITy->getBitWidth() % 16 ||
+ if (!ITy || ITy->getBitWidth() % 16 ||
// ByteMask only allows up to 32-byte values.
- ITy->getBitWidth() > 32*8)
+ ITy->getBitWidth() > 32*8)
return 0; // Can only bswap pairs of bytes. Can't do vectors.
-
+
/// ByteValues - For each byte of the result, we keep track of which value
/// defines each byte.
SmallVector<Value*, 8> ByteValues;
ByteValues.resize(ITy->getBitWidth()/8);
-
+
// Try to find all the pieces corresponding to the bswap.
uint32_t ByteMask = ~0U >> (32-ByteValues.size());
if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
return 0;
-
+
// Check to see if all of the bytes come from the same value.
Value *V = ByteValues[0];
if (V == 0) return 0; // Didn't find a byte? Must be zero.
-
+
// Check to make sure that all of the bytes come from the same value.
for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
if (ByteValues[i] != V)
@@ -1425,7 +1418,7 @@ static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
return SelectInst::Create(Cond, C, B);
if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
return SelectInst::Create(Cond, C, B);
-
+
// ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
return SelectInst::Create(Cond, C, D);
@@ -1483,33 +1476,33 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// From here on, we only handle:
// (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
if (Val != Val2) return 0;
-
+
// ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
return 0;
-
+
// We can't fold (ugt x, C) | (sgt x, C2).
if (!PredicatesFoldable(LHSCC, RHSCC))
return 0;
-
+
// Ensure that the larger constant is on the RHS.
bool ShouldSwap;
if (CmpInst::isSigned(LHSCC) ||
- (ICmpInst::isEquality(LHSCC) &&
+ (ICmpInst::isEquality(LHSCC) &&
CmpInst::isSigned(RHSCC)))
ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
else
ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
-
+
if (ShouldSwap) {
std::swap(LHS, RHS);
std::swap(LHSCst, RHSCst);
std::swap(LHSCC, RHSCC);
}
-
+
// At this point, we know we have two icmp instructions
// comparing a value against two constants and or'ing the result
// together. Because of the above check, we know that we only have
@@ -1531,6 +1524,20 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
return Builder->CreateICmpULT(Add, AddCST);
}
+
+ if (LHS->getOperand(0) == RHS->getOperand(0)) {
+ // if LHSCst and RHSCst differ only by one bit:
+ // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
+ assert(LHSCst->getValue().ule(LHSCst->getValue()));
+
+ APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
+ if (Xor.isPowerOf2()) {
+ Value *NegCst = Builder->getInt(~Xor);
+ Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
+ return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
+ }
+ }
+
break; // (X == 13 | X == 15) -> no change
case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
@@ -1632,7 +1639,7 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
/// function.
Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
- RHS->getPredicate() == FCmpInst::FCMP_UNO &&
+ RHS->getPredicate() == FCmpInst::FCMP_UNO &&
LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
@@ -1640,25 +1647,25 @@ Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
// true.
if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
return ConstantInt::getTrue(LHS->getContext());
-
+
// Otherwise, no need to compare the two constants, compare the
// rest.
return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
}
-
+
// Handle vector zeros. This occurs because the canonical form of
// "fcmp uno x,x" is "fcmp uno x, 0".
if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
isa<ConstantAggregateZero>(RHS->getOperand(1)))
return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
-
+
return 0;
}
-
+
Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
-
+
if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
// Swap RHS operands to match LHS.
Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
@@ -1692,7 +1699,7 @@ Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
/// ((A | B) & C1) | (B & C2)
///
/// into:
-///
+///
/// (A & C1) | B
///
/// when the XOR of the two constants is "all ones" (-1).
@@ -1727,7 +1734,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
+ // See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
return &I;
@@ -1741,7 +1748,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Op0->hasOneUse()) {
Value *Or = Builder->CreateOr(X, RHS);
Or->takeName(Op0);
- return BinaryOperator::CreateAnd(Or,
+ return BinaryOperator::CreateAnd(Or,
ConstantInt::get(I.getContext(),
RHS->getValue() | C1->getValue()));
}
@@ -1778,7 +1785,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Instruction *BSwap = MatchBSwap(I))
return BSwap;
}
-
+
// (X^C)|Y -> (X|Y)^C iff Y&C == 0
if (Op0->hasOneUse() &&
match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
@@ -1827,7 +1834,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
return ReplaceInstUsesWith(I, B);
}
}
-
+
if ((C1->getValue() & C2->getValue()) == 0) {
// ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
// iff (C1&C2) == 0 and (N&~C1) == 0
@@ -1844,7 +1851,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
return BinaryOperator::CreateAnd(B,
ConstantInt::get(B->getContext(),
C1->getValue()|C2->getValue()));
-
+
// ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
// iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
ConstantInt *C3 = 0, *C4 = 0;
@@ -1904,16 +1911,16 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Ret) return Ret;
}
}
-
+
// (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
- if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
+ if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
SI0->getOperand(1) == SI1->getOperand(1) &&
(SI0->hasOneUse() || SI1->hasOneUse())) {
Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
SI0->getName());
- return BinaryOperator::Create(SI1->getOpcode(), NewOp,
+ return BinaryOperator::Create(SI1->getOpcode(), NewOp,
SI1->getOperand(1));
}
}
@@ -1975,13 +1982,13 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
if (Value *Res = FoldOrOfICmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
-
+
// (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
if (Value *Res = FoldOrOfFCmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
-
+
// fold (or (cast A), (cast B)) -> (cast (or A, B))
if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
CastInst *Op1C = dyn_cast<CastInst>(Op1);
@@ -1999,14 +2006,14 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
-
+
// If this is or(cast(icmp), cast(icmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
if (Value *Res = FoldOrOfICmps(LHS, RHS))
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
-
+
// If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
@@ -2035,7 +2042,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Inner->takeName(Op0);
return BinaryOperator::CreateOr(Inner, C1);
}
-
+
return Changed ? &I : 0;
}
@@ -2050,7 +2057,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
+ // See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
return &I;
@@ -2058,7 +2065,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
// Is this a ~ operation?
if (Value *NotOp = dyn_castNotVal(&I)) {
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
- if (Op0I->getOpcode() == Instruction::And ||
+ if (Op0I->getOpcode() == Instruction::And ||
Op0I->getOpcode() == Instruction::Or) {
// ~(~X & Y) --> (X | ~Y) - De Morgan's Law
// ~(~X | Y) === (X & ~Y) - De Morgan's Law
@@ -2072,10 +2079,10 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
return BinaryOperator::CreateOr(Op0NotVal, NotY);
return BinaryOperator::CreateAnd(Op0NotVal, NotY);
}
-
+
// ~(X & Y) --> (~X | ~Y) - De Morgan's Law
// ~(X | Y) === (~X & ~Y) - De Morgan's Law
- if (isFreeToInvert(Op0I->getOperand(0)) &&
+ if (isFreeToInvert(Op0I->getOperand(0)) &&
isFreeToInvert(Op0I->getOperand(1))) {
Value *NotX =
Builder->CreateNot(Op0I->getOperand(0), "notlhs");
@@ -2093,8 +2100,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
}
}
-
-
+
+
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
if (RHS->isOne() && Op0->hasOneUse())
// xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
@@ -2109,7 +2116,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (CI->hasOneUse() && Op0C->hasOneUse()) {
Instruction::CastOps Opcode = Op0C->getOpcode();
if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
- (RHS == ConstantExpr::getCast(Opcode,
+ (RHS == ConstantExpr::getCast(Opcode,
ConstantInt::getTrue(I.getContext()),
Op0C->getDestTy()))) {
CI->setPredicate(CI->getInversePredicate());
@@ -2128,7 +2135,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
ConstantInt::get(I.getType(), 1));
return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
}
-
+
if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
if (Op0I->getOpcode() == Instruction::Add) {
// ~(X-c) --> (-c-1)-X
@@ -2152,13 +2159,34 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
// Anything in both C1 and C2 is known to be zero, remove it from
// NewRHS.
Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
- NewRHS = ConstantExpr::getAnd(NewRHS,
+ NewRHS = ConstantExpr::getAnd(NewRHS,
ConstantExpr::getNot(CommonBits));
Worklist.Add(Op0I);
I.setOperand(0, Op0I->getOperand(0));
I.setOperand(1, NewRHS);
return &I;
}
+ } else if (Op0I->getOpcode() == Instruction::LShr) {
+ // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
+ // E1 = "X ^ C1"
+ BinaryOperator *E1;
+ ConstantInt *C1;
+ if (Op0I->hasOneUse() &&
+ (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
+ E1->getOpcode() == Instruction::Xor &&
+ (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
+ // fold (C1 >> C2) ^ C3
+ ConstantInt *C2 = Op0CI, *C3 = RHS;
+ APInt FoldConst = C1->getValue().lshr(C2->getValue());
+ FoldConst ^= C3->getValue();
+ // Prepare the two operands.
+ Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
+ Opnd0->takeName(Op0I);
+ cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
+ Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
+
+ return BinaryOperator::CreateXor(Opnd0, FoldVal);
+ }
}
}
}
@@ -2184,7 +2212,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
I.swapOperands(); // Simplified below.
std::swap(Op0, Op1);
}
- } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
+ } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
Op1I->hasOneUse()){
if (A == Op0) { // A^(A&B) -> A^(B&A)
Op1I->swapOperands();
@@ -2196,7 +2224,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
}
}
-
+
BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
if (Op0I) {
Value *A, *B;
@@ -2206,7 +2234,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
std::swap(A, B);
if (B == Op1) // (A|B)^B == A & ~B
return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
- } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
+ } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
Op0I->hasOneUse()){
if (A == Op1) // (A&B)^A -> (B&A)^A
std::swap(A, B);
@@ -2216,31 +2244,31 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
}
}
-
+
// (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
- if (Op0I && Op1I && Op0I->isShift() &&
- Op0I->getOpcode() == Op1I->getOpcode() &&
+ if (Op0I && Op1I && Op0I->isShift() &&
+ Op0I->getOpcode() == Op1I->getOpcode() &&
Op0I->getOperand(1) == Op1I->getOperand(1) &&
(Op0I->hasOneUse() || Op1I->hasOneUse())) {
Value *NewOp =
Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
Op0I->getName());
- return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
+ return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Op1I->getOperand(1));
}
-
+
if (Op0I && Op1I) {
Value *A, *B, *C, *D;
// (A & B)^(A | B) -> A ^ B
if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
- if ((A == C && B == D) || (A == D && B == C))
+ if ((A == C && B == D) || (A == D && B == C))
return BinaryOperator::CreateXor(A, B);
}
// (A | B)^(A & B) -> A ^ B
if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
match(Op1I, m_And(m_Value(C), m_Value(D)))) {
- if ((A == C && B == D) || (A == D && B == C))
+ if ((A == C && B == D) || (A == D && B == C))
return BinaryOperator::CreateXor(A, B);
}
}
@@ -2257,7 +2285,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
bool isSigned = LHS->isSigned() || RHS->isSigned();
- return ReplaceInstUsesWith(I,
+ return ReplaceInstUsesWith(I,
getNewICmpValue(isSigned, Code, Op0, Op1,
Builder));
}
@@ -2270,9 +2298,9 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Type *SrcTy = Op0C->getOperand(0)->getType();
if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
// Only do this if the casts both really cause code to be generated.
- ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
+ ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
I.getType()) &&
- ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
+ ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
I.getType())) {
Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
Op1C->getOperand(0), I.getName());
diff --git a/lib/Transforms/InstCombine/InstCombineCalls.cpp b/lib/Transforms/InstCombine/InstCombineCalls.cpp
index b12fc01..d17879b 100644
--- a/lib/Transforms/InstCombine/InstCombineCalls.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -12,12 +12,17 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/PatternMatch.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
+using namespace PatternMatch;
+
+STATISTIC(NumSimplified, "Number of library calls simplified");
/// getPromotedType - Return the specified type promoted as it would be to pass
/// though a va_arg area.
@@ -29,6 +34,26 @@ static Type *getPromotedType(Type *Ty) {
return Ty;
}
+/// reduceToSingleValueType - Given an aggregate type which ultimately holds a
+/// single scalar element, like {{{type}}} or [1 x type], return type.
+static Type *reduceToSingleValueType(Type *T) {
+ while (!T->isSingleValueType()) {
+ if (StructType *STy = dyn_cast<StructType>(T)) {
+ if (STy->getNumElements() == 1)
+ T = STy->getElementType(0);
+ else
+ break;
+ } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
+ if (ATy->getNumElements() == 1)
+ T = ATy->getElementType();
+ else
+ break;
+ } else
+ break;
+ }
+
+ return T;
+}
Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
@@ -74,35 +99,37 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
// dest address will be promotable. See if we can find a better type than the
// integer datatype.
Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
+ MDNode *CopyMD = 0;
if (StrippedDest != MI->getArgOperand(0)) {
Type *SrcETy = cast<PointerType>(StrippedDest->getType())
->getElementType();
if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
// The SrcETy might be something like {{{double}}} or [1 x double]. Rip
// down through these levels if so.
- while (!SrcETy->isSingleValueType()) {
- if (StructType *STy = dyn_cast<StructType>(SrcETy)) {
- if (STy->getNumElements() == 1)
- SrcETy = STy->getElementType(0);
- else
- break;
- } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
- if (ATy->getNumElements() == 1)
- SrcETy = ATy->getElementType();
- else
- break;
- } else
- break;
- }
+ SrcETy = reduceToSingleValueType(SrcETy);
if (SrcETy->isSingleValueType()) {
NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
+
+ // If the memcpy has metadata describing the members, see if we can
+ // get the TBAA tag describing our copy.
+ if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
+ if (M->getNumOperands() == 3 &&
+ M->getOperand(0) &&
+ isa<ConstantInt>(M->getOperand(0)) &&
+ cast<ConstantInt>(M->getOperand(0))->isNullValue() &&
+ M->getOperand(1) &&
+ isa<ConstantInt>(M->getOperand(1)) &&
+ cast<ConstantInt>(M->getOperand(1))->getValue() == Size &&
+ M->getOperand(2) &&
+ isa<MDNode>(M->getOperand(2)))
+ CopyMD = cast<MDNode>(M->getOperand(2));
+ }
}
}
}
-
// If the memcpy/memmove provides better alignment info than we can
// infer, use it.
SrcAlign = std::max(SrcAlign, CopyAlign);
@@ -112,8 +139,12 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
L->setAlignment(SrcAlign);
+ if (CopyMD)
+ L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
S->setAlignment(DstAlign);
+ if (CopyMD)
+ S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
@@ -247,25 +278,25 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
return 0;
}
- case Intrinsic::bswap:
+ case Intrinsic::bswap: {
+ Value *IIOperand = II->getArgOperand(0);
+ Value *X = 0;
+
// bswap(bswap(x)) -> x
- if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
- if (Operand->getIntrinsicID() == Intrinsic::bswap)
- return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
+ if (match(IIOperand, m_BSwap(m_Value(X))))
+ return ReplaceInstUsesWith(CI, X);
// bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
- if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
- if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
- if (Operand->getIntrinsicID() == Intrinsic::bswap) {
- unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
- TI->getType()->getPrimitiveSizeInBits();
- Value *CV = ConstantInt::get(Operand->getType(), C);
- Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
- return new TruncInst(V, TI->getType());
- }
+ if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
+ unsigned C = X->getType()->getPrimitiveSizeInBits() -
+ IIOperand->getType()->getPrimitiveSizeInBits();
+ Value *CV = ConstantInt::get(X->getType(), C);
+ Value *V = Builder->CreateLShr(X, CV);
+ return new TruncInst(V, IIOperand->getType());
}
-
break;
+ }
+
case Intrinsic::powi:
if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
// powi(x, 0) -> 1.0
@@ -664,7 +695,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (Splat->isOne()) {
if (Zext)
return CastInst::CreateZExtOrBitCast(Arg0, II->getType());
- // else
+ // else
return CastInst::CreateSExtOrBitCast(Arg0, II->getType());
}
}
@@ -731,7 +762,7 @@ Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
/// passed through the varargs area, we can eliminate the use of the cast.
static bool isSafeToEliminateVarargsCast(const CallSite CS,
const CastInst * const CI,
- const TargetData * const TD,
+ const DataLayout * const TD,
const int ix) {
if (!CI->isLosslessCast())
return false;
@@ -752,49 +783,19 @@ static bool isSafeToEliminateVarargsCast(const CallSite CS,
return true;
}
-namespace {
-class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
- InstCombiner *IC;
-protected:
- void replaceCall(Value *With) {
- NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
- }
- bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
- if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
- return true;
- if (ConstantInt *SizeCI =
- dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
- if (SizeCI->isAllOnesValue())
- return true;
- if (isString) {
- uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
- // If the length is 0 we don't know how long it is and so we can't
- // remove the check.
- if (Len == 0) return false;
- return SizeCI->getZExtValue() >= Len;
- }
- if (ConstantInt *Arg = dyn_cast<ConstantInt>(
- CI->getArgOperand(SizeArgOp)))
- return SizeCI->getZExtValue() >= Arg->getZExtValue();
- }
- return false;
- }
-public:
- InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
- Instruction *NewInstruction;
-};
-} // end anonymous namespace
-
// Try to fold some different type of calls here.
// Currently we're only working with the checking functions, memcpy_chk,
// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
// strcat_chk and strncat_chk.
-Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
+Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const DataLayout *TD) {
if (CI->getCalledFunction() == 0) return 0;
- InstCombineFortifiedLibCalls Simplifier(this);
- Simplifier.fold(CI, TD, TLI);
- return Simplifier.NewInstruction;
+ if (Value *With = Simplifier->optimizeCall(CI)) {
+ ++NumSimplified;
+ return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
+ }
+
+ return 0;
}
static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
@@ -900,7 +901,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
new StoreInst(ConstantInt::getTrue(Callee->getContext()),
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
OldCall);
- // If OldCall dues not return void then replaceAllUsesWith undef.
+ // If OldCall does not return void then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
if (!OldCall->getType()->isVoidTy())
ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
@@ -961,7 +962,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
Changed = true;
}
- // Try to optimize the call if possible, we require TargetData for most of
+ // Try to optimize the call if possible, we require DataLayout for most of
// this. None of these calls are seen as possibly dead so go ahead and
// delete the instruction now.
if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
@@ -983,7 +984,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (Callee == 0)
return false;
Instruction *Caller = CS.getInstruction();
- const AttrListPtr &CallerPAL = CS.getAttributes();
+ const AttributeSet &CallerPAL = CS.getAttributes();
// Okay, this is a cast from a function to a different type. Unless doing so
// would cause a type conversion of one of our arguments, change this call to
@@ -1013,8 +1014,8 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
return false; // Cannot transform this return value.
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
- Attributes RAttrs = CallerPAL.getRetAttributes();
- if (RAttrs & Attribute::typeIncompatible(NewRetTy))
+ AttrBuilder RAttrs = CallerPAL.getRetAttributes();
+ if (RAttrs.hasAttributes(Attribute::typeIncompatible(NewRetTy)))
return false; // Attribute not compatible with transformed value.
}
@@ -1043,13 +1044,14 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!CastInst::isCastable(ActTy, ParamTy))
return false; // Cannot transform this parameter value.
- Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
- if (Attrs & Attribute::typeIncompatible(ParamTy))
+ Attribute Attrs = CallerPAL.getParamAttributes(i + 1);
+ if (AttrBuilder(Attrs).
+ hasAttributes(Attribute::typeIncompatible(ParamTy)))
return false; // Attribute not compatible with transformed value.
// If the parameter is passed as a byval argument, then we have to have a
// sized type and the sized type has to have the same size as the old type.
- if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
+ if (ParamTy != ActTy && Attrs.hasAttribute(Attribute::ByVal)) {
PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
return false;
@@ -1100,8 +1102,9 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
break;
- Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
- if (PAttrs & Attribute::VarArgsIncompatible)
+ Attribute PAttrs = CallerPAL.getSlot(i - 1).Attrs;
+ // Check if it has an attribute that's incompatible with varargs.
+ if (PAttrs.hasAttribute(Attribute::StructRet))
return false;
}
@@ -1114,15 +1117,17 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
attrVec.reserve(NumCommonArgs);
// Get any return attributes.
- Attributes RAttrs = CallerPAL.getRetAttributes();
+ AttrBuilder RAttrs = CallerPAL.getRetAttributes();
// If the return value is not being used, the type may not be compatible
// with the existing attributes. Wipe out any problematic attributes.
- RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
+ RAttrs.removeAttributes(Attribute::typeIncompatible(NewRetTy));
// Add the new return attributes.
- if (RAttrs)
- attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
+ if (RAttrs.hasAttributes())
+ attrVec.push_back(
+ AttributeWithIndex::get(AttributeSet::ReturnIndex,
+ Attribute::get(FT->getContext(), RAttrs)));
AI = CS.arg_begin();
for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
@@ -1136,7 +1141,8 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
}
// Add any parameter attributes.
- if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
+ Attribute PAttrs = CallerPAL.getParamAttributes(i + 1);
+ if (PAttrs.hasAttributes())
attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
}
@@ -1147,10 +1153,8 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// If we are removing arguments to the function, emit an obnoxious warning.
if (FT->getNumParams() < NumActualArgs) {
- if (!FT->isVarArg()) {
- errs() << "WARNING: While resolving call to function '"
- << Callee->getName() << "' arguments were dropped!\n";
- } else {
+ // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
+ if (FT->isVarArg()) {
// Add all of the arguments in their promoted form to the arg list.
for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
Type *PTy = getPromotedType((*AI)->getType());
@@ -1164,19 +1168,23 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
}
// Add any parameter attributes.
- if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
+ Attribute PAttrs = CallerPAL.getParamAttributes(i + 1);
+ if (PAttrs.hasAttributes())
attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
}
}
}
- if (Attributes FnAttrs = CallerPAL.getFnAttributes())
- attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
+ Attribute FnAttrs = CallerPAL.getFnAttributes();
+ if (FnAttrs.hasAttributes())
+ attrVec.push_back(AttributeWithIndex::get(AttributeSet::FunctionIndex,
+ FnAttrs));
if (NewRetTy->isVoidTy())
Caller->setName(""); // Void type should not have a name.
- const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec);
+ const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
+ attrVec);
Instruction *NC;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
@@ -1236,7 +1244,7 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
Value *Callee = CS.getCalledValue();
PointerType *PTy = cast<PointerType>(Callee->getType());
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
- const AttrListPtr &Attrs = CS.getAttributes();
+ const AttributeSet &Attrs = CS.getAttributes();
// If the call already has the 'nest' attribute somewhere then give up -
// otherwise 'nest' would occur twice after splicing in the chain.
@@ -1250,16 +1258,16 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
PointerType *NestFPTy = cast<PointerType>(NestF->getType());
FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
- const AttrListPtr &NestAttrs = NestF->getAttributes();
+ const AttributeSet &NestAttrs = NestF->getAttributes();
if (!NestAttrs.isEmpty()) {
unsigned NestIdx = 1;
Type *NestTy = 0;
- Attributes NestAttr = Attribute::None;
+ Attribute NestAttr;
// Look for a parameter marked with the 'nest' attribute.
for (FunctionType::param_iterator I = NestFTy->param_begin(),
E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
- if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
+ if (NestAttrs.getParamAttributes(NestIdx).hasAttribute(Attribute::Nest)){
// Record the parameter type and any other attributes.
NestTy = *I;
NestAttr = NestAttrs.getParamAttributes(NestIdx);
@@ -1278,8 +1286,10 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
// mean appending it. Likewise for attributes.
// Add any result attributes.
- if (Attributes Attr = Attrs.getRetAttributes())
- NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
+ Attribute Attr = Attrs.getRetAttributes();
+ if (Attr.hasAttributes())
+ NewAttrs.push_back(AttributeWithIndex::get(AttributeSet::ReturnIndex,
+ Attr));
{
unsigned Idx = 1;
@@ -1299,7 +1309,8 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
// Add the original argument and attributes.
NewArgs.push_back(*I);
- if (Attributes Attr = Attrs.getParamAttributes(Idx))
+ Attr = Attrs.getParamAttributes(Idx);
+ if (Attr.hasAttributes())
NewAttrs.push_back
(AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
@@ -1308,8 +1319,10 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
}
// Add any function attributes.
- if (Attributes Attr = Attrs.getFnAttributes())
- NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
+ Attr = Attrs.getFnAttributes();
+ if (Attr.hasAttributes())
+ NewAttrs.push_back(AttributeWithIndex::get(AttributeSet::FunctionIndex,
+ Attr));
// The trampoline may have been bitcast to a bogus type (FTy).
// Handle this by synthesizing a new function type, equal to FTy
@@ -1348,7 +1361,7 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
NestF->getType() == PointerType::getUnqual(NewFTy) ?
NestF : ConstantExpr::getBitCast(NestF,
PointerType::getUnqual(NewFTy));
- const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs);
+ const AttributeSet &NewPAL = AttributeSet::get(FTy->getContext(), NewAttrs);
Instruction *NewCaller;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
diff --git a/lib/Transforms/InstCombine/InstCombineCasts.cpp b/lib/Transforms/InstCombine/InstCombineCasts.cpp
index 555b442..5af4442 100644
--- a/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -13,9 +13,9 @@
#include "InstCombine.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/Support/PatternMatch.h"
+#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;
using namespace PatternMatch;
@@ -78,7 +78,7 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
/// try to eliminate the cast by moving the type information into the alloc.
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
AllocaInst &AI) {
- // This requires TargetData to get the alloca alignment and size information.
+ // This requires DataLayout to get the alloca alignment and size information.
if (!TD) return 0;
PointerType *PTy = cast<PointerType>(CI.getType());
@@ -229,7 +229,7 @@ isEliminableCastPair(
const CastInst *CI, ///< The first cast instruction
unsigned opcode, ///< The opcode of the second cast instruction
Type *DstTy, ///< The target type for the second cast instruction
- TargetData *TD ///< The target data for pointer size
+ DataLayout *TD ///< The target data for pointer size
) {
Type *SrcTy = CI->getOperand(0)->getType(); // A from above
@@ -238,17 +238,20 @@ isEliminableCastPair(
// Get the opcodes of the two Cast instructions
Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
Instruction::CastOps secondOp = Instruction::CastOps(opcode);
-
+ Type *SrcIntPtrTy = TD && SrcTy->isPtrOrPtrVectorTy() ?
+ TD->getIntPtrType(SrcTy) : 0;
+ Type *MidIntPtrTy = TD && MidTy->isPtrOrPtrVectorTy() ?
+ TD->getIntPtrType(MidTy) : 0;
+ Type *DstIntPtrTy = TD && DstTy->isPtrOrPtrVectorTy() ?
+ TD->getIntPtrType(DstTy) : 0;
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
- DstTy,
- TD ? TD->getIntPtrType(CI->getContext()) : 0);
-
+ DstTy, SrcIntPtrTy, MidIntPtrTy,
+ DstIntPtrTy);
+
// We don't want to form an inttoptr or ptrtoint that converts to an integer
// type that differs from the pointer size.
- if ((Res == Instruction::IntToPtr &&
- (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
- (Res == Instruction::PtrToInt &&
- (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
+ if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
+ (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
Res = 0;
return Instruction::CastOps(Res);
@@ -1334,17 +1337,15 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// GEP computes a constant offset, see if we can convert these three
// instructions into fewer. This typically happens with unions and other
// non-type-safe code.
+ APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0);
if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
- GEP->hasAllConstantIndices()) {
- SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
- int64_t Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
-
+ GEP->accumulateConstantOffset(*TD, Offset)) {
// Get the base pointer input of the bitcast, and the type it points to.
Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
Type *GEPIdxTy =
cast<PointerType>(OrigBase->getType())->getElementType();
SmallVector<Value*, 8> NewIndices;
- if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
+ if (FindElementAtOffset(GEPIdxTy, Offset.getSExtValue(), NewIndices)) {
// If we were able to index down into an element, create the GEP
// and bitcast the result. This eliminates one bitcast, potentially
// two.
diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp
index c3fc18c..40e559e 100644
--- a/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -12,15 +12,15 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
+#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;
using namespace PatternMatch;
@@ -474,7 +474,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
/// If we can't emit an optimized form for this expression, this returns null.
///
static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
- TargetData &TD = *IC.getTargetData();
+ DataLayout &TD = *IC.getDataLayout();
gep_type_iterator GTI = gep_type_begin(GEP);
// Check to see if this gep only has a single variable index. If so, and if
@@ -1226,6 +1226,16 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
ICI.setOperand(0, NewAnd);
return &ICI;
}
+
+ // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any
+ // bit set in (X & AndCST) will produce a result greater than RHSV.
+ if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
+ unsigned NTZ = AndCST->getValue().countTrailingZeros();
+ if ((NTZ < AndCST->getBitWidth()) &&
+ APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV))
+ return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
+ Constant::getNullValue(RHS->getType()));
+ }
}
// Try to optimize things like "A[i]&42 == 0" to index computations.
@@ -2356,8 +2366,25 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// Try not to increase register pressure.
BO0->hasOneUse() && BO1->hasOneUse()) {
// Determine Y and Z in the form icmp (X+Y), (X+Z).
- Value *Y = (A == C || A == D) ? B : A;
- Value *Z = (C == A || C == B) ? D : C;
+ Value *Y, *Z;
+ if (A == C) {
+ // C + B == C + D -> B == D
+ Y = B;
+ Z = D;
+ } else if (A == D) {
+ // D + B == C + D -> B == C
+ Y = B;
+ Z = C;
+ } else if (B == C) {
+ // A + C == C + D -> A == D
+ Y = A;
+ Z = D;
+ } else {
+ assert(B == D);
+ // A + D == C + D -> A == C
+ Y = A;
+ Z = C;
+ }
return new ICmpInst(Pred, Y, Z);
}
@@ -2895,10 +2922,6 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
if (!RHSF)
break;
- // We can't convert a PPC double double.
- if (RHSF->getType()->isPPC_FP128Ty())
- break;
-
const fltSemantics *Sem;
// FIXME: This shouldn't be here.
if (LHSExt->getSrcTy()->isHalfTy())
@@ -2911,6 +2934,8 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
Sem = &APFloat::IEEEquad;
else if (LHSExt->getSrcTy()->isX86_FP80Ty())
Sem = &APFloat::x87DoubleExtended;
+ else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
+ Sem = &APFloat::PPCDoubleDouble;
else
break;
diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
index 6ecb4c5..337cfe3 100644
--- a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -12,12 +12,12 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Loads.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
@@ -150,25 +150,6 @@ isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
return 0;
}
-/// getPointeeAlignment - Compute the minimum alignment of the value pointed
-/// to by the given pointer.
-static unsigned getPointeeAlignment(Value *V, const TargetData &TD) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- if (CE->getOpcode() == Instruction::BitCast ||
- (CE->getOpcode() == Instruction::GetElementPtr &&
- cast<GEPOperator>(CE)->hasAllZeroIndices()))
- return getPointeeAlignment(CE->getOperand(0), TD);
-
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- if (!GV->isDeclaration())
- return TD.getPreferredAlignment(GV);
-
- if (PointerType *PT = dyn_cast<PointerType>(V->getType()))
- return TD.getABITypeAlignment(PT->getElementType());
-
- return 0;
-}
-
Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// Ensure that the alloca array size argument has type intptr_t, so that
// any casting is exposed early.
@@ -246,12 +227,16 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
return &AI;
}
+ // If the alignment of the entry block alloca is 0 (unspecified),
+ // assign it the preferred alignment.
+ if (EntryAI->getAlignment() == 0)
+ EntryAI->setAlignment(
+ TD->getPrefTypeAlignment(EntryAI->getAllocatedType()));
// Replace this zero-sized alloca with the one at the start of the entry
// block after ensuring that the address will be aligned enough for both
// types.
- unsigned MaxAlign =
- std::max(TD->getPrefTypeAlignment(EntryAI->getAllocatedType()),
- TD->getPrefTypeAlignment(AI.getAllocatedType()));
+ unsigned MaxAlign = std::max(EntryAI->getAlignment(),
+ AI.getAlignment());
EntryAI->setAlignment(MaxAlign);
if (AI.getType() != EntryAI->getType())
return new BitCastInst(EntryAI, AI.getType());
@@ -260,26 +245,30 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
}
}
- // Check to see if this allocation is only modified by a memcpy/memmove from
- // a constant global whose alignment is equal to or exceeds that of the
- // allocation. If this is the case, we can change all users to use
- // the constant global instead. This is commonly produced by the CFE by
- // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
- // is only subsequently read.
- SmallVector<Instruction *, 4> ToDelete;
- if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
- if (AI.getAlignment() <= getPointeeAlignment(Copy->getSource(), *TD)) {
- DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
- DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
- for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
- EraseInstFromFunction(*ToDelete[i]);
- Constant *TheSrc = cast<Constant>(Copy->getSource());
- Instruction *NewI
- = ReplaceInstUsesWith(AI, ConstantExpr::getBitCast(TheSrc,
- AI.getType()));
- EraseInstFromFunction(*Copy);
- ++NumGlobalCopies;
- return NewI;
+ if (AI.getAlignment()) {
+ // Check to see if this allocation is only modified by a memcpy/memmove from
+ // a constant global whose alignment is equal to or exceeds that of the
+ // allocation. If this is the case, we can change all users to use
+ // the constant global instead. This is commonly produced by the CFE by
+ // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
+ // is only subsequently read.
+ SmallVector<Instruction *, 4> ToDelete;
+ if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
+ unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
+ AI.getAlignment(), TD);
+ if (AI.getAlignment() <= SourceAlign) {
+ DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
+ DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
+ for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
+ EraseInstFromFunction(*ToDelete[i]);
+ Constant *TheSrc = cast<Constant>(Copy->getSource());
+ Instruction *NewI
+ = ReplaceInstUsesWith(AI, ConstantExpr::getBitCast(TheSrc,
+ AI.getType()));
+ EraseInstFromFunction(*Copy);
+ ++NumGlobalCopies;
+ return NewI;
+ }
}
}
@@ -291,7 +280,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
- const TargetData *TD) {
+ const DataLayout *TD) {
User *CI = cast<User>(LI.getOperand(0));
Value *CastOp = CI->getOperand(0);
@@ -321,14 +310,14 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
SrcPTy = SrcTy->getElementType();
}
- if (IC.getTargetData() &&
+ if (IC.getDataLayout() &&
(SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
SrcPTy->isVectorTy()) &&
// Do not allow turning this into a load of an integer, which is then
// casted to a pointer, this pessimizes pointer analysis a lot.
(SrcPTy->isPointerTy() == LI.getType()->isPointerTy()) &&
- IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
- IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
+ IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
+ IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
// Okay, we are casting from one integer or pointer type to another of
// the same size. Instead of casting the pointer before the load, cast
@@ -506,11 +495,11 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
// If the pointers point into different address spaces or if they point to
// values with different sizes, we can't do the transformation.
- if (!IC.getTargetData() ||
+ if (!IC.getDataLayout() ||
SrcTy->getAddressSpace() !=
cast<PointerType>(CI->getType())->getAddressSpace() ||
- IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
- IC.getTargetData()->getTypeSizeInBits(DestPTy))
+ IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
+ IC.getDataLayout()->getTypeSizeInBits(DestPTy))
return 0;
// Okay, we are casting from one integer or pointer type to another of
@@ -813,6 +802,13 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
InsertNewInstBefore(NewSI, *BBI);
NewSI->setDebugLoc(OtherStore->getDebugLoc());
+ // If the two stores had the same TBAA tag, preserve it.
+ if (MDNode *TBAATag = SI.getMetadata(LLVMContext::MD_tbaa))
+ if ((TBAATag = MDNode::getMostGenericTBAA(TBAATag,
+ OtherStore->getMetadata(LLVMContext::MD_tbaa))))
+ NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
+
+
// Nuke the old stores.
EraseInstFromFunction(SI);
EraseInstFromFunction(*OtherStore);
diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index 2a7182f..d0f4392 100644
--- a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -13,8 +13,8 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
@@ -37,7 +37,7 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
m_Value(B))) &&
// The "1" can be any value known to be a power of 2.
- isPowerOfTwo(PowerOf2, IC.getTargetData())) {
+ isKnownToBeAPowerOfTwo(PowerOf2)) {
A = IC.Builder->CreateSub(A, B);
return IC.Builder->CreateShl(PowerOf2, A);
}
@@ -45,8 +45,7 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
// (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
// inexact. Similarly for <<.
if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
- if (I->isLogicalShift() &&
- isPowerOfTwo(I->getOperand(0), IC.getTargetData())) {
+ if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
// We know that this is an exact/nuw shift and that the input is a
// non-zero context as well.
if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
@@ -252,24 +251,134 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
return Changed ? &I : 0;
}
+//
+// Detect pattern:
+//
+// log2(Y*0.5)
+//
+// And check for corresponding fast math flags
+//
+
+static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
+
+ if (!Op->hasOneUse())
+ return;
+
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
+ if (!II)
+ return;
+ if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
+ return;
+ Log2 = II;
+
+ Value *OpLog2Of = II->getArgOperand(0);
+ if (!OpLog2Of->hasOneUse())
+ return;
+
+ Instruction *I = dyn_cast<Instruction>(OpLog2Of);
+ if (!I)
+ return;
+ if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
+ return;
+
+ ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
+ if (CFP && CFP->isExactlyValue(0.5)) {
+ Y = I->getOperand(1);
+ return;
+ }
+ CFP = dyn_cast<ConstantFP>(I->getOperand(1));
+ if (CFP && CFP->isExactlyValue(0.5))
+ Y = I->getOperand(0);
+}
+
+/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
+/// true iff the given value is FMul or FDiv with one and only one operand
+/// being a normal constant (i.e. not Zero/NaN/Infinity).
+static bool isFMulOrFDivWithConstant(Value *V) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I || (I->getOpcode() != Instruction::FMul &&
+ I->getOpcode() != Instruction::FDiv))
+ return false;
+
+ ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
+ ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
+
+ if (C0 && C1)
+ return false;
+
+ return (C0 && C0->getValueAPF().isNormal()) ||
+ (C1 && C1->getValueAPF().isNormal());
+}
+
+static bool isNormalFp(const ConstantFP *C) {
+ const APFloat &Flt = C->getValueAPF();
+ return Flt.isNormal() && !Flt.isDenormal();
+}
+
+/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
+/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
+/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
+/// This function is to simplify "FMulOrDiv * C" and returns the
+/// resulting expression. Note that this function could return NULL in
+/// case the constants cannot be folded into a normal floating-point.
+///
+Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
+ Instruction *InsertBefore) {
+ assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
+
+ Value *Opnd0 = FMulOrDiv->getOperand(0);
+ Value *Opnd1 = FMulOrDiv->getOperand(1);
+
+ ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
+ ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
+
+ BinaryOperator *R = 0;
+
+ // (X * C0) * C => X * (C0*C)
+ if (FMulOrDiv->getOpcode() == Instruction::FMul) {
+ Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
+ if (isNormalFp(cast<ConstantFP>(F)))
+ R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
+ } else {
+ if (C0) {
+ // (C0 / X) * C => (C0 * C) / X
+ ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
+ if (isNormalFp(F))
+ R = BinaryOperator::CreateFDiv(F, Opnd1);
+ } else {
+ // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
+ ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
+ if (isNormalFp(F)) {
+ R = BinaryOperator::CreateFMul(Opnd0, F);
+ } else {
+ // (X / C1) * C => X / (C1/C)
+ Constant *F = ConstantExpr::getFDiv(C1, C);
+ if (isNormalFp(cast<ConstantFP>(F)))
+ R = BinaryOperator::CreateFDiv(Opnd0, F);
+ }
+ }
+ }
+
+ if (R) {
+ R->setHasUnsafeAlgebra(true);
+ InsertNewInstWith(R, *InsertBefore);
+ }
+
+ return R;
+}
+
Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // Simplify mul instructions with a constant RHS.
- if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
- if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
- // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
- // ANSI says we can drop signals, so we can do this anyway." (from GCC)
- if (Op1F->isExactlyValue(1.0))
- return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0'
- } else if (ConstantDataVector *Op1V = dyn_cast<ConstantDataVector>(Op1C)) {
- // As above, vector X*splat(1.0) -> X in all defined cases.
- if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
- if (F->isExactlyValue(1.0))
- return ReplaceInstUsesWith(I, Op0);
- }
+ if (isa<Constant>(Op0))
+ std::swap(Op0, Op1);
+
+ if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
+ return ReplaceInstUsesWith(I, V);
+ // Simplify mul instructions with a constant RHS.
+ if (isa<Constant>(Op1)) {
// Try to fold constant mul into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
@@ -278,12 +387,120 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
+
+ ConstantFP *C = dyn_cast<ConstantFP>(Op1);
+ if (C && I.hasUnsafeAlgebra() && C->getValueAPF().isNormal()) {
+ // Let MDC denote an expression in one of these forms:
+ // X * C, C/X, X/C, where C is a constant.
+ //
+ // Try to simplify "MDC * Constant"
+ if (isFMulOrFDivWithConstant(Op0)) {
+ Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
+ if (V)
+ return ReplaceInstUsesWith(I, V);
+ }
+
+ // (MDC +/- C1) * C2 => (MDC * C2) +/- (C1 * C2)
+ Instruction *FAddSub = dyn_cast<Instruction>(Op0);
+ if (FAddSub &&
+ (FAddSub->getOpcode() == Instruction::FAdd ||
+ FAddSub->getOpcode() == Instruction::FSub)) {
+ Value *Opnd0 = FAddSub->getOperand(0);
+ Value *Opnd1 = FAddSub->getOperand(1);
+ ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
+ ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
+ bool Swap = false;
+ if (C0) {
+ std::swap(C0, C1);
+ std::swap(Opnd0, Opnd1);
+ Swap = true;
+ }
+
+ if (C1 && C1->getValueAPF().isNormal() &&
+ isFMulOrFDivWithConstant(Opnd0)) {
+ Value *M0 = ConstantExpr::getFMul(C1, C);
+ Value *M1 = isNormalFp(cast<ConstantFP>(M0)) ?
+ foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
+ 0;
+ if (M0 && M1) {
+ if (Swap && FAddSub->getOpcode() == Instruction::FSub)
+ std::swap(M0, M1);
+
+ Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ?
+ BinaryOperator::CreateFAdd(M0, M1) :
+ BinaryOperator::CreateFSub(M0, M1);
+ Instruction *RI = cast<Instruction>(R);
+ RI->setHasUnsafeAlgebra(true);
+ return RI;
+ }
+ }
+ }
+ }
}
if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
if (Value *Op1v = dyn_castFNegVal(Op1))
return BinaryOperator::CreateFMul(Op0v, Op1v);
+ // Under unsafe algebra do:
+ // X * log2(0.5*Y) = X*log2(Y) - X
+ if (I.hasUnsafeAlgebra()) {
+ Value *OpX = NULL;
+ Value *OpY = NULL;
+ IntrinsicInst *Log2;
+ detectLog2OfHalf(Op0, OpY, Log2);
+ if (OpY) {
+ OpX = Op1;
+ } else {
+ detectLog2OfHalf(Op1, OpY, Log2);
+ if (OpY) {
+ OpX = Op0;
+ }
+ }
+ // if pattern detected emit alternate sequence
+ if (OpX && OpY) {
+ Log2->setArgOperand(0, OpY);
+ Value *FMulVal = Builder->CreateFMul(OpX, Log2);
+ Instruction *FMul = cast<Instruction>(FMulVal);
+ FMul->copyFastMathFlags(Log2);
+ Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX);
+ FSub->copyFastMathFlags(Log2);
+ return FSub;
+ }
+ }
+
+ // X * cond ? 1.0 : 0.0 => cond ? X : 0.0
+ if (I.hasNoNaNs() && I.hasNoSignedZeros()) {
+ Value *V0 = I.getOperand(0);
+ Value *V1 = I.getOperand(1);
+ Value *Cond, *SLHS, *SRHS;
+ bool Match = false;
+
+ if (match(V0, m_Select(m_Value(Cond), m_Value(SLHS), m_Value(SRHS)))) {
+ Match = true;
+ } else if (match(V1, m_Select(m_Value(Cond), m_Value(SLHS),
+ m_Value(SRHS)))) {
+ Match = true;
+ std::swap(V0, V1);
+ }
+
+ if (Match) {
+ ConstantFP *C0 = dyn_cast<ConstantFP>(SLHS);
+ ConstantFP *C1 = dyn_cast<ConstantFP>(SRHS);
+
+ if (C0 && C1 &&
+ ((C0->isZero() && C1->isExactlyValue(1.0)) ||
+ (C1->isZero() && C0->isExactlyValue(1.0)))) {
+ Value *T;
+ if (C0->isZero())
+ T = Builder->CreateSelect(Cond, SLHS, V1);
+ else
+ T = Builder->CreateSelect(Cond, V1, SRHS);
+ return ReplaceInstUsesWith(I, T);
+ }
+ }
+ }
+
return Changed ? &I : 0;
}
@@ -477,7 +694,8 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
if (*CI != 1)
- N = Builder->CreateAdd(N, ConstantInt::get(I.getType(),CI->logBase2()));
+ N = Builder->CreateAdd(N,
+ ConstantInt::get(N->getType(), CI->logBase2()));
if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
N = Builder->CreateZExt(N, Z->getDestTy());
if (I.isExact())
diff --git a/lib/Transforms/InstCombine/InstCombinePHI.cpp b/lib/Transforms/InstCombine/InstCombinePHI.cpp
index 664546c..b0a998c 100644
--- a/lib/Transforms/InstCombine/InstCombinePHI.cpp
+++ b/lib/Transforms/InstCombine/InstCombinePHI.cpp
@@ -12,10 +12,10 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/DataLayout.h"
using namespace llvm;
/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
diff --git a/lib/Transforms/InstCombine/InstCombineSelect.cpp b/lib/Transforms/InstCombine/InstCombineSelect.cpp
index 291e800..a262d71 100644
--- a/lib/Transforms/InstCombine/InstCombineSelect.cpp
+++ b/lib/Transforms/InstCombine/InstCombineSelect.cpp
@@ -12,9 +12,9 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/Support/PatternMatch.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
@@ -287,7 +287,7 @@ Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
/// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
/// replaced with RepOp.
static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI) {
// Trivial replacement.
if (V == Op)
@@ -333,6 +333,10 @@ static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
// All operands were constants, fold it.
if (ConstOps.size() == I->getNumOperands()) {
+ if (CmpInst *C = dyn_cast<CmpInst>(I))
+ return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
+ ConstOps[1], TD, TLI);
+
if (LoadInst *LI = dyn_cast<LoadInst>(I))
if (!LI->isVolatile())
return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
@@ -903,7 +907,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
return &SI;
}
- if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) {
+ if (VectorType *VecTy = dyn_cast<VectorType>(SI.getType())) {
unsigned VWidth = VecTy->getNumElements();
APInt UndefElts(VWidth, 0);
APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
@@ -912,6 +916,28 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
return ReplaceInstUsesWith(SI, V);
return &SI;
}
+
+ if (ConstantVector *CV = dyn_cast<ConstantVector>(CondVal)) {
+ // Form a shufflevector instruction.
+ SmallVector<Constant *, 8> Mask(VWidth);
+ Type *Int32Ty = Type::getInt32Ty(CV->getContext());
+ for (unsigned i = 0; i != VWidth; ++i) {
+ Constant *Elem = cast<Constant>(CV->getOperand(i));
+ if (ConstantInt *E = dyn_cast<ConstantInt>(Elem))
+ Mask[i] = ConstantInt::get(Int32Ty, i + (E->isZero() ? VWidth : 0));
+ else if (isa<UndefValue>(Elem))
+ Mask[i] = UndefValue::get(Int32Ty);
+ else
+ return 0;
+ }
+ Constant *MaskVal = ConstantVector::get(Mask);
+ Value *V = Builder->CreateShuffleVector(TrueVal, FalseVal, MaskVal);
+ return ReplaceInstUsesWith(SI, V);
+ }
+
+ if (isa<ConstantAggregateZero>(CondVal)) {
+ return ReplaceInstUsesWith(SI, FalseVal);
+ }
}
return 0;
diff --git a/lib/Transforms/InstCombine/InstCombineShifts.cpp b/lib/Transforms/InstCombine/InstCombineShifts.cpp
index 4bb2403..8cf76e5 100644
--- a/lib/Transforms/InstCombine/InstCombineShifts.cpp
+++ b/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -12,9 +12,9 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
@@ -49,7 +49,7 @@ Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
I.setOperand(1, Rem);
return &I;
}
-
+
return 0;
}
@@ -70,10 +70,10 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
// We can always evaluate constants shifted.
if (isa<Constant>(V))
return true;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
// If this is the opposite shift, we can directly reuse the input of the shift
// if the needed bits are already zero in the input. This allows us to reuse
// the value which means that we don't care if the shift has multiple uses.
@@ -95,14 +95,14 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
return CanEvaluateTruncated(I->getOperand(0), Ty);
}
#endif
-
+
}
}
-
+
// We can't mutate something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
-
+
switch (I->getOpcode()) {
default: return false;
case Instruction::And:
@@ -111,7 +111,7 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
// Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
-
+
case Instruction::Shl: {
// We can often fold the shift into shifts-by-a-constant.
CI = dyn_cast<ConstantInt>(I->getOperand(1));
@@ -119,10 +119,10 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
// We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
if (isLeftShift) return true;
-
+
// We can always turn shl(c)+shr(c) -> and(c2).
if (CI->getValue() == NumBits) return true;
-
+
unsigned TypeWidth = I->getType()->getScalarSizeInBits();
// We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
@@ -133,20 +133,20 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
return true;
}
-
+
return false;
}
case Instruction::LShr: {
// We can often fold the shift into shifts-by-a-constant.
CI = dyn_cast<ConstantInt>(I->getOperand(1));
if (CI == 0) return false;
-
+
// We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
if (!isLeftShift) return true;
-
+
// We can always turn lshr(c)+shl(c) -> and(c2).
if (CI->getValue() == NumBits) return true;
-
+
unsigned TypeWidth = I->getType()->getScalarSizeInBits();
// We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
@@ -157,7 +157,7 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
return true;
}
-
+
return false;
}
case Instruction::Select: {
@@ -175,7 +175,7 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
return false;
return true;
}
- }
+ }
}
/// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
@@ -190,11 +190,11 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
V = IC.Builder->CreateLShr(C, NumBits);
// If we got a constantexpr back, try to simplify it with TD info.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- V = ConstantFoldConstantExpression(CE, IC.getTargetData(),
+ V = ConstantFoldConstantExpression(CE, IC.getDataLayout(),
IC.getTargetLibraryInfo());
return V;
}
-
+
Instruction *I = cast<Instruction>(V);
IC.Worklist.Add(I);
@@ -207,7 +207,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
return I;
-
+
case Instruction::Shl: {
BinaryOperator *BO = cast<BinaryOperator>(I);
unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
@@ -227,7 +227,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
BO->setHasNoSignedWrap(false);
return I;
}
-
+
// We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
// zeros.
if (CI->getValue() == NumBits) {
@@ -240,7 +240,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
}
return V;
}
-
+
// We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
// the and won't be needed.
assert(CI->getZExtValue() > NumBits);
@@ -255,19 +255,19 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
// We only accept shifts-by-a-constant in CanEvaluateShifted.
ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
-
+
// We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
if (!isLeftShift) {
// If this is oversized composite shift, then unsigned shifts get 0.
unsigned NewShAmt = NumBits+CI->getZExtValue();
if (NewShAmt >= TypeWidth)
return Constant::getNullValue(BO->getType());
-
+
BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
BO->setIsExact(false);
return I;
}
-
+
// We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
// zeros.
if (CI->getValue() == NumBits) {
@@ -280,7 +280,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
}
return V;
}
-
+
// We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
// the and won't be needed.
assert(CI->getZExtValue() > NumBits);
@@ -289,7 +289,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
BO->setIsExact(false);
return BO;
}
-
+
case Instruction::Select:
I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
@@ -304,7 +304,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
NumBits, isLeftShift, IC));
return PN;
}
- }
+ }
}
@@ -312,24 +312,24 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
BinaryOperator &I) {
bool isLeftShift = I.getOpcode() == Instruction::Shl;
-
-
+
+
// See if we can propagate this shift into the input, this covers the trivial
// cast of lshr(shl(x,c1),c2) as well as other more complex cases.
if (I.getOpcode() != Instruction::AShr &&
CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: " << I <<"\n");
-
- return ReplaceInstUsesWith(I,
+
+ return ReplaceInstUsesWith(I,
GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
}
-
-
- // See if we can simplify any instructions used by the instruction whose sole
+
+
+ // See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
-
+
// shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
// a signed shift.
//
@@ -340,14 +340,14 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
return &I;
}
-
+
// ((X*C1) << C2) == (X * (C1 << C2))
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
if (BO->getOpcode() == Instruction::Mul && isLeftShift)
if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
return BinaryOperator::CreateMul(BO->getOperand(0),
ConstantExpr::getShl(BOOp, Op1));
-
+
// Try to fold constant and into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
@@ -355,7 +355,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
-
+
// Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
@@ -364,7 +364,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
// require that the input operand is a shift-by-constant so that we have
// confidence that the shifts will get folded together. We could do this
// xform in more cases, but it is unlikely to be profitable.
- if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
+ if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
isa<ConstantInt>(TrOp->getOperand(1))) {
// Okay, we'll do this xform. Make the shift of shift.
Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
@@ -378,7 +378,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
unsigned DstSize = TI->getType()->getScalarSizeInBits();
APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
-
+
// The mask we constructed says what the trunc would do if occurring
// between the shifts. We want to know the effect *after* the second
// shift. We know that it is a logical shift by a constant, so adjust the
@@ -399,7 +399,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return new TruncInst(And, I.getType());
}
}
-
+
if (Op0->hasOneUse()) {
if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
// Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
@@ -425,14 +425,13 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
}
-
+
// Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
Value *Op0BOOp1 = Op0BO->getOperand(1);
if (isLeftShift && Op0BOOp1->hasOneUse() &&
- match(Op0BOOp1,
- m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
- m_ConstantInt(CC))) &&
- cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
+ match(Op0BOOp1,
+ m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
+ m_ConstantInt(CC)))) {
Value *YS = // (Y << C)
Builder->CreateShl(Op0BO->getOperand(0), Op1,
Op0BO->getName());
@@ -442,7 +441,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
}
}
-
+
// FALL THROUGH.
case Instruction::Sub: {
// Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
@@ -458,34 +457,32 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
}
-
+
// Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
match(Op0BO->getOperand(0),
- m_And(m_Shr(m_Value(V1), m_Value(V2)),
- m_ConstantInt(CC))) && V2 == Op1 &&
- cast<BinaryOperator>(Op0BO->getOperand(0))
- ->getOperand(0)->hasOneUse()) {
+ m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
+ m_ConstantInt(CC))) && V2 == Op1) {
Value *YS = // (Y << C)
Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
// X & (CC << C)
Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
V1->getName()+".mask");
-
+
return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
}
-
+
break;
}
}
-
-
+
+
// If the operand is an bitwise operator with a constant RHS, and the
// shift is the only use, we can pull it out of the shift.
if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
bool isValid = true; // Valid only for And, Or, Xor
bool highBitSet = false; // Transform if high bit of constant set?
-
+
switch (Op0BO->getOpcode()) {
default: isValid = false; break; // Do not perform transform!
case Instruction::Add:
@@ -499,7 +496,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
highBitSet = true;
break;
}
-
+
// If this is a signed shift right, and the high bit is modified
// by the logical operation, do not perform the transformation.
// The highBitSet boolean indicates the value of the high bit of
@@ -508,26 +505,26 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
//
if (isValid && I.getOpcode() == Instruction::AShr)
isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
-
+
if (isValid) {
Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
-
+
Value *NewShift =
Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
NewShift->takeName(Op0BO);
-
+
return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
NewRHS);
}
}
}
}
-
+
// Find out if this is a shift of a shift by a constant.
BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
if (ShiftOp && !ShiftOp->isShift())
ShiftOp = 0;
-
+
if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
// This is a constant shift of a constant shift. Be careful about hiding
@@ -548,9 +545,9 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
Value *X = ShiftOp->getOperand(0);
-
+
IntegerType *Ty = cast<IntegerType>(I.getType());
-
+
// Check for (X << c1) << c2 and (X >> c1) >> c2
if (I.getOpcode() == ShiftOp->getOpcode()) {
uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
@@ -561,11 +558,11 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr.
}
-
+
return BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, AmtSum));
}
-
+
if (ShiftAmt1 == ShiftAmt2) {
// If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
if (I.getOpcode() == Instruction::LShr &&
@@ -605,7 +602,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return NewLShr;
}
Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
-
+
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
return BinaryOperator::CreateAnd(Shift,
ConstantInt::get(I.getContext(),Mask));
@@ -653,12 +650,12 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return NewShl;
}
Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
-
+
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
return BinaryOperator::CreateAnd(Shift,
ConstantInt::get(I.getContext(),Mask));
}
-
+
// We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
// we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
if (I.getOpcode() == Instruction::AShr &&
@@ -682,21 +679,21 @@ Instruction *InstCombiner::visitShl(BinaryOperator &I) {
I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
TD))
return ReplaceInstUsesWith(I, V);
-
+
if (Instruction *V = commonShiftTransforms(I))
return V;
-
+
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
unsigned ShAmt = Op1C->getZExtValue();
-
+
// If the shifted-out value is known-zero, then this is a NUW shift.
- if (!I.hasNoUnsignedWrap() &&
+ if (!I.hasNoUnsignedWrap() &&
MaskedValueIsZero(I.getOperand(0),
APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
I.setHasNoUnsignedWrap();
return &I;
}
-
+
// If the shifted out value is all signbits, this is a NSW shift.
if (!I.hasNoSignedWrap() &&
ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
@@ -712,7 +709,7 @@ Instruction *InstCombiner::visitShl(BinaryOperator &I) {
match(I.getOperand(1), m_Constant(C2)))
return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
- return 0;
+ return 0;
}
Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
@@ -722,9 +719,9 @@ Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
if (Instruction *R = commonShiftTransforms(I))
return R;
-
+
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
+
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
unsigned ShAmt = Op1C->getZExtValue();
@@ -743,15 +740,15 @@ Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
return new ZExtInst(Cmp, II->getType());
}
}
-
+
// If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
+ if (!I.isExact() &&
MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
I.setIsExact();
return &I;
- }
+ }
}
-
+
return 0;
}
@@ -762,12 +759,12 @@ Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
if (Instruction *R = commonShiftTransforms(I))
return R;
-
+
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
unsigned ShAmt = Op1C->getZExtValue();
-
+
// If the input is a SHL by the same constant (ashr (shl X, C), C), then we
// have a sign-extend idiom.
Value *X;
@@ -791,23 +788,23 @@ Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
}
// If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
+ if (!I.isExact() &&
MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
I.setIsExact();
return &I;
}
- }
-
+ }
+
// See if we can turn a signed shr into an unsigned shr.
if (MaskedValueIsZero(Op0,
APInt::getSignBit(I.getType()->getScalarSizeInBits())))
return BinaryOperator::CreateLShr(Op0, Op1);
-
+
// Arithmetic shifting an all-sign-bit value is a no-op.
unsigned NumSignBits = ComputeNumSignBits(Op0);
if (NumSignBits == Op0->getType()->getScalarSizeInBits())
return ReplaceInstUsesWith(I, Op0);
-
+
return 0;
}
diff --git a/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
index 54be8ed..8add1ea 100644
--- a/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
+++ b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
@@ -14,17 +14,18 @@
#include "InstCombine.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/PatternMatch.h"
using namespace llvm;
+using namespace llvm::PatternMatch;
-
-/// ShrinkDemandedConstant - Check to see if the specified operand of the
+/// ShrinkDemandedConstant - Check to see if the specified operand of the
/// specified instruction is a constant integer. If so, check to see if there
/// are any bits set in the constant that are not demanded. If so, shrink the
/// constant and return true.
-static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
+static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
APInt Demanded) {
assert(I && "No instruction?");
assert(OpNo < I->getNumOperands() && "Operand index too large");
@@ -53,8 +54,8 @@ bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
-
- Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
+
+ Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
KnownZero, KnownOne, 0);
if (V == 0) return false;
if (V == &Inst) return true;
@@ -65,7 +66,7 @@ bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
/// specified instruction operand if possible, updating it in place. It returns
/// true if it made any change and false otherwise.
-bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
+bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
APInt &KnownZero, APInt &KnownOne,
unsigned Depth) {
Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
@@ -86,7 +87,7 @@ bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
/// to be one in the expression. KnownZero contains all the bits that are known
/// to be zero in the expression. These are provided to potentially allow the
/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
-/// the expression. KnownOne and KnownZero always follow the invariant that
+/// the expression. KnownOne and KnownZero always follow the invariant that
/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
/// the bits in KnownOne and KnownZero may only be accurate for those bits set
/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
@@ -133,10 +134,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return 0;
return UndefValue::get(VTy);
}
-
+
if (Depth == 6) // Limit search depth.
return 0;
-
+
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
@@ -158,61 +159,74 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
-
+
// If all of the demanded bits are known 1 on one side, return the other.
// These bits cannot contribute to the result of the 'and' in this
// context.
- if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
+ if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
(DemandedMask & ~LHSKnownZero))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
+ if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
(DemandedMask & ~RHSKnownZero))
return I->getOperand(1);
-
+
// If all of the demanded bits in the inputs are known zeros, return zero.
if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
return Constant::getNullValue(VTy);
-
+
} else if (I->getOpcode() == Instruction::Or) {
// We can simplify (X|Y) -> X or Y in the user's context if we know that
// only bits from X or Y are demanded.
-
+
// If either the LHS or the RHS are One, the result is One.
ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
-
+
// If all of the demanded bits are known zero on one side, return the
// other. These bits cannot contribute to the result of the 'or' in this
// context.
- if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
+ if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
(DemandedMask & ~LHSKnownOne))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
+ if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
(DemandedMask & ~RHSKnownOne))
return I->getOperand(1);
-
+
// If all of the potentially set bits on one side are known to be set on
// the other side, just use the 'other' side.
- if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
+ if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
(DemandedMask & (~RHSKnownZero)))
return I->getOperand(0);
- if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
+ if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
(DemandedMask & (~LHSKnownZero)))
return I->getOperand(1);
+ } else if (I->getOpcode() == Instruction::Xor) {
+ // We can simplify (X^Y) -> X or Y in the user's context if we know that
+ // only bits from X or Y are demanded.
+
+ ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
+
+ // If all of the demanded bits are known zero on one side, return the
+ // other.
+ if ((DemandedMask & RHSKnownZero) == DemandedMask)
+ return I->getOperand(0);
+ if ((DemandedMask & LHSKnownZero) == DemandedMask)
+ return I->getOperand(1);
}
-
+
// Compute the KnownZero/KnownOne bits to simplify things downstream.
ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
return 0;
}
-
+
// If this is the root being simplified, allow it to have multiple uses,
// just set the DemandedMask to all bits so that we can try to simplify the
// operands. This allows visitTruncInst (for example) to simplify the
// operand of a trunc without duplicating all the logic below.
if (Depth == 0 && !V->hasOneUse())
DemandedMask = APInt::getAllOnesValue(BitWidth);
-
+
switch (I->getOpcode()) {
default:
ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
@@ -224,26 +238,26 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
// If all of the demanded bits are known 1 on one side, return the other.
// These bits cannot contribute to the result of the 'and'.
- if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
+ if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
(DemandedMask & ~LHSKnownZero))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
+ if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
(DemandedMask & ~RHSKnownZero))
return I->getOperand(1);
-
+
// If all of the demanded bits in the inputs are known zeros, return zero.
if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
return Constant::getNullValue(VTy);
-
+
// If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
return I;
-
+
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne = RHSKnownOne & LHSKnownOne;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
@@ -251,36 +265,36 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
break;
case Instruction::Or:
// If either the LHS or the RHS are One, the result is One.
- if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
+ if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
+ SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'or'.
- if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
+ if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
(DemandedMask & ~LHSKnownOne))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
+ if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
(DemandedMask & ~RHSKnownOne))
return I->getOperand(1);
// If all of the potentially set bits on one side are known to be set on
// the other side, just use the 'other' side.
- if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
+ if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
(DemandedMask & (~RHSKnownZero)))
return I->getOperand(0);
- if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
+ if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
(DemandedMask & (~LHSKnownZero)))
return I->getOperand(1);
-
+
// If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(I, 1, DemandedMask))
return I;
-
+
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero = RHSKnownZero & LHSKnownZero;
// Output known-1 are known to be set if set in either the LHS | RHS.
@@ -289,34 +303,34 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
case Instruction::Xor: {
if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
+ SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'xor'.
if ((DemandedMask & RHSKnownZero) == DemandedMask)
return I->getOperand(0);
if ((DemandedMask & LHSKnownZero) == DemandedMask)
return I->getOperand(1);
-
+
// If all of the demanded bits are known to be zero on one side or the
// other, turn this into an *inclusive* or.
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
- Instruction *Or =
+ Instruction *Or =
BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
I->getName());
return InsertNewInstWith(Or, *I);
}
-
+
// If all of the demanded bits on one side are known, and all of the set
// bits on that side are also known to be set on the other side, turn this
// into an AND, as we know the bits will be cleared.
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
- if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
+ if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
// all known
if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
Constant *AndC = Constant::getIntegerValue(VTy,
@@ -325,12 +339,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return InsertNewInstWith(And, *I);
}
}
-
+
// If the RHS is a constant, see if we can simplify it.
// FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
if (ShrinkDemandedConstant(I, 1, DemandedMask))
return I;
-
+
// If our LHS is an 'and' and if it has one use, and if any of the bits we
// are flipping are known to be set, then the xor is just resetting those
// bits to zero. We can just knock out bits from the 'and' and the 'xor',
@@ -343,12 +357,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
-
+
Constant *AndC =
ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
InsertNewInstWith(NewAnd, *I);
-
+
Constant *XorC =
ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
@@ -364,17 +378,17 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
case Instruction::Select:
if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
+ SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
// If the operands are constants, see if we can simplify them.
if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
ShrinkDemandedConstant(I, 2, DemandedMask))
return I;
-
+
// Only known if known in both the LHS and RHS.
KnownOne = RHSKnownOne & LHSKnownOne;
KnownZero = RHSKnownZero & LHSKnownZero;
@@ -384,13 +398,13 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
DemandedMask = DemandedMask.zext(truncBf);
KnownZero = KnownZero.zext(truncBf);
KnownOne = KnownOne.zext(truncBf);
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
KnownZero, KnownOne, Depth+1))
return I;
DemandedMask = DemandedMask.trunc(BitWidth);
KnownZero = KnownZero.trunc(BitWidth);
KnownOne = KnownOne.trunc(BitWidth);
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
break;
}
case Instruction::BitCast:
@@ -413,12 +427,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
KnownZero, KnownOne, Depth+1))
return I;
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
break;
case Instruction::ZExt: {
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
-
+
DemandedMask = DemandedMask.trunc(SrcBitWidth);
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
@@ -428,7 +442,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
DemandedMask = DemandedMask.zext(BitWidth);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
// The top bits are known to be zero.
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
break;
@@ -436,8 +450,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
case Instruction::SExt: {
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
-
- APInt InputDemandedBits = DemandedMask &
+
+ APInt InputDemandedBits = DemandedMask &
APInt::getLowBitsSet(BitWidth, SrcBitWidth);
APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
@@ -445,7 +459,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// bit is demanded.
if ((NewBits & DemandedMask) != 0)
InputDemandedBits.setBit(SrcBitWidth-1);
-
+
InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
@@ -455,8 +469,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
InputDemandedBits = InputDemandedBits.zext(BitWidth);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
-
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
@@ -476,7 +490,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// are not demanded, then the add doesn't demand them from its input
// either.
unsigned NLZ = DemandedMask.countLeadingZeros();
-
+
// If there is a constant on the RHS, there are a variety of xformations
// we can do.
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
@@ -484,13 +498,13 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// won't work if the RHS is zero.
if (RHS->isZero())
break;
-
+
// If the top bit of the output is demanded, demand everything from the
// input. Otherwise, we demand all the input bits except NLZ top bits.
APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
// Find information about known zero/one bits in the input.
- if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
+ if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
@@ -498,11 +512,11 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// the constant.
if (ShrinkDemandedConstant(I, 1, InDemandedBits))
return I;
-
+
// Avoid excess work.
if (LHSKnownZero == 0 && LHSKnownOne == 0)
break;
-
+
// Turn it into OR if input bits are zero.
if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
Instruction *Or =
@@ -510,26 +524,26 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
I->getName());
return InsertNewInstWith(Or, *I);
}
-
+
// We can say something about the output known-zero and known-one bits,
// depending on potential carries from the input constant and the
// unknowns. For example if the LHS is known to have at most the 0x0F0F0
// bits set and the RHS constant is 0x01001, then we know we have a known
// one mask of 0x00001 and a known zero mask of 0xE0F0E.
-
+
// To compute this, we first compute the potential carry bits. These are
// the bits which may be modified. I'm not aware of a better way to do
// this scan.
const APInt &RHSVal = RHS->getValue();
APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
-
+
// Now that we know which bits have carries, compute the known-1/0 sets.
-
+
// Bits are known one if they are known zero in one operand and one in the
// other, and there is no input carry.
- KnownOne = ((LHSKnownZero & RHSVal) |
+ KnownOne = ((LHSKnownZero & RHSVal) |
(LHSKnownOne & ~RHSVal)) & ~CarryBits;
-
+
// Bits are known zero if they are known zero in both operands and there
// is no input carry.
KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
@@ -580,17 +594,28 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
break;
case Instruction::Shl:
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ {
+ Value *VarX; ConstantInt *C1;
+ if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
+ Instruction *Shr = cast<Instruction>(I->getOperand(0));
+ Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
+ KnownZero, KnownOne);
+ if (R)
+ return R;
+ }
+ }
+
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
-
+
// If the shift is NUW/NSW, then it does demand the high bits.
ShlOperator *IOp = cast<ShlOperator>(I);
if (IOp->hasNoSignedWrap())
DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
else if (IOp->hasNoUnsignedWrap())
DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
-
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
+
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
KnownZero, KnownOne, Depth+1))
return I;
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
@@ -605,15 +630,15 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// For a logical shift right
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
-
+
// Unsigned shift right.
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
-
+
// If the shift is exact, then it does demand the low bits (and knows that
// they are zero).
if (cast<LShrOperator>(I)->isExact())
DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
-
+
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
KnownZero, KnownOne, Depth+1))
return I;
@@ -637,28 +662,28 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
Instruction *NewVal = BinaryOperator::CreateLShr(
I->getOperand(0), I->getOperand(1), I->getName());
return InsertNewInstWith(NewVal, *I);
- }
+ }
// If the sign bit is the only bit demanded by this ashr, then there is no
// need to do it, the shift doesn't change the high bit.
if (DemandedMask.isSignBit())
return I->getOperand(0);
-
+
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
-
+
// Signed shift right.
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
// If any of the "high bits" are demanded, we should set the sign bit as
// demanded.
if (DemandedMask.countLeadingZeros() <= ShiftAmt)
DemandedMaskIn.setBit(BitWidth-1);
-
+
// If the shift is exact, then it does demand the low bits (and knows that
// they are zero).
if (cast<AShrOperator>(I)->isExact())
DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
-
+
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
KnownZero, KnownOne, Depth+1))
return I;
@@ -667,15 +692,15 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
-
+
// Handle the sign bits.
APInt SignBit(APInt::getSignBit(BitWidth));
// Adjust to where it is now in the mask.
- SignBit = APIntOps::lshr(SignBit, ShiftAmt);
-
+ SignBit = APIntOps::lshr(SignBit, ShiftAmt);
+
// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
- if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
+ if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
(HighBits & ~DemandedMask) == HighBits) {
// Perform the logical shift right.
BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
@@ -718,7 +743,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
KnownOne |= ~LowBits;
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
}
}
@@ -756,7 +781,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// just shift the input byte into position to eliminate the bswap.
unsigned NLZ = DemandedMask.countLeadingZeros();
unsigned NTZ = DemandedMask.countTrailingZeros();
-
+
// Round NTZ down to the next byte. If we have 11 trailing zeros, then
// we need all the bits down to bit 8. Likewise, round NLZ. If we
// have 14 leading zeros, round to 8.
@@ -766,7 +791,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (BitWidth-NLZ-NTZ == 8) {
unsigned ResultBit = NTZ;
unsigned InputBit = BitWidth-NTZ-8;
-
+
// Replace this with either a left or right shift to get the byte into
// the right place.
Instruction *NewVal;
@@ -779,7 +804,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
NewVal->takeName(I);
return InsertNewInstWith(NewVal, *I);
}
-
+
// TODO: Could compute known zero/one bits based on the input.
break;
}
@@ -792,7 +817,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
break;
}
-
+
// If the client is only demanding bits that we know, return the known
// constant.
if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
@@ -800,6 +825,81 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return 0;
}
+/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
+/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
+/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
+/// of "C2-C1".
+///
+/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
+/// ..., bn}, without considering the specific value X is holding.
+/// This transformation is legal iff one of following conditions is hold:
+/// 1) All the bit in S are 0, in this case E1 == E2.
+/// 2) We don't care those bits in S, per the input DemandedMask.
+/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
+/// rest bits.
+///
+/// Currently we only test condition 2).
+///
+/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
+/// not successful.
+Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
+ Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
+
+ unsigned ShlAmt = cast<ConstantInt>(Shl->getOperand(1))->getZExtValue();
+ unsigned ShrAmt = cast<ConstantInt>(Shr->getOperand(1))->getZExtValue();
+
+ KnownOne.clearAllBits();
+ KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
+ KnownZero &= DemandedMask;
+
+ if (ShlAmt == 0 || ShrAmt == 0)
+ return 0;
+
+ Value *VarX = Shr->getOperand(0);
+ Type *Ty = VarX->getType();
+
+ APInt BitMask1(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
+ APInt BitMask2(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
+
+ bool isLshr = (Shr->getOpcode() == Instruction::LShr);
+ BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
+ (BitMask1.ashr(ShrAmt) << ShlAmt);
+
+ if (ShrAmt <= ShlAmt) {
+ BitMask2 <<= (ShlAmt - ShrAmt);
+ } else {
+ BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
+ BitMask2.ashr(ShrAmt - ShlAmt);
+ }
+
+ // Check if condition-2 (see the comment to this function) is satified.
+ if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
+ if (ShrAmt == ShlAmt)
+ return VarX;
+
+ if (!Shr->hasOneUse())
+ return 0;
+
+ BinaryOperator *New;
+ if (ShrAmt < ShlAmt) {
+ Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
+ New = BinaryOperator::CreateShl(VarX, Amt);
+ BinaryOperator *Orig = cast<BinaryOperator>(Shl);
+ New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
+ New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
+ } else {
+ Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
+ New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
+ BinaryOperator::CreateAShr(VarX, Amt);
+ if (cast<BinaryOperator>(Shr)->isExact())
+ New->setIsExact(true);
+ }
+
+ return InsertNewInstWith(New, *Shl);
+ }
+
+ return 0;
+}
/// SimplifyDemandedVectorElts - The specified value produces a vector with
/// any number of elements. DemandedElts contains the set of elements that are
@@ -821,14 +921,14 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts = EltMask;
return 0;
}
-
+
if (DemandedElts == 0) { // If nothing is demanded, provide undef.
UndefElts = EltMask;
return UndefValue::get(V->getType());
}
UndefElts = 0;
-
+
// Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
if (Constant *C = dyn_cast<Constant>(V)) {
// Check if this is identity. If so, return 0 since we are not simplifying
@@ -838,7 +938,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Constant *Undef = UndefValue::get(EltTy);
-
+
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0; i != VWidth; ++i) {
if (!DemandedElts[i]) { // If not demanded, set to undef.
@@ -846,10 +946,10 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts.setBit(i);
continue;
}
-
+
Constant *Elt = C->getAggregateElement(i);
if (Elt == 0) return 0;
-
+
if (isa<UndefValue>(Elt)) { // Already undef.
Elts.push_back(Undef);
UndefElts.setBit(i);
@@ -857,12 +957,12 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Elts.push_back(Elt);
}
}
-
+
// If we changed the constant, return it.
Constant *NewCV = ConstantVector::get(Elts);
return NewCV != C ? NewCV : 0;
}
-
+
// Limit search depth.
if (Depth == 10)
return 0;
@@ -881,16 +981,16 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
// Conservatively assume that all elements are needed.
DemandedElts = EltMask;
}
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return 0; // Only analyze instructions.
-
+
bool MadeChange = false;
APInt UndefElts2(VWidth, 0);
Value *TmpV;
switch (I->getOpcode()) {
default: break;
-
+
case Instruction::InsertElement: {
// If this is a variable index, we don't know which element it overwrites.
// demand exactly the same input as we produce.
@@ -903,7 +1003,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
break;
}
-
+
// If this is inserting an element that isn't demanded, remove this
// insertelement.
unsigned IdxNo = Idx->getZExtValue();
@@ -911,7 +1011,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Worklist.Add(I);
return I->getOperand(0);
}
-
+
// Otherwise, the element inserted overwrites whatever was there, so the
// input demanded set is simpler than the output set.
APInt DemandedElts2 = DemandedElts;
@@ -1007,7 +1107,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
UndefElts2, Depth+1);
if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
-
+
// Output elements are undefined if both are undefined.
UndefElts &= UndefElts2;
break;
@@ -1028,7 +1128,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
} else if (VWidth > InVWidth) {
// Untested so far.
break;
-
+
// If there are more elements in the result than there are in the source,
// then an input element is live if any of the corresponding output
// elements are live.
@@ -1040,7 +1140,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
} else {
// Untested so far.
break;
-
+
// If there are more elements in the source than there are in the result,
// then an input element is live if the corresponding output element is
// live.
@@ -1049,7 +1149,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
if (DemandedElts[InIdx/Ratio])
InputDemandedElts.setBit(InIdx);
}
-
+
// div/rem demand all inputs, because they don't want divide by zero.
TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
UndefElts2, Depth+1);
@@ -1057,7 +1157,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
I->setOperand(0, TmpV);
MadeChange = true;
}
-
+
UndefElts = UndefElts2;
if (VWidth > InVWidth) {
llvm_unreachable("Unimp");
@@ -1092,7 +1192,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
UndefElts2, Depth+1);
if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
-
+
// Output elements are undefined if both are undefined. Consider things
// like undef&0. The result is known zero, not undef.
UndefElts &= UndefElts2;
@@ -1103,13 +1203,13 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts, Depth+1);
if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
break;
-
+
case Instruction::Call: {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
if (!II) break;
switch (II->getIntrinsicID()) {
default: break;
-
+
// Binary vector operations that work column-wise. A dest element is a
// function of the corresponding input elements from the two inputs.
case Intrinsic::x86_sse_sub_ss:
@@ -1140,11 +1240,11 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Value *LHS = II->getArgOperand(0);
Value *RHS = II->getArgOperand(1);
// Extract the element as scalars.
- LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
+ LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
-
+
switch (II->getIntrinsicID()) {
default: llvm_unreachable("Case stmts out of sync!");
case Intrinsic::x86_sse_sub_ss:
@@ -1158,7 +1258,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
II->getName()), *II);
break;
}
-
+
Instruction *New =
InsertElementInst::Create(
UndefValue::get(II->getType()), TmpV,
@@ -1166,9 +1266,9 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
II->getName());
InsertNewInstWith(New, *II);
return New;
- }
+ }
}
-
+
// Output elements are undefined if both are undefined. Consider things
// like undef&0. The result is known zero, not undef.
UndefElts &= UndefElts2;
diff --git a/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
index cf60f0f..dd7ea14 100644
--- a/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
+++ b/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
@@ -636,8 +636,11 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
// If LHS's width is changed, shift the mask value accordingly.
// If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
- // references to RHSOp0 to LHSOp0, so we don't need to shift the mask.
- if (eltMask >= 0 && newRHS != NULL)
+ // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
+ // If newRHS == newLHS, we want to remap any references from newRHS to
+ // newLHS so that we can properly identify splats that may occur due to
+ // obfuscation accross the two vectors.
+ if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS)
eltMask += newLHSWidth;
}
diff --git a/lib/Transforms/InstCombine/InstCombineWorklist.h b/lib/Transforms/InstCombine/InstCombineWorklist.h
index 99a02fc..57ed9e3 100644
--- a/lib/Transforms/InstCombine/InstCombineWorklist.h
+++ b/lib/Transforms/InstCombine/InstCombineWorklist.h
@@ -11,11 +11,11 @@
#define INSTCOMBINE_WORKLIST_H
#define DEBUG_TYPE "instcombine"
-#include "llvm/Instruction.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
@@ -26,8 +26,8 @@ class LLVM_LIBRARY_VISIBILITY InstCombineWorklist {
SmallVector<Instruction*, 256> Worklist;
DenseMap<Instruction*, unsigned> WorklistMap;
- void operator=(const InstCombineWorklist&RHS); // DO NOT IMPLEMENT
- InstCombineWorklist(const InstCombineWorklist&); // DO NOT IMPLEMENT
+ void operator=(const InstCombineWorklist&RHS) LLVM_DELETED_FUNCTION;
+ InstCombineWorklist(const InstCombineWorklist&) LLVM_DELETED_FUNCTION;
public:
InstCombineWorklist() {}
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
index ff758c4..6f24cdd 100644
--- a/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -36,22 +36,23 @@
#define DEBUG_TYPE "instcombine"
#include "llvm/Transforms/Scalar.h"
#include "InstCombine.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm-c/Initialization.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/ValueHandle.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringSwitch.h"
-#include "llvm-c/Initialization.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <climits>
using namespace llvm;
@@ -65,6 +66,11 @@ STATISTIC(NumExpand, "Number of expansions");
STATISTIC(NumFactor , "Number of factorizations");
STATISTIC(NumReassoc , "Number of reassociations");
+static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
+ cl::init(false),
+ cl::desc("Enable unsafe double to float "
+ "shrinking for math lib calls"));
+
// Initialization Routines
void llvm::initializeInstCombine(PassRegistry &Registry) {
initializeInstCombinerPass(Registry);
@@ -88,7 +94,7 @@ void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
Value *InstCombiner::EmitGEPOffset(User *GEP) {
- return llvm::EmitGEPOffset(Builder, *getTargetData(), GEP);
+ return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
}
/// ShouldChangeType - Return true if it is desirable to convert a computation
@@ -805,6 +811,244 @@ static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
return true;
}
+/// Descale - Return a value X such that Val = X * Scale, or null if none. If
+/// the multiplication is known not to overflow then NoSignedWrap is set.
+Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
+ assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
+ assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
+ Scale.getBitWidth() && "Scale not compatible with value!");
+
+ // If Val is zero or Scale is one then Val = Val * Scale.
+ if (match(Val, m_Zero()) || Scale == 1) {
+ NoSignedWrap = true;
+ return Val;
+ }
+
+ // If Scale is zero then it does not divide Val.
+ if (Scale.isMinValue())
+ return 0;
+
+ // Look through chains of multiplications, searching for a constant that is
+ // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
+ // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
+ // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
+ // down from Val:
+ //
+ // Val = M1 * X || Analysis starts here and works down
+ // M1 = M2 * Y || Doesn't descend into terms with more
+ // M2 = Z * 4 \/ than one use
+ //
+ // Then to modify a term at the bottom:
+ //
+ // Val = M1 * X
+ // M1 = Z * Y || Replaced M2 with Z
+ //
+ // Then to work back up correcting nsw flags.
+
+ // Op - the term we are currently analyzing. Starts at Val then drills down.
+ // Replaced with its descaled value before exiting from the drill down loop.
+ Value *Op = Val;
+
+ // Parent - initially null, but after drilling down notes where Op came from.
+ // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
+ // 0'th operand of Val.
+ std::pair<Instruction*, unsigned> Parent;
+
+ // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
+ // levels that doesn't overflow.
+ bool RequireNoSignedWrap = false;
+
+ // logScale - log base 2 of the scale. Negative if not a power of 2.
+ int32_t logScale = Scale.exactLogBase2();
+
+ for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ // If Op is a constant divisible by Scale then descale to the quotient.
+ APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
+ APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
+ if (!Remainder.isMinValue())
+ // Not divisible by Scale.
+ return 0;
+ // Replace with the quotient in the parent.
+ Op = ConstantInt::get(CI->getType(), Quotient);
+ NoSignedWrap = true;
+ break;
+ }
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
+
+ if (BO->getOpcode() == Instruction::Mul) {
+ // Multiplication.
+ NoSignedWrap = BO->hasNoSignedWrap();
+ if (RequireNoSignedWrap && !NoSignedWrap)
+ return 0;
+
+ // There are three cases for multiplication: multiplication by exactly
+ // the scale, multiplication by a constant different to the scale, and
+ // multiplication by something else.
+ Value *LHS = BO->getOperand(0);
+ Value *RHS = BO->getOperand(1);
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ // Multiplication by a constant.
+ if (CI->getValue() == Scale) {
+ // Multiplication by exactly the scale, replace the multiplication
+ // by its left-hand side in the parent.
+ Op = LHS;
+ break;
+ }
+
+ // Otherwise drill down into the constant.
+ if (!Op->hasOneUse())
+ return 0;
+
+ Parent = std::make_pair(BO, 1);
+ continue;
+ }
+
+ // Multiplication by something else. Drill down into the left-hand side
+ // since that's where the reassociate pass puts the good stuff.
+ if (!Op->hasOneUse())
+ return 0;
+
+ Parent = std::make_pair(BO, 0);
+ continue;
+ }
+
+ if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
+ isa<ConstantInt>(BO->getOperand(1))) {
+ // Multiplication by a power of 2.
+ NoSignedWrap = BO->hasNoSignedWrap();
+ if (RequireNoSignedWrap && !NoSignedWrap)
+ return 0;
+
+ Value *LHS = BO->getOperand(0);
+ int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
+ getLimitedValue(Scale.getBitWidth());
+ // Op = LHS << Amt.
+
+ if (Amt == logScale) {
+ // Multiplication by exactly the scale, replace the multiplication
+ // by its left-hand side in the parent.
+ Op = LHS;
+ break;
+ }
+ if (Amt < logScale || !Op->hasOneUse())
+ return 0;
+
+ // Multiplication by more than the scale. Reduce the multiplying amount
+ // by the scale in the parent.
+ Parent = std::make_pair(BO, 1);
+ Op = ConstantInt::get(BO->getType(), Amt - logScale);
+ break;
+ }
+ }
+
+ if (!Op->hasOneUse())
+ return 0;
+
+ if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
+ if (Cast->getOpcode() == Instruction::SExt) {
+ // Op is sign-extended from a smaller type, descale in the smaller type.
+ unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
+ APInt SmallScale = Scale.trunc(SmallSize);
+ // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
+ // descale Op as (sext Y) * Scale. In order to have
+ // sext (Y * SmallScale) = (sext Y) * Scale
+ // some conditions need to hold however: SmallScale must sign-extend to
+ // Scale and the multiplication Y * SmallScale should not overflow.
+ if (SmallScale.sext(Scale.getBitWidth()) != Scale)
+ // SmallScale does not sign-extend to Scale.
+ return 0;
+ assert(SmallScale.exactLogBase2() == logScale);
+ // Require that Y * SmallScale must not overflow.
+ RequireNoSignedWrap = true;
+
+ // Drill down through the cast.
+ Parent = std::make_pair(Cast, 0);
+ Scale = SmallScale;
+ continue;
+ }
+
+ if (Cast->getOpcode() == Instruction::Trunc) {
+ // Op is truncated from a larger type, descale in the larger type.
+ // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
+ // trunc (Y * sext Scale) = (trunc Y) * Scale
+ // always holds. However (trunc Y) * Scale may overflow even if
+ // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
+ // from this point up in the expression (see later).
+ if (RequireNoSignedWrap)
+ return 0;
+
+ // Drill down through the cast.
+ unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
+ Parent = std::make_pair(Cast, 0);
+ Scale = Scale.sext(LargeSize);
+ if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
+ logScale = -1;
+ assert(Scale.exactLogBase2() == logScale);
+ continue;
+ }
+ }
+
+ // Unsupported expression, bail out.
+ return 0;
+ }
+
+ // We know that we can successfully descale, so from here on we can safely
+ // modify the IR. Op holds the descaled version of the deepest term in the
+ // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
+ // not to overflow.
+
+ if (!Parent.first)
+ // The expression only had one term.
+ return Op;
+
+ // Rewrite the parent using the descaled version of its operand.
+ assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
+ assert(Op != Parent.first->getOperand(Parent.second) &&
+ "Descaling was a no-op?");
+ Parent.first->setOperand(Parent.second, Op);
+ Worklist.Add(Parent.first);
+
+ // Now work back up the expression correcting nsw flags. The logic is based
+ // on the following observation: if X * Y is known not to overflow as a signed
+ // multiplication, and Y is replaced by a value Z with smaller absolute value,
+ // then X * Z will not overflow as a signed multiplication either. As we work
+ // our way up, having NoSignedWrap 'true' means that the descaled value at the
+ // current level has strictly smaller absolute value than the original.
+ Instruction *Ancestor = Parent.first;
+ do {
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
+ // If the multiplication wasn't nsw then we can't say anything about the
+ // value of the descaled multiplication, and we have to clear nsw flags
+ // from this point on up.
+ bool OpNoSignedWrap = BO->hasNoSignedWrap();
+ NoSignedWrap &= OpNoSignedWrap;
+ if (NoSignedWrap != OpNoSignedWrap) {
+ BO->setHasNoSignedWrap(NoSignedWrap);
+ Worklist.Add(Ancestor);
+ }
+ } else if (Ancestor->getOpcode() == Instruction::Trunc) {
+ // The fact that the descaled input to the trunc has smaller absolute
+ // value than the original input doesn't tell us anything useful about
+ // the absolute values of the truncations.
+ NoSignedWrap = false;
+ }
+ assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
+ "Failed to keep proper track of nsw flags while drilling down?");
+
+ if (Ancestor == Val)
+ // Got to the top, all done!
+ return Val;
+
+ // Move up one level in the expression.
+ assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
+ Ancestor = Ancestor->use_back();
+ } while (1);
+}
+
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
@@ -817,7 +1061,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// by multiples of a zero size type with zero.
if (TD) {
bool MadeChange = false;
- Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
+ Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType());
gep_type_iterator GTI = gep_type_begin(GEP);
for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
@@ -836,7 +1080,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
Type *IndexTy = (*I)->getType();
- if (IndexTy != IntPtrTy && !IndexTy->isVectorTy()) {
+ if (IndexTy != IntPtrTy) {
// If we are using a wider index than needed for this platform, shrink
// it to what we need. If narrower, sign-extend it to what we need.
// This explicit cast can make subsequent optimizations more obvious.
@@ -855,7 +1099,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
return 0;
- // Note that if our source is a gep chain itself that we wait for that
+ // Note that if our source is a gep chain itself then we wait for that
// chain to be resolved before we perform this transformation. This
// avoids us creating a TON of code in some cases.
if (GEPOperator *SrcGEP =
@@ -987,63 +1231,74 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
// Transform things like:
+ // %V = mul i64 %N, 4
+ // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
+ // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
+ if (TD && ResElTy->isSized() && SrcElTy->isSized()) {
+ // Check that changing the type amounts to dividing the index by a scale
+ // factor.
+ uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
+ uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy);
+ if (ResSize && SrcSize % ResSize == 0) {
+ Value *Idx = GEP.getOperand(1);
+ unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
+ uint64_t Scale = SrcSize / ResSize;
+
+ // Earlier transforms ensure that the index has type IntPtrType, which
+ // considerably simplifies the logic by eliminating implicit casts.
+ assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
+ "Index not cast to pointer width?");
+
+ bool NSW;
+ if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
+ // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
+ // If the multiplication NewIdx * Scale may overflow then the new
+ // GEP may not be "inbounds".
+ Value *NewGEP = GEP.isInBounds() && NSW ?
+ Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
+ Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
+ // The NewGEP must be pointer typed, so must the old one -> BitCast
+ return new BitCastInst(NewGEP, GEP.getType());
+ }
+ }
+ }
+
+ // Similarly, transform things like:
// getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
// (where tmp = 8*tmp2) into:
// getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
-
- if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
+ if (TD && ResElTy->isSized() && SrcElTy->isSized() &&
+ SrcElTy->isArrayTy()) {
+ // Check that changing to the array element type amounts to dividing the
+ // index by a scale factor.
+ uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
uint64_t ArrayEltSize =
- TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
-
- // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
- // allow either a mul, shift, or constant here.
- Value *NewIdx = 0;
- ConstantInt *Scale = 0;
- if (ArrayEltSize == 1) {
- NewIdx = GEP.getOperand(1);
- Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
- } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
- NewIdx = ConstantInt::get(CI->getType(), 1);
- Scale = CI;
- } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
- if (Inst->getOpcode() == Instruction::Shl &&
- isa<ConstantInt>(Inst->getOperand(1))) {
- ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
- uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
- Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
- 1ULL << ShAmtVal);
- NewIdx = Inst->getOperand(0);
- } else if (Inst->getOpcode() == Instruction::Mul &&
- isa<ConstantInt>(Inst->getOperand(1))) {
- Scale = cast<ConstantInt>(Inst->getOperand(1));
- NewIdx = Inst->getOperand(0);
+ TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
+ if (ResSize && ArrayEltSize % ResSize == 0) {
+ Value *Idx = GEP.getOperand(1);
+ unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
+ uint64_t Scale = ArrayEltSize / ResSize;
+
+ // Earlier transforms ensure that the index has type IntPtrType, which
+ // considerably simplifies the logic by eliminating implicit casts.
+ assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
+ "Index not cast to pointer width?");
+
+ bool NSW;
+ if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
+ // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
+ // If the multiplication NewIdx * Scale may overflow then the new
+ // GEP may not be "inbounds".
+ Value *Off[2];
+ Off[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
+ Off[1] = NewIdx;
+ Value *NewGEP = GEP.isInBounds() && NSW ?
+ Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
+ Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
+ // The NewGEP must be pointer typed, so must the old one -> BitCast
+ return new BitCastInst(NewGEP, GEP.getType());
}
}
-
- // If the index will be to exactly the right offset with the scale taken
- // out, perform the transformation. Note, we don't know whether Scale is
- // signed or not. We'll use unsigned version of division/modulo
- // operation after making sure Scale doesn't have the sign bit set.
- if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
- Scale->getZExtValue() % ArrayEltSize == 0) {
- Scale = ConstantInt::get(Scale->getType(),
- Scale->getZExtValue() / ArrayEltSize);
- if (Scale->getZExtValue() != 1) {
- Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
- false /*ZExt*/);
- NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
- }
-
- // Insert the new GEP instruction.
- Value *Idx[2];
- Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
- Idx[1] = NewIdx;
- Value *NewGEP = GEP.isInBounds() ?
- Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
- Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
- // The NewGEP must be pointer typed, so must the old one -> BitCast
- return new BitCastInst(NewGEP, GEP.getType());
- }
}
}
}
@@ -1054,17 +1309,15 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
/// into a gep of the original struct. This is important for SROA and alias
/// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
+ APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0);
if (TD &&
- !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
+ !isa<BitCastInst>(BCI->getOperand(0)) &&
+ GEP.accumulateConstantOffset(*TD, Offset) &&
StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
- // Determine how much the GEP moves the pointer.
- SmallVector<Value*, 8> Ops(GEP.idx_begin(), GEP.idx_end());
- int64_t Offset = TD->getIndexedOffset(GEP.getPointerOperandType(), Ops);
-
// If this GEP instruction doesn't move the pointer, just replace the GEP
// with a bitcast of the real input to the dest type.
- if (Offset == 0) {
+ if (!Offset) {
// If the bitcast is of an allocation, and the allocation will be
// converted to match the type of the cast, don't touch this.
if (isa<AllocaInst>(BCI->getOperand(0)) ||
@@ -1088,7 +1341,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 8> NewIndices;
Type *InTy =
cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
- if (FindElementAtOffset(InTy, Offset, NewIndices)) {
+ if (FindElementAtOffset(InTy, Offset.getSExtValue(), NewIndices)) {
Value *NGEP = GEP.isInBounds() ?
Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
Builder->CreateGEP(BCI->getOperand(0), NewIndices);
@@ -1222,6 +1475,62 @@ Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
return 0;
}
+/// \brief Move the call to free before a NULL test.
+///
+/// Check if this free is accessed after its argument has been test
+/// against NULL (property 0).
+/// If yes, it is legal to move this call in its predecessor block.
+///
+/// The move is performed only if the block containing the call to free
+/// will be removed, i.e.:
+/// 1. it has only one predecessor P, and P has two successors
+/// 2. it contains the call and an unconditional branch
+/// 3. its successor is the same as its predecessor's successor
+///
+/// The profitability is out-of concern here and this function should
+/// be called only if the caller knows this transformation would be
+/// profitable (e.g., for code size).
+static Instruction *
+tryToMoveFreeBeforeNullTest(CallInst &FI) {
+ Value *Op = FI.getArgOperand(0);
+ BasicBlock *FreeInstrBB = FI.getParent();
+ BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
+
+ // Validate part of constraint #1: Only one predecessor
+ // FIXME: We can extend the number of predecessor, but in that case, we
+ // would duplicate the call to free in each predecessor and it may
+ // not be profitable even for code size.
+ if (!PredBB)
+ return 0;
+
+ // Validate constraint #2: Does this block contains only the call to
+ // free and an unconditional branch?
+ // FIXME: We could check if we can speculate everything in the
+ // predecessor block
+ if (FreeInstrBB->size() != 2)
+ return 0;
+ BasicBlock *SuccBB;
+ if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
+ return 0;
+
+ // Validate the rest of constraint #1 by matching on the pred branch.
+ TerminatorInst *TI = PredBB->getTerminator();
+ BasicBlock *TrueBB, *FalseBB;
+ ICmpInst::Predicate Pred;
+ if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
+ return 0;
+ if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
+ return 0;
+
+ // Validate constraint #3: Ensure the null case just falls through.
+ if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
+ return 0;
+ assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
+ "Broken CFG: missing edge from predecessor to successor");
+
+ FI.moveBefore(TI);
+ return &FI;
+}
Instruction *InstCombiner::visitFree(CallInst &FI) {
@@ -1240,6 +1549,16 @@ Instruction *InstCombiner::visitFree(CallInst &FI) {
if (isa<ConstantPointerNull>(Op))
return EraseInstFromFunction(FI);
+ // If we optimize for code size, try to move the call to free before the null
+ // test so that simplify cfg can remove the empty block and dead code
+ // elimination the branch. I.e., helps to turn something like:
+ // if (foo) free(foo);
+ // into
+ // free(foo);
+ if (MinimizeSize)
+ if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
+ return I;
+
return 0;
}
@@ -1854,7 +2173,7 @@ static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
static bool AddReachableCodeToWorklist(BasicBlock *BB,
SmallPtrSet<BasicBlock*, 64> &Visited,
InstCombiner &IC,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI) {
bool MadeIRChange = false;
SmallVector<BasicBlock*, 256> Worklist;
@@ -2118,10 +2437,31 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
return MadeIRChange;
}
+namespace {
+class InstCombinerLibCallSimplifier : public LibCallSimplifier {
+ InstCombiner *IC;
+public:
+ InstCombinerLibCallSimplifier(const DataLayout *TD,
+ const TargetLibraryInfo *TLI,
+ InstCombiner *IC)
+ : LibCallSimplifier(TD, TLI, UnsafeFPShrink) {
+ this->IC = IC;
+ }
+
+ /// replaceAllUsesWith - override so that instruction replacement
+ /// can be defined in terms of the instruction combiner framework.
+ virtual void replaceAllUsesWith(Instruction *I, Value *With) const {
+ IC->ReplaceInstUsesWith(*I, With);
+ }
+};
+}
bool InstCombiner::runOnFunction(Function &F) {
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
+ // Minimizing size?
+ MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::MinSize);
/// Builder - This is an IRBuilder that automatically inserts new
/// instructions into the worklist when they are created.
@@ -2130,6 +2470,9 @@ bool InstCombiner::runOnFunction(Function &F) {
InstCombineIRInserter(Worklist));
Builder = &TheBuilder;
+ InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this);
+ Simplifier = &TheSimplifier;
+
bool EverMadeChange = false;
// Lower dbg.declare intrinsics otherwise their value may be clobbered
diff --git a/lib/Transforms/Instrumentation/AddressSanitizer.cpp b/lib/Transforms/Instrumentation/AddressSanitizer.cpp
index 0775cf4..9bd3239 100644
--- a/lib/Transforms/Instrumentation/AddressSanitizer.cpp
+++ b/lib/Transforms/Instrumentation/AddressSanitizer.cpp
@@ -15,34 +15,38 @@
#define DEBUG_TYPE "asan"
+#include "llvm/Transforms/Instrumentation.h"
#include "BlackList.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/InstVisitor.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
-#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
-
-#include <string>
#include <algorithm>
+#include <string>
using namespace llvm;
@@ -69,6 +73,10 @@ static const char *kAsanMappingOffsetName = "__asan_mapping_offset";
static const char *kAsanMappingScaleName = "__asan_mapping_scale";
static const char *kAsanStackMallocName = "__asan_stack_malloc";
static const char *kAsanStackFreeName = "__asan_stack_free";
+static const char *kAsanGenPrefix = "__asan_gen_";
+static const char *kAsanPoisonStackMemoryName = "__asan_poison_stack_memory";
+static const char *kAsanUnpoisonStackMemoryName =
+ "__asan_unpoison_stack_memory";
static const int kAsanStackLeftRedzoneMagic = 0xf1;
static const int kAsanStackMidRedzoneMagic = 0xf2;
@@ -112,9 +120,10 @@ static cl::opt<bool> ClInitializers("asan-initialization-order",
cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false));
static cl::opt<bool> ClMemIntrin("asan-memintrin",
cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true));
-// This flag may need to be replaced with -fasan-blacklist.
-static cl::opt<std::string> ClBlackListFile("asan-blacklist",
- cl::desc("File containing the list of functions to ignore "
+static cl::opt<bool> ClRealignStack("asan-realign-stack",
+ cl::desc("Realign stack to 32"), cl::Hidden, cl::init(true));
+static cl::opt<std::string> ClBlacklistFile("asan-blacklist",
+ cl::desc("File containing the list of objects to ignore "
"during instrumentation"), cl::Hidden);
// These flags allow to change the shadow mapping.
@@ -135,6 +144,10 @@ static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
static cl::opt<bool> ClOptGlobals("asan-opt-globals",
cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
+static cl::opt<bool> ClCheckLifetime("asan-check-lifetime",
+ cl::desc("Use llvm.lifetime intrinsics to insert extra checks"),
+ cl::Hidden, cl::init(false));
+
// Debug flags.
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
cl::init(0));
@@ -148,80 +161,274 @@ static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
cl::Hidden, cl::init(-1));
namespace {
+/// A set of dynamically initialized globals extracted from metadata.
+class SetOfDynamicallyInitializedGlobals {
+ public:
+ void Init(Module& M) {
+ // Clang generates metadata identifying all dynamically initialized globals.
+ NamedMDNode *DynamicGlobals =
+ M.getNamedMetadata("llvm.asan.dynamically_initialized_globals");
+ if (!DynamicGlobals)
+ return;
+ for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) {
+ MDNode *MDN = DynamicGlobals->getOperand(i);
+ assert(MDN->getNumOperands() == 1);
+ Value *VG = MDN->getOperand(0);
+ // The optimizer may optimize away a global entirely, in which case we
+ // cannot instrument access to it.
+ if (!VG)
+ continue;
+ DynInitGlobals.insert(cast<GlobalVariable>(VG));
+ }
+ }
+ bool Contains(GlobalVariable *G) { return DynInitGlobals.count(G) != 0; }
+ private:
+ SmallSet<GlobalValue*, 32> DynInitGlobals;
+};
-/// An object of this type is created while instrumenting every function.
-struct AsanFunctionContext {
- AsanFunctionContext(Function &Function) : F(Function) { }
+static int MappingScale() {
+ return ClMappingScale ? ClMappingScale : kDefaultShadowScale;
+}
- Function &F;
-};
+static size_t RedzoneSize() {
+ // Redzone used for stack and globals is at least 32 bytes.
+ // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
+ return std::max(32U, 1U << MappingScale());
+}
/// AddressSanitizer: instrument the code in module to find memory bugs.
-struct AddressSanitizer : public ModulePass {
- AddressSanitizer();
- virtual const char *getPassName() const;
- void instrumentMop(AsanFunctionContext &AFC, Instruction *I);
- void instrumentAddress(AsanFunctionContext &AFC,
- Instruction *OrigIns, IRBuilder<> &IRB,
+struct AddressSanitizer : public FunctionPass {
+ AddressSanitizer(bool CheckInitOrder = false,
+ bool CheckUseAfterReturn = false,
+ bool CheckLifetime = false,
+ StringRef BlacklistFile = StringRef())
+ : FunctionPass(ID),
+ CheckInitOrder(CheckInitOrder || ClInitializers),
+ CheckUseAfterReturn(CheckUseAfterReturn || ClUseAfterReturn),
+ CheckLifetime(CheckLifetime || ClCheckLifetime),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+ : BlacklistFile) {}
+ virtual const char *getPassName() const {
+ return "AddressSanitizerFunctionPass";
+ }
+ void instrumentMop(Instruction *I);
+ void instrumentAddress(Instruction *OrigIns, IRBuilder<> &IRB,
Value *Addr, uint32_t TypeSize, bool IsWrite);
Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
Value *ShadowValue, uint32_t TypeSize);
Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
bool IsWrite, size_t AccessSizeIndex);
- bool instrumentMemIntrinsic(AsanFunctionContext &AFC, MemIntrinsic *MI);
- void instrumentMemIntrinsicParam(AsanFunctionContext &AFC,
- Instruction *OrigIns, Value *Addr,
+ bool instrumentMemIntrinsic(MemIntrinsic *MI);
+ void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr,
Value *Size,
Instruction *InsertBefore, bool IsWrite);
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
- bool handleFunction(Module &M, Function &F);
+ bool runOnFunction(Function &F);
void createInitializerPoisonCalls(Module &M,
Value *FirstAddr, Value *LastAddr);
bool maybeInsertAsanInitAtFunctionEntry(Function &F);
- bool poisonStackInFunction(Module &M, Function &F);
- virtual bool runOnModule(Module &M);
- bool insertGlobalRedzones(Module &M);
+ virtual bool doInitialization(Module &M);
static char ID; // Pass identification, replacement for typeid
private:
- uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
- Type *Ty = AI->getAllocatedType();
- uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
- return SizeInBytes;
- }
- uint64_t getAlignedSize(uint64_t SizeInBytes) {
- return ((SizeInBytes + RedzoneSize - 1)
- / RedzoneSize) * RedzoneSize;
- }
- uint64_t getAlignedAllocaSize(AllocaInst *AI) {
- uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
- return getAlignedSize(SizeInBytes);
- }
+ void initializeCallbacks(Module &M);
- Function *checkInterfaceFunction(Constant *FuncOrBitcast);
bool ShouldInstrumentGlobal(GlobalVariable *G);
- void PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
- Value *ShadowBase, bool DoPoison);
bool LooksLikeCodeInBug11395(Instruction *I);
void FindDynamicInitializers(Module &M);
- bool HasDynamicInitializer(GlobalVariable *G);
+ bool CheckInitOrder;
+ bool CheckUseAfterReturn;
+ bool CheckLifetime;
LLVMContext *C;
- TargetData *TD;
+ DataLayout *TD;
uint64_t MappingOffset;
- int MappingScale;
- size_t RedzoneSize;
int LongSize;
Type *IntptrTy;
- Type *IntptrPtrTy;
Function *AsanCtorFunction;
Function *AsanInitFunction;
- Instruction *CtorInsertBefore;
+ Function *AsanHandleNoReturnFunc;
+ SmallString<64> BlacklistFile;
OwningPtr<BlackList> BL;
// This array is indexed by AccessIsWrite and log2(AccessSize).
Function *AsanErrorCallback[2][kNumberOfAccessSizes];
InlineAsm *EmptyAsm;
- SmallSet<GlobalValue*, 32> DynamicallyInitializedGlobals;
+ SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
+
+ friend struct FunctionStackPoisoner;
+};
+
+class AddressSanitizerModule : public ModulePass {
+ public:
+ AddressSanitizerModule(bool CheckInitOrder = false,
+ StringRef BlacklistFile = StringRef())
+ : ModulePass(ID),
+ CheckInitOrder(CheckInitOrder || ClInitializers),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+ : BlacklistFile) {}
+ bool runOnModule(Module &M);
+ static char ID; // Pass identification, replacement for typeid
+ virtual const char *getPassName() const {
+ return "AddressSanitizerModule";
+ }
+
+ private:
+ void initializeCallbacks(Module &M);
+
+ bool ShouldInstrumentGlobal(GlobalVariable *G);
+ void createInitializerPoisonCalls(Module &M, Value *FirstAddr,
+ Value *LastAddr);
+
+ bool CheckInitOrder;
+ SmallString<64> BlacklistFile;
+ OwningPtr<BlackList> BL;
+ SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
+ Type *IntptrTy;
+ LLVMContext *C;
+ DataLayout *TD;
+ Function *AsanPoisonGlobals;
+ Function *AsanUnpoisonGlobals;
+ Function *AsanRegisterGlobals;
+ Function *AsanUnregisterGlobals;
+};
+
+// Stack poisoning does not play well with exception handling.
+// When an exception is thrown, we essentially bypass the code
+// that unpoisones the stack. This is why the run-time library has
+// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
+// stack in the interceptor. This however does not work inside the
+// actual function which catches the exception. Most likely because the
+// compiler hoists the load of the shadow value somewhere too high.
+// This causes asan to report a non-existing bug on 453.povray.
+// It sounds like an LLVM bug.
+struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
+ Function &F;
+ AddressSanitizer &ASan;
+ DIBuilder DIB;
+ LLVMContext *C;
+ Type *IntptrTy;
+ Type *IntptrPtrTy;
+
+ SmallVector<AllocaInst*, 16> AllocaVec;
+ SmallVector<Instruction*, 8> RetVec;
+ uint64_t TotalStackSize;
+ unsigned StackAlignment;
+
+ Function *AsanStackMallocFunc, *AsanStackFreeFunc;
+ Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
+
+ // Stores a place and arguments of poisoning/unpoisoning call for alloca.
+ struct AllocaPoisonCall {
+ IntrinsicInst *InsBefore;
+ uint64_t Size;
+ bool DoPoison;
+ };
+ SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
+
+ // Maps Value to an AllocaInst from which the Value is originated.
+ typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
+ AllocaForValueMapTy AllocaForValue;
+
+ FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
+ : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C),
+ IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
+ TotalStackSize(0), StackAlignment(1 << MappingScale()) {}
+
+ bool runOnFunction() {
+ if (!ClStack) return false;
+ // Collect alloca, ret, lifetime instructions etc.
+ for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
+ DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
+ BasicBlock *BB = *DI;
+ visit(*BB);
+ }
+ if (AllocaVec.empty()) return false;
+
+ initializeCallbacks(*F.getParent());
+
+ poisonStack();
+
+ if (ClDebugStack) {
+ DEBUG(dbgs() << F);
+ }
+ return true;
+ }
+
+ // Finds all static Alloca instructions and puts
+ // poisoned red zones around all of them.
+ // Then unpoison everything back before the function returns.
+ void poisonStack();
+
+ // ----------------------- Visitors.
+ /// \brief Collect all Ret instructions.
+ void visitReturnInst(ReturnInst &RI) {
+ RetVec.push_back(&RI);
+ }
+
+ /// \brief Collect Alloca instructions we want (and can) handle.
+ void visitAllocaInst(AllocaInst &AI) {
+ if (!isInterestingAlloca(AI)) return;
+
+ StackAlignment = std::max(StackAlignment, AI.getAlignment());
+ AllocaVec.push_back(&AI);
+ uint64_t AlignedSize = getAlignedAllocaSize(&AI);
+ TotalStackSize += AlignedSize;
+ }
+
+ /// \brief Collect lifetime intrinsic calls to check for use-after-scope
+ /// errors.
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ if (!ASan.CheckLifetime) return;
+ Intrinsic::ID ID = II.getIntrinsicID();
+ if (ID != Intrinsic::lifetime_start &&
+ ID != Intrinsic::lifetime_end)
+ return;
+ // Found lifetime intrinsic, add ASan instrumentation if necessary.
+ ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
+ // If size argument is undefined, don't do anything.
+ if (Size->isMinusOne()) return;
+ // Check that size doesn't saturate uint64_t and can
+ // be stored in IntptrTy.
+ const uint64_t SizeValue = Size->getValue().getLimitedValue();
+ if (SizeValue == ~0ULL ||
+ !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
+ return;
+ // Find alloca instruction that corresponds to llvm.lifetime argument.
+ AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
+ if (!AI) return;
+ bool DoPoison = (ID == Intrinsic::lifetime_end);
+ AllocaPoisonCall APC = {&II, SizeValue, DoPoison};
+ AllocaPoisonCallVec.push_back(APC);
+ }
+
+ // ---------------------- Helpers.
+ void initializeCallbacks(Module &M);
+
+ // Check if we want (and can) handle this alloca.
+ bool isInterestingAlloca(AllocaInst &AI) {
+ return (!AI.isArrayAllocation() &&
+ AI.isStaticAlloca() &&
+ AI.getAllocatedType()->isSized());
+ }
+
+ uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
+ Type *Ty = AI->getAllocatedType();
+ uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty);
+ return SizeInBytes;
+ }
+ uint64_t getAlignedSize(uint64_t SizeInBytes) {
+ size_t RZ = RedzoneSize();
+ return ((SizeInBytes + RZ - 1) / RZ) * RZ;
+ }
+ uint64_t getAlignedAllocaSize(AllocaInst *AI) {
+ uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
+ return getAlignedSize(SizeInBytes);
+ }
+ /// Finds alloca where the value comes from.
+ AllocaInst *findAllocaForValue(Value *V);
+ void poisonRedZones(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
+ Value *ShadowBase, bool DoPoison);
+ void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> IRB, bool DoPoison);
};
} // namespace
@@ -230,13 +437,20 @@ char AddressSanitizer::ID = 0;
INITIALIZE_PASS(AddressSanitizer, "asan",
"AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
false, false)
-AddressSanitizer::AddressSanitizer() : ModulePass(ID) { }
-ModulePass *llvm::createAddressSanitizerPass() {
- return new AddressSanitizer();
+FunctionPass *llvm::createAddressSanitizerFunctionPass(
+ bool CheckInitOrder, bool CheckUseAfterReturn, bool CheckLifetime,
+ StringRef BlacklistFile) {
+ return new AddressSanitizer(CheckInitOrder, CheckUseAfterReturn,
+ CheckLifetime, BlacklistFile);
}
-const char *AddressSanitizer::getPassName() const {
- return "AddressSanitizer";
+char AddressSanitizerModule::ID = 0;
+INITIALIZE_PASS(AddressSanitizerModule, "asan-module",
+ "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
+ "ModulePass", false, false)
+ModulePass *llvm::createAddressSanitizerModulePass(
+ bool CheckInitOrder, StringRef BlacklistFile) {
+ return new AddressSanitizerModule(CheckInitOrder, BlacklistFile);
}
static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
@@ -249,44 +463,17 @@ static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) {
Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
return new GlobalVariable(M, StrConst->getType(), true,
- GlobalValue::PrivateLinkage, StrConst, "");
+ GlobalValue::PrivateLinkage, StrConst,
+ kAsanGenPrefix);
}
-// Split the basic block and insert an if-then code.
-// Before:
-// Head
-// Cmp
-// Tail
-// After:
-// Head
-// if (Cmp)
-// ThenBlock
-// Tail
-//
-// ThenBlock block is created and its terminator is returned.
-// If Unreachable, ThenBlock is terminated with UnreachableInst, otherwise
-// it is terminated with BranchInst to Tail.
-static TerminatorInst *splitBlockAndInsertIfThen(Value *Cmp, bool Unreachable) {
- Instruction *SplitBefore = cast<Instruction>(Cmp)->getNextNode();
- BasicBlock *Head = SplitBefore->getParent();
- BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
- TerminatorInst *HeadOldTerm = Head->getTerminator();
- LLVMContext &C = Head->getParent()->getParent()->getContext();
- BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
- TerminatorInst *CheckTerm;
- if (Unreachable)
- CheckTerm = new UnreachableInst(C, ThenBlock);
- else
- CheckTerm = BranchInst::Create(Tail, ThenBlock);
- BranchInst *HeadNewTerm =
- BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cmp);
- ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
- return CheckTerm;
+static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
+ return G->getName().find(kAsanGenPrefix) == 0;
}
Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
// Shadow >> scale
- Shadow = IRB.CreateLShr(Shadow, MappingScale);
+ Shadow = IRB.CreateLShr(Shadow, MappingScale());
if (MappingOffset == 0)
return Shadow;
// (Shadow >> scale) | offset
@@ -295,12 +482,12 @@ Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
}
void AddressSanitizer::instrumentMemIntrinsicParam(
- AsanFunctionContext &AFC, Instruction *OrigIns,
+ Instruction *OrigIns,
Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) {
// Check the first byte.
{
IRBuilder<> IRB(InsertBefore);
- instrumentAddress(AFC, OrigIns, IRB, Addr, 8, IsWrite);
+ instrumentAddress(OrigIns, IRB, Addr, 8, IsWrite);
}
// Check the last byte.
{
@@ -310,13 +497,12 @@ void AddressSanitizer::instrumentMemIntrinsicParam(
SizeMinusOne = IRB.CreateIntCast(SizeMinusOne, IntptrTy, false);
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
Value *AddrPlusSizeMinisOne = IRB.CreateAdd(AddrLong, SizeMinusOne);
- instrumentAddress(AFC, OrigIns, IRB, AddrPlusSizeMinisOne, 8, IsWrite);
+ instrumentAddress(OrigIns, IRB, AddrPlusSizeMinisOne, 8, IsWrite);
}
}
// Instrument memset/memmove/memcpy
-bool AddressSanitizer::instrumentMemIntrinsic(AsanFunctionContext &AFC,
- MemIntrinsic *MI) {
+bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
Value *Dst = MI->getDest();
MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI);
Value *Src = MemTran ? MemTran->getSource() : 0;
@@ -332,12 +518,12 @@ bool AddressSanitizer::instrumentMemIntrinsic(AsanFunctionContext &AFC,
Value *Cmp = IRB.CreateICmpNE(Length,
Constant::getNullValue(Length->getType()));
- InsertBefore = splitBlockAndInsertIfThen(Cmp, false);
+ InsertBefore = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
}
- instrumentMemIntrinsicParam(AFC, MI, Dst, Length, InsertBefore, true);
+ instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true);
if (Src)
- instrumentMemIntrinsicParam(AFC, MI, Src, Length, InsertBefore, false);
+ instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false);
return true;
}
@@ -367,46 +553,20 @@ static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) {
return NULL;
}
-void AddressSanitizer::FindDynamicInitializers(Module& M) {
- // Clang generates metadata identifying all dynamically initialized globals.
- NamedMDNode *DynamicGlobals =
- M.getNamedMetadata("llvm.asan.dynamically_initialized_globals");
- if (!DynamicGlobals)
- return;
- for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) {
- MDNode *MDN = DynamicGlobals->getOperand(i);
- assert(MDN->getNumOperands() == 1);
- Value *VG = MDN->getOperand(0);
- // The optimizer may optimize away a global entirely, in which case we
- // cannot instrument access to it.
- if (!VG)
- continue;
-
- GlobalVariable *G = cast<GlobalVariable>(VG);
- DynamicallyInitializedGlobals.insert(G);
- }
-}
-// Returns true if a global variable is initialized dynamically in this TU.
-bool AddressSanitizer::HasDynamicInitializer(GlobalVariable *G) {
- return DynamicallyInitializedGlobals.count(G);
-}
-
-void AddressSanitizer::instrumentMop(AsanFunctionContext &AFC, Instruction *I) {
- bool IsWrite;
+void AddressSanitizer::instrumentMop(Instruction *I) {
+ bool IsWrite = false;
Value *Addr = isInterestingMemoryAccess(I, &IsWrite);
assert(Addr);
if (ClOpt && ClOptGlobals) {
if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) {
// If initialization order checking is disabled, a simple access to a
// dynamically initialized global is always valid.
- if (!ClInitializers)
+ if (!CheckInitOrder)
return;
// If a global variable does not have dynamic initialization we don't
- // have to instrument it. However, if a global has external linkage, we
- // assume it has dynamic initialization, as it may have an initializer
- // in a different TU.
- if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
- !HasDynamicInitializer(G))
+ // have to instrument it. However, if a global does not have initailizer
+ // at all, we assume it has dynamic initializer (in other TU).
+ if (G->hasInitializer() && !DynamicallyInitializedGlobals.Contains(G))
return;
}
}
@@ -424,14 +584,14 @@ void AddressSanitizer::instrumentMop(AsanFunctionContext &AFC, Instruction *I) {
}
IRBuilder<> IRB(I);
- instrumentAddress(AFC, I, IRB, Addr, TypeSize, IsWrite);
+ instrumentAddress(I, IRB, Addr, TypeSize, IsWrite);
}
// Validate the result of Module::getOrInsertFunction called for an interface
// function of AddressSanitizer. If the instrumented module defines a function
// with the same name, their prototypes must match, otherwise
// getOrInsertFunction returns a bitcast.
-Function *AddressSanitizer::checkInterfaceFunction(Constant *FuncOrBitcast) {
+static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
FuncOrBitcast->dump();
report_fatal_error("trying to redefine an AddressSanitizer "
@@ -454,7 +614,7 @@ Instruction *AddressSanitizer::generateCrashCode(
Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
Value *ShadowValue,
uint32_t TypeSize) {
- size_t Granularity = 1 << MappingScale;
+ size_t Granularity = 1 << MappingScale();
// Addr & (Granularity - 1)
Value *LastAccessedByte = IRB.CreateAnd(
AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
@@ -469,14 +629,13 @@ Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
}
-void AddressSanitizer::instrumentAddress(AsanFunctionContext &AFC,
- Instruction *OrigIns,
+void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
IRBuilder<> &IRB, Value *Addr,
uint32_t TypeSize, bool IsWrite) {
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
Type *ShadowTy = IntegerType::get(
- *C, std::max(8U, TypeSize >> MappingScale));
+ *C, std::max(8U, TypeSize >> MappingScale()));
Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
Value *ShadowPtr = memToShadow(AddrLong, IRB);
Value *CmpVal = Constant::getNullValue(ShadowTy);
@@ -485,21 +644,23 @@ void AddressSanitizer::instrumentAddress(AsanFunctionContext &AFC,
Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
- size_t Granularity = 1 << MappingScale;
+ size_t Granularity = 1 << MappingScale();
TerminatorInst *CrashTerm = 0;
if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
- TerminatorInst *CheckTerm = splitBlockAndInsertIfThen(Cmp, false);
+ TerminatorInst *CheckTerm =
+ SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
BasicBlock *NextBB = CheckTerm->getSuccessor(0);
IRB.SetInsertPoint(CheckTerm);
Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
- BasicBlock *CrashBlock = BasicBlock::Create(*C, "", &AFC.F, NextBB);
+ BasicBlock *CrashBlock =
+ BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
CrashTerm = new UnreachableInst(*C, CrashBlock);
BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
ReplaceInstWithInst(CheckTerm, NewTerm);
} else {
- CrashTerm = splitBlockAndInsertIfThen(Cmp, true);
+ CrashTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), true);
}
Instruction *Crash =
@@ -507,9 +668,8 @@ void AddressSanitizer::instrumentAddress(AsanFunctionContext &AFC,
Crash->setDebugLoc(OrigIns->getDebugLoc());
}
-void AddressSanitizer::createInitializerPoisonCalls(Module &M,
- Value *FirstAddr,
- Value *LastAddr) {
+void AddressSanitizerModule::createInitializerPoisonCalls(
+ Module &M, Value *FirstAddr, Value *LastAddr) {
// We do all of our poisoning and unpoisoning within _GLOBAL__I_a.
Function *GlobalInit = M.getFunction("_GLOBAL__I_a");
// If that function is not present, this TU contains no globals, or they have
@@ -520,14 +680,6 @@ void AddressSanitizer::createInitializerPoisonCalls(Module &M,
// Set up the arguments to our poison/unpoison functions.
IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt());
- // Declare our poisoning and unpoisoning functions.
- Function *AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
- AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
- Function *AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
- AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
-
// Add a call to poison all external globals before the given function starts.
IRB.CreateCall2(AsanPoisonGlobals, FirstAddr, LastAddr);
@@ -540,13 +692,14 @@ void AddressSanitizer::createInitializerPoisonCalls(Module &M,
}
}
-bool AddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
+bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
Type *Ty = cast<PointerType>(G->getType())->getElementType();
- DEBUG(dbgs() << "GLOBAL: " << *G);
+ DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
if (BL->isIn(*G)) return false;
if (!Ty->isSized()) return false;
if (!G->hasInitializer()) return false;
+ if (GlobalWasGeneratedByAsan(G)) return false; // Our own global.
// Touch only those globals that will not be defined in other modules.
// Don't handle ODR type linkages since other modules may be built w/o asan.
if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
@@ -559,7 +712,7 @@ bool AddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
if (G->isThreadLocal())
return false;
// For now, just ignore this Alloca if the alignment is large.
- if (G->getAlignment() > RedzoneSize) return false;
+ if (G->getAlignment() > RedzoneSize()) return false;
// Ignore all the globals with the names starting with "\01L_OBJC_".
// Many of those are put into the .cstring section. The linker compresses
@@ -598,10 +751,41 @@ bool AddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
return true;
}
+void AddressSanitizerModule::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ // Declare our poisoning and unpoisoning functions.
+ AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
+ AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
+ AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
+ // Declare functions that register/unregister globals.
+ AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanRegisterGlobalsName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, NULL));
+ AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
+ AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnregisterGlobalsName,
+ IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
+}
+
// This function replaces all global variables with new variables that have
// trailing redzones. It also creates a function that poisons
// redzones and inserts this function into llvm.global_ctors.
-bool AddressSanitizer::insertGlobalRedzones(Module &M) {
+bool AddressSanitizerModule::runOnModule(Module &M) {
+ if (!ClGlobals) return false;
+ TD = getAnalysisIfAvailable<DataLayout>();
+ if (!TD)
+ return false;
+ BL.reset(new BlackList(BlacklistFile));
+ if (BL->isIn(M)) return false;
+ C = &(M.getContext());
+ IntptrTy = Type::getIntNTy(*C, TD->getPointerSizeInBits());
+ initializeCallbacks(M);
+ DynamicallyInitializedGlobals.Init(M);
+
SmallVector<GlobalVariable *, 16> GlobalsToChange;
for (Module::GlobalListType::iterator G = M.global_begin(),
@@ -625,10 +809,10 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
IntptrTy, NULL);
SmallVector<Constant *, 16> Initializers(n), DynamicInit;
- IRBuilder<> IRB(CtorInsertBefore);
- if (ClInitializers)
- FindDynamicInitializers(M);
+ Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
+ assert(CtorFunc);
+ IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
// The addresses of the first and last dynamically initialized globals in
// this TU. Used in initialization order checking.
@@ -639,11 +823,12 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
PointerType *PtrTy = cast<PointerType>(G->getType());
Type *Ty = PtrTy->getElementType();
uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
- uint64_t RightRedzoneSize = RedzoneSize +
- (RedzoneSize - (SizeInBytes % RedzoneSize));
+ size_t RZ = RedzoneSize();
+ uint64_t RightRedzoneSize = RZ + (RZ - (SizeInBytes % RZ));
Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
// Determine whether this global should be poisoned in initialization.
- bool GlobalHasDynamicInitializer = HasDynamicInitializer(G);
+ bool GlobalHasDynamicInitializer =
+ DynamicallyInitializedGlobals.Contains(G);
// Don't check initialization order if this global is blacklisted.
GlobalHasDynamicInitializer &= !BL->isInInit(*G);
@@ -663,7 +848,7 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
M, NewTy, G->isConstant(), G->getLinkage(),
NewInitializer, "", G, G->getThreadLocalMode());
NewGlobal->copyAttributesFrom(G);
- NewGlobal->setAlignment(RedzoneSize);
+ NewGlobal->setAlignment(RZ);
Value *Indices2[2];
Indices2[0] = IRB.getInt32(0);
@@ -684,13 +869,13 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
NULL);
// Populate the first and last globals declared in this TU.
- if (ClInitializers && GlobalHasDynamicInitializer) {
+ if (CheckInitOrder && GlobalHasDynamicInitializer) {
LastDynamic = ConstantExpr::getPointerCast(NewGlobal, IntptrTy);
if (FirstDynamic == 0)
FirstDynamic = LastDynamic;
}
- DEBUG(dbgs() << "NEW GLOBAL:\n" << *NewGlobal);
+ DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
}
ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
@@ -699,14 +884,8 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
// Create calls for poisoning before initializers run and unpoisoning after.
- if (ClInitializers && FirstDynamic && LastDynamic)
+ if (CheckInitOrder && FirstDynamic && LastDynamic)
createInitializerPoisonCalls(M, FirstDynamic, LastDynamic);
-
- Function *AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanRegisterGlobalsName, IRB.getVoidTy(),
- IntptrTy, IntptrTy, NULL));
- AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
-
IRB.CreateCall2(AsanRegisterGlobals,
IRB.CreatePointerCast(AllGlobals, IntptrTy),
ConstantInt::get(IntptrTy, n));
@@ -718,12 +897,6 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
- Function *AsanUnregisterGlobals =
- checkInterfaceFunction(M.getOrInsertFunction(
- kAsanUnregisterGlobalsName,
- IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
- AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
-
IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
IRB.CreatePointerCast(AllGlobals, IntptrTy),
ConstantInt::get(IntptrTy, n));
@@ -733,49 +906,55 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
return true;
}
+void AddressSanitizer::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ // Create __asan_report* callbacks.
+ for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
+ for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
+ AccessSizeIndex++) {
+ // IsWrite and TypeSize are encoded in the function name.
+ std::string FunctionName = std::string(kAsanReportErrorTemplate) +
+ (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
+ // If we are merging crash callbacks, they have two parameters.
+ AsanErrorCallback[AccessIsWrite][AccessSizeIndex] =
+ checkInterfaceFunction(M.getOrInsertFunction(
+ FunctionName, IRB.getVoidTy(), IntptrTy, NULL));
+ }
+ }
+
+ AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanHandleNoReturnName, IRB.getVoidTy(), NULL));
+ // We insert an empty inline asm after __asan_report* to avoid callback merge.
+ EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
+ StringRef(""), StringRef(""),
+ /*hasSideEffects=*/true);
+}
+
// virtual
-bool AddressSanitizer::runOnModule(Module &M) {
+bool AddressSanitizer::doInitialization(Module &M) {
// Initialize the private fields. No one has accessed them before.
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
+
if (!TD)
return false;
- BL.reset(new BlackList(ClBlackListFile));
+ BL.reset(new BlackList(BlacklistFile));
+ DynamicallyInitializedGlobals.Init(M);
C = &(M.getContext());
LongSize = TD->getPointerSizeInBits();
IntptrTy = Type::getIntNTy(*C, LongSize);
- IntptrPtrTy = PointerType::get(IntptrTy, 0);
AsanCtorFunction = Function::Create(
FunctionType::get(Type::getVoidTy(*C), false),
GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
- CtorInsertBefore = ReturnInst::Create(*C, AsanCtorBB);
-
// call __asan_init in the module ctor.
- IRBuilder<> IRB(CtorInsertBefore);
+ IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
AsanInitFunction = checkInterfaceFunction(
M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
AsanInitFunction->setLinkage(Function::ExternalLinkage);
IRB.CreateCall(AsanInitFunction);
- // Create __asan_report* callbacks.
- for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
- for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
- AccessSizeIndex++) {
- // IsWrite and TypeSize are encoded in the function name.
- std::string FunctionName = std::string(kAsanReportErrorTemplate) +
- (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
- // If we are merging crash callbacks, they have two parameters.
- AsanErrorCallback[AccessIsWrite][AccessSizeIndex] = cast<Function>(
- M.getOrInsertFunction(FunctionName, IRB.getVoidTy(), IntptrTy, NULL));
- }
- }
- // We insert an empty inline asm after __asan_report* to avoid callback merge.
- EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
- StringRef(""), StringRef(""),
- /*hasSideEffects=*/true);
-
llvm::Triple targetTriple(M.getTargetTriple());
bool isAndroid = targetTriple.getEnvironment() == llvm::Triple::Android;
@@ -789,18 +968,7 @@ bool AddressSanitizer::runOnModule(Module &M) {
MappingOffset = 1ULL << ClMappingOffsetLog;
}
}
- MappingScale = kDefaultShadowScale;
- if (ClMappingScale) {
- MappingScale = ClMappingScale;
- }
- // Redzone used for stack and globals is at least 32 bytes.
- // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
- RedzoneSize = std::max(32, (int)(1 << MappingScale));
- bool Res = false;
-
- if (ClGlobals)
- Res |= insertGlobalRedzones(M);
if (ClMappingOffsetLog >= 0) {
// Tell the run-time the current values of mapping offset and scale.
@@ -814,21 +982,15 @@ bool AddressSanitizer::runOnModule(Module &M) {
if (ClMappingScale) {
GlobalValue *asan_mapping_scale =
new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
- ConstantInt::get(IntptrTy, MappingScale),
+ ConstantInt::get(IntptrTy, MappingScale()),
kAsanMappingScaleName);
// Read the global, otherwise it may be optimized away.
IRB.CreateLoad(asan_mapping_scale, true);
}
-
- for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
- if (F->isDeclaration()) continue;
- Res |= handleFunction(M, *F);
- }
-
appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority);
- return Res;
+ return true;
}
bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
@@ -847,19 +1009,24 @@ bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
return false;
}
-bool AddressSanitizer::handleFunction(Module &M, Function &F) {
+bool AddressSanitizer::runOnFunction(Function &F) {
if (BL->isIn(F)) return false;
if (&F == AsanCtorFunction) return false;
+ DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
+ initializeCallbacks(*F.getParent());
// If needed, insert __asan_init before checking for AddressSafety attr.
maybeInsertAsanInitAtFunctionEntry(F);
- if (!F.hasFnAttr(Attribute::AddressSafety)) return false;
+ if (!F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::AddressSafety))
+ return false;
if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
return false;
- // We want to instrument every address only once per basic block
- // (unless there are calls between uses).
+
+ // We want to instrument every address only once per basic block (unless there
+ // are calls between uses).
SmallSet<Value*, 16> TempsToInstrument;
SmallVector<Instruction*, 16> ToInstrument;
SmallVector<Instruction*, 8> NoReturnCalls;
@@ -897,8 +1064,6 @@ bool AddressSanitizer::handleFunction(Module &M, Function &F) {
}
}
- AsanFunctionContext AFC(F);
-
// Instrument.
int NumInstrumented = 0;
for (size_t i = 0, n = ToInstrument.size(); i != n; i++) {
@@ -906,25 +1071,24 @@ bool AddressSanitizer::handleFunction(Module &M, Function &F) {
if (ClDebugMin < 0 || ClDebugMax < 0 ||
(NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
if (isInterestingMemoryAccess(Inst, &IsWrite))
- instrumentMop(AFC, Inst);
+ instrumentMop(Inst);
else
- instrumentMemIntrinsic(AFC, cast<MemIntrinsic>(Inst));
+ instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
}
NumInstrumented++;
}
- DEBUG(dbgs() << F);
-
- bool ChangedStack = poisonStackInFunction(M, F);
+ FunctionStackPoisoner FSP(F, *this);
+ bool ChangedStack = FSP.runOnFunction();
// We must unpoison the stack before every NoReturn call (throw, _exit, etc).
// See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) {
Instruction *CI = NoReturnCalls[i];
IRBuilder<> IRB(CI);
- IRB.CreateCall(M.getOrInsertFunction(kAsanHandleNoReturnName,
- IRB.getVoidTy(), NULL));
+ IRB.CreateCall(AsanHandleNoReturnFunc);
}
+ DEBUG(dbgs() << "ASAN done instrumenting:\n" << F << "\n");
return NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
}
@@ -940,10 +1104,10 @@ static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) {
static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
size_t Size,
- size_t RedzoneSize,
+ size_t RZSize,
size_t ShadowGranularity,
uint8_t Magic) {
- for (size_t i = 0; i < RedzoneSize;
+ for (size_t i = 0; i < RZSize;
i+= ShadowGranularity, Shadow++) {
if (i + ShadowGranularity <= Size) {
*Shadow = 0; // fully addressable
@@ -955,10 +1119,35 @@ static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
}
}
-void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
- IRBuilder<> IRB,
- Value *ShadowBase, bool DoPoison) {
- size_t ShadowRZSize = RedzoneSize >> MappingScale;
+// Workaround for bug 11395: we don't want to instrument stack in functions
+// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
+// FIXME: remove once the bug 11395 is fixed.
+bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
+ if (LongSize != 32) return false;
+ CallInst *CI = dyn_cast<CallInst>(I);
+ if (!CI || !CI->isInlineAsm()) return false;
+ if (CI->getNumArgOperands() <= 5) return false;
+ // We have inline assembly with quite a few arguments.
+ return true;
+}
+
+void FunctionStackPoisoner::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL));
+ AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanStackFreeName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, IntptrTy, NULL));
+ AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+}
+
+void FunctionStackPoisoner::poisonRedZones(
+ const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB, Value *ShadowBase,
+ bool DoPoison) {
+ size_t ShadowRZSize = RedzoneSize() >> MappingScale();
assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
Type *RZPtrTy = PointerType::get(RZTy, 0);
@@ -974,12 +1163,12 @@ void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy));
// poison all other red zones.
- uint64_t Pos = RedzoneSize;
+ uint64_t Pos = RedzoneSize();
for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
AllocaInst *AI = AllocaVec[i];
uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
uint64_t AlignedSize = getAlignedAllocaSize(AI);
- assert(AlignedSize - SizeInBytes < RedzoneSize);
+ assert(AlignedSize - SizeInBytes < RedzoneSize());
Value *Ptr = NULL;
Pos += AlignedSize;
@@ -989,13 +1178,13 @@ void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
// Poison the partial redzone at right
Ptr = IRB.CreateAdd(
ShadowBase, ConstantInt::get(IntptrTy,
- (Pos >> MappingScale) - ShadowRZSize));
- size_t AddressableBytes = RedzoneSize - (AlignedSize - SizeInBytes);
+ (Pos >> MappingScale()) - ShadowRZSize));
+ size_t AddressableBytes = RedzoneSize() - (AlignedSize - SizeInBytes);
uint32_t Poison = 0;
if (DoPoison) {
PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes,
- RedzoneSize,
- 1ULL << MappingScale,
+ RedzoneSize(),
+ 1ULL << MappingScale(),
kAsanStackPartialRedzoneMagic);
}
Value *PartialPoison = ConstantInt::get(RZTy, Poison);
@@ -1004,76 +1193,23 @@ void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
// Poison the full redzone at right.
Ptr = IRB.CreateAdd(ShadowBase,
- ConstantInt::get(IntptrTy, Pos >> MappingScale));
- Value *Poison = i == AllocaVec.size() - 1 ? PoisonRight : PoisonMid;
+ ConstantInt::get(IntptrTy, Pos >> MappingScale()));
+ bool LastAlloca = (i == AllocaVec.size() - 1);
+ Value *Poison = LastAlloca ? PoisonRight : PoisonMid;
IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
- Pos += RedzoneSize;
+ Pos += RedzoneSize();
}
}
-// Workaround for bug 11395: we don't want to instrument stack in functions
-// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
-// FIXME: remove once the bug 11395 is fixed.
-bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
- if (LongSize != 32) return false;
- CallInst *CI = dyn_cast<CallInst>(I);
- if (!CI || !CI->isInlineAsm()) return false;
- if (CI->getNumArgOperands() <= 5) return false;
- // We have inline assembly with quite a few arguments.
- return true;
-}
+void FunctionStackPoisoner::poisonStack() {
+ uint64_t LocalStackSize = TotalStackSize +
+ (AllocaVec.size() + 1) * RedzoneSize();
-// Find all static Alloca instructions and put
-// poisoned red zones around all of them.
-// Then unpoison everything back before the function returns.
-//
-// Stack poisoning does not play well with exception handling.
-// When an exception is thrown, we essentially bypass the code
-// that unpoisones the stack. This is why the run-time library has
-// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
-// stack in the interceptor. This however does not work inside the
-// actual function which catches the exception. Most likely because the
-// compiler hoists the load of the shadow value somewhere too high.
-// This causes asan to report a non-existing bug on 453.povray.
-// It sounds like an LLVM bug.
-bool AddressSanitizer::poisonStackInFunction(Module &M, Function &F) {
- if (!ClStack) return false;
- SmallVector<AllocaInst*, 16> AllocaVec;
- SmallVector<Instruction*, 8> RetVec;
- uint64_t TotalSize = 0;
-
- // Filter out Alloca instructions we want (and can) handle.
- // Collect Ret instructions.
- for (Function::iterator FI = F.begin(), FE = F.end();
- FI != FE; ++FI) {
- BasicBlock &BB = *FI;
- for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
- BI != BE; ++BI) {
- if (isa<ReturnInst>(BI)) {
- RetVec.push_back(BI);
- continue;
- }
-
- AllocaInst *AI = dyn_cast<AllocaInst>(BI);
- if (!AI) continue;
- if (AI->isArrayAllocation()) continue;
- if (!AI->isStaticAlloca()) continue;
- if (!AI->getAllocatedType()->isSized()) continue;
- if (AI->getAlignment() > RedzoneSize) continue;
- AllocaVec.push_back(AI);
- uint64_t AlignedSize = getAlignedAllocaSize(AI);
- TotalSize += AlignedSize;
- }
- }
-
- if (AllocaVec.empty()) return false;
-
- uint64_t LocalStackSize = TotalSize + (AllocaVec.size() + 1) * RedzoneSize;
-
- bool DoStackMalloc = ClUseAfterReturn
+ bool DoStackMalloc = ASan.CheckUseAfterReturn
&& LocalStackSize <= kMaxStackMallocSize;
+ assert(AllocaVec.size() > 0);
Instruction *InsBefore = AllocaVec[0];
IRBuilder<> IRB(InsBefore);
@@ -1081,14 +1217,14 @@ bool AddressSanitizer::poisonStackInFunction(Module &M, Function &F) {
Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
AllocaInst *MyAlloca =
new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
- MyAlloca->setAlignment(RedzoneSize);
+ if (ClRealignStack && StackAlignment < RedzoneSize())
+ StackAlignment = RedzoneSize();
+ MyAlloca->setAlignment(StackAlignment);
assert(MyAlloca->isStaticAlloca());
Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
Value *LocalStackBase = OrigStackBase;
if (DoStackMalloc) {
- Value *AsanStackMallocFunc = M.getOrInsertFunction(
- kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL);
LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc,
ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
}
@@ -1098,7 +1234,19 @@ bool AddressSanitizer::poisonStackInFunction(Module &M, Function &F) {
raw_svector_ostream StackDescription(StackDescriptionStorage);
StackDescription << F.getName() << " " << AllocaVec.size() << " ";
- uint64_t Pos = RedzoneSize;
+ // Insert poison calls for lifetime intrinsics for alloca.
+ bool HavePoisonedAllocas = false;
+ for (size_t i = 0, n = AllocaPoisonCallVec.size(); i < n; i++) {
+ const AllocaPoisonCall &APC = AllocaPoisonCallVec[i];
+ IntrinsicInst *II = APC.InsBefore;
+ AllocaInst *AI = findAllocaForValue(II->getArgOperand(1));
+ assert(AI);
+ IRBuilder<> IRB(II);
+ poisonAlloca(AI, APC.Size, IRB, APC.DoPoison);
+ HavePoisonedAllocas |= APC.DoPoison;
+ }
+
+ uint64_t Pos = RedzoneSize();
// Replace Alloca instructions with base+offset.
for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
AllocaInst *AI = AllocaVec[i];
@@ -1107,12 +1255,13 @@ bool AddressSanitizer::poisonStackInFunction(Module &M, Function &F) {
StackDescription << Pos << " " << SizeInBytes << " "
<< Name.size() << " " << Name << " ";
uint64_t AlignedSize = getAlignedAllocaSize(AI);
- assert((AlignedSize % RedzoneSize) == 0);
- AI->replaceAllUsesWith(
- IRB.CreateIntToPtr(
+ assert((AlignedSize % RedzoneSize()) == 0);
+ Value *NewAllocaPtr = IRB.CreateIntToPtr(
IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
- AI->getType()));
- Pos += AlignedSize + RedzoneSize;
+ AI->getType());
+ replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB);
+ AI->replaceAllUsesWith(NewAllocaPtr);
+ Pos += AlignedSize + RedzoneSize();
}
assert(Pos == LocalStackSize);
@@ -1121,45 +1270,93 @@ bool AddressSanitizer::poisonStackInFunction(Module &M, Function &F) {
IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
BasePlus0);
Value *BasePlus1 = IRB.CreateAdd(LocalStackBase,
- ConstantInt::get(IntptrTy, LongSize/8));
+ ConstantInt::get(IntptrTy,
+ ASan.LongSize/8));
BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy);
- Value *Description = IRB.CreatePointerCast(
- createPrivateGlobalForString(M, StackDescription.str()),
- IntptrTy);
+ GlobalVariable *StackDescriptionGlobal =
+ createPrivateGlobalForString(*F.getParent(), StackDescription.str());
+ Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal,
+ IntptrTy);
IRB.CreateStore(Description, BasePlus1);
// Poison the stack redzones at the entry.
- Value *ShadowBase = memToShadow(LocalStackBase, IRB);
- PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRB, ShadowBase, true);
-
- Value *AsanStackFreeFunc = NULL;
- if (DoStackMalloc) {
- AsanStackFreeFunc = M.getOrInsertFunction(
- kAsanStackFreeName, IRB.getVoidTy(),
- IntptrTy, IntptrTy, IntptrTy, NULL);
- }
+ Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
+ poisonRedZones(AllocaVec, IRB, ShadowBase, true);
// Unpoison the stack before all ret instructions.
for (size_t i = 0, n = RetVec.size(); i < n; i++) {
Instruction *Ret = RetVec[i];
IRBuilder<> IRBRet(Ret);
-
// Mark the current frame as retired.
IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
BasePlus0);
// Unpoison the stack.
- PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRBRet, ShadowBase, false);
-
+ poisonRedZones(AllocaVec, IRBRet, ShadowBase, false);
if (DoStackMalloc) {
+ // In use-after-return mode, mark the whole stack frame unaddressable.
IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase,
ConstantInt::get(IntptrTy, LocalStackSize),
OrigStackBase);
+ } else if (HavePoisonedAllocas) {
+ // If we poisoned some allocas in llvm.lifetime analysis,
+ // unpoison whole stack frame now.
+ assert(LocalStackBase == OrigStackBase);
+ poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
}
}
- if (ClDebugStack) {
- DEBUG(dbgs() << F);
- }
+ // We are done. Remove the old unused alloca instructions.
+ for (size_t i = 0, n = AllocaVec.size(); i < n; i++)
+ AllocaVec[i]->eraseFromParent();
+}
- return true;
+void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
+ IRBuilder<> IRB, bool DoPoison) {
+ // For now just insert the call to ASan runtime.
+ Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
+ Value *SizeArg = ConstantInt::get(IntptrTy, Size);
+ IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc
+ : AsanUnpoisonStackMemoryFunc,
+ AddrArg, SizeArg);
+}
+
+// Handling llvm.lifetime intrinsics for a given %alloca:
+// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
+// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
+// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
+// could be poisoned by previous llvm.lifetime.end instruction, as the
+// variable may go in and out of scope several times, e.g. in loops).
+// (3) if we poisoned at least one %alloca in a function,
+// unpoison the whole stack frame at function exit.
+
+AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
+ // We're intested only in allocas we can handle.
+ return isInterestingAlloca(*AI) ? AI : 0;
+ // See if we've already calculated (or started to calculate) alloca for a
+ // given value.
+ AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
+ if (I != AllocaForValue.end())
+ return I->second;
+ // Store 0 while we're calculating alloca for value V to avoid
+ // infinite recursion if the value references itself.
+ AllocaForValue[V] = 0;
+ AllocaInst *Res = 0;
+ if (CastInst *CI = dyn_cast<CastInst>(V))
+ Res = findAllocaForValue(CI->getOperand(0));
+ else if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *IncValue = PN->getIncomingValue(i);
+ // Allow self-referencing phi-nodes.
+ if (IncValue == PN) continue;
+ AllocaInst *IncValueAI = findAllocaForValue(IncValue);
+ // AI for incoming values should exist and should all be equal.
+ if (IncValueAI == 0 || (Res != 0 && IncValueAI != Res))
+ return 0;
+ Res = IncValueAI;
+ }
+ }
+ if (Res != 0)
+ AllocaForValue[V] = Res;
+ return Res;
}
diff --git a/lib/Transforms/Instrumentation/BlackList.cpp b/lib/Transforms/Instrumentation/BlackList.cpp
index 2cb1199..4fcbea4 100644
--- a/lib/Transforms/Instrumentation/BlackList.cpp
+++ b/lib/Transforms/Instrumentation/BlackList.cpp
@@ -13,26 +13,26 @@
//
//===----------------------------------------------------------------------===//
-#include <utility>
-#include <string>
-
#include "BlackList.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
+#include <string>
+#include <utility>
namespace llvm {
BlackList::BlackList(const StringRef Path) {
// Validate and open blacklist file.
- if (!Path.size()) return;
+ if (Path.empty()) return;
OwningPtr<MemoryBuffer> File;
if (error_code EC = MemoryBuffer::getFile(Path, File)) {
report_fatal_error("Can't open blacklist file: " + Path + ": " +
@@ -45,10 +45,17 @@ BlackList::BlackList(const StringRef Path) {
StringMap<std::string> Regexps;
for (SmallVector<StringRef, 16>::iterator I = Lines.begin(), E = Lines.end();
I != E; ++I) {
+ // Ignore empty lines and lines starting with "#"
+ if (I->empty() || I->startswith("#"))
+ continue;
// Get our prefix and unparsed regexp.
std::pair<StringRef, StringRef> SplitLine = I->split(":");
StringRef Prefix = SplitLine.first;
std::string Regexp = SplitLine.second;
+ if (Regexp.empty()) {
+ // Missing ':' in the line.
+ report_fatal_error("malformed blacklist line: " + SplitLine.first);
+ }
// Replace * with .*
for (size_t pos = 0; (pos = Regexp.find("*", pos)) != std::string::npos;
@@ -65,7 +72,7 @@ BlackList::BlackList(const StringRef Path) {
}
// Add this regexp into the proper group by its prefix.
- if (Regexps[Prefix].size())
+ if (!Regexps[Prefix].empty())
Regexps[Prefix] += "|";
Regexps[Prefix] += Regexp;
}
@@ -89,14 +96,29 @@ bool BlackList::isIn(const Module &M) {
return inSection("src", M.getModuleIdentifier());
}
+static StringRef GetGVTypeString(const GlobalVariable &G) {
+ // Types of GlobalVariables are always pointer types.
+ Type *GType = G.getType()->getElementType();
+ // For now we support blacklisting struct types only.
+ if (StructType *SGType = dyn_cast<StructType>(GType)) {
+ if (!SGType->isLiteral())
+ return SGType->getName();
+ }
+ return "<unknown type>";
+}
+
bool BlackList::isInInit(const GlobalVariable &G) {
- return isIn(*G.getParent()) || inSection("global-init", G.getName());
+ return (isIn(*G.getParent()) ||
+ inSection("global-init", G.getName()) ||
+ inSection("global-init-type", GetGVTypeString(G)));
}
-bool BlackList::inSection(const StringRef Section,
- const StringRef Query) {
- Regex *FunctionRegex = Entries[Section];
- return FunctionRegex ? FunctionRegex->match(Query) : false;
+bool BlackList::inSection(const StringRef Section, const StringRef Query) {
+ StringMap<Regex*>::iterator I = Entries.find(Section);
+ if (I == Entries.end()) return false;
+
+ Regex *FunctionRegex = I->getValue();
+ return FunctionRegex->match(Query);
}
} // namespace llvm
diff --git a/lib/Transforms/Instrumentation/BlackList.h b/lib/Transforms/Instrumentation/BlackList.h
index 73977fc..ee18a98 100644
--- a/lib/Transforms/Instrumentation/BlackList.h
+++ b/lib/Transforms/Instrumentation/BlackList.h
@@ -12,10 +12,13 @@
//
// The blacklist disables instrumentation of various functions and global
// variables. Each line contains a prefix, followed by a wild card expression.
+// Empty lines and lines starting with "#" are ignored.
// ---
+// # Blacklisted items:
// fun:*_ZN4base6subtle*
// global:*global_with_bad_access_or_initialization*
// global-init:*global_with_initialization_issues*
+// global-init-type:*Namespace::ClassName*
// src:file_with_tricky_code.cc
// ---
// Note that the wild card is in fact an llvm::Regex, but * is automatically
diff --git a/lib/Transforms/Instrumentation/BoundsChecking.cpp b/lib/Transforms/Instrumentation/BoundsChecking.cpp
index 6429081..b094d42 100644
--- a/lib/Transforms/Instrumentation/BoundsChecking.cpp
+++ b/lib/Transforms/Instrumentation/BoundsChecking.cpp
@@ -13,19 +13,19 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "bounds-checking"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Pass.h"
+#include "llvm/Transforms/Instrumentation.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/TargetFolder.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/Instrumentation.h"
using namespace llvm;
static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap",
@@ -41,25 +41,24 @@ namespace {
struct BoundsChecking : public FunctionPass {
static char ID;
- BoundsChecking(unsigned _Penalty = 5) : FunctionPass(ID), Penalty(_Penalty){
+ BoundsChecking() : FunctionPass(ID) {
initializeBoundsCheckingPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetData>();
+ AU.addRequired<DataLayout>();
AU.addRequired<TargetLibraryInfo>();
}
private:
- const TargetData *TD;
+ const DataLayout *TD;
const TargetLibraryInfo *TLI;
ObjectSizeOffsetEvaluator *ObjSizeEval;
BuilderTy *Builder;
Instruction *Inst;
BasicBlock *TrapBB;
- unsigned Penalty;
BasicBlock *getTrapBB();
void emitBranchToTrap(Value *Cmp = 0);
@@ -109,6 +108,7 @@ void BoundsChecking::emitBranchToTrap(Value *Cmp) {
else
Cmp = 0; // unconditional branch
}
+ ++ChecksAdded;
Instruction *Inst = Builder->GetInsertPoint();
BasicBlock *OldBB = Inst->getParent();
@@ -143,7 +143,7 @@ bool BoundsChecking::instrument(Value *Ptr, Value *InstVal) {
Value *Offset = SizeOffset.second;
ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);
- IntegerType *IntTy = TD->getIntPtrType(Inst->getContext());
+ Type *IntTy = TD->getIntPtrType(Ptr->getType());
Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize);
// three checks are required to ensure safety:
@@ -163,12 +163,11 @@ bool BoundsChecking::instrument(Value *Ptr, Value *InstVal) {
}
emitBranchToTrap(Or);
- ++ChecksAdded;
return true;
}
bool BoundsChecking::runOnFunction(Function &F) {
- TD = &getAnalysis<TargetData>();
+ TD = &getAnalysis<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
TrapBB = 0;
@@ -208,6 +207,6 @@ bool BoundsChecking::runOnFunction(Function &F) {
return MadeChange;
}
-FunctionPass *llvm::createBoundsCheckingPass(unsigned Penalty) {
- return new BoundsChecking(Penalty);
+FunctionPass *llvm::createBoundsCheckingPass() {
+ return new BoundsChecking();
}
diff --git a/lib/Transforms/Instrumentation/CMakeLists.txt b/lib/Transforms/Instrumentation/CMakeLists.txt
index 058f68c..1c9e053 100644
--- a/lib/Transforms/Instrumentation/CMakeLists.txt
+++ b/lib/Transforms/Instrumentation/CMakeLists.txt
@@ -4,6 +4,7 @@ add_llvm_library(LLVMInstrumentation
BoundsChecking.cpp
EdgeProfiling.cpp
GCOVProfiling.cpp
+ MemorySanitizer.cpp
Instrumentation.cpp
OptimalEdgeProfiling.cpp
PathProfiling.cpp
diff --git a/lib/Transforms/Instrumentation/EdgeProfiling.cpp b/lib/Transforms/Instrumentation/EdgeProfiling.cpp
index e8ef265..0b18b4c 100644
--- a/lib/Transforms/Instrumentation/EdgeProfiling.cpp
+++ b/lib/Transforms/Instrumentation/EdgeProfiling.cpp
@@ -18,13 +18,14 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "insert-edge-profiling"
+#include "llvm/Transforms/Instrumentation.h"
#include "ProfilingUtils.h"
-#include "llvm/Module.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Instrumentation.h"
-#include "llvm/ADT/Statistic.h"
#include <set>
using namespace llvm;
@@ -54,8 +55,8 @@ ModulePass *llvm::createEdgeProfilerPass() { return new EdgeProfiler(); }
bool EdgeProfiler::runOnModule(Module &M) {
Function *Main = M.getFunction("main");
if (Main == 0) {
- errs() << "WARNING: cannot insert edge profiling into a module"
- << " with no main function!\n";
+ M.getContext().emitWarning("cannot insert edge profiling into a module"
+ " with no main function");
return false; // No main, no instrumentation!
}
diff --git a/lib/Transforms/Instrumentation/GCOVProfiling.cpp b/lib/Transforms/Instrumentation/GCOVProfiling.cpp
index 9fcde31..eb0dc1e 100644
--- a/lib/Transforms/Instrumentation/GCOVProfiling.cpp
+++ b/lib/Transforms/Instrumentation/GCOVProfiling.cpp
@@ -16,19 +16,19 @@
#define DEBUG_TYPE "insert-gcov-profiling"
-#include "ProfilingUtils.h"
#include "llvm/Transforms/Instrumentation.h"
-#include "llvm/DebugInfo.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "ProfilingUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/UniqueVector.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugLoc.h"
#include "llvm/Support/InstIterator.h"
@@ -45,13 +45,14 @@ namespace {
static char ID;
GCOVProfiler()
: ModulePass(ID), EmitNotes(true), EmitData(true), Use402Format(false),
- UseExtraChecksum(false) {
+ UseExtraChecksum(false), NoRedZone(false) {
initializeGCOVProfilerPass(*PassRegistry::getPassRegistry());
}
- GCOVProfiler(bool EmitNotes, bool EmitData, bool use402Format = false,
- bool useExtraChecksum = false)
+ GCOVProfiler(bool EmitNotes, bool EmitData, bool use402Format,
+ bool useExtraChecksum, bool NoRedZone_)
: ModulePass(ID), EmitNotes(EmitNotes), EmitData(EmitData),
- Use402Format(use402Format), UseExtraChecksum(useExtraChecksum) {
+ Use402Format(use402Format), UseExtraChecksum(useExtraChecksum),
+ NoRedZone(NoRedZone_) {
assert((EmitNotes || EmitData) && "GCOVProfiler asked to do nothing?");
initializeGCOVProfilerPass(*PassRegistry::getPassRegistry());
}
@@ -90,6 +91,7 @@ namespace {
// list.
void insertCounterWriteout(ArrayRef<std::pair<GlobalVariable*, MDNode*> >);
void insertIndirectCounterIncrement();
+ void insertFlush(ArrayRef<std::pair<GlobalVariable*, MDNode*> >);
std::string mangleName(DICompileUnit CU, const char *NewStem);
@@ -97,6 +99,7 @@ namespace {
bool EmitData;
bool Use402Format;
bool UseExtraChecksum;
+ bool NoRedZone;
Module *M;
LLVMContext *Ctx;
@@ -109,8 +112,10 @@ INITIALIZE_PASS(GCOVProfiler, "insert-gcov-profiling",
ModulePass *llvm::createGCOVProfilerPass(bool EmitNotes, bool EmitData,
bool Use402Format,
- bool UseExtraChecksum) {
- return new GCOVProfiler(EmitNotes, EmitData, Use402Format, UseExtraChecksum);
+ bool UseExtraChecksum,
+ bool NoRedZone) {
+ return new GCOVProfiler(EmitNotes, EmitData, Use402Format, UseExtraChecksum,
+ NoRedZone);
}
namespace {
@@ -518,6 +523,7 @@ bool GCOVProfiler::emitProfileArcs() {
}
insertCounterWriteout(CountersBySP);
+ insertFlush(CountersBySP);
}
if (InsertIndCounterIncrCode)
@@ -538,13 +544,13 @@ GlobalVariable *GCOVProfiler::buildEdgeLookupTable(
// read it. Threads and invoke make this untrue.
// emit [(succs * preds) x i64*], logically [succ x [pred x i64*]].
+ size_t TableSize = Succs.size() * Preds.size();
Type *Int64PtrTy = Type::getInt64PtrTy(*Ctx);
- ArrayType *EdgeTableTy = ArrayType::get(
- Int64PtrTy, Succs.size() * Preds.size());
+ ArrayType *EdgeTableTy = ArrayType::get(Int64PtrTy, TableSize);
- Constant **EdgeTable = new Constant*[Succs.size() * Preds.size()];
+ OwningArrayPtr<Constant *> EdgeTable(new Constant*[TableSize]);
Constant *NullValue = Constant::getNullValue(Int64PtrTy);
- for (int i = 0, ie = Succs.size() * Preds.size(); i != ie; ++i)
+ for (size_t i = 0; i != TableSize; ++i)
EdgeTable[i] = NullValue;
unsigned Edge = 0;
@@ -564,7 +570,7 @@ GlobalVariable *GCOVProfiler::buildEdgeLookupTable(
Edge += Successors;
}
- ArrayRef<Constant*> V(&EdgeTable[0], Succs.size() * Preds.size());
+ ArrayRef<Constant*> V(&EdgeTable[0], TableSize);
GlobalVariable *EdgeTableGV =
new GlobalVariable(
*M, EdgeTableTy, true, GlobalValue::InternalLinkage,
@@ -630,13 +636,17 @@ GlobalVariable *GCOVProfiler::getEdgeStateValue() {
void GCOVProfiler::insertCounterWriteout(
ArrayRef<std::pair<GlobalVariable *, MDNode *> > CountersBySP) {
- FunctionType *WriteoutFTy =
- FunctionType::get(Type::getVoidTy(*Ctx), false);
- Function *WriteoutF = Function::Create(WriteoutFTy,
- GlobalValue::InternalLinkage,
- "__llvm_gcov_writeout", M);
+ FunctionType *WriteoutFTy = FunctionType::get(Type::getVoidTy(*Ctx), false);
+ Function *WriteoutF = M->getFunction("__llvm_gcov_writeout");
+ if (!WriteoutF)
+ WriteoutF = Function::Create(WriteoutFTy, GlobalValue::InternalLinkage,
+ "__llvm_gcov_writeout", M);
WriteoutF->setUnnamedAddr(true);
- BasicBlock *BB = BasicBlock::Create(*Ctx, "", WriteoutF);
+ WriteoutF->addFnAttr(Attribute::NoInline);
+ if (NoRedZone)
+ WriteoutF->addFnAttr(Attribute::NoRedZone);
+
+ BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", WriteoutF);
IRBuilder<> Builder(BB);
Constant *StartFile = getStartFileFunc();
@@ -647,8 +657,8 @@ void GCOVProfiler::insertCounterWriteout(
NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu");
if (CU_Nodes) {
for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) {
- DICompileUnit compile_unit(CU_Nodes->getOperand(i));
- std::string FilenameGcda = mangleName(compile_unit, "gcda");
+ DICompileUnit CU(CU_Nodes->getOperand(i));
+ std::string FilenameGcda = mangleName(CU, "gcda");
Builder.CreateCall(StartFile,
Builder.CreateGlobalStringPtr(FilenameGcda));
for (ArrayRef<std::pair<GlobalVariable *, MDNode *> >::iterator
@@ -680,6 +690,8 @@ void GCOVProfiler::insertCounterWriteout(
F->setUnnamedAddr(true);
F->setLinkage(GlobalValue::InternalLinkage);
F->addFnAttr(Attribute::NoInline);
+ if (NoRedZone)
+ F->addFnAttr(Attribute::NoRedZone);
BB = BasicBlock::Create(*Ctx, "entry", F);
Builder.SetInsertPoint(BB);
@@ -699,6 +711,8 @@ void GCOVProfiler::insertIndirectCounterIncrement() {
Fn->setUnnamedAddr(true);
Fn->setLinkage(GlobalValue::InternalLinkage);
Fn->addFnAttr(Attribute::NoInline);
+ if (NoRedZone)
+ Fn->addFnAttr(Attribute::NoRedZone);
Type *Int32Ty = Type::getInt32Ty(*Ctx);
Type *Int64Ty = Type::getInt64Ty(*Ctx);
@@ -744,3 +758,45 @@ void GCOVProfiler::insertIndirectCounterIncrement() {
Builder.SetInsertPoint(Exit);
Builder.CreateRetVoid();
}
+
+void GCOVProfiler::
+insertFlush(ArrayRef<std::pair<GlobalVariable*, MDNode*> > CountersBySP) {
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false);
+ Function *FlushF = M->getFunction("__gcov_flush");
+ if (!FlushF)
+ FlushF = Function::Create(FTy, GlobalValue::InternalLinkage,
+ "__gcov_flush", M);
+ else
+ FlushF->setLinkage(GlobalValue::InternalLinkage);
+ FlushF->setUnnamedAddr(true);
+ FlushF->addFnAttr(Attribute::NoInline);
+ if (NoRedZone)
+ FlushF->addFnAttr(Attribute::NoRedZone);
+
+ BasicBlock *Entry = BasicBlock::Create(*Ctx, "entry", FlushF);
+
+ // Write out the current counters.
+ Constant *WriteoutF = M->getFunction("__llvm_gcov_writeout");
+ assert(WriteoutF && "Need to create the writeout function first!");
+
+ IRBuilder<> Builder(Entry);
+ Builder.CreateCall(WriteoutF);
+
+ // Zero out the counters.
+ for (ArrayRef<std::pair<GlobalVariable *, MDNode *> >::iterator
+ I = CountersBySP.begin(), E = CountersBySP.end();
+ I != E; ++I) {
+ GlobalVariable *GV = I->first;
+ Constant *Null = Constant::getNullValue(GV->getType()->getElementType());
+ Builder.CreateStore(Null, GV);
+ }
+
+ Type *RetTy = FlushF->getReturnType();
+ if (RetTy == Type::getVoidTy(*Ctx))
+ Builder.CreateRetVoid();
+ else if (RetTy->isIntegerTy())
+ // Used if __gcov_flush was implicitly declared.
+ Builder.CreateRet(ConstantInt::get(RetTy, 0));
+ else
+ report_fatal_error("invalid return type for __gcov_flush");
+}
diff --git a/lib/Transforms/Instrumentation/Instrumentation.cpp b/lib/Transforms/Instrumentation/Instrumentation.cpp
index 1e0b4a3..8ba1025 100644
--- a/lib/Transforms/Instrumentation/Instrumentation.cpp
+++ b/lib/Transforms/Instrumentation/Instrumentation.cpp
@@ -21,11 +21,13 @@ using namespace llvm;
/// library.
void llvm::initializeInstrumentation(PassRegistry &Registry) {
initializeAddressSanitizerPass(Registry);
+ initializeAddressSanitizerModulePass(Registry);
initializeBoundsCheckingPass(Registry);
initializeEdgeProfilerPass(Registry);
initializeGCOVProfilerPass(Registry);
initializeOptimalEdgeProfilerPass(Registry);
initializePathProfilerPass(Registry);
+ initializeMemorySanitizerPass(Registry);
initializeThreadSanitizerPass(Registry);
}
diff --git a/lib/Transforms/Instrumentation/MaximumSpanningTree.h b/lib/Transforms/Instrumentation/MaximumSpanningTree.h
index a4bb5a6..363539b 100644
--- a/lib/Transforms/Instrumentation/MaximumSpanningTree.h
+++ b/lib/Transforms/Instrumentation/MaximumSpanningTree.h
@@ -15,10 +15,10 @@
#ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
#define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
-#include "llvm/BasicBlock.h"
#include "llvm/ADT/EquivalenceClasses.h"
-#include <vector>
+#include "llvm/IR/BasicBlock.h"
#include <algorithm>
+#include <vector>
namespace llvm {
diff --git a/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/lib/Transforms/Instrumentation/MemorySanitizer.cpp
new file mode 100644
index 0000000..58d5801
--- /dev/null
+++ b/lib/Transforms/Instrumentation/MemorySanitizer.cpp
@@ -0,0 +1,1857 @@
+//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file is a part of MemorySanitizer, a detector of uninitialized
+/// reads.
+///
+/// Status: early prototype.
+///
+/// The algorithm of the tool is similar to Memcheck
+/// (http://goo.gl/QKbem). We associate a few shadow bits with every
+/// byte of the application memory, poison the shadow of the malloc-ed
+/// or alloca-ed memory, load the shadow bits on every memory read,
+/// propagate the shadow bits through some of the arithmetic
+/// instruction (including MOV), store the shadow bits on every memory
+/// write, report a bug on some other instructions (e.g. JMP) if the
+/// associated shadow is poisoned.
+///
+/// But there are differences too. The first and the major one:
+/// compiler instrumentation instead of binary instrumentation. This
+/// gives us much better register allocation, possible compiler
+/// optimizations and a fast start-up. But this brings the major issue
+/// as well: msan needs to see all program events, including system
+/// calls and reads/writes in system libraries, so we either need to
+/// compile *everything* with msan or use a binary translation
+/// component (e.g. DynamoRIO) to instrument pre-built libraries.
+/// Another difference from Memcheck is that we use 8 shadow bits per
+/// byte of application memory and use a direct shadow mapping. This
+/// greatly simplifies the instrumentation code and avoids races on
+/// shadow updates (Memcheck is single-threaded so races are not a
+/// concern there. Memcheck uses 2 shadow bits per byte with a slow
+/// path storage that uses 8 bits per byte).
+///
+/// The default value of shadow is 0, which means "clean" (not poisoned).
+///
+/// Every module initializer should call __msan_init to ensure that the
+/// shadow memory is ready. On error, __msan_warning is called. Since
+/// parameters and return values may be passed via registers, we have a
+/// specialized thread-local shadow for return values
+/// (__msan_retval_tls) and parameters (__msan_param_tls).
+///
+/// Origin tracking.
+///
+/// MemorySanitizer can track origins (allocation points) of all uninitialized
+/// values. This behavior is controlled with a flag (msan-track-origins) and is
+/// disabled by default.
+///
+/// Origins are 4-byte values created and interpreted by the runtime library.
+/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
+/// of application memory. Propagation of origins is basically a bunch of
+/// "select" instructions that pick the origin of a dirty argument, if an
+/// instruction has one.
+///
+/// Every 4 aligned, consecutive bytes of application memory have one origin
+/// value associated with them. If these bytes contain uninitialized data
+/// coming from 2 different allocations, the last store wins. Because of this,
+/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
+/// practice.
+///
+/// Origins are meaningless for fully initialized values, so MemorySanitizer
+/// avoids storing origin to memory when a fully initialized value is stored.
+/// This way it avoids needless overwritting origin of the 4-byte region on
+/// a short (i.e. 1 byte) clean store, and it is also good for performance.
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "msan"
+
+#include "llvm/Transforms/Instrumentation.h"
+#include "BlackList.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/ValueMap.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+
+using namespace llvm;
+
+static const uint64_t kShadowMask32 = 1ULL << 31;
+static const uint64_t kShadowMask64 = 1ULL << 46;
+static const uint64_t kOriginOffset32 = 1ULL << 30;
+static const uint64_t kOriginOffset64 = 1ULL << 45;
+static const unsigned kMinOriginAlignment = 4;
+static const unsigned kShadowTLSAlignment = 8;
+
+/// \brief Track origins of uninitialized values.
+///
+/// Adds a section to MemorySanitizer report that points to the allocation
+/// (stack or heap) the uninitialized bits came from originally.
+static cl::opt<bool> ClTrackOrigins("msan-track-origins",
+ cl::desc("Track origins (allocation sites) of poisoned memory"),
+ cl::Hidden, cl::init(false));
+static cl::opt<bool> ClKeepGoing("msan-keep-going",
+ cl::desc("keep going after reporting a UMR"),
+ cl::Hidden, cl::init(false));
+static cl::opt<bool> ClPoisonStack("msan-poison-stack",
+ cl::desc("poison uninitialized stack variables"),
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
+ cl::desc("poison uninitialized stack variables with a call"),
+ cl::Hidden, cl::init(false));
+static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
+ cl::desc("poison uninitialized stack variables with the given patter"),
+ cl::Hidden, cl::init(0xff));
+
+static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
+ cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
+ cl::desc("store origin for clean (fully initialized) values"),
+ cl::Hidden, cl::init(false));
+
+// This flag controls whether we check the shadow of the address
+// operand of load or store. Such bugs are very rare, since load from
+// a garbage address typically results in SEGV, but still happen
+// (e.g. only lower bits of address are garbage, or the access happens
+// early at program startup where malloc-ed memory is more likely to
+// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
+static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
+ cl::desc("report accesses through a pointer which has poisoned shadow"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
+ cl::desc("print out instructions with default strict semantics"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
+ cl::desc("File containing the list of functions where MemorySanitizer "
+ "should not report bugs"), cl::Hidden);
+
+namespace {
+
+/// \brief An instrumentation pass implementing detection of uninitialized
+/// reads.
+///
+/// MemorySanitizer: instrument the code in module to find
+/// uninitialized reads.
+class MemorySanitizer : public FunctionPass {
+ public:
+ MemorySanitizer(bool TrackOrigins = false,
+ StringRef BlacklistFile = StringRef())
+ : FunctionPass(ID),
+ TrackOrigins(TrackOrigins || ClTrackOrigins),
+ TD(0),
+ WarningFn(0),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+ : BlacklistFile) { }
+ const char *getPassName() const { return "MemorySanitizer"; }
+ bool runOnFunction(Function &F);
+ bool doInitialization(Module &M);
+ static char ID; // Pass identification, replacement for typeid.
+
+ private:
+ void initializeCallbacks(Module &M);
+
+ /// \brief Track origins (allocation points) of uninitialized values.
+ bool TrackOrigins;
+
+ DataLayout *TD;
+ LLVMContext *C;
+ Type *IntptrTy;
+ Type *OriginTy;
+ /// \brief Thread-local shadow storage for function parameters.
+ GlobalVariable *ParamTLS;
+ /// \brief Thread-local origin storage for function parameters.
+ GlobalVariable *ParamOriginTLS;
+ /// \brief Thread-local shadow storage for function return value.
+ GlobalVariable *RetvalTLS;
+ /// \brief Thread-local origin storage for function return value.
+ GlobalVariable *RetvalOriginTLS;
+ /// \brief Thread-local shadow storage for in-register va_arg function
+ /// parameters (x86_64-specific).
+ GlobalVariable *VAArgTLS;
+ /// \brief Thread-local shadow storage for va_arg overflow area
+ /// (x86_64-specific).
+ GlobalVariable *VAArgOverflowSizeTLS;
+ /// \brief Thread-local space used to pass origin value to the UMR reporting
+ /// function.
+ GlobalVariable *OriginTLS;
+
+ /// \brief The run-time callback to print a warning.
+ Value *WarningFn;
+ /// \brief Run-time helper that copies origin info for a memory range.
+ Value *MsanCopyOriginFn;
+ /// \brief Run-time helper that generates a new origin value for a stack
+ /// allocation.
+ Value *MsanSetAllocaOriginFn;
+ /// \brief Run-time helper that poisons stack on function entry.
+ Value *MsanPoisonStackFn;
+ /// \brief MSan runtime replacements for memmove, memcpy and memset.
+ Value *MemmoveFn, *MemcpyFn, *MemsetFn;
+
+ /// \brief Address mask used in application-to-shadow address calculation.
+ /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
+ uint64_t ShadowMask;
+ /// \brief Offset of the origin shadow from the "normal" shadow.
+ /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
+ uint64_t OriginOffset;
+ /// \brief Branch weights for error reporting.
+ MDNode *ColdCallWeights;
+ /// \brief Branch weights for origin store.
+ MDNode *OriginStoreWeights;
+ /// \bried Path to blacklist file.
+ SmallString<64> BlacklistFile;
+ /// \brief The blacklist.
+ OwningPtr<BlackList> BL;
+ /// \brief An empty volatile inline asm that prevents callback merge.
+ InlineAsm *EmptyAsm;
+
+ friend struct MemorySanitizerVisitor;
+ friend struct VarArgAMD64Helper;
+};
+} // namespace
+
+char MemorySanitizer::ID = 0;
+INITIALIZE_PASS(MemorySanitizer, "msan",
+ "MemorySanitizer: detects uninitialized reads.",
+ false, false)
+
+FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
+ StringRef BlacklistFile) {
+ return new MemorySanitizer(TrackOrigins, BlacklistFile);
+}
+
+/// \brief Create a non-const global initialized with the given string.
+///
+/// Creates a writable global for Str so that we can pass it to the
+/// run-time lib. Runtime uses first 4 bytes of the string to store the
+/// frame ID, so the string needs to be mutable.
+static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
+ StringRef Str) {
+ Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
+ return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
+ GlobalValue::PrivateLinkage, StrConst, "");
+}
+
+
+/// \brief Insert extern declaration of runtime-provided functions and globals.
+void MemorySanitizer::initializeCallbacks(Module &M) {
+ // Only do this once.
+ if (WarningFn)
+ return;
+
+ IRBuilder<> IRB(*C);
+ // Create the callback.
+ // FIXME: this function should have "Cold" calling conv,
+ // which is not yet implemented.
+ StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
+ : "__msan_warning_noreturn";
+ WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
+
+ MsanCopyOriginFn = M.getOrInsertFunction(
+ "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IntptrTy, NULL);
+ MsanSetAllocaOriginFn = M.getOrInsertFunction(
+ "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
+ IRB.getInt8PtrTy(), NULL);
+ MsanPoisonStackFn = M.getOrInsertFunction(
+ "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
+ MemmoveFn = M.getOrInsertFunction(
+ "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IntptrTy, NULL);
+ MemcpyFn = M.getOrInsertFunction(
+ "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IntptrTy, NULL);
+ MemsetFn = M.getOrInsertFunction(
+ "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
+ IntptrTy, NULL);
+
+ // Create globals.
+ RetvalTLS = new GlobalVariable(
+ M, ArrayType::get(IRB.getInt64Ty(), 8), false,
+ GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
+ GlobalVariable::GeneralDynamicTLSModel);
+ RetvalOriginTLS = new GlobalVariable(
+ M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
+ "__msan_retval_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
+
+ ParamTLS = new GlobalVariable(
+ M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
+ GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
+ GlobalVariable::GeneralDynamicTLSModel);
+ ParamOriginTLS = new GlobalVariable(
+ M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
+ 0, "__msan_param_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
+
+ VAArgTLS = new GlobalVariable(
+ M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
+ GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
+ GlobalVariable::GeneralDynamicTLSModel);
+ VAArgOverflowSizeTLS = new GlobalVariable(
+ M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
+ "__msan_va_arg_overflow_size_tls", 0,
+ GlobalVariable::GeneralDynamicTLSModel);
+ OriginTLS = new GlobalVariable(
+ M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
+ "__msan_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
+
+ // We insert an empty inline asm after __msan_report* to avoid callback merge.
+ EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
+ StringRef(""), StringRef(""),
+ /*hasSideEffects=*/true);
+}
+
+/// \brief Module-level initialization.
+///
+/// inserts a call to __msan_init to the module's constructor list.
+bool MemorySanitizer::doInitialization(Module &M) {
+ TD = getAnalysisIfAvailable<DataLayout>();
+ if (!TD)
+ return false;
+ BL.reset(new BlackList(BlacklistFile));
+ C = &(M.getContext());
+ unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
+ switch (PtrSize) {
+ case 64:
+ ShadowMask = kShadowMask64;
+ OriginOffset = kOriginOffset64;
+ break;
+ case 32:
+ ShadowMask = kShadowMask32;
+ OriginOffset = kOriginOffset32;
+ break;
+ default:
+ report_fatal_error("unsupported pointer size");
+ break;
+ }
+
+ IRBuilder<> IRB(*C);
+ IntptrTy = IRB.getIntPtrTy(TD);
+ OriginTy = IRB.getInt32Ty();
+
+ ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
+ OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
+
+ // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
+ appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
+ "__msan_init", IRB.getVoidTy(), NULL)), 0);
+
+ new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
+ IRB.getInt32(TrackOrigins), "__msan_track_origins");
+
+ return true;
+}
+
+namespace {
+
+/// \brief A helper class that handles instrumentation of VarArg
+/// functions on a particular platform.
+///
+/// Implementations are expected to insert the instrumentation
+/// necessary to propagate argument shadow through VarArg function
+/// calls. Visit* methods are called during an InstVisitor pass over
+/// the function, and should avoid creating new basic blocks. A new
+/// instance of this class is created for each instrumented function.
+struct VarArgHelper {
+ /// \brief Visit a CallSite.
+ virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
+
+ /// \brief Visit a va_start call.
+ virtual void visitVAStartInst(VAStartInst &I) = 0;
+
+ /// \brief Visit a va_copy call.
+ virtual void visitVACopyInst(VACopyInst &I) = 0;
+
+ /// \brief Finalize function instrumentation.
+ ///
+ /// This method is called after visiting all interesting (see above)
+ /// instructions in a function.
+ virtual void finalizeInstrumentation() = 0;
+
+ virtual ~VarArgHelper() {}
+};
+
+struct MemorySanitizerVisitor;
+
+VarArgHelper*
+CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
+ MemorySanitizerVisitor &Visitor);
+
+/// This class does all the work for a given function. Store and Load
+/// instructions store and load corresponding shadow and origin
+/// values. Most instructions propagate shadow from arguments to their
+/// return values. Certain instructions (most importantly, BranchInst)
+/// test their argument shadow and print reports (with a runtime call) if it's
+/// non-zero.
+struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
+ Function &F;
+ MemorySanitizer &MS;
+ SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
+ ValueMap<Value*, Value*> ShadowMap, OriginMap;
+ bool InsertChecks;
+ OwningPtr<VarArgHelper> VAHelper;
+
+ // An unfortunate workaround for asymmetric lowering of va_arg stuff.
+ // See a comment in visitCallSite for more details.
+ static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
+ static const unsigned AMD64FpEndOffset = 176;
+
+ struct ShadowOriginAndInsertPoint {
+ Instruction *Shadow;
+ Instruction *Origin;
+ Instruction *OrigIns;
+ ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I)
+ : Shadow(S), Origin(O), OrigIns(I) { }
+ ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
+ };
+ SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
+ SmallVector<Instruction*, 16> StoreList;
+
+ MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
+ : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
+ InsertChecks = !MS.BL->isIn(F);
+ DEBUG(if (!InsertChecks)
+ dbgs() << "MemorySanitizer is not inserting checks into '"
+ << F.getName() << "'\n");
+ }
+
+ void materializeStores() {
+ for (size_t i = 0, n = StoreList.size(); i < n; i++) {
+ StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
+
+ IRBuilder<> IRB(&I);
+ Value *Val = I.getValueOperand();
+ Value *Addr = I.getPointerOperand();
+ Value *Shadow = getShadow(Val);
+ Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
+
+ StoreInst *NewSI =
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
+ DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
+ (void)NewSI;
+ // If the store is volatile, add a check.
+ if (I.isVolatile())
+ insertCheck(Val, &I);
+ if (ClCheckAccessAddress)
+ insertCheck(Addr, &I);
+
+ if (MS.TrackOrigins) {
+ unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
+ if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
+ IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
+ Alignment);
+ } else {
+ Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
+
+ Constant *Cst = dyn_cast_or_null<Constant>(ConvertedShadow);
+ // TODO(eugenis): handle non-zero constant shadow by inserting an
+ // unconditional check (can not simply fail compilation as this could
+ // be in the dead code).
+ if (Cst)
+ continue;
+
+ Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
+ getCleanShadow(ConvertedShadow), "_mscmp");
+ Instruction *CheckTerm =
+ SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
+ MS.OriginStoreWeights);
+ IRBuilder<> IRBNew(CheckTerm);
+ IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
+ Alignment);
+ }
+ }
+ }
+ }
+
+ void materializeChecks() {
+ for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
+ Instruction *Shadow = InstrumentationList[i].Shadow;
+ Instruction *OrigIns = InstrumentationList[i].OrigIns;
+ IRBuilder<> IRB(OrigIns);
+ DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
+ Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
+ DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
+ Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
+ getCleanShadow(ConvertedShadow), "_mscmp");
+ Instruction *CheckTerm =
+ SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
+ /* Unreachable */ !ClKeepGoing,
+ MS.ColdCallWeights);
+
+ IRB.SetInsertPoint(CheckTerm);
+ if (MS.TrackOrigins) {
+ Instruction *Origin = InstrumentationList[i].Origin;
+ IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
+ MS.OriginTLS);
+ }
+ CallInst *Call = IRB.CreateCall(MS.WarningFn);
+ Call->setDebugLoc(OrigIns->getDebugLoc());
+ IRB.CreateCall(MS.EmptyAsm);
+ DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
+ }
+ DEBUG(dbgs() << "DONE:\n" << F);
+ }
+
+ /// \brief Add MemorySanitizer instrumentation to a function.
+ bool runOnFunction() {
+ MS.initializeCallbacks(*F.getParent());
+ if (!MS.TD) return false;
+
+ // In the presence of unreachable blocks, we may see Phi nodes with
+ // incoming nodes from such blocks. Since InstVisitor skips unreachable
+ // blocks, such nodes will not have any shadow value associated with them.
+ // It's easier to remove unreachable blocks than deal with missing shadow.
+ removeUnreachableBlocks(F);
+
+ // Iterate all BBs in depth-first order and create shadow instructions
+ // for all instructions (where applicable).
+ // For PHI nodes we create dummy shadow PHIs which will be finalized later.
+ for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
+ DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
+ BasicBlock *BB = *DI;
+ visit(*BB);
+ }
+
+ // Finalize PHI nodes.
+ for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
+ PHINode *PN = ShadowPHINodes[i];
+ PHINode *PNS = cast<PHINode>(getShadow(PN));
+ PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
+ size_t NumValues = PN->getNumIncomingValues();
+ for (size_t v = 0; v < NumValues; v++) {
+ PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
+ if (PNO)
+ PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
+ }
+ }
+
+ VAHelper->finalizeInstrumentation();
+
+ // Delayed instrumentation of StoreInst.
+ // This may add new checks to be inserted later.
+ materializeStores();
+
+ // Insert shadow value checks.
+ materializeChecks();
+
+ return true;
+ }
+
+ /// \brief Compute the shadow type that corresponds to a given Value.
+ Type *getShadowTy(Value *V) {
+ return getShadowTy(V->getType());
+ }
+
+ /// \brief Compute the shadow type that corresponds to a given Type.
+ Type *getShadowTy(Type *OrigTy) {
+ if (!OrigTy->isSized()) {
+ return 0;
+ }
+ // For integer type, shadow is the same as the original type.
+ // This may return weird-sized types like i1.
+ if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
+ return IT;
+ if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
+ uint32_t EltSize = MS.TD->getTypeStoreSizeInBits(VT->getElementType());
+ return VectorType::get(IntegerType::get(*MS.C, EltSize),
+ VT->getNumElements());
+ }
+ if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
+ SmallVector<Type*, 4> Elements;
+ for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
+ Elements.push_back(getShadowTy(ST->getElementType(i)));
+ StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
+ DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
+ return Res;
+ }
+ uint32_t TypeSize = MS.TD->getTypeStoreSizeInBits(OrigTy);
+ return IntegerType::get(*MS.C, TypeSize);
+ }
+
+ /// \brief Flatten a vector type.
+ Type *getShadowTyNoVec(Type *ty) {
+ if (VectorType *vt = dyn_cast<VectorType>(ty))
+ return IntegerType::get(*MS.C, vt->getBitWidth());
+ return ty;
+ }
+
+ /// \brief Convert a shadow value to it's flattened variant.
+ Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
+ Type *Ty = V->getType();
+ Type *NoVecTy = getShadowTyNoVec(Ty);
+ if (Ty == NoVecTy) return V;
+ return IRB.CreateBitCast(V, NoVecTy);
+ }
+
+ /// \brief Compute the shadow address that corresponds to a given application
+ /// address.
+ ///
+ /// Shadow = Addr & ~ShadowMask.
+ Value *getShadowPtr(Value *Addr, Type *ShadowTy,
+ IRBuilder<> &IRB) {
+ Value *ShadowLong =
+ IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
+ return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
+ }
+
+ /// \brief Compute the origin address that corresponds to a given application
+ /// address.
+ ///
+ /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
+ Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
+ Value *ShadowLong =
+ IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
+ Value *Add =
+ IRB.CreateAdd(ShadowLong,
+ ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
+ Value *SecondAnd =
+ IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
+ return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
+ }
+
+ /// \brief Compute the shadow address for a given function argument.
+ ///
+ /// Shadow = ParamTLS+ArgOffset.
+ Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
+ int ArgOffset) {
+ Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
+ "_msarg");
+ }
+
+ /// \brief Compute the origin address for a given function argument.
+ Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
+ int ArgOffset) {
+ if (!MS.TrackOrigins) return 0;
+ Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
+ "_msarg_o");
+ }
+
+ /// \brief Compute the shadow address for a retval.
+ Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
+ Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
+ return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
+ "_msret");
+ }
+
+ /// \brief Compute the origin address for a retval.
+ Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
+ // We keep a single origin for the entire retval. Might be too optimistic.
+ return MS.RetvalOriginTLS;
+ }
+
+ /// \brief Set SV to be the shadow value for V.
+ void setShadow(Value *V, Value *SV) {
+ assert(!ShadowMap.count(V) && "Values may only have one shadow");
+ ShadowMap[V] = SV;
+ }
+
+ /// \brief Set Origin to be the origin value for V.
+ void setOrigin(Value *V, Value *Origin) {
+ if (!MS.TrackOrigins) return;
+ assert(!OriginMap.count(V) && "Values may only have one origin");
+ DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
+ OriginMap[V] = Origin;
+ }
+
+ /// \brief Create a clean shadow value for a given value.
+ ///
+ /// Clean shadow (all zeroes) means all bits of the value are defined
+ /// (initialized).
+ Value *getCleanShadow(Value *V) {
+ Type *ShadowTy = getShadowTy(V);
+ if (!ShadowTy)
+ return 0;
+ return Constant::getNullValue(ShadowTy);
+ }
+
+ /// \brief Create a dirty shadow of a given shadow type.
+ Constant *getPoisonedShadow(Type *ShadowTy) {
+ assert(ShadowTy);
+ if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
+ return Constant::getAllOnesValue(ShadowTy);
+ StructType *ST = cast<StructType>(ShadowTy);
+ SmallVector<Constant *, 4> Vals;
+ for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
+ Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
+ return ConstantStruct::get(ST, Vals);
+ }
+
+ /// \brief Create a clean (zero) origin.
+ Value *getCleanOrigin() {
+ return Constant::getNullValue(MS.OriginTy);
+ }
+
+ /// \brief Get the shadow value for a given Value.
+ ///
+ /// This function either returns the value set earlier with setShadow,
+ /// or extracts if from ParamTLS (for function arguments).
+ Value *getShadow(Value *V) {
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // For instructions the shadow is already stored in the map.
+ Value *Shadow = ShadowMap[V];
+ if (!Shadow) {
+ DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
+ (void)I;
+ assert(Shadow && "No shadow for a value");
+ }
+ return Shadow;
+ }
+ if (UndefValue *U = dyn_cast<UndefValue>(V)) {
+ Value *AllOnes = getPoisonedShadow(getShadowTy(V));
+ DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
+ (void)U;
+ return AllOnes;
+ }
+ if (Argument *A = dyn_cast<Argument>(V)) {
+ // For arguments we compute the shadow on demand and store it in the map.
+ Value **ShadowPtr = &ShadowMap[V];
+ if (*ShadowPtr)
+ return *ShadowPtr;
+ Function *F = A->getParent();
+ IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
+ unsigned ArgOffset = 0;
+ for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+ AI != AE; ++AI) {
+ if (!AI->getType()->isSized()) {
+ DEBUG(dbgs() << "Arg is not sized\n");
+ continue;
+ }
+ unsigned Size = AI->hasByValAttr()
+ ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
+ : MS.TD->getTypeAllocSize(AI->getType());
+ if (A == AI) {
+ Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
+ if (AI->hasByValAttr()) {
+ // ByVal pointer itself has clean shadow. We copy the actual
+ // argument shadow to the underlying memory.
+ Value *Cpy = EntryIRB.CreateMemCpy(
+ getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
+ Base, Size, AI->getParamAlignment());
+ DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
+ (void)Cpy;
+ *ShadowPtr = getCleanShadow(V);
+ } else {
+ *ShadowPtr = EntryIRB.CreateLoad(Base);
+ }
+ DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
+ **ShadowPtr << "\n");
+ if (MS.TrackOrigins) {
+ Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
+ setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
+ }
+ }
+ ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
+ }
+ assert(*ShadowPtr && "Could not find shadow for an argument");
+ return *ShadowPtr;
+ }
+ // For everything else the shadow is zero.
+ return getCleanShadow(V);
+ }
+
+ /// \brief Get the shadow for i-th argument of the instruction I.
+ Value *getShadow(Instruction *I, int i) {
+ return getShadow(I->getOperand(i));
+ }
+
+ /// \brief Get the origin for a value.
+ Value *getOrigin(Value *V) {
+ if (!MS.TrackOrigins) return 0;
+ if (isa<Instruction>(V) || isa<Argument>(V)) {
+ Value *Origin = OriginMap[V];
+ if (!Origin) {
+ DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
+ Origin = getCleanOrigin();
+ }
+ return Origin;
+ }
+ return getCleanOrigin();
+ }
+
+ /// \brief Get the origin for i-th argument of the instruction I.
+ Value *getOrigin(Instruction *I, int i) {
+ return getOrigin(I->getOperand(i));
+ }
+
+ /// \brief Remember the place where a shadow check should be inserted.
+ ///
+ /// This location will be later instrumented with a check that will print a
+ /// UMR warning in runtime if the value is not fully defined.
+ void insertCheck(Value *Val, Instruction *OrigIns) {
+ assert(Val);
+ if (!InsertChecks) return;
+ Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
+ if (!Shadow) return;
+#ifndef NDEBUG
+ Type *ShadowTy = Shadow->getType();
+ assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
+ "Can only insert checks for integer and vector shadow types");
+#endif
+ Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
+ InstrumentationList.push_back(
+ ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
+ }
+
+ // ------------------- Visitors.
+
+ /// \brief Instrument LoadInst
+ ///
+ /// Loads the corresponding shadow and (optionally) origin.
+ /// Optionally, checks that the load address is fully defined.
+ void visitLoadInst(LoadInst &I) {
+ assert(I.getType()->isSized() && "Load type must have size");
+ IRBuilder<> IRB(&I);
+ Type *ShadowTy = getShadowTy(&I);
+ Value *Addr = I.getPointerOperand();
+ Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
+ setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
+
+ if (ClCheckAccessAddress)
+ insertCheck(I.getPointerOperand(), &I);
+
+ if (MS.TrackOrigins) {
+ unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
+ setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
+ }
+ }
+
+ /// \brief Instrument StoreInst
+ ///
+ /// Stores the corresponding shadow and (optionally) origin.
+ /// Optionally, checks that the store address is fully defined.
+ /// Volatile stores check that the value being stored is fully defined.
+ void visitStoreInst(StoreInst &I) {
+ StoreList.push_back(&I);
+ }
+
+ // Vector manipulation.
+ void visitExtractElementInst(ExtractElementInst &I) {
+ insertCheck(I.getOperand(1), &I);
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
+ "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitInsertElementInst(InsertElementInst &I) {
+ insertCheck(I.getOperand(2), &I);
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
+ I.getOperand(2), "_msprop"));
+ setOriginForNaryOp(I);
+ }
+
+ void visitShuffleVectorInst(ShuffleVectorInst &I) {
+ insertCheck(I.getOperand(2), &I);
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
+ I.getOperand(2), "_msprop"));
+ setOriginForNaryOp(I);
+ }
+
+ // Casts.
+ void visitSExtInst(SExtInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitZExtInst(ZExtInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitTruncInst(TruncInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitBitCastInst(BitCastInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitPtrToIntInst(PtrToIntInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
+ "_msprop_ptrtoint"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitIntToPtrInst(IntToPtrInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
+ "_msprop_inttoptr"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
+ void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
+ void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
+ void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
+ void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
+ void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
+
+ /// \brief Propagate shadow for bitwise AND.
+ ///
+ /// This code is exact, i.e. if, for example, a bit in the left argument
+ /// is defined and 0, then neither the value not definedness of the
+ /// corresponding bit in B don't affect the resulting shadow.
+ void visitAnd(BinaryOperator &I) {
+ IRBuilder<> IRB(&I);
+ // "And" of 0 and a poisoned value results in unpoisoned value.
+ // 1&1 => 1; 0&1 => 0; p&1 => p;
+ // 1&0 => 0; 0&0 => 0; p&0 => 0;
+ // 1&p => p; 0&p => 0; p&p => p;
+ // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *V1 = I.getOperand(0);
+ Value *V2 = I.getOperand(1);
+ if (V1->getType() != S1->getType()) {
+ V1 = IRB.CreateIntCast(V1, S1->getType(), false);
+ V2 = IRB.CreateIntCast(V2, S2->getType(), false);
+ }
+ Value *S1S2 = IRB.CreateAnd(S1, S2);
+ Value *V1S2 = IRB.CreateAnd(V1, S2);
+ Value *S1V2 = IRB.CreateAnd(S1, V2);
+ setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
+ setOriginForNaryOp(I);
+ }
+
+ void visitOr(BinaryOperator &I) {
+ IRBuilder<> IRB(&I);
+ // "Or" of 1 and a poisoned value results in unpoisoned value.
+ // 1|1 => 1; 0|1 => 1; p|1 => 1;
+ // 1|0 => 1; 0|0 => 0; p|0 => p;
+ // 1|p => 1; 0|p => p; p|p => p;
+ // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *V1 = IRB.CreateNot(I.getOperand(0));
+ Value *V2 = IRB.CreateNot(I.getOperand(1));
+ if (V1->getType() != S1->getType()) {
+ V1 = IRB.CreateIntCast(V1, S1->getType(), false);
+ V2 = IRB.CreateIntCast(V2, S2->getType(), false);
+ }
+ Value *S1S2 = IRB.CreateAnd(S1, S2);
+ Value *V1S2 = IRB.CreateAnd(V1, S2);
+ Value *S1V2 = IRB.CreateAnd(S1, V2);
+ setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
+ setOriginForNaryOp(I);
+ }
+
+ /// \brief Default propagation of shadow and/or origin.
+ ///
+ /// This class implements the general case of shadow propagation, used in all
+ /// cases where we don't know and/or don't care about what the operation
+ /// actually does. It converts all input shadow values to a common type
+ /// (extending or truncating as necessary), and bitwise OR's them.
+ ///
+ /// This is much cheaper than inserting checks (i.e. requiring inputs to be
+ /// fully initialized), and less prone to false positives.
+ ///
+ /// This class also implements the general case of origin propagation. For a
+ /// Nary operation, result origin is set to the origin of an argument that is
+ /// not entirely initialized. If there is more than one such arguments, the
+ /// rightmost of them is picked. It does not matter which one is picked if all
+ /// arguments are initialized.
+ template <bool CombineShadow>
+ class Combiner {
+ Value *Shadow;
+ Value *Origin;
+ IRBuilder<> &IRB;
+ MemorySanitizerVisitor *MSV;
+
+ public:
+ Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
+ Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
+
+ /// \brief Add a pair of shadow and origin values to the mix.
+ Combiner &Add(Value *OpShadow, Value *OpOrigin) {
+ if (CombineShadow) {
+ assert(OpShadow);
+ if (!Shadow)
+ Shadow = OpShadow;
+ else {
+ OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
+ Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
+ }
+ }
+
+ if (MSV->MS.TrackOrigins) {
+ assert(OpOrigin);
+ if (!Origin) {
+ Origin = OpOrigin;
+ } else {
+ Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
+ Value *Cond = IRB.CreateICmpNE(FlatShadow,
+ MSV->getCleanShadow(FlatShadow));
+ Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
+ }
+ }
+ return *this;
+ }
+
+ /// \brief Add an application value to the mix.
+ Combiner &Add(Value *V) {
+ Value *OpShadow = MSV->getShadow(V);
+ Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
+ return Add(OpShadow, OpOrigin);
+ }
+
+ /// \brief Set the current combined values as the given instruction's shadow
+ /// and origin.
+ void Done(Instruction *I) {
+ if (CombineShadow) {
+ assert(Shadow);
+ Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
+ MSV->setShadow(I, Shadow);
+ }
+ if (MSV->MS.TrackOrigins) {
+ assert(Origin);
+ MSV->setOrigin(I, Origin);
+ }
+ }
+ };
+
+ typedef Combiner<true> ShadowAndOriginCombiner;
+ typedef Combiner<false> OriginCombiner;
+
+ /// \brief Propagate origin for arbitrary operation.
+ void setOriginForNaryOp(Instruction &I) {
+ if (!MS.TrackOrigins) return;
+ IRBuilder<> IRB(&I);
+ OriginCombiner OC(this, IRB);
+ for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
+ OC.Add(OI->get());
+ OC.Done(&I);
+ }
+
+ size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
+ assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
+ "Vector of pointers is not a valid shadow type");
+ return Ty->isVectorTy() ?
+ Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
+ Ty->getPrimitiveSizeInBits();
+ }
+
+ /// \brief Cast between two shadow types, extending or truncating as
+ /// necessary.
+ Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy) {
+ Type *srcTy = V->getType();
+ if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
+ return IRB.CreateIntCast(V, dstTy, false);
+ if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
+ dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
+ return IRB.CreateIntCast(V, dstTy, false);
+ size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
+ size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
+ Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
+ Value *V2 =
+ IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), false);
+ return IRB.CreateBitCast(V2, dstTy);
+ // TODO: handle struct types.
+ }
+
+ /// \brief Propagate shadow for arbitrary operation.
+ void handleShadowOr(Instruction &I) {
+ IRBuilder<> IRB(&I);
+ ShadowAndOriginCombiner SC(this, IRB);
+ for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
+ SC.Add(OI->get());
+ SC.Done(&I);
+ }
+
+ void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
+ void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
+ void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
+ void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
+ void visitSub(BinaryOperator &I) { handleShadowOr(I); }
+ void visitXor(BinaryOperator &I) { handleShadowOr(I); }
+ void visitMul(BinaryOperator &I) { handleShadowOr(I); }
+
+ void handleDiv(Instruction &I) {
+ IRBuilder<> IRB(&I);
+ // Strict on the second argument.
+ insertCheck(I.getOperand(1), &I);
+ setShadow(&I, getShadow(&I, 0));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitUDiv(BinaryOperator &I) { handleDiv(I); }
+ void visitSDiv(BinaryOperator &I) { handleDiv(I); }
+ void visitFDiv(BinaryOperator &I) { handleDiv(I); }
+ void visitURem(BinaryOperator &I) { handleDiv(I); }
+ void visitSRem(BinaryOperator &I) { handleDiv(I); }
+ void visitFRem(BinaryOperator &I) { handleDiv(I); }
+
+ /// \brief Instrument == and != comparisons.
+ ///
+ /// Sometimes the comparison result is known even if some of the bits of the
+ /// arguments are not.
+ void handleEqualityComparison(ICmpInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *A = I.getOperand(0);
+ Value *B = I.getOperand(1);
+ Value *Sa = getShadow(A);
+ Value *Sb = getShadow(B);
+ if (A->getType()->isPointerTy())
+ A = IRB.CreatePointerCast(A, MS.IntptrTy);
+ if (B->getType()->isPointerTy())
+ B = IRB.CreatePointerCast(B, MS.IntptrTy);
+ // A == B <==> (C = A^B) == 0
+ // A != B <==> (C = A^B) != 0
+ // Sc = Sa | Sb
+ Value *C = IRB.CreateXor(A, B);
+ Value *Sc = IRB.CreateOr(Sa, Sb);
+ // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
+ // Result is defined if one of the following is true
+ // * there is a defined 1 bit in C
+ // * C is fully defined
+ // Si = !(C & ~Sc) && Sc
+ Value *Zero = Constant::getNullValue(Sc->getType());
+ Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
+ Value *Si =
+ IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
+ IRB.CreateICmpEQ(
+ IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
+ Si->setName("_msprop_icmp");
+ setShadow(&I, Si);
+ setOriginForNaryOp(I);
+ }
+
+ /// \brief Instrument signed relational comparisons.
+ ///
+ /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
+ /// propagating the highest bit of the shadow. Everything else is delegated
+ /// to handleShadowOr().
+ void handleSignedRelationalComparison(ICmpInst &I) {
+ Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
+ Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
+ Value* op = NULL;
+ CmpInst::Predicate pre = I.getPredicate();
+ if (constOp0 && constOp0->isNullValue() &&
+ (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
+ op = I.getOperand(1);
+ } else if (constOp1 && constOp1->isNullValue() &&
+ (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
+ op = I.getOperand(0);
+ }
+ if (op) {
+ IRBuilder<> IRB(&I);
+ Value* Shadow =
+ IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
+ setShadow(&I, Shadow);
+ setOrigin(&I, getOrigin(op));
+ } else {
+ handleShadowOr(I);
+ }
+ }
+
+ void visitICmpInst(ICmpInst &I) {
+ if (ClHandleICmp && I.isEquality())
+ handleEqualityComparison(I);
+ else if (ClHandleICmp && I.isSigned() && I.isRelational())
+ handleSignedRelationalComparison(I);
+ else
+ handleShadowOr(I);
+ }
+
+ void visitFCmpInst(FCmpInst &I) {
+ handleShadowOr(I);
+ }
+
+ void handleShift(BinaryOperator &I) {
+ IRBuilder<> IRB(&I);
+ // If any of the S2 bits are poisoned, the whole thing is poisoned.
+ // Otherwise perform the same shift on S1.
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
+ S2->getType());
+ Value *V2 = I.getOperand(1);
+ Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
+ setShadow(&I, IRB.CreateOr(Shift, S2Conv));
+ setOriginForNaryOp(I);
+ }
+
+ void visitShl(BinaryOperator &I) { handleShift(I); }
+ void visitAShr(BinaryOperator &I) { handleShift(I); }
+ void visitLShr(BinaryOperator &I) { handleShift(I); }
+
+ /// \brief Instrument llvm.memmove
+ ///
+ /// At this point we don't know if llvm.memmove will be inlined or not.
+ /// If we don't instrument it and it gets inlined,
+ /// our interceptor will not kick in and we will lose the memmove.
+ /// If we instrument the call here, but it does not get inlined,
+ /// we will memove the shadow twice: which is bad in case
+ /// of overlapping regions. So, we simply lower the intrinsic to a call.
+ ///
+ /// Similar situation exists for memcpy and memset.
+ void visitMemMoveInst(MemMoveInst &I) {
+ IRBuilder<> IRB(&I);
+ IRB.CreateCall3(
+ MS.MemmoveFn,
+ IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
+ I.eraseFromParent();
+ }
+
+ // Similar to memmove: avoid copying shadow twice.
+ // This is somewhat unfortunate as it may slowdown small constant memcpys.
+ // FIXME: consider doing manual inline for small constant sizes and proper
+ // alignment.
+ void visitMemCpyInst(MemCpyInst &I) {
+ IRBuilder<> IRB(&I);
+ IRB.CreateCall3(
+ MS.MemcpyFn,
+ IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
+ I.eraseFromParent();
+ }
+
+ // Same as memcpy.
+ void visitMemSetInst(MemSetInst &I) {
+ IRBuilder<> IRB(&I);
+ IRB.CreateCall3(
+ MS.MemsetFn,
+ IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
+ IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
+ I.eraseFromParent();
+ }
+
+ void visitVAStartInst(VAStartInst &I) {
+ VAHelper->visitVAStartInst(I);
+ }
+
+ void visitVACopyInst(VACopyInst &I) {
+ VAHelper->visitVACopyInst(I);
+ }
+
+ enum IntrinsicKind {
+ IK_DoesNotAccessMemory,
+ IK_OnlyReadsMemory,
+ IK_WritesMemory
+ };
+
+ static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
+ const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
+ const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
+ const int OnlyReadsMemory = IK_OnlyReadsMemory;
+ const int OnlyAccessesArgumentPointees = IK_WritesMemory;
+ const int UnknownModRefBehavior = IK_WritesMemory;
+#define GET_INTRINSIC_MODREF_BEHAVIOR
+#define ModRefBehavior IntrinsicKind
+#include "llvm/IR/Intrinsics.gen"
+#undef ModRefBehavior
+#undef GET_INTRINSIC_MODREF_BEHAVIOR
+ }
+
+ /// \brief Handle vector store-like intrinsics.
+ ///
+ /// Instrument intrinsics that look like a simple SIMD store: writes memory,
+ /// has 1 pointer argument and 1 vector argument, returns void.
+ bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value* Addr = I.getArgOperand(0);
+ Value *Shadow = getShadow(&I, 1);
+ Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
+
+ // We don't know the pointer alignment (could be unaligned SSE store!).
+ // Have to assume to worst case.
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
+
+ if (ClCheckAccessAddress)
+ insertCheck(Addr, &I);
+
+ // FIXME: use ClStoreCleanOrigin
+ // FIXME: factor out common code from materializeStores
+ if (MS.TrackOrigins)
+ IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
+ return true;
+ }
+
+ /// \brief Handle vector load-like intrinsics.
+ ///
+ /// Instrument intrinsics that look like a simple SIMD load: reads memory,
+ /// has 1 pointer argument, returns a vector.
+ bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Addr = I.getArgOperand(0);
+
+ Type *ShadowTy = getShadowTy(&I);
+ Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
+ // We don't know the pointer alignment (could be unaligned SSE load!).
+ // Have to assume to worst case.
+ setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
+
+ if (ClCheckAccessAddress)
+ insertCheck(Addr, &I);
+
+ if (MS.TrackOrigins)
+ setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
+ return true;
+ }
+
+ /// \brief Handle (SIMD arithmetic)-like intrinsics.
+ ///
+ /// Instrument intrinsics with any number of arguments of the same type,
+ /// equal to the return type. The type should be simple (no aggregates or
+ /// pointers; vectors are fine).
+ /// Caller guarantees that this intrinsic does not access memory.
+ bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
+ Type *RetTy = I.getType();
+ if (!(RetTy->isIntOrIntVectorTy() ||
+ RetTy->isFPOrFPVectorTy() ||
+ RetTy->isX86_MMXTy()))
+ return false;
+
+ unsigned NumArgOperands = I.getNumArgOperands();
+
+ for (unsigned i = 0; i < NumArgOperands; ++i) {
+ Type *Ty = I.getArgOperand(i)->getType();
+ if (Ty != RetTy)
+ return false;
+ }
+
+ IRBuilder<> IRB(&I);
+ ShadowAndOriginCombiner SC(this, IRB);
+ for (unsigned i = 0; i < NumArgOperands; ++i)
+ SC.Add(I.getArgOperand(i));
+ SC.Done(&I);
+
+ return true;
+ }
+
+ /// \brief Heuristically instrument unknown intrinsics.
+ ///
+ /// The main purpose of this code is to do something reasonable with all
+ /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
+ /// We recognize several classes of intrinsics by their argument types and
+ /// ModRefBehaviour and apply special intrumentation when we are reasonably
+ /// sure that we know what the intrinsic does.
+ ///
+ /// We special-case intrinsics where this approach fails. See llvm.bswap
+ /// handling as an example of that.
+ bool handleUnknownIntrinsic(IntrinsicInst &I) {
+ unsigned NumArgOperands = I.getNumArgOperands();
+ if (NumArgOperands == 0)
+ return false;
+
+ Intrinsic::ID iid = I.getIntrinsicID();
+ IntrinsicKind IK = getIntrinsicKind(iid);
+ bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
+ bool WritesMemory = IK == IK_WritesMemory;
+ assert(!(OnlyReadsMemory && WritesMemory));
+
+ if (NumArgOperands == 2 &&
+ I.getArgOperand(0)->getType()->isPointerTy() &&
+ I.getArgOperand(1)->getType()->isVectorTy() &&
+ I.getType()->isVoidTy() &&
+ WritesMemory) {
+ // This looks like a vector store.
+ return handleVectorStoreIntrinsic(I);
+ }
+
+ if (NumArgOperands == 1 &&
+ I.getArgOperand(0)->getType()->isPointerTy() &&
+ I.getType()->isVectorTy() &&
+ OnlyReadsMemory) {
+ // This looks like a vector load.
+ return handleVectorLoadIntrinsic(I);
+ }
+
+ if (!OnlyReadsMemory && !WritesMemory)
+ if (maybeHandleSimpleNomemIntrinsic(I))
+ return true;
+
+ // FIXME: detect and handle SSE maskstore/maskload
+ return false;
+ }
+
+ void handleBswap(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Op = I.getArgOperand(0);
+ Type *OpType = Op->getType();
+ Function *BswapFunc = Intrinsic::getDeclaration(
+ F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
+ setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
+ setOrigin(&I, getOrigin(Op));
+ }
+
+ void visitIntrinsicInst(IntrinsicInst &I) {
+ switch (I.getIntrinsicID()) {
+ case llvm::Intrinsic::bswap:
+ handleBswap(I);
+ break;
+ default:
+ if (!handleUnknownIntrinsic(I))
+ visitInstruction(I);
+ break;
+ }
+ }
+
+ void visitCallSite(CallSite CS) {
+ Instruction &I = *CS.getInstruction();
+ assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
+ if (CS.isCall()) {
+ CallInst *Call = cast<CallInst>(&I);
+
+ // For inline asm, do the usual thing: check argument shadow and mark all
+ // outputs as clean. Note that any side effects of the inline asm that are
+ // not immediately visible in its constraints are not handled.
+ if (Call->isInlineAsm()) {
+ visitInstruction(I);
+ return;
+ }
+
+ // Allow only tail calls with the same types, otherwise
+ // we may have a false positive: shadow for a non-void RetVal
+ // will get propagated to a void RetVal.
+ if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
+ Call->setTailCall(false);
+
+ assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
+
+ // We are going to insert code that relies on the fact that the callee
+ // will become a non-readonly function after it is instrumented by us. To
+ // prevent this code from being optimized out, mark that function
+ // non-readonly in advance.
+ if (Function *Func = Call->getCalledFunction()) {
+ // Clear out readonly/readnone attributes.
+ AttrBuilder B;
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
+ Func->removeAttribute(AttributeSet::FunctionIndex,
+ Attribute::get(Func->getContext(), B));
+ }
+ }
+ IRBuilder<> IRB(&I);
+ unsigned ArgOffset = 0;
+ DEBUG(dbgs() << " CallSite: " << I << "\n");
+ for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
+ ArgIt != End; ++ArgIt) {
+ Value *A = *ArgIt;
+ unsigned i = ArgIt - CS.arg_begin();
+ if (!A->getType()->isSized()) {
+ DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
+ continue;
+ }
+ unsigned Size = 0;
+ Value *Store = 0;
+ // Compute the Shadow for arg even if it is ByVal, because
+ // in that case getShadow() will copy the actual arg shadow to
+ // __msan_param_tls.
+ Value *ArgShadow = getShadow(A);
+ Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
+ DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
+ " Shadow: " << *ArgShadow << "\n");
+ if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
+ assert(A->getType()->isPointerTy() &&
+ "ByVal argument is not a pointer!");
+ Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
+ unsigned Alignment = CS.getParamAlignment(i + 1);
+ Store = IRB.CreateMemCpy(ArgShadowBase,
+ getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
+ Size, Alignment);
+ } else {
+ Size = MS.TD->getTypeAllocSize(A->getType());
+ Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
+ kShadowTLSAlignment);
+ }
+ if (MS.TrackOrigins)
+ IRB.CreateStore(getOrigin(A),
+ getOriginPtrForArgument(A, IRB, ArgOffset));
+ assert(Size != 0 && Store != 0);
+ DEBUG(dbgs() << " Param:" << *Store << "\n");
+ ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
+ }
+ DEBUG(dbgs() << " done with call args\n");
+
+ FunctionType *FT =
+ cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0));
+ if (FT->isVarArg()) {
+ VAHelper->visitCallSite(CS, IRB);
+ }
+
+ // Now, get the shadow for the RetVal.
+ if (!I.getType()->isSized()) return;
+ IRBuilder<> IRBBefore(&I);
+ // Untill we have full dynamic coverage, make sure the retval shadow is 0.
+ Value *Base = getShadowPtrForRetval(&I, IRBBefore);
+ IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
+ Instruction *NextInsn = 0;
+ if (CS.isCall()) {
+ NextInsn = I.getNextNode();
+ } else {
+ BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
+ if (!NormalDest->getSinglePredecessor()) {
+ // FIXME: this case is tricky, so we are just conservative here.
+ // Perhaps we need to split the edge between this BB and NormalDest,
+ // but a naive attempt to use SplitEdge leads to a crash.
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ return;
+ }
+ NextInsn = NormalDest->getFirstInsertionPt();
+ assert(NextInsn &&
+ "Could not find insertion point for retval shadow load");
+ }
+ IRBuilder<> IRBAfter(NextInsn);
+ Value *RetvalShadow =
+ IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
+ kShadowTLSAlignment, "_msret");
+ setShadow(&I, RetvalShadow);
+ if (MS.TrackOrigins)
+ setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
+ }
+
+ void visitReturnInst(ReturnInst &I) {
+ IRBuilder<> IRB(&I);
+ if (Value *RetVal = I.getReturnValue()) {
+ // Set the shadow for the RetVal.
+ Value *Shadow = getShadow(RetVal);
+ Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
+ DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
+ if (MS.TrackOrigins)
+ IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
+ }
+ }
+
+ void visitPHINode(PHINode &I) {
+ IRBuilder<> IRB(&I);
+ ShadowPHINodes.push_back(&I);
+ setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
+ "_msphi_s"));
+ if (MS.TrackOrigins)
+ setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
+ "_msphi_o"));
+ }
+
+ void visitAllocaInst(AllocaInst &I) {
+ setShadow(&I, getCleanShadow(&I));
+ if (!ClPoisonStack) return;
+ IRBuilder<> IRB(I.getNextNode());
+ uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
+ if (ClPoisonStackWithCall) {
+ IRB.CreateCall2(MS.MsanPoisonStackFn,
+ IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
+ ConstantInt::get(MS.IntptrTy, Size));
+ } else {
+ Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
+ IRB.CreateMemSet(ShadowBase, IRB.getInt8(ClPoisonStackPattern),
+ Size, I.getAlignment());
+ }
+
+ if (MS.TrackOrigins) {
+ setOrigin(&I, getCleanOrigin());
+ SmallString<2048> StackDescriptionStorage;
+ raw_svector_ostream StackDescription(StackDescriptionStorage);
+ // We create a string with a description of the stack allocation and
+ // pass it into __msan_set_alloca_origin.
+ // It will be printed by the run-time if stack-originated UMR is found.
+ // The first 4 bytes of the string are set to '----' and will be replaced
+ // by __msan_va_arg_overflow_size_tls at the first call.
+ StackDescription << "----" << I.getName() << "@" << F.getName();
+ Value *Descr =
+ createPrivateNonConstGlobalForString(*F.getParent(),
+ StackDescription.str());
+ IRB.CreateCall3(MS.MsanSetAllocaOriginFn,
+ IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
+ ConstantInt::get(MS.IntptrTy, Size),
+ IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()));
+ }
+ }
+
+ void visitSelectInst(SelectInst& I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateSelect(I.getCondition(),
+ getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
+ "_msprop"));
+ if (MS.TrackOrigins) {
+ // Origins are always i32, so any vector conditions must be flattened.
+ // FIXME: consider tracking vector origins for app vectors?
+ Value *Cond = I.getCondition();
+ if (Cond->getType()->isVectorTy()) {
+ Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
+ Cond = IRB.CreateICmpNE(ConvertedShadow,
+ getCleanShadow(ConvertedShadow), "_mso_select");
+ }
+ setOrigin(&I, IRB.CreateSelect(Cond,
+ getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
+ }
+ }
+
+ void visitLandingPadInst(LandingPadInst &I) {
+ // Do nothing.
+ // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+
+ void visitGetElementPtrInst(GetElementPtrInst &I) {
+ handleShadowOr(I);
+ }
+
+ void visitExtractValueInst(ExtractValueInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Agg = I.getAggregateOperand();
+ DEBUG(dbgs() << "ExtractValue: " << I << "\n");
+ Value *AggShadow = getShadow(Agg);
+ DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
+ Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
+ DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
+ setShadow(&I, ResShadow);
+ setOrigin(&I, getCleanOrigin());
+ }
+
+ void visitInsertValueInst(InsertValueInst &I) {
+ IRBuilder<> IRB(&I);
+ DEBUG(dbgs() << "InsertValue: " << I << "\n");
+ Value *AggShadow = getShadow(I.getAggregateOperand());
+ Value *InsShadow = getShadow(I.getInsertedValueOperand());
+ DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
+ DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
+ Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
+ DEBUG(dbgs() << " Res: " << *Res << "\n");
+ setShadow(&I, Res);
+ setOrigin(&I, getCleanOrigin());
+ }
+
+ void dumpInst(Instruction &I) {
+ if (CallInst *CI = dyn_cast<CallInst>(&I)) {
+ errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
+ } else {
+ errs() << "ZZZ " << I.getOpcodeName() << "\n";
+ }
+ errs() << "QQQ " << I << "\n";
+ }
+
+ void visitResumeInst(ResumeInst &I) {
+ DEBUG(dbgs() << "Resume: " << I << "\n");
+ // Nothing to do here.
+ }
+
+ void visitInstruction(Instruction &I) {
+ // Everything else: stop propagating and check for poisoned shadow.
+ if (ClDumpStrictInstructions)
+ dumpInst(I);
+ DEBUG(dbgs() << "DEFAULT: " << I << "\n");
+ for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
+ insertCheck(I.getOperand(i), &I);
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+};
+
+/// \brief AMD64-specific implementation of VarArgHelper.
+struct VarArgAMD64Helper : public VarArgHelper {
+ // An unfortunate workaround for asymmetric lowering of va_arg stuff.
+ // See a comment in visitCallSite for more details.
+ static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
+ static const unsigned AMD64FpEndOffset = 176;
+
+ Function &F;
+ MemorySanitizer &MS;
+ MemorySanitizerVisitor &MSV;
+ Value *VAArgTLSCopy;
+ Value *VAArgOverflowSize;
+
+ SmallVector<CallInst*, 16> VAStartInstrumentationList;
+
+ VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
+ MemorySanitizerVisitor &MSV)
+ : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
+
+ enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
+
+ ArgKind classifyArgument(Value* arg) {
+ // A very rough approximation of X86_64 argument classification rules.
+ Type *T = arg->getType();
+ if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
+ return AK_FloatingPoint;
+ if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
+ return AK_GeneralPurpose;
+ if (T->isPointerTy())
+ return AK_GeneralPurpose;
+ return AK_Memory;
+ }
+
+ // For VarArg functions, store the argument shadow in an ABI-specific format
+ // that corresponds to va_list layout.
+ // We do this because Clang lowers va_arg in the frontend, and this pass
+ // only sees the low level code that deals with va_list internals.
+ // A much easier alternative (provided that Clang emits va_arg instructions)
+ // would have been to associate each live instance of va_list with a copy of
+ // MSanParamTLS, and extract shadow on va_arg() call in the argument list
+ // order.
+ void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
+ unsigned GpOffset = 0;
+ unsigned FpOffset = AMD64GpEndOffset;
+ unsigned OverflowOffset = AMD64FpEndOffset;
+ for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
+ ArgIt != End; ++ArgIt) {
+ Value *A = *ArgIt;
+ ArgKind AK = classifyArgument(A);
+ if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
+ AK = AK_Memory;
+ if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
+ AK = AK_Memory;
+ Value *Base;
+ switch (AK) {
+ case AK_GeneralPurpose:
+ Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
+ GpOffset += 8;
+ break;
+ case AK_FloatingPoint:
+ Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
+ FpOffset += 16;
+ break;
+ case AK_Memory:
+ uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
+ Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
+ OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
+ }
+ IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
+ }
+ Constant *OverflowSize =
+ ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
+ IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
+ }
+
+ /// \brief Compute the shadow address for a given va_arg.
+ Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
+ int ArgOffset) {
+ Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
+ "_msarg");
+ }
+
+ void visitVAStartInst(VAStartInst &I) {
+ IRBuilder<> IRB(&I);
+ VAStartInstrumentationList.push_back(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
+
+ // Unpoison the whole __va_list_tag.
+ // FIXME: magic ABI constants.
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */24, /* alignment */16, false);
+ }
+
+ void visitVACopyInst(VACopyInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
+
+ // Unpoison the whole __va_list_tag.
+ // FIXME: magic ABI constants.
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */ 24, /* alignment */ 16, false);
+ }
+
+ void finalizeInstrumentation() {
+ assert(!VAArgOverflowSize && !VAArgTLSCopy &&
+ "finalizeInstrumentation called twice");
+ if (!VAStartInstrumentationList.empty()) {
+ // If there is a va_start in this function, make a backup copy of
+ // va_arg_tls somewhere in the function entry block.
+ IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
+ VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
+ Value *CopySize =
+ IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
+ VAArgOverflowSize);
+ VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
+ IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
+ }
+
+ // Instrument va_start.
+ // Copy va_list shadow from the backup copy of the TLS contents.
+ for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
+ CallInst *OrigInst = VAStartInstrumentationList[i];
+ IRBuilder<> IRB(OrigInst->getNextNode());
+ Value *VAListTag = OrigInst->getArgOperand(0);
+
+ Value *RegSaveAreaPtrPtr =
+ IRB.CreateIntToPtr(
+ IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, 16)),
+ Type::getInt64PtrTy(*MS.C));
+ Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
+ Value *RegSaveAreaShadowPtr =
+ MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
+ IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
+ AMD64FpEndOffset, 16);
+
+ Value *OverflowArgAreaPtrPtr =
+ IRB.CreateIntToPtr(
+ IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, 8)),
+ Type::getInt64PtrTy(*MS.C));
+ Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
+ Value *OverflowArgAreaShadowPtr =
+ MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
+ Value *SrcPtr =
+ getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset);
+ IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
+ }
+ }
+};
+
+VarArgHelper* CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
+ MemorySanitizerVisitor &Visitor) {
+ return new VarArgAMD64Helper(Func, Msan, Visitor);
+}
+
+} // namespace
+
+bool MemorySanitizer::runOnFunction(Function &F) {
+ MemorySanitizerVisitor Visitor(F, *this);
+
+ // Clear out readonly/readnone attributes.
+ AttrBuilder B;
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
+ F.removeAttribute(AttributeSet::FunctionIndex,
+ Attribute::get(F.getContext(), B));
+
+ return Visitor.runOnFunction();
+}
diff --git a/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp b/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
index 1fe1254..c5a1fe9 100644
--- a/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
+++ b/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
@@ -13,20 +13,21 @@
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "insert-optimal-edge-profiling"
+#include "llvm/Transforms/Instrumentation.h"
+#include "MaximumSpanningTree.h"
#include "ProfilingUtils.h"
-#include "llvm/Constants.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Analysis/ProfileInfoLoader.h"
-#include "llvm/Support/raw_ostream.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Instrumentation.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "MaximumSpanningTree.h"
using namespace llvm;
STATISTIC(NumEdgesInserted, "The # of edges inserted.");
@@ -75,8 +76,8 @@ inline static void printEdgeCounter(ProfileInfo::Edge e,
bool OptimalEdgeProfiler::runOnModule(Module &M) {
Function *Main = M.getFunction("main");
if (Main == 0) {
- errs() << "WARNING: cannot insert edge profiling into a module"
- << " with no main function!\n";
+ M.getContext().emitWarning("cannot insert edge profiling into a module"
+ " with no main function");
return false; // No main, no instrumentation!
}
diff --git a/lib/Transforms/Instrumentation/PathProfiling.cpp b/lib/Transforms/Instrumentation/PathProfiling.cpp
index cc27146..358bbeb 100644
--- a/lib/Transforms/Instrumentation/PathProfiling.cpp
+++ b/lib/Transforms/Instrumentation/PathProfiling.cpp
@@ -45,24 +45,23 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "insert-path-profiling"
-#include "llvm/DerivedTypes.h"
+#include "llvm/Transforms/Instrumentation.h"
#include "ProfilingUtils.h"
#include "llvm/Analysis/PathNumbering.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/InstrTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/TypeBuilder.h"
#include "llvm/Pass.h"
-#include "llvm/TypeBuilder.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Instrumentation.h"
#include <vector>
#define HASH_THRESHHOLD 100000
@@ -1346,8 +1345,8 @@ bool PathProfiler::runOnModule(Module &M) {
Main = M.getFunction("MAIN__");
if (!Main) {
- errs() << "WARNING: cannot insert path profiling into a module"
- << " with no main function!\n";
+ Context->emitWarning("cannot insert edge profiling into a module"
+ " with no main function");
return false;
}
diff --git a/lib/Transforms/Instrumentation/ProfilingUtils.cpp b/lib/Transforms/Instrumentation/ProfilingUtils.cpp
index de57cd1..4b3de6d 100644
--- a/lib/Transforms/Instrumentation/ProfilingUtils.cpp
+++ b/lib/Transforms/Instrumentation/ProfilingUtils.cpp
@@ -15,11 +15,11 @@
//===----------------------------------------------------------------------===//
#include "ProfilingUtils.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
GlobalValue *Array,
diff --git a/lib/Transforms/Instrumentation/ThreadSanitizer.cpp b/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
index 17b7775..29d2ece 100644
--- a/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
+++ b/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
@@ -21,32 +21,41 @@
#define DEBUG_TYPE "tsan"
+#include "llvm/Transforms/Instrumentation.h"
#include "BlackList.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;
-static cl::opt<std::string> ClBlackListFile("tsan-blacklist",
+static cl::opt<std::string> ClBlacklistFile("tsan-blacklist",
cl::desc("Blacklist file"), cl::Hidden);
+static cl::opt<bool> ClInstrumentMemoryAccesses(
+ "tsan-instrument-memory-accesses", cl::init(true),
+ cl::desc("Instrument memory accesses"), cl::Hidden);
+static cl::opt<bool> ClInstrumentFuncEntryExit(
+ "tsan-instrument-func-entry-exit", cl::init(true),
+ cl::desc("Instrument function entry and exit"), cl::Hidden);
+static cl::opt<bool> ClInstrumentAtomics(
+ "tsan-instrument-atomics", cl::init(true),
+ cl::desc("Instrument atomics"), cl::Hidden);
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
@@ -62,13 +71,18 @@ namespace {
/// ThreadSanitizer: instrument the code in module to find races.
struct ThreadSanitizer : public FunctionPass {
- ThreadSanitizer();
+ ThreadSanitizer(StringRef BlacklistFile = StringRef())
+ : FunctionPass(ID),
+ TD(0),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+ : BlacklistFile) { }
const char *getPassName() const;
bool runOnFunction(Function &F);
bool doInitialization(Module &M);
static char ID; // Pass identification, replacement for typeid.
private:
+ void initializeCallbacks(Module &M);
bool instrumentLoadOrStore(Instruction *I);
bool instrumentAtomic(Instruction *I);
void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
@@ -76,7 +90,8 @@ struct ThreadSanitizer : public FunctionPass {
bool addrPointsToConstantData(Value *Addr);
int getMemoryAccessFuncIndex(Value *Addr);
- TargetData *TD;
+ DataLayout *TD;
+ SmallString<64> BlacklistFile;
OwningPtr<BlackList> BL;
IntegerType *OrdTy;
// Callbacks to run-time library are computed in doInitialization.
@@ -88,6 +103,10 @@ struct ThreadSanitizer : public FunctionPass {
Function *TsanWrite[kNumberOfAccessSizes];
Function *TsanAtomicLoad[kNumberOfAccessSizes];
Function *TsanAtomicStore[kNumberOfAccessSizes];
+ Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
+ Function *TsanAtomicCAS[kNumberOfAccessSizes];
+ Function *TsanAtomicThreadFence;
+ Function *TsanAtomicSignalFence;
Function *TsanVptrUpdate;
};
} // namespace
@@ -101,13 +120,8 @@ const char *ThreadSanitizer::getPassName() const {
return "ThreadSanitizer";
}
-ThreadSanitizer::ThreadSanitizer()
- : FunctionPass(ID),
- TD(NULL) {
-}
-
-FunctionPass *llvm::createThreadSanitizerPass() {
- return new ThreadSanitizer();
+FunctionPass *llvm::createThreadSanitizerPass(StringRef BlacklistFile) {
+ return new ThreadSanitizer(BlacklistFile);
}
static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
@@ -117,18 +131,8 @@ static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
report_fatal_error("ThreadSanitizer interface function redefined");
}
-bool ThreadSanitizer::doInitialization(Module &M) {
- TD = getAnalysisIfAvailable<TargetData>();
- if (!TD)
- return false;
- BL.reset(new BlackList(ClBlackListFile));
-
- // Always insert a call to __tsan_init into the module's CTORs.
+void ThreadSanitizer::initializeCallbacks(Module &M) {
IRBuilder<> IRB(M.getContext());
- Value *TsanInit = M.getOrInsertFunction("__tsan_init",
- IRB.getVoidTy(), NULL);
- appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
-
// Initialize the callbacks.
TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
@@ -158,10 +162,58 @@ bool ThreadSanitizer::doInitialization(Module &M) {
TsanAtomicStore[i] = checkInterfaceFunction(M.getOrInsertFunction(
AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy,
NULL));
+
+ for (int op = AtomicRMWInst::FIRST_BINOP;
+ op <= AtomicRMWInst::LAST_BINOP; ++op) {
+ TsanAtomicRMW[op][i] = NULL;
+ const char *NamePart = NULL;
+ if (op == AtomicRMWInst::Xchg)
+ NamePart = "_exchange";
+ else if (op == AtomicRMWInst::Add)
+ NamePart = "_fetch_add";
+ else if (op == AtomicRMWInst::Sub)
+ NamePart = "_fetch_sub";
+ else if (op == AtomicRMWInst::And)
+ NamePart = "_fetch_and";
+ else if (op == AtomicRMWInst::Or)
+ NamePart = "_fetch_or";
+ else if (op == AtomicRMWInst::Xor)
+ NamePart = "_fetch_xor";
+ else if (op == AtomicRMWInst::Nand)
+ NamePart = "_fetch_nand";
+ else
+ continue;
+ SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
+ TsanAtomicRMW[op][i] = checkInterfaceFunction(M.getOrInsertFunction(
+ RMWName, Ty, PtrTy, Ty, OrdTy, NULL));
+ }
+
+ SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) +
+ "_compare_exchange_val");
+ TsanAtomicCAS[i] = checkInterfaceFunction(M.getOrInsertFunction(
+ AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, NULL));
}
TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), NULL));
+ TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction(
+ "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, NULL));
+ TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction(
+ "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, NULL));
+}
+
+bool ThreadSanitizer::doInitialization(Module &M) {
+ TD = getAnalysisIfAvailable<DataLayout>();
+ if (!TD)
+ return false;
+ BL.reset(new BlackList(BlacklistFile));
+
+ // Always insert a call to __tsan_init into the module's CTORs.
+ IRBuilder<> IRB(M.getContext());
+ Value *TsanInit = M.getOrInsertFunction("__tsan_init",
+ IRB.getVoidTy(), NULL);
+ appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
+
return true;
}
@@ -244,14 +296,15 @@ static bool isAtomic(Instruction *I) {
return true;
if (isa<AtomicCmpXchgInst>(I))
return true;
- if (FenceInst *FI = dyn_cast<FenceInst>(I))
- return FI->getSynchScope() == CrossThread;
+ if (isa<FenceInst>(I))
+ return true;
return false;
}
bool ThreadSanitizer::runOnFunction(Function &F) {
if (!TD) return false;
if (BL->isIn(F)) return false;
+ initializeCallbacks(*F.getParent());
SmallVector<Instruction*, 8> RetVec;
SmallVector<Instruction*, 8> AllLoadsAndStores;
SmallVector<Instruction*, 8> LocalLoadsAndStores;
@@ -284,17 +337,19 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
// (e.g. variables that do not escape, etc).
// Instrument memory accesses.
- for (size_t i = 0, n = AllLoadsAndStores.size(); i < n; ++i) {
- Res |= instrumentLoadOrStore(AllLoadsAndStores[i]);
- }
+ if (ClInstrumentMemoryAccesses)
+ for (size_t i = 0, n = AllLoadsAndStores.size(); i < n; ++i) {
+ Res |= instrumentLoadOrStore(AllLoadsAndStores[i]);
+ }
// Instrument atomic memory accesses.
- for (size_t i = 0, n = AtomicAccesses.size(); i < n; ++i) {
- Res |= instrumentAtomic(AtomicAccesses[i]);
- }
+ if (ClInstrumentAtomics)
+ for (size_t i = 0, n = AtomicAccesses.size(); i < n; ++i) {
+ Res |= instrumentAtomic(AtomicAccesses[i]);
+ }
// Instrument function entry/exit points if there were instrumented accesses.
- if (Res || HasCalls) {
+ if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
Value *ReturnAddress = IRB.CreateCall(
Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
@@ -343,16 +398,39 @@ static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
switch (ord) {
case NotAtomic: assert(false);
case Unordered: // Fall-through.
- case Monotonic: v = 1 << 0; break;
- // case Consume: v = 1 << 1; break; // Not specified yet.
- case Acquire: v = 1 << 2; break;
- case Release: v = 1 << 3; break;
- case AcquireRelease: v = 1 << 4; break;
- case SequentiallyConsistent: v = 1 << 5; break;
+ case Monotonic: v = 0; break;
+ // case Consume: v = 1; break; // Not specified yet.
+ case Acquire: v = 2; break;
+ case Release: v = 3; break;
+ case AcquireRelease: v = 4; break;
+ case SequentiallyConsistent: v = 5; break;
+ }
+ return IRB->getInt32(v);
+}
+
+static ConstantInt *createFailOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
+ uint32_t v = 0;
+ switch (ord) {
+ case NotAtomic: assert(false);
+ case Unordered: // Fall-through.
+ case Monotonic: v = 0; break;
+ // case Consume: v = 1; break; // Not specified yet.
+ case Acquire: v = 2; break;
+ case Release: v = 0; break;
+ case AcquireRelease: v = 2; break;
+ case SequentiallyConsistent: v = 5; break;
}
return IRB->getInt32(v);
}
+// Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
+// standards. For background see C++11 standard. A slightly older, publically
+// available draft of the standard (not entirely up-to-date, but close enough
+// for casual browsing) is available here:
+// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
+// The following page contains more background information:
+// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
+
bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
IRBuilder<> IRB(I);
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
@@ -385,12 +463,45 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
CallInst *C = CallInst::Create(TsanAtomicStore[Idx],
ArrayRef<Value*>(Args));
ReplaceInstWithInst(I, C);
- } else if (isa<AtomicRMWInst>(I)) {
- // FIXME: Not yet supported.
- } else if (isa<AtomicCmpXchgInst>(I)) {
- // FIXME: Not yet supported.
- } else if (isa<FenceInst>(I)) {
- // FIXME: Not yet supported.
+ } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
+ Value *Addr = RMWI->getPointerOperand();
+ int Idx = getMemoryAccessFuncIndex(Addr);
+ if (Idx < 0)
+ return false;
+ Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
+ if (F == NULL)
+ return false;
+ const size_t ByteSize = 1 << Idx;
+ const size_t BitSize = ByteSize * 8;
+ Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
+ Type *PtrTy = Ty->getPointerTo();
+ Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
+ IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
+ createOrdering(&IRB, RMWI->getOrdering())};
+ CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
+ ReplaceInstWithInst(I, C);
+ } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
+ Value *Addr = CASI->getPointerOperand();
+ int Idx = getMemoryAccessFuncIndex(Addr);
+ if (Idx < 0)
+ return false;
+ const size_t ByteSize = 1 << Idx;
+ const size_t BitSize = ByteSize * 8;
+ Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
+ Type *PtrTy = Ty->getPointerTo();
+ Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
+ IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
+ IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
+ createOrdering(&IRB, CASI->getOrdering()),
+ createFailOrdering(&IRB, CASI->getOrdering())};
+ CallInst *C = CallInst::Create(TsanAtomicCAS[Idx], ArrayRef<Value*>(Args));
+ ReplaceInstWithInst(I, C);
+ } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
+ Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
+ Function *F = FI->getSynchScope() == SingleThread ?
+ TsanAtomicSignalFence : TsanAtomicThreadFence;
+ CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
+ ReplaceInstWithInst(I, C);
}
return true;
}
diff --git a/lib/Transforms/Scalar/ADCE.cpp b/lib/Transforms/Scalar/ADCE.cpp
index b344952..a097308 100644
--- a/lib/Transforms/Scalar/ADCE.cpp
+++ b/lib/Transforms/Scalar/ADCE.cpp
@@ -16,16 +16,16 @@
#define DEBUG_TYPE "adce"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/InstIterator.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/InstIterator.h"
using namespace llvm;
STATISTIC(NumRemoved, "Number of instructions removed");
diff --git a/lib/Transforms/Scalar/BasicBlockPlacement.cpp b/lib/Transforms/Scalar/BasicBlockPlacement.cpp
index cee5502..e755008 100644
--- a/lib/Transforms/Scalar/BasicBlockPlacement.cpp
+++ b/lib/Transforms/Scalar/BasicBlockPlacement.cpp
@@ -27,12 +27,12 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "block-placement"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ProfileInfo.h"
-#include "llvm/Function.h"
+#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Transforms/Scalar.h"
#include <set>
using namespace llvm;
diff --git a/lib/Transforms/Scalar/CMakeLists.txt b/lib/Transforms/Scalar/CMakeLists.txt
index a01e066..b3fc6e3 100644
--- a/lib/Transforms/Scalar/CMakeLists.txt
+++ b/lib/Transforms/Scalar/CMakeLists.txt
@@ -25,6 +25,7 @@ add_llvm_library(LLVMScalarOpts
Reassociate.cpp
Reg2Mem.cpp
SCCP.cpp
+ SROA.cpp
Scalar.cpp
ScalarReplAggregates.cpp
SimplifyCFGPass.cpp
diff --git a/lib/Transforms/Scalar/CodeGenPrepare.cpp b/lib/Transforms/Scalar/CodeGenPrepare.cpp
index 5912107..d513c96 100644
--- a/lib/Transforms/Scalar/CodeGenPrepare.cpp
+++ b/lib/Transforms/Scalar/CodeGenPrepare.cpp
@@ -15,21 +15,23 @@
#define DEBUG_TYPE "codegenprepare"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/DominatorInternals.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Assembly/Writer.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -37,10 +39,8 @@
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Transforms/Utils/AddrModeMatcher.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
@@ -105,6 +105,8 @@ namespace {
}
bool runOnFunction(Function &F);
+ const char *getPassName() const { return "CodeGen Prepare"; }
+
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorTree>();
AU.addPreserved<ProfileInfo>();
@@ -124,7 +126,7 @@ namespace {
bool MoveExtToFormExtLoad(Instruction *I);
bool OptimizeExtUses(Instruction *I);
bool OptimizeSelectInst(SelectInst *SI);
- bool DupRetToEnableTailCallOpts(ReturnInst *RI);
+ bool DupRetToEnableTailCallOpts(BasicBlock *BB);
bool PlaceDbgValues(Function &F);
};
}
@@ -147,18 +149,16 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
TLInfo = &getAnalysis<TargetLibraryInfo>();
DT = getAnalysisIfAvailable<DominatorTree>();
PFI = getAnalysisIfAvailable<ProfileInfo>();
- OptSize = F.hasFnAttr(Attribute::OptimizeForSize);
+ OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize);
/// This optimization identifies DIV instructions that can be
/// profitably bypassed and carried out with a shorter, faster divide.
if (TLI && TLI->isSlowDivBypassed()) {
- const DenseMap<Type *, Type *> &BypassTypeMap = TLI->getBypassSlowDivTypes();
-
- for (Function::iterator I = F.begin(); I != F.end(); I++) {
- EverMadeChange |= bypassSlowDivision(F,
- I,
- BypassTypeMap);
- }
+ const DenseMap<unsigned int, unsigned int> &BypassWidths =
+ TLI->getBypassSlowDivWidths();
+ for (Function::iterator I = F.begin(); I != F.end(); I++)
+ EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
}
// Eliminate blocks that contain only PHI nodes and an
@@ -173,7 +173,7 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
+ for (Function::iterator I = F.begin(); I != F.end(); ) {
BasicBlock *BB = I++;
MadeChange |= OptimizeBlock(*BB);
}
@@ -196,9 +196,20 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
WorkList.insert(*II);
}
- for (SmallPtrSet<BasicBlock*, 8>::iterator
- I = WorkList.begin(), E = WorkList.end(); I != E; ++I)
- DeleteDeadBlock(*I);
+ // Delete the dead blocks and any of their dead successors.
+ MadeChange |= !WorkList.empty();
+ while (!WorkList.empty()) {
+ BasicBlock *BB = *WorkList.begin();
+ WorkList.erase(BB);
+ SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
+
+ DeleteDeadBlock(BB);
+
+ for (SmallVectorImpl<BasicBlock*>::iterator
+ II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
+ if (pred_begin(*II) == pred_end(*II))
+ WorkList.insert(*II);
+ }
// Merge pairs of basic blocks with unconditional branches, connected by
// a single edge.
@@ -228,7 +239,8 @@ bool CodeGenPrepare::EliminateFallThrough(Function &F) {
// edge, just collapse it.
BasicBlock *SinglePred = BB->getSinglePredecessor();
- if (!SinglePred || SinglePred == BB) continue;
+ // Don't merge if BB's address is taken.
+ if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
if (Term && !Term->isConditional()) {
@@ -623,7 +635,7 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
// happens.
WeakVH IterHandle(CurInstIterator);
- replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getTargetData() : 0,
+ replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getDataLayout() : 0,
TLInfo, ModifiedDT ? 0 : DT);
// If the iterator instruction was recursively deleted, start over at the
@@ -647,8 +659,8 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
// From here on out we're working with named functions.
if (CI->getCalledFunction() == 0) return false;
- // We'll need TargetData from here on out.
- const TargetData *TD = TLI ? TLI->getTargetData() : 0;
+ // We'll need DataLayout from here on out.
+ const DataLayout *TD = TLI ? TLI->getDataLayout() : 0;
if (!TD) return false;
// Lower all default uses of _chk calls. This is very similar
@@ -662,6 +674,7 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
/// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
/// instructions to the predecessor to enable tail call optimizations. The
/// case it is currently looking for is:
+/// @code
/// bb0:
/// %tmp0 = tail call i32 @f0()
/// br label %return
@@ -674,9 +687,11 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
/// return:
/// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
/// ret i32 %retval
+/// @endcode
///
/// =>
///
+/// @code
/// bb0:
/// %tmp0 = tail call i32 @f0()
/// ret i32 %tmp0
@@ -686,11 +701,15 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
/// bb2:
/// %tmp2 = tail call i32 @f2()
/// ret i32 %tmp2
-///
-bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
+/// @endcode
+bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
if (!TLI)
return false;
+ ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
+ if (!RI)
+ return false;
+
PHINode *PN = 0;
BitCastInst *BCI = 0;
Value *V = RI->getReturnValue();
@@ -704,15 +723,15 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
return false;
}
- BasicBlock *BB = RI->getParent();
if (PN && PN->getParent() != BB)
return false;
// It's not safe to eliminate the sign / zero extension of the return value.
// See llvm::isInTailCallPosition().
const Function *F = BB->getParent();
- Attributes CallerRetAttr = F->getAttributes().getRetAttributes();
- if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
+ Attribute CallerRetAttr = F->getAttributes().getRetAttributes();
+ if (CallerRetAttr.hasAttribute(Attribute::ZExt) ||
+ CallerRetAttr.hasAttribute(Attribute::SExt))
return false;
// Make sure there are no instructions between the PHI and return, or that the
@@ -769,8 +788,11 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
// Conservatively require the attributes of the call to match those of the
// return. Ignore noalias because it doesn't affect the call sequence.
- Attributes CalleeRetAttr = CS.getAttributes().getRetAttributes();
- if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
+ Attribute CalleeRetAttr = CS.getAttributes().getRetAttributes();
+ if (AttrBuilder(CalleeRetAttr).
+ removeAttribute(Attribute::NoAlias) !=
+ AttrBuilder(CallerRetAttr).
+ removeAttribute(Attribute::NoAlias))
continue;
// Make sure the call instruction is followed by an unconditional branch to
@@ -787,7 +809,7 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
}
// If we eliminated all predecessors of the block, delete the block now.
- if (Changed && pred_begin(BB) == pred_end(BB))
+ if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
BB->eraseFromParent();
return Changed;
@@ -797,6 +819,629 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
// Memory Optimization
//===----------------------------------------------------------------------===//
+namespace {
+
+/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
+/// which holds actual Value*'s for register values.
+struct ExtAddrMode : public TargetLowering::AddrMode {
+ Value *BaseReg;
+ Value *ScaledReg;
+ ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+ bool operator==(const ExtAddrMode& O) const {
+ return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
+ (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
+ (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
+ }
+};
+
+static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
+ AM.print(OS);
+ return OS;
+}
+
+void ExtAddrMode::print(raw_ostream &OS) const {
+ bool NeedPlus = false;
+ OS << "[";
+ if (BaseGV) {
+ OS << (NeedPlus ? " + " : "")
+ << "GV:";
+ WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
+ NeedPlus = true;
+ }
+
+ if (BaseOffs)
+ OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
+
+ if (BaseReg) {
+ OS << (NeedPlus ? " + " : "")
+ << "Base:";
+ WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
+ NeedPlus = true;
+ }
+ if (Scale) {
+ OS << (NeedPlus ? " + " : "")
+ << Scale << "*";
+ WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
+ NeedPlus = true;
+ }
+
+ OS << ']';
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void ExtAddrMode::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+
+/// \brief A helper class for matching addressing modes.
+///
+/// This encapsulates the logic for matching the target-legal addressing modes.
+class AddressingModeMatcher {
+ SmallVectorImpl<Instruction*> &AddrModeInsts;
+ const TargetLowering &TLI;
+
+ /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
+ /// the memory instruction that we're computing this address for.
+ Type *AccessTy;
+ Instruction *MemoryInst;
+
+ /// AddrMode - This is the addressing mode that we're building up. This is
+ /// part of the return value of this addressing mode matching stuff.
+ ExtAddrMode &AddrMode;
+
+ /// IgnoreProfitability - This is set to true when we should not do
+ /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode
+ /// always returns true.
+ bool IgnoreProfitability;
+
+ AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
+ const TargetLowering &T, Type *AT,
+ Instruction *MI, ExtAddrMode &AM)
+ : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
+ IgnoreProfitability = false;
+ }
+public:
+
+ /// Match - Find the maximal addressing mode that a load/store of V can fold,
+ /// give an access type of AccessTy. This returns a list of involved
+ /// instructions in AddrModeInsts.
+ static ExtAddrMode Match(Value *V, Type *AccessTy,
+ Instruction *MemoryInst,
+ SmallVectorImpl<Instruction*> &AddrModeInsts,
+ const TargetLowering &TLI) {
+ ExtAddrMode Result;
+
+ bool Success =
+ AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
+ MemoryInst, Result).MatchAddr(V, 0);
+ (void)Success; assert(Success && "Couldn't select *anything*?");
+ return Result;
+ }
+private:
+ bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
+ bool MatchAddr(Value *V, unsigned Depth);
+ bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
+ bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
+ ExtAddrMode &AMBefore,
+ ExtAddrMode &AMAfter);
+ bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
+};
+
+/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
+/// Return true and update AddrMode if this addr mode is legal for the target,
+/// false if not.
+bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
+ unsigned Depth) {
+ // If Scale is 1, then this is the same as adding ScaleReg to the addressing
+ // mode. Just process that directly.
+ if (Scale == 1)
+ return MatchAddr(ScaleReg, Depth);
+
+ // If the scale is 0, it takes nothing to add this.
+ if (Scale == 0)
+ return true;
+
+ // If we already have a scale of this value, we can add to it, otherwise, we
+ // need an available scale field.
+ if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
+ return false;
+
+ ExtAddrMode TestAddrMode = AddrMode;
+
+ // Add scale to turn X*4+X*3 -> X*7. This could also do things like
+ // [A+B + A*7] -> [B+A*8].
+ TestAddrMode.Scale += Scale;
+ TestAddrMode.ScaledReg = ScaleReg;
+
+ // If the new address isn't legal, bail out.
+ if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
+ return false;
+
+ // It was legal, so commit it.
+ AddrMode = TestAddrMode;
+
+ // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
+ // to see if ScaleReg is actually X+C. If so, we can turn this into adding
+ // X*Scale + C*Scale to addr mode.
+ ConstantInt *CI = 0; Value *AddLHS = 0;
+ if (isa<Instruction>(ScaleReg) && // not a constant expr.
+ match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
+ TestAddrMode.ScaledReg = AddLHS;
+ TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
+
+ // If this addressing mode is legal, commit it and remember that we folded
+ // this instruction.
+ if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
+ AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
+ AddrMode = TestAddrMode;
+ return true;
+ }
+ }
+
+ // Otherwise, not (x+c)*scale, just return what we have.
+ return true;
+}
+
+/// MightBeFoldableInst - This is a little filter, which returns true if an
+/// addressing computation involving I might be folded into a load/store
+/// accessing it. This doesn't need to be perfect, but needs to accept at least
+/// the set of instructions that MatchOperationAddr can.
+static bool MightBeFoldableInst(Instruction *I) {
+ switch (I->getOpcode()) {
+ case Instruction::BitCast:
+ // Don't touch identity bitcasts.
+ if (I->getType() == I->getOperand(0)->getType())
+ return false;
+ return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
+ case Instruction::PtrToInt:
+ // PtrToInt is always a noop, as we know that the int type is pointer sized.
+ return true;
+ case Instruction::IntToPtr:
+ // We know the input is intptr_t, so this is foldable.
+ return true;
+ case Instruction::Add:
+ return true;
+ case Instruction::Mul:
+ case Instruction::Shl:
+ // Can only handle X*C and X << C.
+ return isa<ConstantInt>(I->getOperand(1));
+ case Instruction::GetElementPtr:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// MatchOperationAddr - Given an instruction or constant expr, see if we can
+/// fold the operation into the addressing mode. If so, update the addressing
+/// mode and return true, otherwise return false without modifying AddrMode.
+bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
+ unsigned Depth) {
+ // Avoid exponential behavior on extremely deep expression trees.
+ if (Depth >= 5) return false;
+
+ switch (Opcode) {
+ case Instruction::PtrToInt:
+ // PtrToInt is always a noop, as we know that the int type is pointer sized.
+ return MatchAddr(AddrInst->getOperand(0), Depth);
+ case Instruction::IntToPtr:
+ // This inttoptr is a no-op if the integer type is pointer sized.
+ if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
+ TLI.getPointerTy())
+ return MatchAddr(AddrInst->getOperand(0), Depth);
+ return false;
+ case Instruction::BitCast:
+ // BitCast is always a noop, and we can handle it as long as it is
+ // int->int or pointer->pointer (we don't want int<->fp or something).
+ if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
+ AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
+ // Don't touch identity bitcasts. These were probably put here by LSR,
+ // and we don't want to mess around with them. Assume it knows what it
+ // is doing.
+ AddrInst->getOperand(0)->getType() != AddrInst->getType())
+ return MatchAddr(AddrInst->getOperand(0), Depth);
+ return false;
+ case Instruction::Add: {
+ // Check to see if we can merge in the RHS then the LHS. If so, we win.
+ ExtAddrMode BackupAddrMode = AddrMode;
+ unsigned OldSize = AddrModeInsts.size();
+ if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
+ MatchAddr(AddrInst->getOperand(0), Depth+1))
+ return true;
+
+ // Restore the old addr mode info.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+
+ // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
+ if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
+ MatchAddr(AddrInst->getOperand(1), Depth+1))
+ return true;
+
+ // Otherwise we definitely can't merge the ADD in.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ break;
+ }
+ //case Instruction::Or:
+ // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
+ //break;
+ case Instruction::Mul:
+ case Instruction::Shl: {
+ // Can only handle X*C and X << C.
+ ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
+ if (!RHS) return false;
+ int64_t Scale = RHS->getSExtValue();
+ if (Opcode == Instruction::Shl)
+ Scale = 1LL << Scale;
+
+ return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
+ }
+ case Instruction::GetElementPtr: {
+ // Scan the GEP. We check it if it contains constant offsets and at most
+ // one variable offset.
+ int VariableOperand = -1;
+ unsigned VariableScale = 0;
+
+ int64_t ConstantOffset = 0;
+ const DataLayout *TD = TLI.getDataLayout();
+ gep_type_iterator GTI = gep_type_begin(AddrInst);
+ for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ const StructLayout *SL = TD->getStructLayout(STy);
+ unsigned Idx =
+ cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
+ ConstantOffset += SL->getElementOffset(Idx);
+ } else {
+ uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
+ ConstantOffset += CI->getSExtValue()*TypeSize;
+ } else if (TypeSize) { // Scales of zero don't do anything.
+ // We only allow one variable index at the moment.
+ if (VariableOperand != -1)
+ return false;
+
+ // Remember the variable index.
+ VariableOperand = i;
+ VariableScale = TypeSize;
+ }
+ }
+ }
+
+ // A common case is for the GEP to only do a constant offset. In this case,
+ // just add it to the disp field and check validity.
+ if (VariableOperand == -1) {
+ AddrMode.BaseOffs += ConstantOffset;
+ if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
+ // Check to see if we can fold the base pointer in too.
+ if (MatchAddr(AddrInst->getOperand(0), Depth+1))
+ return true;
+ }
+ AddrMode.BaseOffs -= ConstantOffset;
+ return false;
+ }
+
+ // Save the valid addressing mode in case we can't match.
+ ExtAddrMode BackupAddrMode = AddrMode;
+ unsigned OldSize = AddrModeInsts.size();
+
+ // See if the scale and offset amount is valid for this target.
+ AddrMode.BaseOffs += ConstantOffset;
+
+ // Match the base operand of the GEP.
+ if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
+ // If it couldn't be matched, just stuff the value in a register.
+ if (AddrMode.HasBaseReg) {
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ return false;
+ }
+ AddrMode.HasBaseReg = true;
+ AddrMode.BaseReg = AddrInst->getOperand(0);
+ }
+
+ // Match the remaining variable portion of the GEP.
+ if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
+ Depth)) {
+ // If it couldn't be matched, try stuffing the base into a register
+ // instead of matching it, and retrying the match of the scale.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ if (AddrMode.HasBaseReg)
+ return false;
+ AddrMode.HasBaseReg = true;
+ AddrMode.BaseReg = AddrInst->getOperand(0);
+ AddrMode.BaseOffs += ConstantOffset;
+ if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
+ VariableScale, Depth)) {
+ // If even that didn't work, bail.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ return false;
+ }
+ }
+
+ return true;
+ }
+ }
+ return false;
+}
+
+/// MatchAddr - If we can, try to add the value of 'Addr' into the current
+/// addressing mode. If Addr can't be added to AddrMode this returns false and
+/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
+/// or intptr_t for the target.
+///
+bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
+ // Fold in immediates if legal for the target.
+ AddrMode.BaseOffs += CI->getSExtValue();
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.BaseOffs -= CI->getSExtValue();
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
+ // If this is a global variable, try to fold it into the addressing mode.
+ if (AddrMode.BaseGV == 0) {
+ AddrMode.BaseGV = GV;
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.BaseGV = 0;
+ }
+ } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
+ ExtAddrMode BackupAddrMode = AddrMode;
+ unsigned OldSize = AddrModeInsts.size();
+
+ // Check to see if it is possible to fold this operation.
+ if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
+ // Okay, it's possible to fold this. Check to see if it is actually
+ // *profitable* to do so. We use a simple cost model to avoid increasing
+ // register pressure too much.
+ if (I->hasOneUse() ||
+ IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
+ AddrModeInsts.push_back(I);
+ return true;
+ }
+
+ // It isn't profitable to do this, roll back.
+ //cerr << "NOT FOLDING: " << *I;
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ }
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
+ if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
+ return true;
+ } else if (isa<ConstantPointerNull>(Addr)) {
+ // Null pointer gets folded without affecting the addressing mode.
+ return true;
+ }
+
+ // Worse case, the target should support [reg] addressing modes. :)
+ if (!AddrMode.HasBaseReg) {
+ AddrMode.HasBaseReg = true;
+ AddrMode.BaseReg = Addr;
+ // Still check for legality in case the target supports [imm] but not [i+r].
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.HasBaseReg = false;
+ AddrMode.BaseReg = 0;
+ }
+
+ // If the base register is already taken, see if we can do [r+r].
+ if (AddrMode.Scale == 0) {
+ AddrMode.Scale = 1;
+ AddrMode.ScaledReg = Addr;
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.Scale = 0;
+ AddrMode.ScaledReg = 0;
+ }
+ // Couldn't match.
+ return false;
+}
+
+/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
+/// inline asm call are due to memory operands. If so, return true, otherwise
+/// return false.
+static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
+ const TargetLowering &TLI) {
+ TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
+ for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
+ TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
+
+ // Compute the constraint code and ConstraintType to use.
+ TLI.ComputeConstraintToUse(OpInfo, SDValue());
+
+ // If this asm operand is our Value*, and if it isn't an indirect memory
+ // operand, we can't fold it!
+ if (OpInfo.CallOperandVal == OpVal &&
+ (OpInfo.ConstraintType != TargetLowering::C_Memory ||
+ !OpInfo.isIndirect))
+ return false;
+ }
+
+ return true;
+}
+
+/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
+/// memory use. If we find an obviously non-foldable instruction, return true.
+/// Add the ultimately found memory instructions to MemoryUses.
+static bool FindAllMemoryUses(Instruction *I,
+ SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
+ SmallPtrSet<Instruction*, 16> &ConsideredInsts,
+ const TargetLowering &TLI) {
+ // If we already considered this instruction, we're done.
+ if (!ConsideredInsts.insert(I))
+ return false;
+
+ // If this is an obviously unfoldable instruction, bail out.
+ if (!MightBeFoldableInst(I))
+ return true;
+
+ // Loop over all the uses, recursively processing them.
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+ UI != E; ++UI) {
+ User *U = *UI;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
+ MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
+ continue;
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ unsigned opNo = UI.getOperandNo();
+ if (opNo == 0) return true; // Storing addr, not into addr.
+ MemoryUses.push_back(std::make_pair(SI, opNo));
+ continue;
+ }
+
+ if (CallInst *CI = dyn_cast<CallInst>(U)) {
+ InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
+ if (!IA) return true;
+
+ // If this is a memory operand, we're cool, otherwise bail out.
+ if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
+ return true;
+ continue;
+ }
+
+ if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
+ TLI))
+ return true;
+ }
+
+ return false;
+}
+
+/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
+/// the use site that we're folding it into. If so, there is no cost to
+/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
+/// that we know are live at the instruction already.
+bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
+ Value *KnownLive2) {
+ // If Val is either of the known-live values, we know it is live!
+ if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
+ return true;
+
+ // All values other than instructions and arguments (e.g. constants) are live.
+ if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
+
+ // If Val is a constant sized alloca in the entry block, it is live, this is
+ // true because it is just a reference to the stack/frame pointer, which is
+ // live for the whole function.
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
+ if (AI->isStaticAlloca())
+ return true;
+
+ // Check to see if this value is already used in the memory instruction's
+ // block. If so, it's already live into the block at the very least, so we
+ // can reasonably fold it.
+ return Val->isUsedInBasicBlock(MemoryInst->getParent());
+}
+
+/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
+/// mode of the machine to fold the specified instruction into a load or store
+/// that ultimately uses it. However, the specified instruction has multiple
+/// uses. Given this, it may actually increase register pressure to fold it
+/// into the load. For example, consider this code:
+///
+/// X = ...
+/// Y = X+1
+/// use(Y) -> nonload/store
+/// Z = Y+1
+/// load Z
+///
+/// In this case, Y has multiple uses, and can be folded into the load of Z
+/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
+/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
+/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
+/// number of computations either.
+///
+/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
+/// X was live across 'load Z' for other reasons, we actually *would* want to
+/// fold the addressing mode in the Z case. This would make Y die earlier.
+bool AddressingModeMatcher::
+IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
+ ExtAddrMode &AMAfter) {
+ if (IgnoreProfitability) return true;
+
+ // AMBefore is the addressing mode before this instruction was folded into it,
+ // and AMAfter is the addressing mode after the instruction was folded. Get
+ // the set of registers referenced by AMAfter and subtract out those
+ // referenced by AMBefore: this is the set of values which folding in this
+ // address extends the lifetime of.
+ //
+ // Note that there are only two potential values being referenced here,
+ // BaseReg and ScaleReg (global addresses are always available, as are any
+ // folded immediates).
+ Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
+
+ // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
+ // lifetime wasn't extended by adding this instruction.
+ if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
+ BaseReg = 0;
+ if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
+ ScaledReg = 0;
+
+ // If folding this instruction (and it's subexprs) didn't extend any live
+ // ranges, we're ok with it.
+ if (BaseReg == 0 && ScaledReg == 0)
+ return true;
+
+ // If all uses of this instruction are ultimately load/store/inlineasm's,
+ // check to see if their addressing modes will include this instruction. If
+ // so, we can fold it into all uses, so it doesn't matter if it has multiple
+ // uses.
+ SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
+ SmallPtrSet<Instruction*, 16> ConsideredInsts;
+ if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
+ return false; // Has a non-memory, non-foldable use!
+
+ // Now that we know that all uses of this instruction are part of a chain of
+ // computation involving only operations that could theoretically be folded
+ // into a memory use, loop over each of these uses and see if they could
+ // *actually* fold the instruction.
+ SmallVector<Instruction*, 32> MatchedAddrModeInsts;
+ for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
+ Instruction *User = MemoryUses[i].first;
+ unsigned OpNo = MemoryUses[i].second;
+
+ // Get the access type of this use. If the use isn't a pointer, we don't
+ // know what it accesses.
+ Value *Address = User->getOperand(OpNo);
+ if (!Address->getType()->isPointerTy())
+ return false;
+ Type *AddressAccessTy =
+ cast<PointerType>(Address->getType())->getElementType();
+
+ // Do a match against the root of this address, ignoring profitability. This
+ // will tell us if the addressing mode for the memory operation will
+ // *actually* cover the shared instruction.
+ ExtAddrMode Result;
+ AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
+ MemoryInst, Result);
+ Matcher.IgnoreProfitability = true;
+ bool Success = Matcher.MatchAddr(Address, 0);
+ (void)Success; assert(Success && "Couldn't select *anything*?");
+
+ // If the match didn't cover I, then it won't be shared by it.
+ if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
+ I) == MatchedAddrModeInsts.end())
+ return false;
+
+ MatchedAddrModeInsts.clear();
+ }
+
+ return true;
+}
+
+} // end anonymous namespace
+
/// IsNonLocalValue - Return true if the specified values are defined in a
/// different basic block than BB.
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
@@ -927,7 +1572,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
<< *MemoryInst);
Type *IntPtrTy =
- TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
+ TLI->getDataLayout()->getIntPtrType(AccessTy->getContext());
Value *Result = 0;
@@ -1313,9 +1958,6 @@ bool CodeGenPrepare::OptimizeInst(Instruction *I) {
if (CallInst *CI = dyn_cast<CallInst>(I))
return OptimizeCallInst(CI);
- if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
- return DupRetToEnableTailCallOpts(RI);
-
if (SelectInst *SI = dyn_cast<SelectInst>(I))
return OptimizeSelectInst(SI);
@@ -1330,9 +1972,11 @@ bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
bool MadeChange = false;
CurInstIterator = BB.begin();
- for (BasicBlock::iterator E = BB.end(); CurInstIterator != E; )
+ while (CurInstIterator != BB.end())
MadeChange |= OptimizeInst(CurInstIterator++);
+ MadeChange |= DupRetToEnableTailCallOpts(&BB);
+
return MadeChange;
}
diff --git a/lib/Transforms/Scalar/ConstantProp.cpp b/lib/Transforms/Scalar/ConstantProp.cpp
index 5430f62..d5a96ec 100644
--- a/lib/Transforms/Scalar/ConstantProp.cpp
+++ b/lib/Transforms/Scalar/ConstantProp.cpp
@@ -20,14 +20,14 @@
#define DEBUG_TYPE "constprop"
#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Constant.h"
-#include "llvm/Instruction.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instruction.h"
#include "llvm/Pass.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Support/InstIterator.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Target/TargetLibraryInfo.h"
#include <set>
using namespace llvm;
@@ -67,7 +67,7 @@ bool ConstantPropagation::runOnFunction(Function &F) {
WorkList.insert(&*i);
}
bool Changed = false;
- TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
while (!WorkList.empty()) {
diff --git a/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp b/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
index 9b0aadb..4c3631b 100644
--- a/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
+++ b/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
@@ -13,15 +13,15 @@
#define DEBUG_TYPE "correlated-value-propagation"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumPhis, "Number of phis propagated");
@@ -235,6 +235,11 @@ bool CorrelatedValuePropagation::processSwitch(SwitchInst *SI) {
// This case never fires - remove it.
CI.getCaseSuccessor()->removePredecessor(BB);
SI->removeCase(CI); // Does not invalidate the iterator.
+
+ // The condition can be modified by removePredecessor's PHI simplification
+ // logic.
+ Cond = SI->getCondition();
+
++NumDeadCases;
Changed = true;
} else if (State == LazyValueInfo::True) {
diff --git a/lib/Transforms/Scalar/DCE.cpp b/lib/Transforms/Scalar/DCE.cpp
index 086f0a1..e8a090a 100644
--- a/lib/Transforms/Scalar/DCE.cpp
+++ b/lib/Transforms/Scalar/DCE.cpp
@@ -18,12 +18,12 @@
#define DEBUG_TYPE "dce"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Instruction.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Instruction.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(DIEEliminated, "Number of insts removed by DIE pass");
@@ -118,13 +118,8 @@ bool DCE::runOnFunction(Function &F) {
I->eraseFromParent();
// Remove the instruction from the worklist if it still exists in it.
- for (std::vector<Instruction*>::iterator WI = WorkList.begin();
- WI != WorkList.end(); ) {
- if (*WI == I)
- WI = WorkList.erase(WI);
- else
- ++WI;
- }
+ WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
+ WorkList.end());
MadeChange = true;
++DCEEliminated;
diff --git a/lib/Transforms/Scalar/DeadStoreElimination.cpp b/lib/Transforms/Scalar/DeadStoreElimination.cpp
index 1ff4329..fe3acbf 100644
--- a/lib/Transforms/Scalar/DeadStoreElimination.cpp
+++ b/lib/Transforms/Scalar/DeadStoreElimination.cpp
@@ -17,24 +17,25 @@
#define DEBUG_TYPE "dse"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumFastStores, "Number of stores deleted");
@@ -45,6 +46,7 @@ namespace {
AliasAnalysis *AA;
MemoryDependenceAnalysis *MD;
DominatorTree *DT;
+ const TargetLibraryInfo *TLI;
static char ID; // Pass identification, replacement for typeid
DSE() : FunctionPass(ID), AA(0), MD(0), DT(0) {
@@ -55,6 +57,7 @@ namespace {
AA = &getAnalysis<AliasAnalysis>();
MD = &getAnalysis<MemoryDependenceAnalysis>();
DT = &getAnalysis<DominatorTree>();
+ TLI = AA->getTargetLibraryInfo();
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
@@ -144,7 +147,7 @@ static void DeleteDeadInstruction(Instruction *I,
/// hasMemoryWrite - Does this instruction write some memory? This only returns
/// true for things that we can analyze with other helpers below.
-static bool hasMemoryWrite(Instruction *I) {
+static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo *TLI) {
if (isa<StoreInst>(I))
return true;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
@@ -159,6 +162,26 @@ static bool hasMemoryWrite(Instruction *I) {
return true;
}
}
+ if (CallSite CS = I) {
+ if (Function *F = CS.getCalledFunction()) {
+ if (TLI && TLI->has(LibFunc::strcpy) &&
+ F->getName() == TLI->getName(LibFunc::strcpy)) {
+ return true;
+ }
+ if (TLI && TLI->has(LibFunc::strncpy) &&
+ F->getName() == TLI->getName(LibFunc::strncpy)) {
+ return true;
+ }
+ if (TLI && TLI->has(LibFunc::strcat) &&
+ F->getName() == TLI->getName(LibFunc::strcat)) {
+ return true;
+ }
+ if (TLI && TLI->has(LibFunc::strncat) &&
+ F->getName() == TLI->getName(LibFunc::strncat)) {
+ return true;
+ }
+ }
+ }
return false;
}
@@ -176,7 +199,7 @@ getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
// If we don't have target data around, an unknown size in Location means
// that we should use the size of the pointee type. This isn't valid for
// memset/memcpy, which writes more than an i8.
- if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
+ if (Loc.Size == AliasAnalysis::UnknownSize && AA.getDataLayout() == 0)
return AliasAnalysis::Location();
return Loc;
}
@@ -190,7 +213,7 @@ getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
// If we don't have target data around, an unknown size in Location means
// that we should use the size of the pointee type. This isn't valid for
// init.trampoline, which writes more than an i8.
- if (AA.getTargetData() == 0) return AliasAnalysis::Location();
+ if (AA.getDataLayout() == 0) return AliasAnalysis::Location();
// FIXME: We don't know the size of the trampoline, so we can't really
// handle it here.
@@ -206,7 +229,8 @@ getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
/// instruction if any.
static AliasAnalysis::Location
getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
- assert(hasMemoryWrite(Inst) && "Unknown instruction case");
+ assert(hasMemoryWrite(Inst, AA.getTargetLibraryInfo()) &&
+ "Unknown instruction case");
// The only instructions that both read and write are the mem transfer
// instructions (memcpy/memmove).
@@ -223,23 +247,29 @@ static bool isRemovable(Instruction *I) {
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->isUnordered();
- IntrinsicInst *II = cast<IntrinsicInst>(I);
- switch (II->getIntrinsicID()) {
- default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
- case Intrinsic::lifetime_end:
- // Never remove dead lifetime_end's, e.g. because it is followed by a
- // free.
- return false;
- case Intrinsic::init_trampoline:
- // Always safe to remove init_trampoline.
- return true;
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
+ case Intrinsic::lifetime_end:
+ // Never remove dead lifetime_end's, e.g. because it is followed by a
+ // free.
+ return false;
+ case Intrinsic::init_trampoline:
+ // Always safe to remove init_trampoline.
+ return true;
- case Intrinsic::memset:
- case Intrinsic::memmove:
- case Intrinsic::memcpy:
- // Don't remove volatile memory intrinsics.
- return !cast<MemIntrinsic>(II)->isVolatile();
+ case Intrinsic::memset:
+ case Intrinsic::memmove:
+ case Intrinsic::memcpy:
+ // Don't remove volatile memory intrinsics.
+ return !cast<MemIntrinsic>(II)->isVolatile();
+ }
}
+
+ if (CallSite CS = I)
+ return CS.getInstruction()->use_empty();
+
+ return false;
}
@@ -250,14 +280,19 @@ static bool isShortenable(Instruction *I) {
if (isa<StoreInst>(I))
return false;
- IntrinsicInst *II = cast<IntrinsicInst>(I);
- switch (II->getIntrinsicID()) {
- default: return false;
- case Intrinsic::memset:
- case Intrinsic::memcpy:
- // Do shorten memory intrinsics.
- return true;
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default: return false;
+ case Intrinsic::memset:
+ case Intrinsic::memcpy:
+ // Do shorten memory intrinsics.
+ return true;
+ }
}
+
+ // Don't shorten libcalls calls for now.
+
+ return false;
}
/// getStoredPointerOperand - Return the pointer that is being written to.
@@ -267,17 +302,23 @@ static Value *getStoredPointerOperand(Instruction *I) {
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
return MI->getDest();
- IntrinsicInst *II = cast<IntrinsicInst>(I);
- switch (II->getIntrinsicID()) {
- default: llvm_unreachable("Unexpected intrinsic!");
- case Intrinsic::init_trampoline:
- return II->getArgOperand(0);
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default: llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::init_trampoline:
+ return II->getArgOperand(0);
+ }
}
+
+ CallSite CS = I;
+ // All the supported functions so far happen to have dest as their first
+ // argument.
+ return CS.getArgument(0);
}
static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) {
uint64_t Size;
- if (getObjectSize(V, Size, AA.getTargetData(), AA.getTargetLibraryInfo()))
+ if (getObjectSize(V, Size, AA.getDataLayout(), AA.getTargetLibraryInfo()))
return Size;
return AliasAnalysis::UnknownSize;
}
@@ -310,10 +351,10 @@ static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
// comparison.
if (Later.Size == AliasAnalysis::UnknownSize ||
Earlier.Size == AliasAnalysis::UnknownSize) {
- // If we have no TargetData information around, then the size of the store
+ // If we have no DataLayout information around, then the size of the store
// is inferrable from the pointee type. If they are the same type, then
// we know that the store is safe.
- if (AA.getTargetData() == 0 &&
+ if (AA.getDataLayout() == 0 &&
Later.Ptr->getType() == Earlier.Ptr->getType())
return OverwriteComplete;
@@ -329,13 +370,13 @@ static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
// larger than the earlier one.
if (Later.Size == AliasAnalysis::UnknownSize ||
Earlier.Size == AliasAnalysis::UnknownSize ||
- AA.getTargetData() == 0)
+ AA.getDataLayout() == 0)
return OverwriteUnknown;
// Check to see if the later store is to the entire object (either a global,
// an alloca, or a byval argument). If so, then it clearly overwrites any
// other store to the same object.
- const TargetData &TD = *AA.getTargetData();
+ const DataLayout &TD = *AA.getDataLayout();
const Value *UO1 = GetUnderlyingObject(P1, &TD),
*UO2 = GetUnderlyingObject(P2, &TD);
@@ -455,13 +496,13 @@ bool DSE::runOnBasicBlock(BasicBlock &BB) {
Instruction *Inst = BBI++;
// Handle 'free' calls specially.
- if (CallInst *F = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
+ if (CallInst *F = isFreeCall(Inst, TLI)) {
MadeChange |= HandleFree(F);
continue;
}
// If we find something that writes memory, get its memory dependence.
- if (!hasMemoryWrite(Inst))
+ if (!hasMemoryWrite(Inst, TLI))
continue;
MemDepResult InstDep = MD->getDependency(Inst);
@@ -484,7 +525,7 @@ bool DSE::runOnBasicBlock(BasicBlock &BB) {
// in case we need it.
WeakVH NextInst(BBI);
- DeleteDeadInstruction(SI, *MD, AA->getTargetLibraryInfo());
+ DeleteDeadInstruction(SI, *MD, TLI);
if (NextInst == 0) // Next instruction deleted.
BBI = BB.begin();
@@ -531,7 +572,7 @@ bool DSE::runOnBasicBlock(BasicBlock &BB) {
<< *DepWrite << "\n KILLER: " << *Inst << '\n');
// Delete the store and now-dead instructions that feed it.
- DeleteDeadInstruction(DepWrite, *MD, AA->getTargetLibraryInfo());
+ DeleteDeadInstruction(DepWrite, *MD, TLI);
++NumFastStores;
MadeChange = true;
@@ -628,7 +669,7 @@ bool DSE::HandleFree(CallInst *F) {
MemDepResult Dep = MD->getPointerDependencyFrom(Loc, false, InstPt, BB);
while (Dep.isDef() || Dep.isClobber()) {
Instruction *Dependency = Dep.getInst();
- if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
+ if (!hasMemoryWrite(Dependency, TLI) || !isRemovable(Dependency))
break;
Value *DepPointer =
@@ -641,7 +682,7 @@ bool DSE::HandleFree(CallInst *F) {
Instruction *Next = llvm::next(BasicBlock::iterator(Dependency));
// DCE instructions only used to calculate that store
- DeleteDeadInstruction(Dependency, *MD, AA->getTargetLibraryInfo());
+ DeleteDeadInstruction(Dependency, *MD, TLI);
++NumFastStores;
MadeChange = true;
@@ -660,6 +701,22 @@ bool DSE::HandleFree(CallInst *F) {
return MadeChange;
}
+namespace {
+ struct CouldRef {
+ typedef Value *argument_type;
+ const CallSite CS;
+ AliasAnalysis *AA;
+
+ bool operator()(Value *I) {
+ // See if the call site touches the value.
+ AliasAnalysis::ModRefResult A =
+ AA->getModRefInfo(CS, I, getPointerSize(I, *AA));
+
+ return A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref;
+ }
+ };
+}
+
/// handleEndBlock - Remove dead stores to stack-allocated locations in the
/// function end block. Ex:
/// %A = alloca i32
@@ -681,8 +738,7 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
// Okay, so these are dead heap objects, but if the pointer never escapes
// then it's leaked by this function anyways.
- else if (isAllocLikeFn(I, AA->getTargetLibraryInfo()) &&
- !PointerMayBeCaptured(I, true, true))
+ else if (isAllocLikeFn(I, TLI) && !PointerMayBeCaptured(I, true, true))
DeadStackObjects.insert(I);
}
@@ -698,7 +754,7 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
--BBI;
// If we find a store, check to see if it points into a dead stack value.
- if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
+ if (hasMemoryWrite(BBI, TLI) && isRemovable(BBI)) {
// See through pointer-to-pointer bitcasts
SmallVector<Value *, 4> Pointers;
GetUnderlyingObjects(getStoredPointerOperand(BBI), Pointers);
@@ -726,8 +782,7 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
dbgs() << '\n');
// DCE instructions only used to calculate that store.
- DeleteDeadInstruction(Dead, *MD, AA->getTargetLibraryInfo(),
- &DeadStackObjects);
+ DeleteDeadInstruction(Dead, *MD, TLI, &DeadStackObjects);
++NumFastStores;
MadeChange = true;
continue;
@@ -735,10 +790,9 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
}
// Remove any dead non-memory-mutating instructions.
- if (isInstructionTriviallyDead(BBI, AA->getTargetLibraryInfo())) {
+ if (isInstructionTriviallyDead(BBI, TLI)) {
Instruction *Inst = BBI++;
- DeleteDeadInstruction(Inst, *MD, AA->getTargetLibraryInfo(),
- &DeadStackObjects);
+ DeleteDeadInstruction(Inst, *MD, TLI, &DeadStackObjects);
++NumFastOther;
MadeChange = true;
continue;
@@ -754,7 +808,7 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
if (CallSite CS = cast<Value>(BBI)) {
// Remove allocation function calls from the list of dead stack objects;
// there can't be any references before the definition.
- if (isAllocLikeFn(BBI, AA->getTargetLibraryInfo()))
+ if (isAllocLikeFn(BBI, TLI))
DeadStackObjects.remove(BBI);
// If this call does not access memory, it can't be loading any of our
@@ -764,26 +818,14 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
// If the call might load from any of our allocas, then any store above
// the call is live.
- SmallVector<Value*, 8> LiveAllocas;
- for (SmallSetVector<Value*, 16>::iterator I = DeadStackObjects.begin(),
- E = DeadStackObjects.end(); I != E; ++I) {
- // See if the call site touches it.
- AliasAnalysis::ModRefResult A =
- AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
-
- if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
- LiveAllocas.push_back(*I);
- }
+ CouldRef Pred = { CS, AA };
+ DeadStackObjects.remove_if(Pred);
// If all of the allocas were clobbered by the call then we're not going
// to find anything else to process.
- if (DeadStackObjects.size() == LiveAllocas.size())
+ if (DeadStackObjects.empty())
break;
- for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
- E = LiveAllocas.end(); I != E; ++I)
- DeadStackObjects.remove(*I);
-
continue;
}
@@ -820,6 +862,20 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
return MadeChange;
}
+namespace {
+ struct CouldAlias {
+ typedef Value *argument_type;
+ const AliasAnalysis::Location &LoadedLoc;
+ AliasAnalysis *AA;
+
+ bool operator()(Value *I) {
+ // See if the loaded location could alias the stack location.
+ AliasAnalysis::Location StackLoc(I, getPointerSize(I, *AA));
+ return !AA->isNoAlias(StackLoc, LoadedLoc);
+ }
+ };
+}
+
/// RemoveAccessedObjects - Check to see if the specified location may alias any
/// of the stack objects in the DeadStackObjects set. If so, they become live
/// because the location is being loaded.
@@ -838,16 +894,7 @@ void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
return;
}
- SmallVector<Value*, 16> NowLive;
- for (SmallSetVector<Value*, 16>::iterator I = DeadStackObjects.begin(),
- E = DeadStackObjects.end(); I != E; ++I) {
- // See if the loaded location could alias the stack location.
- AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
- if (!AA->isNoAlias(StackLoc, LoadedLoc))
- NowLive.push_back(*I);
- }
-
- for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
- I != E; ++I)
- DeadStackObjects.remove(*I);
+ // Remove objects that could alias LoadedLoc.
+ CouldAlias Pred = { LoadedLoc, AA };
+ DeadStackObjects.remove_if(Pred);
}
diff --git a/lib/Transforms/Scalar/EarlyCSE.cpp b/lib/Transforms/Scalar/EarlyCSE.cpp
index 2627113..3c08634 100644
--- a/lib/Transforms/Scalar/EarlyCSE.cpp
+++ b/lib/Transforms/Scalar/EarlyCSE.cpp
@@ -14,17 +14,18 @@
#define DEBUG_TYPE "early-cse"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/ScopedHashTable.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
-#include "llvm/ADT/ScopedHashTable.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <deque>
using namespace llvm;
@@ -90,35 +91,56 @@ template<> struct DenseMapInfo<SimpleValue> {
unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
Instruction *Inst = Val.Inst;
-
// Hash in all of the operands as pointers.
- unsigned Res = 0;
- for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
- Res ^= getHash(Inst->getOperand(i)) << (i & 0xF);
+ if (BinaryOperator* BinOp = dyn_cast<BinaryOperator>(Inst)) {
+ Value *LHS = BinOp->getOperand(0);
+ Value *RHS = BinOp->getOperand(1);
+ if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
+ std::swap(LHS, RHS);
+
+ if (isa<OverflowingBinaryOperator>(BinOp)) {
+ // Hash the overflow behavior
+ unsigned Overflow =
+ BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
+ BinOp->hasNoUnsignedWrap() * OverflowingBinaryOperator::NoUnsignedWrap;
+ return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
+ }
- if (CastInst *CI = dyn_cast<CastInst>(Inst))
- Res ^= getHash(CI->getType());
- else if (CmpInst *CI = dyn_cast<CmpInst>(Inst))
- Res ^= CI->getPredicate();
- else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) {
- for (ExtractValueInst::idx_iterator I = EVI->idx_begin(),
- E = EVI->idx_end(); I != E; ++I)
- Res ^= *I;
- } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) {
- for (InsertValueInst::idx_iterator I = IVI->idx_begin(),
- E = IVI->idx_end(); I != E; ++I)
- Res ^= *I;
- } else {
- // nothing extra to hash in.
- assert((isa<CallInst>(Inst) ||
- isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
- isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
- isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) &&
- "Invalid/unknown instruction");
+ return hash_combine(BinOp->getOpcode(), LHS, RHS);
}
+ if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
+ Value *LHS = CI->getOperand(0);
+ Value *RHS = CI->getOperand(1);
+ CmpInst::Predicate Pred = CI->getPredicate();
+ if (Inst->getOperand(0) > Inst->getOperand(1)) {
+ std::swap(LHS, RHS);
+ Pred = CI->getSwappedPredicate();
+ }
+ return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
+ }
+
+ if (CastInst *CI = dyn_cast<CastInst>(Inst))
+ return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
+
+ if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
+ return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
+ hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
+
+ if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
+ return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
+ IVI->getOperand(1),
+ hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
+
+ assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
+ isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
+ isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
+ isa<ShuffleVectorInst>(Inst)) && "Invalid/unknown instruction");
+
// Mix in the opcode.
- return (Res << 1) ^ Inst->getOpcode();
+ return hash_combine(Inst->getOpcode(),
+ hash_combine_range(Inst->value_op_begin(),
+ Inst->value_op_end()));
}
bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
@@ -128,7 +150,41 @@ bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
return LHSI == RHSI;
if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
- return LHSI->isIdenticalTo(RHSI);
+ if (LHSI->isIdenticalTo(RHSI)) return true;
+
+ // If we're not strictly identical, we still might be a commutable instruction
+ if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
+ if (!LHSBinOp->isCommutative())
+ return false;
+
+ assert(isa<BinaryOperator>(RHSI)
+ && "same opcode, but different instruction type?");
+ BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
+
+ // Check overflow attributes
+ if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
+ assert(isa<OverflowingBinaryOperator>(RHSBinOp)
+ && "same opcode, but different operator type?");
+ if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
+ LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
+ return false;
+ }
+
+ // Commuted equality
+ return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
+ LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
+ }
+ if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
+ assert(isa<CmpInst>(RHSI)
+ && "same opcode, but different instruction type?");
+ CmpInst *RHSCmp = cast<CmpInst>(RHSI);
+ // Commuted equality
+ return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
+ LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
+ LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
+ }
+
+ return false;
}
//===----------------------------------------------------------------------===//
@@ -216,7 +272,7 @@ namespace {
/// cases.
class EarlyCSE : public FunctionPass {
public:
- const TargetData *TD;
+ const DataLayout *TD;
const TargetLibraryInfo *TLI;
DominatorTree *DT;
typedef RecyclingAllocator<BumpPtrAllocator,
@@ -274,7 +330,8 @@ private:
CallScope(*availableCalls) {}
private:
- NodeScope(const NodeScope&); // DO NOT IMPLEMENT
+ NodeScope(const NodeScope&) LLVM_DELETED_FUNCTION;
+ void operator=(const NodeScope&) LLVM_DELETED_FUNCTION;
ScopedHTType::ScopeTy Scope;
LoadHTType::ScopeTy LoadScope;
@@ -313,7 +370,8 @@ private:
void process() { Processed = true; }
private:
- StackNode(const StackNode&); // DO NOT IMPLEMENT
+ StackNode(const StackNode&) LLVM_DELETED_FUNCTION;
+ void operator=(const StackNode&) LLVM_DELETED_FUNCTION;
// Members.
unsigned CurrentGeneration;
@@ -506,7 +564,7 @@ bool EarlyCSE::processNode(DomTreeNode *Node) {
bool EarlyCSE::runOnFunction(Function &F) {
std::deque<StackNode *> nodesToProcess;
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
DT = &getAnalysis<DominatorTree>();
diff --git a/lib/Transforms/Scalar/GVN.cpp b/lib/Transforms/Scalar/GVN.cpp
index 16ae6ad..14201b9 100644
--- a/lib/Transforms/Scalar/GVN.cpp
+++ b/lib/Transforms/Scalar/GVN.cpp
@@ -17,11 +17,6 @@
#define DEBUG_TYPE "gvn"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
@@ -37,11 +32,16 @@
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/PatternMatch.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
@@ -503,7 +503,7 @@ namespace {
bool NoLoads;
MemoryDependenceAnalysis *MD;
DominatorTree *DT;
- const TargetData *TD;
+ const DataLayout *TD;
const TargetLibraryInfo *TLI;
ValueTable VN;
@@ -535,7 +535,7 @@ namespace {
InstrsToErase.push_back(I);
}
- const TargetData *getTargetData() const { return TD; }
+ const DataLayout *getDataLayout() const { return TD; }
DominatorTree &getDominatorTree() const { return *DT; }
AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
MemoryDependenceAnalysis &getMemDep() const { return *MD; }
@@ -632,7 +632,7 @@ INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
-#ifndef NDEBUG
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void GVN::dump(DenseMap<uint32_t, Value*>& d) {
errs() << "{\n";
for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
@@ -730,7 +730,7 @@ SpeculationFailure:
/// CoerceAvailableValueToLoadType will succeed.
static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
Type *LoadTy,
- const TargetData &TD) {
+ const DataLayout &TD) {
// If the loaded or stored value is an first class array or struct, don't try
// to transform them. We need to be able to bitcast to integer.
if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
@@ -746,7 +746,6 @@ static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
return true;
}
-
/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
/// then a load from a must-aliased pointer of a different type, try to coerce
/// the stored value. LoadedTy is the type of the load we want to replace and
@@ -756,7 +755,7 @@ static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
Type *LoadedTy,
Instruction *InsertPt,
- const TargetData &TD) {
+ const DataLayout &TD) {
if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
return 0;
@@ -769,24 +768,25 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
// If the store and reload are the same size, we can always reuse it.
if (StoreSize == LoadSize) {
// Pointer to Pointer -> use bitcast.
- if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
+ if (StoredValTy->getScalarType()->isPointerTy() &&
+ LoadedTy->getScalarType()->isPointerTy())
return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
// Convert source pointers to integers, which can be bitcast.
- if (StoredValTy->isPointerTy()) {
- StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
+ if (StoredValTy->getScalarType()->isPointerTy()) {
+ StoredValTy = TD.getIntPtrType(StoredValTy);
StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
}
Type *TypeToCastTo = LoadedTy;
- if (TypeToCastTo->isPointerTy())
- TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
+ if (TypeToCastTo->getScalarType()->isPointerTy())
+ TypeToCastTo = TD.getIntPtrType(TypeToCastTo);
if (StoredValTy != TypeToCastTo)
StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
// Cast to pointer if the load needs a pointer type.
- if (LoadedTy->isPointerTy())
+ if (LoadedTy->getScalarType()->isPointerTy())
StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
return StoredVal;
@@ -798,8 +798,8 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
// Convert source pointers to integers, which can be manipulated.
- if (StoredValTy->isPointerTy()) {
- StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
+ if (StoredValTy->getScalarType()->isPointerTy()) {
+ StoredValTy = TD.getIntPtrType(StoredValTy);
StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
}
@@ -824,7 +824,7 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
return StoredVal;
// If the result is a pointer, inttoptr.
- if (LoadedTy->isPointerTy())
+ if (LoadedTy->getScalarType()->isPointerTy())
return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
// Otherwise, bitcast.
@@ -842,7 +842,7 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
Value *WritePtr,
uint64_t WriteSizeInBits,
- const TargetData &TD) {
+ const DataLayout &TD) {
// If the loaded or stored value is a first class array or struct, don't try
// to transform them. We need to be able to bitcast to integer.
if (LoadTy->isStructTy() || LoadTy->isArrayTy())
@@ -915,7 +915,7 @@ static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
/// memdep query of a load that ends up being a clobbering store.
static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
StoreInst *DepSI,
- const TargetData &TD) {
+ const DataLayout &TD) {
// Cannot handle reading from store of first-class aggregate yet.
if (DepSI->getValueOperand()->getType()->isStructTy() ||
DepSI->getValueOperand()->getType()->isArrayTy())
@@ -931,7 +931,7 @@ static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
/// memdep query of a load that ends up being clobbered by another load. See if
/// the other load can feed into the second load.
static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
- LoadInst *DepLI, const TargetData &TD){
+ LoadInst *DepLI, const DataLayout &TD){
// Cannot handle reading from store of first-class aggregate yet.
if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
return -1;
@@ -959,7 +959,7 @@ static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
MemIntrinsic *MI,
- const TargetData &TD) {
+ const DataLayout &TD) {
// If the mem operation is a non-constant size, we can't handle it.
ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
if (SizeCst == 0) return -1;
@@ -1009,7 +1009,7 @@ static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
/// before we give up.
static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
Type *LoadTy,
- Instruction *InsertPt, const TargetData &TD){
+ Instruction *InsertPt, const DataLayout &TD){
LLVMContext &Ctx = SrcVal->getType()->getContext();
uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
@@ -1019,8 +1019,9 @@ static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
// Compute which bits of the stored value are being used by the load. Convert
// to an integer type to start with.
- if (SrcVal->getType()->isPointerTy())
- SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
+ if (SrcVal->getType()->getScalarType()->isPointerTy())
+ SrcVal = Builder.CreatePtrToInt(SrcVal,
+ TD.getIntPtrType(SrcVal->getType()));
if (!SrcVal->getType()->isIntegerTy())
SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
@@ -1048,7 +1049,7 @@ static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
Type *LoadTy, Instruction *InsertPt,
GVN &gvn) {
- const TargetData &TD = *gvn.getTargetData();
+ const DataLayout &TD = *gvn.getDataLayout();
// If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
// widen SrcVal out to a larger load.
unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
@@ -1107,7 +1108,7 @@ static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
/// memdep query of a load that ends up being a clobbering mem intrinsic.
static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
Type *LoadTy, Instruction *InsertPt,
- const TargetData &TD){
+ const DataLayout &TD){
LLVMContext &Ctx = LoadTy->getContext();
uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
@@ -1231,7 +1232,7 @@ struct AvailableValueInBlock {
if (isSimpleValue()) {
Res = getSimpleValue();
if (Res->getType() != LoadTy) {
- const TargetData *TD = gvn.getTargetData();
+ const DataLayout *TD = gvn.getDataLayout();
assert(TD && "Need target data to handle type mismatch case");
Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
*TD);
@@ -1253,7 +1254,7 @@ struct AvailableValueInBlock {
<< *Res << '\n' << "\n\n\n");
}
} else {
- const TargetData *TD = gvn.getTargetData();
+ const DataLayout *TD = gvn.getDataLayout();
assert(TD && "Need target data to handle type mismatch case");
Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
LoadTy, BB->getTerminator(), *TD);
@@ -1301,7 +1302,7 @@ static Value *ConstructSSAForLoadSet(LoadInst *LI,
Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
// If new PHI nodes were created, notify alias analysis.
- if (V->getType()->isPointerTy()) {
+ if (V->getType()->getScalarType()->isPointerTy()) {
AliasAnalysis *AA = gvn.getAliasAnalysis();
for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
@@ -1498,7 +1499,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI) {
if (isa<PHINode>(V))
V->takeName(LI);
- if (V->getType()->isPointerTy())
+ if (V->getType()->getScalarType()->isPointerTy())
MD->invalidateCachedPointerInfo(V);
markInstructionForDeletion(LI);
++NumGVNLoad;
@@ -1730,7 +1731,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI) {
LI->replaceAllUsesWith(V);
if (isa<PHINode>(V))
V->takeName(LI);
- if (V->getType()->isPointerTy())
+ if (V->getType()->getScalarType()->isPointerTy())
MD->invalidateCachedPointerInfo(V);
markInstructionForDeletion(LI);
++NumPRELoad;
@@ -1857,7 +1858,7 @@ bool GVN::processLoad(LoadInst *L) {
// Replace the load!
L->replaceAllUsesWith(AvailVal);
- if (AvailVal->getType()->isPointerTy())
+ if (AvailVal->getType()->getScalarType()->isPointerTy())
MD->invalidateCachedPointerInfo(AvailVal);
markInstructionForDeletion(L);
++NumGVNLoad;
@@ -1914,7 +1915,7 @@ bool GVN::processLoad(LoadInst *L) {
// Remove it!
L->replaceAllUsesWith(StoredVal);
- if (StoredVal->getType()->isPointerTy())
+ if (StoredVal->getType()->getScalarType()->isPointerTy())
MD->invalidateCachedPointerInfo(StoredVal);
markInstructionForDeletion(L);
++NumGVNLoad;
@@ -1943,7 +1944,7 @@ bool GVN::processLoad(LoadInst *L) {
// Remove it!
patchAndReplaceAllUsesWith(AvailableVal, L);
- if (DepLI->getType()->isPointerTy())
+ if (DepLI->getType()->getScalarType()->isPointerTy())
MD->invalidateCachedPointerInfo(DepLI);
markInstructionForDeletion(L);
++NumGVNLoad;
@@ -2184,7 +2185,7 @@ bool GVN::processInstruction(Instruction *I) {
// "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
I->replaceAllUsesWith(V);
- if (MD && V->getType()->isPointerTy())
+ if (MD && V->getType()->getScalarType()->isPointerTy())
MD->invalidateCachedPointerInfo(V);
markInstructionForDeletion(I);
++NumGVNSimpl;
@@ -2284,7 +2285,7 @@ bool GVN::processInstruction(Instruction *I) {
// Remove it!
patchAndReplaceAllUsesWith(repl, I);
- if (MD && repl->getType()->isPointerTy())
+ if (MD && repl->getType()->getScalarType()->isPointerTy())
MD->invalidateCachedPointerInfo(repl);
markInstructionForDeletion(I);
return true;
@@ -2295,7 +2296,7 @@ bool GVN::runOnFunction(Function& F) {
if (!NoLoads)
MD = &getAnalysis<MemoryDependenceAnalysis>();
DT = &getAnalysis<DominatorTree>();
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
VN.setMemDep(MD);
@@ -2532,7 +2533,7 @@ bool GVN::performPRE(Function &F) {
addToLeaderTable(ValNo, Phi, CurrentBlock);
Phi->setDebugLoc(CurInst->getDebugLoc());
CurInst->replaceAllUsesWith(Phi);
- if (Phi->getType()->isPointerTy()) {
+ if (Phi->getType()->getScalarType()->isPointerTy()) {
// Because we have added a PHI-use of the pointer value, it has now
// "escaped" from alias analysis' perspective. We need to inform
// AA of this.
diff --git a/lib/Transforms/Scalar/GlobalMerge.cpp b/lib/Transforms/Scalar/GlobalMerge.cpp
index b36a3cb..1601a8d 100644
--- a/lib/Transforms/Scalar/GlobalMerge.cpp
+++ b/lib/Transforms/Scalar/GlobalMerge.cpp
@@ -53,19 +53,19 @@
#define DEBUG_TYPE "global-merge"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Attributes.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumMerged , "Number of globals merged");
@@ -76,7 +76,7 @@ namespace {
const TargetLowering *TLI;
bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
- Module &M, bool isConst) const;
+ Module &M, bool isConst, unsigned AddrSpace) const;
public:
static char ID; // Pass identification, replacement for typeid.
@@ -98,9 +98,9 @@ namespace {
}
struct GlobalCmp {
- const TargetData *TD;
+ const DataLayout *TD;
- GlobalCmp(const TargetData *td) : TD(td) { }
+ GlobalCmp(const DataLayout *td) : TD(td) { }
bool operator()(const GlobalVariable *GV1, const GlobalVariable *GV2) {
Type *Ty1 = cast<PointerType>(GV1->getType())->getElementType();
@@ -118,8 +118,8 @@ INITIALIZE_PASS(GlobalMerge, "global-merge",
bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
- Module &M, bool isConst) const {
- const TargetData *TD = TLI->getTargetData();
+ Module &M, bool isConst, unsigned AddrSpace) const {
+ const DataLayout *TD = TLI->getDataLayout();
// FIXME: Infer the maximum possible offset depending on the actual users
// (these max offsets are different for the users inside Thumb or ARM
@@ -150,7 +150,9 @@ bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);
GlobalVariable *MergedGV = new GlobalVariable(M, MergedTy, isConst,
GlobalValue::InternalLinkage,
- MergedInit, "_MergedGlobals");
+ MergedInit, "_MergedGlobals",
+ 0, GlobalVariable::NotThreadLocal,
+ AddrSpace);
for (size_t k = i; k < j; ++k) {
Constant *Idx[2] = {
ConstantInt::get(Int32Ty, 0),
@@ -169,8 +171,9 @@ bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
bool GlobalMerge::doInitialization(Module &M) {
- SmallVector<GlobalVariable*, 16> Globals, ConstGlobals, BSSGlobals;
- const TargetData *TD = TLI->getTargetData();
+ DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
+ BSSGlobals;
+ const DataLayout *TD = TLI->getDataLayout();
unsigned MaxOffset = TLI->getMaximalGlobalOffset();
bool Changed = false;
@@ -181,6 +184,11 @@ bool GlobalMerge::doInitialization(Module &M) {
if (!I->hasLocalLinkage() || I->isThreadLocal() || I->hasSection())
continue;
+ PointerType *PT = dyn_cast<PointerType>(I->getType());
+ assert(PT && "Global variable is not a pointer!");
+
+ unsigned AddressSpace = PT->getAddressSpace();
+
// Ignore fancy-aligned globals for now.
unsigned Alignment = TD->getPreferredAlignment(I);
Type *Ty = I->getType()->getElementType();
@@ -195,18 +203,23 @@ bool GlobalMerge::doInitialization(Module &M) {
if (TD->getTypeAllocSize(Ty) < MaxOffset) {
if (TargetLoweringObjectFile::getKindForGlobal(I, TLI->getTargetMachine())
.isBSSLocal())
- BSSGlobals.push_back(I);
+ BSSGlobals[AddressSpace].push_back(I);
else if (I->isConstant())
- ConstGlobals.push_back(I);
+ ConstGlobals[AddressSpace].push_back(I);
else
- Globals.push_back(I);
+ Globals[AddressSpace].push_back(I);
}
}
- if (Globals.size() > 1)
- Changed |= doMerge(Globals, M, false);
- if (BSSGlobals.size() > 1)
- Changed |= doMerge(BSSGlobals, M, false);
+ for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
+ I = Globals.begin(), E = Globals.end(); I != E; ++I)
+ if (I->second.size() > 1)
+ Changed |= doMerge(I->second, M, false, I->first);
+
+ for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
+ I = BSSGlobals.begin(), E = BSSGlobals.end(); I != E; ++I)
+ if (I->second.size() > 1)
+ Changed |= doMerge(I->second, M, false, I->first);
// FIXME: This currently breaks the EH processing due to way how the
// typeinfo detection works. We might want to detect the TIs and ignore
diff --git a/lib/Transforms/Scalar/IndVarSimplify.cpp b/lib/Transforms/Scalar/IndVarSimplify.cpp
index c933a17..97fff7e 100644
--- a/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -26,28 +26,28 @@
#define DEBUG_TYPE "indvars"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Type.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumWidened , "Number of indvars widened");
@@ -68,7 +68,7 @@ namespace {
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
- TargetData *TD;
+ DataLayout *TD;
TargetLibraryInfo *TLI;
SmallVector<WeakVH, 16> DeadInsts;
@@ -220,8 +220,6 @@ static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
/// ConvertToSInt - Convert APF to an integer, if possible.
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
bool isExact = false;
- if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
- return false;
// See if we can convert this to an int64_t
uint64_t UIntVal;
if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
@@ -551,15 +549,17 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
PN->setIncomingValue(i, ExitVal);
- // If this instruction is dead now, delete it.
- RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
+ // If this instruction is dead now, delete it. Don't do it now to avoid
+ // invalidating iterators.
+ if (isInstructionTriviallyDead(Inst, TLI))
+ DeadInsts.push_back(Inst);
if (NumPreds == 1) {
// Completely replace a single-pred PHI. This is safe, because the
// NewVal won't be variant in the loop, so we don't need an LCSSA phi
// node anymore.
PN->replaceAllUsesWith(ExitVal);
- RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
+ PN->eraseFromParent();
}
}
if (NumPreds != 1) {
@@ -597,13 +597,13 @@ namespace {
class WideIVVisitor : public IVVisitor {
ScalarEvolution *SE;
- const TargetData *TD;
+ const DataLayout *TD;
public:
WideIVInfo WI;
WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
- const TargetData *TData) :
+ const DataLayout *TData) :
SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
// Implement the interface used by simplifyUsersOfIV.
@@ -1261,8 +1261,13 @@ static bool needsLFTR(Loop *L, DominatorTree *DT) {
if (!Phi)
return true;
+ // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
+ int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
+ if (Idx < 0)
+ return true;
+
// Do LFTR if the exit condition's IV is *not* a simple counter.
- Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
+ Value *IncV = Phi->getIncomingValue(Idx);
return Phi != getLoopPhiForCounter(IncV, L, DT);
}
@@ -1341,7 +1346,7 @@ static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
/// could at least handle constant BECounts.
static PHINode *
FindLoopCounter(Loop *L, const SCEV *BECount,
- ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
+ ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) {
uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
Value *Cond =
@@ -1698,7 +1703,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
LI = &getAnalysis<LoopInfo>();
SE = &getAnalysis<ScalarEvolution>();
DT = &getAnalysis<DominatorTree>();
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
DeadInsts.clear();
diff --git a/lib/Transforms/Scalar/JumpThreading.cpp b/lib/Transforms/Scalar/JumpThreading.cpp
index 20844c6..b61c5ba 100644
--- a/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/lib/Transforms/Scalar/JumpThreading.cpp
@@ -13,28 +13,28 @@
#define DEBUG_TYPE "jump-threading"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Pass.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LazyValueInfo.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
STATISTIC(NumThreads, "Number of jumps threaded");
@@ -75,7 +75,7 @@ namespace {
/// revectored to the false side of the second if.
///
class JumpThreading : public FunctionPass {
- TargetData *TD;
+ DataLayout *TD;
TargetLibraryInfo *TLI;
LazyValueInfo *LVI;
#ifdef NDEBUG
@@ -147,7 +147,7 @@ FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
///
bool JumpThreading::runOnFunction(Function &F) {
DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
LVI = &getAnalysis<LazyValueInfo>();
@@ -216,19 +216,24 @@ bool JumpThreading::runOnFunction(Function &F) {
}
/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
-/// thread across it.
-static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
+/// thread across it. Stop scanning the block when passing the threshold.
+static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
+ unsigned Threshold) {
/// Ignore PHI nodes, these will be flattened when duplication happens.
BasicBlock::const_iterator I = BB->getFirstNonPHI();
// FIXME: THREADING will delete values that are just used to compute the
// branch, so they shouldn't count against the duplication cost.
-
// Sum up the cost of each instruction until we get to the terminator. Don't
// include the terminator because the copy won't include it.
unsigned Size = 0;
for (; !isa<TerminatorInst>(I); ++I) {
+
+ // Stop scanning the block if we've reached the threshold.
+ if (Size > Threshold)
+ return Size;
+
// Debugger intrinsics don't incur code size.
if (isa<DbgInfoIntrinsic>(I)) continue;
@@ -244,7 +249,11 @@ static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
// as having cost of 2 total, and if they are a vector intrinsic, we model
// them as having cost 1.
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
- if (!isa<IntrinsicInst>(CI))
+ if (CI->hasFnAttr(Attribute::NoDuplicate))
+ // Blocks with NoDuplicate are modelled as having infinite cost, so they
+ // are never duplicated.
+ return ~0U;
+ else if (!isa<IntrinsicInst>(CI))
Size += 3;
else if (!CI->getType()->isVectorTy())
Size += 1;
@@ -1337,7 +1346,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
return false;
}
- unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
+ unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
if (JumpThreadCost > Threshold) {
DEBUG(dbgs() << " Not threading BB '" << BB->getName()
<< "' - Cost is too high: " << JumpThreadCost << "\n");
@@ -1481,7 +1490,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
return false;
}
- unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
+ unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
if (DuplicationCost > Threshold) {
DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
<< "' - Cost is too high: " << DuplicationCost << "\n");
diff --git a/lib/Transforms/Scalar/LICM.cpp b/lib/Transforms/Scalar/LICM.cpp
index 99bedce..dc6bef7 100644
--- a/lib/Transforms/Scalar/LICM.cpp
+++ b/lib/Transforms/Scalar/LICM.cpp
@@ -32,27 +32,28 @@
#define DEBUG_TYPE "licm"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Debug.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <algorithm>
using namespace llvm;
@@ -90,6 +91,8 @@ namespace {
AU.addRequired<TargetLibraryInfo>();
}
+ using llvm::Pass::doFinalization;
+
bool doFinalization() {
assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
return false;
@@ -100,7 +103,7 @@ namespace {
LoopInfo *LI; // Current LoopInfo
DominatorTree *DT; // Dominator Tree for the current Loop.
- TargetData *TD; // TargetData for constant folding.
+ DataLayout *TD; // DataLayout for constant folding.
TargetLibraryInfo *TLI; // TargetLibraryInfo for constant folding.
// State that is updated as we process loops.
@@ -207,7 +210,7 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
AA = &getAnalysis<AliasAnalysis>();
DT = &getAnalysis<DominatorTree>();
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
CurAST = new AliasSetTracker(*AA);
@@ -663,16 +666,18 @@ namespace {
AliasSetTracker &AST;
DebugLoc DL;
int Alignment;
+ MDNode *TBAATag;
public:
LoopPromoter(Value *SP,
const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
SmallPtrSet<Value*, 4> &PMA,
SmallVectorImpl<BasicBlock*> &LEB,
SmallVectorImpl<Instruction*> &LIP,
- AliasSetTracker &ast, DebugLoc dl, int alignment)
+ AliasSetTracker &ast, DebugLoc dl, int alignment,
+ MDNode *TBAATag)
: LoadAndStorePromoter(Insts, S), SomePtr(SP),
PointerMustAliases(PMA), LoopExitBlocks(LEB), LoopInsertPts(LIP),
- AST(ast), DL(dl), Alignment(alignment) {}
+ AST(ast), DL(dl), Alignment(alignment), TBAATag(TBAATag) {}
virtual bool isInstInList(Instruction *I,
const SmallVectorImpl<Instruction*> &) const {
@@ -696,6 +701,7 @@ namespace {
StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
NewSI->setAlignment(Alignment);
NewSI->setDebugLoc(DL);
+ if (TBAATag) NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
}
}
@@ -749,10 +755,11 @@ void LICM::PromoteAliasSet(AliasSet &AS,
// We start with an alignment of one and try to find instructions that allow
// us to prove better alignment.
unsigned Alignment = 1;
+ MDNode *TBAATag = 0;
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
- // different sizes.
+ // different sizes. While we are at it, collect alignment and TBAA info.
for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
Value *ASIV = ASI->getValue();
PointerMustAliases.insert(ASIV);
@@ -794,8 +801,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
// instruction will be executed, update the alignment.
// Larger is better, with the exception of 0 being the best alignment.
unsigned InstAlignment = store->getAlignment();
- if ((InstAlignment > Alignment || InstAlignment == 0)
- && (Alignment != 0))
+ if ((InstAlignment > Alignment || InstAlignment == 0) && Alignment != 0)
if (isGuaranteedToExecute(*Use)) {
GuaranteedToExecute = true;
Alignment = InstAlignment;
@@ -807,6 +813,15 @@ void LICM::PromoteAliasSet(AliasSet &AS,
} else
return; // Not a load or store.
+ // Merge the TBAA tags.
+ if (LoopUses.empty()) {
+ // On the first load/store, just take its TBAA tag.
+ TBAATag = Use->getMetadata(LLVMContext::MD_tbaa);
+ } else if (TBAATag) {
+ TBAATag = MDNode::getMostGenericTBAA(TBAATag,
+ Use->getMetadata(LLVMContext::MD_tbaa));
+ }
+
LoopUses.push_back(Use);
}
}
@@ -839,7 +854,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
SmallVector<PHINode*, 16> NewPHIs;
SSAUpdater SSA(&NewPHIs);
LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
- InsertPts, *CurAST, DL, Alignment);
+ InsertPts, *CurAST, DL, Alignment, TBAATag);
// Set up the preheader to have a definition of the value. It is the live-out
// value from the preheader that uses in the loop will use.
@@ -848,6 +863,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
Preheader->getTerminator());
PreheaderLoad->setAlignment(Alignment);
PreheaderLoad->setDebugLoc(DL);
+ if (TBAATag) PreheaderLoad->setMetadata(LLVMContext::MD_tbaa, TBAATag);
SSA.AddAvailableValue(Preheader, PreheaderLoad);
// Rewrite all the loads in the loop and remember all the definitions from
diff --git a/lib/Transforms/Scalar/LoopDeletion.cpp b/lib/Transforms/Scalar/LoopDeletion.cpp
index 3771f5a..9c67e32 100644
--- a/lib/Transforms/Scalar/LoopDeletion.cpp
+++ b/lib/Transforms/Scalar/LoopDeletion.cpp
@@ -16,11 +16,11 @@
#define DEBUG_TYPE "loop-delete"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Analysis/LoopPass.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/SmallVector.h"
using namespace llvm;
STATISTIC(NumDeleted, "Number of loops deleted");
diff --git a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
index a72e288..c4f9012 100644
--- a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
+++ b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
@@ -43,18 +43,19 @@
#define DEBUG_TYPE "loop-idiom"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -63,16 +64,83 @@ STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
namespace {
+
+ class LoopIdiomRecognize;
+
+ /// This class defines some utility functions for loop idiom recognization.
+ class LIRUtil {
+ public:
+ /// Return true iff the block contains nothing but an uncondition branch
+ /// (aka goto instruction).
+ static bool isAlmostEmpty(BasicBlock *);
+
+ static BranchInst *getBranch(BasicBlock *BB) {
+ return dyn_cast<BranchInst>(BB->getTerminator());
+ }
+
+ /// Return the condition of the branch terminating the given basic block.
+ static Value *getBrCondtion(BasicBlock *);
+
+ /// Derive the precondition block (i.e the block that guards the loop
+ /// preheader) from the given preheader.
+ static BasicBlock *getPrecondBb(BasicBlock *PreHead);
+ };
+
+ /// This class is to recoginize idioms of population-count conducted in
+ /// a noncountable loop. Currently it only recognizes this pattern:
+ /// \code
+ /// while(x) {cnt++; ...; x &= x - 1; ...}
+ /// \endcode
+ class NclPopcountRecognize {
+ LoopIdiomRecognize &LIR;
+ Loop *CurLoop;
+ BasicBlock *PreCondBB;
+
+ typedef IRBuilder<> IRBuilderTy;
+
+ public:
+ explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
+ bool recognize();
+
+ private:
+ /// Take a glimpse of the loop to see if we need to go ahead recoginizing
+ /// the idiom.
+ bool preliminaryScreen();
+
+ /// Check if the given conditional branch is based on the comparison
+ /// beween a variable and zero, and if the variable is non-zero, the
+ /// control yeilds to the loop entry. If the branch matches the behavior,
+ /// the variable involved in the comparion is returned. This function will
+ /// be called to see if the precondition and postcondition of the loop
+ /// are in desirable form.
+ Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const;
+
+ /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
+ /// is set to the instruction counting the pupulation bit. 2) \p CntPhi
+ /// is set to the corresponding phi node. 3) \p Var is set to the value
+ /// whose population bits are being counted.
+ bool detectIdiom
+ (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
+
+ /// Insert ctpop intrinsic function and some obviously dead instructions.
+ void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var);
+
+ /// Create llvm.ctpop.* intrinsic function.
+ CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
+ };
+
class LoopIdiomRecognize : public LoopPass {
Loop *CurLoop;
- const TargetData *TD;
+ const DataLayout *TD;
DominatorTree *DT;
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
+ const TargetTransformInfo *TTI;
public:
static char ID;
explicit LoopIdiomRecognize() : LoopPass(ID) {
initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
+ TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
}
bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -109,7 +177,34 @@ namespace {
AU.addPreserved<DominatorTree>();
AU.addRequired<DominatorTree>();
AU.addRequired<TargetLibraryInfo>();
+ AU.addRequired<TargetTransformInfo>();
+ }
+
+ const DataLayout *getDataLayout() {
+ return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
+ }
+
+ DominatorTree *getDominatorTree() {
+ return DT ? DT : (DT=&getAnalysis<DominatorTree>());
+ }
+
+ ScalarEvolution *getScalarEvolution() {
+ return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
+ }
+
+ TargetLibraryInfo *getTargetLibraryInfo() {
+ return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
+ }
+
+ const TargetTransformInfo *getTargetTransformInfo() {
+ return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
}
+
+ Loop *getLoop() const { return CurLoop; }
+
+ private:
+ bool runOnNoncountableLoop();
+ bool runOnCountableLoop();
};
}
@@ -123,6 +218,7 @@ INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
false, false)
@@ -172,19 +268,393 @@ static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
deleteDeadInstruction(I, SE, TLI);
}
-bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
- CurLoop = L;
+//===----------------------------------------------------------------------===//
+//
+// Implementation of LIRUtil
+//
+//===----------------------------------------------------------------------===//
- // Disable loop idiom recognition if the function's name is a common idiom.
- StringRef Name = L->getHeader()->getParent()->getName();
- if (Name == "memset" || Name == "memcpy")
+// This fucntion will return true iff the given block contains nothing but goto.
+// A typical usage of this function is to check if the preheader fucntion is
+// "almost" empty such that generated intrinsic function can be moved across
+// preheader and to be placed at the end of the preconditiona block without
+// concerning of breaking data dependence.
+bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
+ if (BranchInst *Br = getBranch(BB)) {
+ return Br->isUnconditional() && BB->size() == 1;
+ }
+ return false;
+}
+
+Value *LIRUtil::getBrCondtion(BasicBlock *BB) {
+ BranchInst *Br = getBranch(BB);
+ return Br ? Br->getCondition() : 0;
+}
+
+BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
+ if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
+ BranchInst *Br = getBranch(BB);
+ return Br && Br->isConditional() ? BB : 0;
+ }
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Implementation of NclPopcountRecognize
+//
+//===----------------------------------------------------------------------===//
+
+NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
+ LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) {
+}
+
+bool NclPopcountRecognize::preliminaryScreen() {
+ const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
+ if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
return false;
- // The trip count of the loop must be analyzable.
- SE = &getAnalysis<ScalarEvolution>();
- if (!SE->hasLoopInvariantBackedgeTakenCount(L))
+ // Counting population are usually conducted by few arithmetic instrutions.
+ // Such instructions can be easilly "absorbed" by vacant slots in a
+ // non-compact loop. Therefore, recognizing popcount idiom only makes sense
+ // in a compact loop.
+
+ // Give up if the loop has multiple blocks or multiple backedges.
+ if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
+ return false;
+
+ BasicBlock *LoopBody = *(CurLoop->block_begin());
+ if (LoopBody->size() >= 20) {
+ // The loop is too big, bail out.
+ return false;
+ }
+
+ // It should have a preheader containing nothing but a goto instruction.
+ BasicBlock *PreHead = CurLoop->getLoopPreheader();
+ if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
+ return false;
+
+ // It should have a precondition block where the generated popcount instrinsic
+ // function will be inserted.
+ PreCondBB = LIRUtil::getPrecondBb(PreHead);
+ if (!PreCondBB)
+ return false;
+
+ return true;
+}
+
+Value *NclPopcountRecognize::matchCondition (BranchInst *Br,
+ BasicBlock *LoopEntry) const {
+ if (!Br || !Br->isConditional())
+ return 0;
+
+ ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
+ if (!Cond)
+ return 0;
+
+ ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
+ if (!CmpZero || !CmpZero->isZero())
+ return 0;
+
+ ICmpInst::Predicate Pred = Cond->getPredicate();
+ if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
+ (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
+ return Cond->getOperand(0);
+
+ return 0;
+}
+
+bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
+ PHINode *&CntPhi,
+ Value *&Var) const {
+ // Following code tries to detect this idiom:
+ //
+ // if (x0 != 0)
+ // goto loop-exit // the precondition of the loop
+ // cnt0 = init-val;
+ // do {
+ // x1 = phi (x0, x2);
+ // cnt1 = phi(cnt0, cnt2);
+ //
+ // cnt2 = cnt1 + 1;
+ // ...
+ // x2 = x1 & (x1 - 1);
+ // ...
+ // } while(x != 0);
+ //
+ // loop-exit:
+ //
+
+ // step 1: Check to see if the look-back branch match this pattern:
+ // "if (a!=0) goto loop-entry".
+ BasicBlock *LoopEntry;
+ Instruction *DefX2, *CountInst;
+ Value *VarX1, *VarX0;
+ PHINode *PhiX, *CountPhi;
+
+ DefX2 = CountInst = 0;
+ VarX1 = VarX0 = 0;
+ PhiX = CountPhi = 0;
+ LoopEntry = *(CurLoop->block_begin());
+
+ // step 1: Check if the loop-back branch is in desirable form.
+ {
+ if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
+ DefX2 = dyn_cast<Instruction>(T);
+ else
+ return false;
+ }
+
+ // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
+ {
+ if (DefX2->getOpcode() != Instruction::And)
+ return false;
+
+ BinaryOperator *SubOneOp;
+
+ if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
+ VarX1 = DefX2->getOperand(1);
+ else {
+ VarX1 = DefX2->getOperand(0);
+ SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
+ }
+ if (!SubOneOp)
+ return false;
+
+ Instruction *SubInst = cast<Instruction>(SubOneOp);
+ ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
+ if (!Dec ||
+ !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
+ (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
+ return false;
+ }
+ }
+
+ // step 3: Check the recurrence of variable X
+ {
+ PhiX = dyn_cast<PHINode>(VarX1);
+ if (!PhiX ||
+ (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
+ return false;
+ }
+ }
+
+ // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
+ {
+ CountInst = NULL;
+ for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
+ IterE = LoopEntry->end(); Iter != IterE; Iter++) {
+ Instruction *Inst = Iter;
+ if (Inst->getOpcode() != Instruction::Add)
+ continue;
+
+ ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
+ if (!Inc || !Inc->isOne())
+ continue;
+
+ PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
+ if (!Phi || Phi->getParent() != LoopEntry)
+ continue;
+
+ // Check if the result of the instruction is live of the loop.
+ bool LiveOutLoop = false;
+ for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
+ I != E; I++) {
+ if ((cast<Instruction>(*I))->getParent() != LoopEntry) {
+ LiveOutLoop = true; break;
+ }
+ }
+
+ if (LiveOutLoop) {
+ CountInst = Inst;
+ CountPhi = Phi;
+ break;
+ }
+ }
+
+ if (!CountInst)
+ return false;
+ }
+
+ // step 5: check if the precondition is in this form:
+ // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
+ {
+ BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
+ Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
+ if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
+ return false;
+
+ CntInst = CountInst;
+ CntPhi = CountPhi;
+ Var = T;
+ }
+
+ return true;
+}
+
+void NclPopcountRecognize::transform(Instruction *CntInst,
+ PHINode *CntPhi, Value *Var) {
+
+ ScalarEvolution *SE = LIR.getScalarEvolution();
+ TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
+ BasicBlock *PreHead = CurLoop->getLoopPreheader();
+ BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
+ const DebugLoc DL = CntInst->getDebugLoc();
+
+ // Assuming before transformation, the loop is following:
+ // if (x) // the precondition
+ // do { cnt++; x &= x - 1; } while(x);
+
+ // Step 1: Insert the ctpop instruction at the end of the precondition block
+ IRBuilderTy Builder(PreCondBr);
+ Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
+ {
+ PopCnt = createPopcntIntrinsic(Builder, Var, DL);
+ NewCount = PopCntZext =
+ Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
+
+ if (NewCount != PopCnt)
+ (cast<Instruction>(NewCount))->setDebugLoc(DL);
+
+ // TripCnt is exactly the number of iterations the loop has
+ TripCnt = NewCount;
+
+ // If the popoulation counter's initial value is not zero, insert Add Inst.
+ Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
+ ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
+ if (!InitConst || !InitConst->isZero()) {
+ NewCount = Builder.CreateAdd(NewCount, CntInitVal);
+ (cast<Instruction>(NewCount))->setDebugLoc(DL);
+ }
+ }
+
+ // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
+ // "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
+ // function would be partial dead code, and downstream passes will drag
+ // it back from the precondition block to the preheader.
+ {
+ ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
+
+ Value *Opnd0 = PopCntZext;
+ Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
+ if (PreCond->getOperand(0) != Var)
+ std::swap(Opnd0, Opnd1);
+
+ ICmpInst *NewPreCond =
+ cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
+ PreCond->replaceAllUsesWith(NewPreCond);
+
+ deleteDeadInstruction(PreCond, *SE, TLI);
+ }
+
+ // Step 3: Note that the population count is exactly the trip count of the
+ // loop in question, which enble us to to convert the loop from noncountable
+ // loop into a countable one. The benefit is twofold:
+ //
+ // - If the loop only counts population, the entire loop become dead after
+ // the transformation. It is lots easier to prove a countable loop dead
+ // than to prove a noncountable one. (In some C dialects, a infite loop
+ // isn't dead even if it computes nothing useful. In general, DCE needs
+ // to prove a noncountable loop finite before safely delete it.)
+ //
+ // - If the loop also performs something else, it remains alive.
+ // Since it is transformed to countable form, it can be aggressively
+ // optimized by some optimizations which are in general not applicable
+ // to a noncountable loop.
+ //
+ // After this step, this loop (conceptually) would look like following:
+ // newcnt = __builtin_ctpop(x);
+ // t = newcnt;
+ // if (x)
+ // do { cnt++; x &= x-1; t--) } while (t > 0);
+ BasicBlock *Body = *(CurLoop->block_begin());
+ {
+ BranchInst *LbBr = LIRUtil::getBranch(Body);
+ ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
+ Type *Ty = TripCnt->getType();
+
+ PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
+
+ Builder.SetInsertPoint(LbCond);
+ Value *Opnd1 = cast<Value>(TcPhi);
+ Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
+ Instruction *TcDec =
+ cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
+
+ TcPhi->addIncoming(TripCnt, PreHead);
+ TcPhi->addIncoming(TcDec, Body);
+
+ CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
+ CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
+ LbCond->setPredicate(Pred);
+ LbCond->setOperand(0, TcDec);
+ LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
+ }
+
+ // Step 4: All the references to the original population counter outside
+ // the loop are replaced with the NewCount -- the value returned from
+ // __builtin_ctpop().
+ {
+ SmallVector<Value *, 4> CntUses;
+ for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end();
+ I != E; I++) {
+ if (cast<Instruction>(*I)->getParent() != Body)
+ CntUses.push_back(*I);
+ }
+ for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
+ (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
+ }
+ }
+
+ // step 5: Forget the "non-computable" trip-count SCEV associated with the
+ // loop. The loop would otherwise not be deleted even if it becomes empty.
+ SE->forgetLoop(CurLoop);
+}
+
+CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
+ Value *Val, DebugLoc DL) {
+ Value *Ops[] = { Val };
+ Type *Tys[] = { Val->getType() };
+
+ Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
+ Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
+ CallInst *CI = IRBuilder.CreateCall(Func, Ops);
+ CI->setDebugLoc(DL);
+
+ return CI;
+}
+
+/// recognize - detect population count idiom in a non-countable loop. If
+/// detected, transform the relevant code to popcount intrinsic function
+/// call, and return true; otherwise, return false.
+bool NclPopcountRecognize::recognize() {
+
+ if (!LIR.getTargetTransformInfo())
+ return false;
+
+ LIR.getScalarEvolution();
+
+ if (!preliminaryScreen())
return false;
- const SCEV *BECount = SE->getBackedgeTakenCount(L);
+
+ Instruction *CntInst;
+ PHINode *CntPhi;
+ Value *Val;
+ if (!detectIdiom(CntInst, CntPhi, Val))
+ return false;
+
+ transform(CntInst, CntPhi, Val);
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Implementation of LoopIdiomRecognize
+//
+//===----------------------------------------------------------------------===//
+
+bool LoopIdiomRecognize::runOnCountableLoop() {
+ const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
if (isa<SCEVCouldNotCompute>(BECount)) return false;
// If this loop executes exactly one time, then it should be peeled, not
@@ -194,24 +664,29 @@ bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
return false;
// We require target data for now.
- TD = getAnalysisIfAvailable<TargetData>();
- if (TD == 0) return false;
+ if (!getDataLayout())
+ return false;
+
+ // set DT
+ (void)getDominatorTree();
- DT = &getAnalysis<DominatorTree>();
LoopInfo &LI = getAnalysis<LoopInfo>();
TLI = &getAnalysis<TargetLibraryInfo>();
+ // set TLI
+ (void)getTargetLibraryInfo();
+
SmallVector<BasicBlock*, 8> ExitBlocks;
CurLoop->getUniqueExitBlocks(ExitBlocks);
DEBUG(dbgs() << "loop-idiom Scanning: F["
- << L->getHeader()->getParent()->getName()
- << "] Loop %" << L->getHeader()->getName() << "\n");
+ << CurLoop->getHeader()->getParent()->getName()
+ << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
bool MadeChange = false;
// Scan all the blocks in the loop that are not in subloops.
- for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
- ++BI) {
+ for (Loop::block_iterator BI = CurLoop->block_begin(),
+ E = CurLoop->block_end(); BI != E; ++BI) {
// Ignore blocks in subloops.
if (LI.getLoopFor(*BI) != CurLoop)
continue;
@@ -221,6 +696,33 @@ bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
return MadeChange;
}
+bool LoopIdiomRecognize::runOnNoncountableLoop() {
+ NclPopcountRecognize Popcount(*this);
+ if (Popcount.recognize())
+ return true;
+
+ return false;
+}
+
+bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
+ CurLoop = L;
+
+ // If the loop could not be converted to canonical form, it must have an
+ // indirectbr in it, just give up.
+ if (!L->getLoopPreheader())
+ return false;
+
+ // Disable loop idiom recognition if the function's name is a common idiom.
+ StringRef Name = L->getHeader()->getParent()->getName();
+ if (Name == "memset" || Name == "memcpy")
+ return false;
+
+ SE = &getAnalysis<ScalarEvolution>();
+ if (SE->hasLoopInvariantBackedgeTakenCount(L))
+ return runOnCountableLoop();
+ return runOnNoncountableLoop();
+}
+
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
/// with the specified backedge count. This block is known to be in the current
/// loop and not in any subloops.
@@ -403,7 +905,7 @@ static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
///
/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
/// just replicate their input array and then pass on to memset_pattern16.
-static Constant *getMemSetPatternValue(Value *V, const TargetData &TD) {
+static Constant *getMemSetPatternValue(Value *V, const DataLayout &TD) {
// If the value isn't a constant, we can't promote it to being in a constant
// array. We could theoretically do a store to an alloca or something, but
// that doesn't seem worthwhile.
diff --git a/lib/Transforms/Scalar/LoopInstSimplify.cpp b/lib/Transforms/Scalar/LoopInstSimplify.cpp
index f5daa7b..c48808f 100644
--- a/lib/Transforms/Scalar/LoopInstSimplify.cpp
+++ b/lib/Transforms/Scalar/LoopInstSimplify.cpp
@@ -12,17 +12,17 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-instsimplify"
-#include "llvm/Instructions.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumSimplified, "Number of redundant instructions simplified");
@@ -66,7 +66,7 @@ Pass *llvm::createLoopInstSimplifyPass() {
bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>();
LoopInfo *LI = &getAnalysis<LoopInfo>();
- const TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
SmallVector<BasicBlock*, 8> ExitBlocks;
diff --git a/lib/Transforms/Scalar/LoopRotation.cpp b/lib/Transforms/Scalar/LoopRotation.cpp
index abe07aa..0ea80f3 100644
--- a/lib/Transforms/Scalar/LoopRotation.cpp
+++ b/lib/Transforms/Scalar/LoopRotation.cpp
@@ -13,20 +13,20 @@
#define DEBUG_TYPE "loop-rotate"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Function.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CodeMetrics.h"
-#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
#define MAX_HEADER_SIZE 16
@@ -274,10 +274,16 @@ bool LoopRotate::rotateLoop(Loop *L) {
if (OrigLatch == 0 || L->isLoopExiting(OrigLatch))
return false;
- // Check size of original header and reject loop if it is very big.
+ // Check size of original header and reject loop if it is very big or we can't
+ // duplicate blocks inside it.
{
CodeMetrics Metrics;
Metrics.analyzeBasicBlock(OrigHeader);
+ if (Metrics.notDuplicatable) {
+ DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non duplicatable"
+ << " instructions: "; L->dump());
+ return false;
+ }
if (Metrics.NumInsts > MAX_HEADER_SIZE)
return false;
}
diff --git a/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index d7495da..c7b853e 100644
--- a/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -37,8 +37,8 @@
//
// TODO: Handle multiple loops at a time.
//
-// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
-// instead of a GlobalValue?
+// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
+// of a GlobalValue?
//
// TODO: When truncation is free, truncate ICmp users' operands to make it a
// smaller encoding (on x86 at least).
@@ -55,25 +55,25 @@
#define DEBUG_TYPE "loop-reduce"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Analysis/IVUsers.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallBitVector.h"
#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/SmallBitVector.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/Support/Debug.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetLowering.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;
@@ -121,7 +121,7 @@ void RegSortData::print(raw_ostream &OS) const {
OS << "[NumUses=" << UsedByIndices.count() << ']';
}
-#ifndef NDEBUG
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void RegSortData::dump() const {
print(errs()); errs() << '\n';
}
@@ -223,16 +223,24 @@ namespace {
/// computing satisfying a use. It may include broken-out immediates and scaled
/// registers.
struct Formula {
- /// AM - This is used to represent complex addressing, as well as other kinds
- /// of interesting uses.
- TargetLowering::AddrMode AM;
+ /// Global base address used for complex addressing.
+ GlobalValue *BaseGV;
+
+ /// Base offset for complex addressing.
+ int64_t BaseOffset;
+
+ /// Whether any complex addressing has a base register.
+ bool HasBaseReg;
+
+ /// The scale of any complex addressing.
+ int64_t Scale;
/// BaseRegs - The list of "base" registers for this use. When this is
- /// non-empty, AM.HasBaseReg should be set to true.
+ /// non-empty,
SmallVector<const SCEV *, 2> BaseRegs;
/// ScaledReg - The 'scaled' register for this use. This should be non-null
- /// when AM.Scale is not zero.
+ /// when Scale is not zero.
const SCEV *ScaledReg;
/// UnfoldedOffset - An additional constant offset which added near the
@@ -240,7 +248,9 @@ struct Formula {
/// live in an add immediate field rather than a register.
int64_t UnfoldedOffset;
- Formula() : ScaledReg(0), UnfoldedOffset(0) {}
+ Formula()
+ : BaseGV(0), BaseOffset(0), HasBaseReg(false), Scale(0), ScaledReg(0),
+ UnfoldedOffset(0) {}
void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
@@ -326,13 +336,13 @@ void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
const SCEV *Sum = SE.getAddExpr(Good);
if (!Sum->isZero())
BaseRegs.push_back(Sum);
- AM.HasBaseReg = true;
+ HasBaseReg = true;
}
if (!Bad.empty()) {
const SCEV *Sum = SE.getAddExpr(Bad);
if (!Sum->isZero())
BaseRegs.push_back(Sum);
- AM.HasBaseReg = true;
+ HasBaseReg = true;
}
}
@@ -348,7 +358,7 @@ unsigned Formula::getNumRegs() const {
Type *Formula::getType() const {
return !BaseRegs.empty() ? BaseRegs.front()->getType() :
ScaledReg ? ScaledReg->getType() :
- AM.BaseGV ? AM.BaseGV->getType() :
+ BaseGV ? BaseGV->getType() :
0;
}
@@ -381,29 +391,29 @@ bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
void Formula::print(raw_ostream &OS) const {
bool First = true;
- if (AM.BaseGV) {
+ if (BaseGV) {
if (!First) OS << " + "; else First = false;
- WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
+ WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
}
- if (AM.BaseOffs != 0) {
+ if (BaseOffset != 0) {
if (!First) OS << " + "; else First = false;
- OS << AM.BaseOffs;
+ OS << BaseOffset;
}
for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
E = BaseRegs.end(); I != E; ++I) {
if (!First) OS << " + "; else First = false;
OS << "reg(" << **I << ')';
}
- if (AM.HasBaseReg && BaseRegs.empty()) {
+ if (HasBaseReg && BaseRegs.empty()) {
if (!First) OS << " + "; else First = false;
OS << "**error: HasBaseReg**";
- } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
+ } else if (!HasBaseReg && !BaseRegs.empty()) {
if (!First) OS << " + "; else First = false;
OS << "**error: !HasBaseReg**";
}
- if (AM.Scale != 0) {
+ if (Scale != 0) {
if (!First) OS << " + "; else First = false;
- OS << AM.Scale << "*reg(";
+ OS << Scale << "*reg(";
if (ScaledReg)
OS << *ScaledReg;
else
@@ -416,7 +426,7 @@ void Formula::print(raw_ostream &OS) const {
}
}
-#ifndef NDEBUG
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void Formula::dump() const {
print(errs()); errs() << '\n';
}
@@ -926,8 +936,8 @@ void Cost::RateFormula(const Formula &F,
// Tally up the non-zero immediates.
for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
E = Offsets.end(); I != E; ++I) {
- int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
- if (F.AM.BaseGV)
+ int64_t Offset = (uint64_t)*I + F.BaseOffset;
+ if (F.BaseGV)
ImmCost += 64; // Handle symbolic values conservatively.
// TODO: This should probably be the pointer size.
else if (Offset != 0)
@@ -978,7 +988,7 @@ void Cost::print(raw_ostream &OS) const {
OS << ", plus " << SetupCost << " setup cost";
}
-#ifndef NDEBUG
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void Cost::dump() const {
print(errs()); errs() << '\n';
}
@@ -1066,7 +1076,7 @@ void LSRFixup::print(raw_ostream &OS) const {
OS << ", Offset=" << Offset;
}
-#ifndef NDEBUG
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LSRFixup::dump() const {
print(errs()); errs() << '\n';
}
@@ -1260,7 +1270,7 @@ void LSRUse::print(raw_ostream &OS) const {
OS << ", widest fixup type: " << *WidestFixupType;
}
-#ifndef NDEBUG
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LSRUse::dump() const {
print(errs()); errs() << '\n';
}
@@ -1269,46 +1279,42 @@ void LSRUse::dump() const {
/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
/// be completely folded into the user instruction at isel time. This includes
/// address-mode folding and special icmp tricks.
-static bool isLegalUse(const TargetLowering::AddrMode &AM,
- LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI) {
+static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind,
+ Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale) {
switch (Kind) {
case LSRUse::Address:
- // If we have low-level target information, ask the target if it can
- // completely fold this address.
- if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
+ return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
// Otherwise, just guess that reg+reg addressing is legal.
- return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
+ //return ;
case LSRUse::ICmpZero:
// There's not even a target hook for querying whether it would be legal to
// fold a GV into an ICmp.
- if (AM.BaseGV)
+ if (BaseGV)
return false;
// ICmp only has two operands; don't allow more than two non-trivial parts.
- if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
+ if (Scale != 0 && HasBaseReg && BaseOffset != 0)
return false;
// ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
// putting the scaled register in the other operand of the icmp.
- if (AM.Scale != 0 && AM.Scale != -1)
+ if (Scale != 0 && Scale != -1)
return false;
// If we have low-level target information, ask the target if it can fold an
// integer immediate on an icmp.
- if (AM.BaseOffs != 0) {
- if (!TLI)
- return false;
+ if (BaseOffset != 0) {
// We have one of:
- // ICmpZero BaseReg + Offset => ICmp BaseReg, -Offset
- // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
+ // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
+ // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
// Offs is the ICmp immediate.
- int64_t Offs = AM.BaseOffs;
- if (AM.Scale == 0)
- Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN.
- return TLI->isLegalICmpImmediate(Offs);
+ if (Scale == 0)
+ // The cast does the right thing with INT64_MIN.
+ BaseOffset = -(uint64_t)BaseOffset;
+ return TTI.isLegalICmpImmediate(BaseOffset);
}
// ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
@@ -1316,92 +1322,87 @@ static bool isLegalUse(const TargetLowering::AddrMode &AM,
case LSRUse::Basic:
// Only handle single-register values.
- return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
+ return !BaseGV && Scale == 0 && BaseOffset == 0;
case LSRUse::Special:
// Special case Basic to handle -1 scales.
- return !AM.BaseGV && (AM.Scale == 0 || AM.Scale == -1) && AM.BaseOffs == 0;
+ return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
}
llvm_unreachable("Invalid LSRUse Kind!");
}
-static bool isLegalUse(TargetLowering::AddrMode AM,
- int64_t MinOffset, int64_t MaxOffset,
- LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI) {
+static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
+ int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
+ GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
+ int64_t Scale) {
// Check for overflow.
- if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
+ if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
(MinOffset > 0))
return false;
- AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
- if (isLegalUse(AM, Kind, AccessTy, TLI)) {
- AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
- // Check for overflow.
- if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
- (MaxOffset > 0))
- return false;
- AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
- return isLegalUse(AM, Kind, AccessTy, TLI);
- }
- return false;
+ MinOffset = (uint64_t)BaseOffset + MinOffset;
+ if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
+ (MaxOffset > 0))
+ return false;
+ MaxOffset = (uint64_t)BaseOffset + MaxOffset;
+
+ return isLegalUse(TTI, Kind, AccessTy, BaseGV, MinOffset, HasBaseReg,
+ Scale) &&
+ isLegalUse(TTI, Kind, AccessTy, BaseGV, MaxOffset, HasBaseReg, Scale);
+}
+
+static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
+ int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
+ const Formula &F) {
+ return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
+ F.BaseOffset, F.HasBaseReg, F.Scale);
}
-static bool isAlwaysFoldable(int64_t BaseOffs,
- GlobalValue *BaseGV,
- bool HasBaseReg,
+static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI) {
+ GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg) {
// Fast-path: zero is always foldable.
- if (BaseOffs == 0 && !BaseGV) return true;
+ if (BaseOffset == 0 && !BaseGV) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
- TargetLowering::AddrMode AM;
- AM.BaseOffs = BaseOffs;
- AM.BaseGV = BaseGV;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+ int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
// Canonicalize a scale of 1 to a base register if the formula doesn't
// already have a base register.
- if (!AM.HasBaseReg && AM.Scale == 1) {
- AM.Scale = 0;
- AM.HasBaseReg = true;
+ if (!HasBaseReg && Scale == 1) {
+ Scale = 0;
+ HasBaseReg = true;
}
- return isLegalUse(AM, Kind, AccessTy, TLI);
+ return isLegalUse(TTI, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
}
-static bool isAlwaysFoldable(const SCEV *S,
- int64_t MinOffset, int64_t MaxOffset,
- bool HasBaseReg,
- LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI,
- ScalarEvolution &SE) {
+static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
+ ScalarEvolution &SE, int64_t MinOffset,
+ int64_t MaxOffset, LSRUse::KindType Kind,
+ Type *AccessTy, const SCEV *S, bool HasBaseReg) {
// Fast-path: zero is always foldable.
if (S->isZero()) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
- int64_t BaseOffs = ExtractImmediate(S, SE);
+ int64_t BaseOffset = ExtractImmediate(S, SE);
GlobalValue *BaseGV = ExtractSymbol(S, SE);
// If there's anything else involved, it's not foldable.
if (!S->isZero()) return false;
// Fast-path: zero is always foldable.
- if (BaseOffs == 0 && !BaseGV) return true;
+ if (BaseOffset == 0 && !BaseGV) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
- TargetLowering::AddrMode AM;
- AM.BaseOffs = BaseOffs;
- AM.BaseGV = BaseGV;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+ int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
- return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
+ return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
+ BaseOffset, HasBaseReg, Scale);
}
namespace {
@@ -1501,7 +1502,7 @@ class LSRInstance {
ScalarEvolution &SE;
DominatorTree &DT;
LoopInfo &LI;
- const TargetLowering *const TLI;
+ const TargetTransformInfo &TTI;
Loop *const L;
bool Changed;
@@ -1637,7 +1638,7 @@ class LSRInstance {
Pass *P);
public:
- LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
+ LSRInstance(Loop *L, Pass *P);
bool getChanged() const { return Changed; }
@@ -1687,12 +1688,9 @@ void LSRInstance::OptimizeShadowIV() {
}
if (!DestTy) continue;
- if (TLI) {
- // If target does not support DestTy natively then do not apply
- // this transformation.
- EVT DVT = TLI->getValueType(DestTy);
- if (!TLI->isTypeLegal(DVT)) continue;
- }
+ // If target does not support DestTy natively then do not apply
+ // this transformation.
+ if (!TTI.isTypeLegal(DestTy)) continue;
PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
if (!PH) continue;
@@ -2014,18 +2012,17 @@ LSRInstance::OptimizeLoopTermCond() {
if (C->getValue().getMinSignedBits() >= 64 ||
C->getValue().isMinSignedValue())
goto decline_post_inc;
- // Without TLI, assume that any stride might be valid, and so any
- // use might be shared.
- if (!TLI)
- goto decline_post_inc;
// Check for possible scaled-address reuse.
Type *AccessTy = getAccessType(UI->getUser());
- TargetLowering::AddrMode AM;
- AM.Scale = C->getSExtValue();
- if (TLI->isLegalAddressingMode(AM, AccessTy))
+ int64_t Scale = C->getSExtValue();
+ if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
+ /*BaseOffset=*/ 0,
+ /*HasBaseReg=*/ false, Scale))
goto decline_post_inc;
- AM.Scale = -AM.Scale;
- if (TLI->isLegalAddressingMode(AM, AccessTy))
+ Scale = -Scale;
+ if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
+ /*BaseOffset=*/ 0,
+ /*HasBaseReg=*/ false, Scale))
goto decline_post_inc;
}
}
@@ -2095,13 +2092,13 @@ LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
return false;
// Conservatively assume HasBaseReg is true for now.
if (NewOffset < LU.MinOffset) {
- if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
- Kind, AccessTy, TLI))
+ if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
+ LU.MaxOffset - NewOffset, HasBaseReg))
return false;
NewMinOffset = NewOffset;
} else if (NewOffset > LU.MaxOffset) {
- if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
- Kind, AccessTy, TLI))
+ if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
+ NewOffset - LU.MinOffset, HasBaseReg))
return false;
NewMaxOffset = NewOffset;
}
@@ -2130,7 +2127,8 @@ LSRInstance::getUse(const SCEV *&Expr,
int64_t Offset = ExtractImmediate(Expr, SE);
// Basic uses can't accept any offset, for example.
- if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
+ if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
+ Offset, /*HasBaseReg=*/ true)) {
Expr = Copy;
Offset = 0;
}
@@ -2198,10 +2196,10 @@ LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
// as OrigF.
if (F.BaseRegs == OrigF.BaseRegs &&
F.ScaledReg == OrigF.ScaledReg &&
- F.AM.BaseGV == OrigF.AM.BaseGV &&
- F.AM.Scale == OrigF.AM.Scale &&
+ F.BaseGV == OrigF.BaseGV &&
+ F.Scale == OrigF.Scale &&
F.UnfoldedOffset == OrigF.UnfoldedOffset) {
- if (F.AM.BaseOffs == 0)
+ if (F.BaseOffset == 0)
return &LU;
// This is the formula where all the registers and symbols matched;
// there aren't going to be any others. Since we declined it, we
@@ -2395,7 +2393,7 @@ bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
/// TODO: Consider IVInc free if it's already used in another chains.
static bool
isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
- ScalarEvolution &SE, const TargetLowering *TLI) {
+ ScalarEvolution &SE, const TargetTransformInfo &TTI) {
if (StressIVChain)
return true;
@@ -2653,7 +2651,7 @@ void LSRInstance::CollectChains() {
for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
UsersIdx < NChains; ++UsersIdx) {
if (!isProfitableChain(IVChainVec[UsersIdx],
- ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
+ ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
continue;
// Preserve the chain at UsesIdx.
if (ChainIdx != UsersIdx)
@@ -2680,7 +2678,7 @@ void LSRInstance::FinalizeChain(IVChain &Chain) {
/// Return true if the IVInc can be folded into an addressing mode.
static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
- Value *Operand, const TargetLowering *TLI) {
+ Value *Operand, const TargetTransformInfo &TTI) {
const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
if (!IncConst || !isAddressUse(UserInst, Operand))
return false;
@@ -2689,8 +2687,9 @@ static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
return false;
int64_t IncOffset = IncConst->getValue()->getSExtValue();
- if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
- LSRUse::Address, getAccessType(UserInst), TLI))
+ if (!isAlwaysFoldable(TTI, LSRUse::Address,
+ getAccessType(UserInst), /*BaseGV=*/ 0,
+ IncOffset, /*HaseBaseReg=*/ false))
return false;
return true;
@@ -2761,7 +2760,7 @@ void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
// If an IV increment can't be folded, use it as the next IV value.
if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
- TLI)) {
+ TTI)) {
assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
IVSrc = IVOper;
LeftOverExpr = 0;
@@ -2892,6 +2891,7 @@ void
LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Formula F;
F.InitialMatch(S, L, SE);
+ F.HasBaseReg = true;
bool Inserted = InsertFormula(LU, LUIdx, F);
assert(Inserted && "Initial formula already exists!"); (void)Inserted;
}
@@ -2903,7 +2903,6 @@ LSRInstance::InsertSupplementalFormula(const SCEV *S,
LSRUse &LU, size_t LUIdx) {
Formula F;
F.BaseRegs.push_back(S);
- F.AM.HasBaseReg = true;
bool Inserted = InsertFormula(LU, LUIdx, F);
assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
}
@@ -3105,9 +3104,8 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Don't pull a constant into a register if the constant could be folded
// into an immediate field.
- if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
- Base.getNumRegs() > 1,
- LU.Kind, LU.AccessTy, TLI, SE))
+ if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
+ LU.AccessTy, *J, Base.getNumRegs() > 1))
continue;
// Collect all operands except *J.
@@ -3119,9 +3117,8 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Don't leave just a constant behind in a register if the constant could
// be folded into an immediate field.
if (InnerAddOps.size() == 1 &&
- isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
- Base.getNumRegs() > 1,
- LU.Kind, LU.AccessTy, TLI, SE))
+ isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
+ LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
continue;
const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
@@ -3131,10 +3128,10 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Add the remaining pieces of the add back into the new formula.
const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
- if (TLI && InnerSumSC &&
+ if (InnerSumSC &&
SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
- TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
- InnerSumSC->getValue()->getZExtValue())) {
+ TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
+ InnerSumSC->getValue()->getZExtValue())) {
F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
InnerSumSC->getValue()->getZExtValue();
F.BaseRegs.erase(F.BaseRegs.begin() + i);
@@ -3143,9 +3140,9 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Add J as its own register, or an unfolded immediate.
const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
- if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
- TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
- SC->getValue()->getZExtValue()))
+ if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
+ TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
+ SC->getValue()->getZExtValue()))
F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
SC->getValue()->getZExtValue();
else
@@ -3194,7 +3191,7 @@ void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
Formula Base) {
// We can't add a symbolic offset if the address already contains one.
- if (Base.AM.BaseGV) return;
+ if (Base.BaseGV) return;
for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
const SCEV *G = Base.BaseRegs[i];
@@ -3202,9 +3199,8 @@ void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
if (G->isZero() || !GV)
continue;
Formula F = Base;
- F.AM.BaseGV = GV;
- if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI))
+ F.BaseGV = GV;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
continue;
F.BaseRegs[i] = G;
(void)InsertFormula(LU, LUIdx, F);
@@ -3227,9 +3223,9 @@ void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
E = Worklist.end(); I != E; ++I) {
Formula F = Base;
- F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
- if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
- LU.Kind, LU.AccessTy, TLI)) {
+ F.BaseOffset = (uint64_t)Base.BaseOffset - *I;
+ if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind,
+ LU.AccessTy, F)) {
// Add the offset to the base register.
const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
// If it cancelled out, drop the base register, otherwise update it.
@@ -3247,9 +3243,8 @@ void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
if (G->isZero() || Imm == 0)
continue;
Formula F = Base;
- F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
- if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI))
+ F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
continue;
F.BaseRegs[i] = G;
(void)InsertFormula(LU, LUIdx, F);
@@ -3270,7 +3265,7 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
// Don't do this if there is more than one offset.
if (LU.MinOffset != LU.MaxOffset) return;
- assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
+ assert(!Base.BaseGV && "ICmpZero use is not legal!");
// Check each interesting stride.
for (SmallSetVector<int64_t, 8>::const_iterator
@@ -3278,10 +3273,10 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
int64_t Factor = *I;
// Check that the multiplication doesn't overflow.
- if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
+ if (Base.BaseOffset == INT64_MIN && Factor == -1)
continue;
- int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
- if (NewBaseOffs / Factor != Base.AM.BaseOffs)
+ int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
+ if (NewBaseOffset / Factor != Base.BaseOffset)
continue;
// Check that multiplying with the use offset doesn't overflow.
@@ -3293,14 +3288,14 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
continue;
Formula F = Base;
- F.AM.BaseOffs = NewBaseOffs;
+ F.BaseOffset = NewBaseOffset;
// Check that this scale is legal.
- if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
+ if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
continue;
// Compensate for the use having MinOffset built into it.
- F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
+ F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
const SCEV *FactorS = SE.getConstant(IntTy, Factor);
@@ -3341,23 +3336,23 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
if (!IntTy) return;
// If this Formula already has a scaled register, we can't add another one.
- if (Base.AM.Scale != 0) return;
+ if (Base.Scale != 0) return;
// Check each interesting stride.
for (SmallSetVector<int64_t, 8>::const_iterator
I = Factors.begin(), E = Factors.end(); I != E; ++I) {
int64_t Factor = *I;
- Base.AM.Scale = Factor;
- Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
+ Base.Scale = Factor;
+ Base.HasBaseReg = Base.BaseRegs.size() > 1;
// Check whether this scale is going to be legal.
- if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI)) {
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
+ Base)) {
// As a special-case, handle special out-of-loop Basic users specially.
// TODO: Reconsider this special case.
if (LU.Kind == LSRUse::Basic &&
- isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
- LSRUse::Special, LU.AccessTy, TLI) &&
+ isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
+ LU.AccessTy, Base) &&
LU.AllFixupsOutsideLoop)
LU.Kind = LSRUse::Special;
else
@@ -3366,7 +3361,7 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
// For an ICmpZero, negating a solitary base register won't lead to
// new solutions.
if (LU.Kind == LSRUse::ICmpZero &&
- !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
+ !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
continue;
// For each addrec base reg, apply the scale, if possible.
for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
@@ -3390,11 +3385,8 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
/// GenerateTruncates - Generate reuse formulae from different IV types.
void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
- // This requires TargetLowering to tell us which truncates are free.
- if (!TLI) return;
-
// Don't bother truncating symbolic values.
- if (Base.AM.BaseGV) return;
+ if (Base.BaseGV) return;
// Determine the integer type for the base formula.
Type *DstTy = Base.getType();
@@ -3404,7 +3396,7 @@ void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
for (SmallSetVector<Type *, 4>::const_iterator
I = Types.begin(), E = Types.end(); I != E; ++I) {
Type *SrcTy = *I;
- if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
+ if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
Formula F = Base;
if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
@@ -3446,7 +3438,7 @@ void WorkItem::print(raw_ostream &OS) const {
<< " , add offset " << Imm;
}
-#ifndef NDEBUG
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void WorkItem::dump() const {
print(errs()); errs() << '\n';
}
@@ -3551,16 +3543,15 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
const Formula &F = LU.Formulae[L];
// Use the immediate in the scaled register.
if (F.ScaledReg == OrigReg) {
- int64_t Offs = (uint64_t)F.AM.BaseOffs +
- Imm * (uint64_t)F.AM.Scale;
+ int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
// Don't create 50 + reg(-50).
if (F.referencesReg(SE.getSCEV(
- ConstantInt::get(IntTy, -(uint64_t)Offs))))
+ ConstantInt::get(IntTy, -(uint64_t)Offset))))
continue;
Formula NewF = F;
- NewF.AM.BaseOffs = Offs;
- if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI))
+ NewF.BaseOffset = Offset;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
+ NewF))
continue;
NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
@@ -3569,9 +3560,9 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
// immediate itself, then the formula isn't worthwhile.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
if (C->getValue()->isNegative() !=
- (NewF.AM.BaseOffs < 0) &&
- (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
- .ule(abs64(NewF.AM.BaseOffs)))
+ (NewF.BaseOffset < 0) &&
+ (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
+ .ule(abs64(NewF.BaseOffset)))
continue;
// OK, looks good.
@@ -3583,11 +3574,10 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
if (BaseReg != OrigReg)
continue;
Formula NewF = F;
- NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
- if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI)) {
- if (!TLI ||
- !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
+ NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, NewF)) {
+ if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
continue;
NewF = F;
NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
@@ -3601,11 +3591,11 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
J != JE; ++J)
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
- if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
- abs64(NewF.AM.BaseOffs)) &&
+ if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
+ abs64(NewF.BaseOffset)) &&
(C->getValue()->getValue() +
- NewF.AM.BaseOffs).countTrailingZeros() >=
- CountTrailingZeros_64(NewF.AM.BaseOffs))
+ NewF.BaseOffset).countTrailingZeros() >=
+ CountTrailingZeros_64(NewF.BaseOffset))
goto skip_formula;
// Ok, looks good.
@@ -3803,7 +3793,7 @@ void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
Formula NewF = F;
- NewF.AM.BaseOffs += C->getValue()->getSExtValue();
+ NewF.BaseOffset += C->getValue()->getSExtValue();
NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
(I - F.BaseRegs.begin()));
if (LU.HasFormulaWithSameRegs(NewF)) {
@@ -3816,9 +3806,9 @@ void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
}
} else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
- if (!F.AM.BaseGV) {
+ if (!F.BaseGV) {
Formula NewF = F;
- NewF.AM.BaseGV = GV;
+ NewF.BaseGV = GV;
NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
(I - F.BaseRegs.begin()));
if (LU.HasFormulaWithSameRegs(NewF)) {
@@ -3861,9 +3851,9 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
E = LU.Formulae.end(); I != E; ++I) {
const Formula &F = *I;
- if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
+ if (F.BaseOffset != 0 && F.Scale == 0) {
if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
- if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
+ if (reconcileNewOffset(*LUThatHas, F.BaseOffset,
/*HasBaseReg=*/false,
LU.Kind, LU.AccessTy)) {
DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
@@ -3877,7 +3867,7 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
LSRFixup &Fixup = *I;
if (Fixup.LUIdx == LUIdx) {
Fixup.LUIdx = LUThatHas - &Uses.front();
- Fixup.Offset += F.AM.BaseOffs;
+ Fixup.Offset += F.BaseOffset;
// Add the new offset to LUThatHas' offset list.
if (LUThatHas->Offsets.back() != Fixup.Offset) {
LUThatHas->Offsets.push_back(Fixup.Offset);
@@ -3897,9 +3887,8 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
bool Any = false;
for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
Formula &F = LUThatHas->Formulae[i];
- if (!isLegalUse(F.AM,
- LUThatHas->MinOffset, LUThatHas->MaxOffset,
- LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
+ if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
+ LUThatHas->Kind, LUThatHas->AccessTy, F)) {
DEBUG(dbgs() << " Deleting "; F.print(dbgs());
dbgs() << '\n');
LUThatHas->DeleteFormula(F);
@@ -4307,7 +4296,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// Expand the ScaledReg portion.
Value *ICmpScaledV = 0;
- if (F.AM.Scale != 0) {
+ if (F.Scale != 0) {
const SCEV *ScaledS = F.ScaledReg;
// If we're expanding for a post-inc user, make the post-inc adjustment.
@@ -4320,7 +4309,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// An interesting way of "folding" with an icmp is to use a negated
// scale, which we'll implement by inserting it into the other operand
// of the icmp.
- assert(F.AM.Scale == -1 &&
+ assert(F.Scale == -1 &&
"The only scale supported by ICmpZero uses is -1!");
ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
} else {
@@ -4335,20 +4324,20 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
}
ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
ScaledS = SE.getMulExpr(ScaledS,
- SE.getConstant(ScaledS->getType(), F.AM.Scale));
+ SE.getConstant(ScaledS->getType(), F.Scale));
Ops.push_back(ScaledS);
}
}
// Expand the GV portion.
- if (F.AM.BaseGV) {
+ if (F.BaseGV) {
// Flush the operand list to suppress SCEVExpander hoisting.
if (!Ops.empty()) {
Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
Ops.clear();
Ops.push_back(SE.getUnknown(FullV));
}
- Ops.push_back(SE.getUnknown(F.AM.BaseGV));
+ Ops.push_back(SE.getUnknown(F.BaseGV));
}
// Flush the operand list to suppress SCEVExpander hoisting of both folded and
@@ -4360,7 +4349,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
}
// Expand the immediate portion.
- int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
+ int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
if (Offset != 0) {
if (LU.Kind == LSRUse::ICmpZero) {
// The other interesting way of "folding" with an ICmpZero is to use a
@@ -4401,9 +4390,9 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
if (LU.Kind == LSRUse::ICmpZero) {
ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
DeadInsts.push_back(CI->getOperand(1));
- assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
+ assert(!F.BaseGV && "ICmp does not support folding a global value and "
"a scale at the same time!");
- if (F.AM.Scale == -1) {
+ if (F.Scale == -1) {
if (ICmpScaledV->getType() != OpTy) {
Instruction *Cast =
CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
@@ -4413,7 +4402,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
}
CI->setOperand(1, ICmpScaledV);
} else {
- assert(F.AM.Scale == 0 &&
+ assert(F.Scale == 0 &&
"ICmp does not support folding a global value and "
"a scale at the same time!");
Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
@@ -4464,17 +4453,21 @@ void LSRInstance::RewriteForPHI(PHINode *PN,
SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
NewBB = NewBBs[0];
}
-
- // If PN is outside of the loop and BB is in the loop, we want to
- // move the block to be immediately before the PHI block, not
- // immediately after BB.
- if (L->contains(BB) && !L->contains(PN))
- NewBB->moveBefore(PN->getParent());
-
- // Splitting the edge can reduce the number of PHI entries we have.
- e = PN->getNumIncomingValues();
- BB = NewBB;
- i = PN->getBasicBlockIndex(BB);
+ // If NewBB==NULL, then SplitCriticalEdge refused to split because all
+ // phi predecessors are identical. The simple thing to do is skip
+ // splitting in this case rather than complicate the API.
+ if (NewBB) {
+ // If PN is outside of the loop and BB is in the loop, we want to
+ // move the block to be immediately before the PHI block, not
+ // immediately after BB.
+ if (L->contains(BB) && !L->contains(PN))
+ NewBB->moveBefore(PN->getParent());
+
+ // Splitting the edge can reduce the number of PHI entries we have.
+ e = PN->getNumIncomingValues();
+ BB = NewBB;
+ i = PN->getBasicBlockIndex(BB);
+ }
}
}
@@ -4584,13 +4577,11 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
}
-LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
- : IU(P->getAnalysis<IVUsers>()),
- SE(P->getAnalysis<ScalarEvolution>()),
- DT(P->getAnalysis<DominatorTree>()),
- LI(P->getAnalysis<LoopInfo>()),
- TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
-
+LSRInstance::LSRInstance(Loop *L, Pass *P)
+ : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
+ DT(P->getAnalysis<DominatorTree>()), LI(P->getAnalysis<LoopInfo>()),
+ TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false),
+ IVIncInsertPos(0) {
// If LoopSimplify form is not available, stay out of trouble.
if (!L->isLoopSimplifyForm())
return;
@@ -4673,14 +4664,14 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
#ifndef NDEBUG
// Formulae should be legal.
- for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
- E = Uses.end(); I != E; ++I) {
- const LSRUse &LU = *I;
- for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
- JE = LU.Formulae.end(); J != JE; ++J)
- assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI) &&
- "Illegal formula generated!");
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
+ I != E; ++I) {
+ const LSRUse &LU = *I;
+ for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
+ JE = LU.Formulae.end();
+ J != JE; ++J)
+ assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
+ *J) && "Illegal formula generated!");
};
#endif
@@ -4743,7 +4734,7 @@ void LSRInstance::print(raw_ostream &OS) const {
print_uses(OS);
}
-#ifndef NDEBUG
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LSRInstance::dump() const {
print(errs()); errs() << '\n';
}
@@ -4752,13 +4743,9 @@ void LSRInstance::dump() const {
namespace {
class LoopStrengthReduce : public LoopPass {
- /// TLI - Keep a pointer of a TargetLowering to consult for determining
- /// transformation profitability.
- const TargetLowering *const TLI;
-
public:
static char ID; // Pass ID, replacement for typeid
- explicit LoopStrengthReduce(const TargetLowering *tli = 0);
+ LoopStrengthReduce();
private:
bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -4770,6 +4757,7 @@ private:
char LoopStrengthReduce::ID = 0;
INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
"Loop Strength Reduction", false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(IVUsers)
@@ -4779,14 +4767,13 @@ INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
"Loop Strength Reduction", false, false)
-Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
- return new LoopStrengthReduce(TLI);
+Pass *llvm::createLoopStrengthReducePass() {
+ return new LoopStrengthReduce();
}
-LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
- : LoopPass(ID), TLI(tli) {
- initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
- }
+LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
+ initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
+}
void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
// We split critical edges, so we change the CFG. However, we do update
@@ -4805,24 +4792,27 @@ void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<IVUsers>();
AU.addPreserved<IVUsers>();
+ AU.addRequired<TargetTransformInfo>();
}
bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
bool Changed = false;
// Run the main LSR transformation.
- Changed |= LSRInstance(TLI, L, this).getChanged();
+ Changed |= LSRInstance(L, this).getChanged();
// Remove any extra phis created by processing inner loops.
Changed |= DeleteDeadPHIs(L->getHeader());
- if (EnablePhiElim) {
+ if (EnablePhiElim && L->isLoopSimplifyForm()) {
SmallVector<WeakVH, 16> DeadInsts;
SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
#ifndef NDEBUG
Rewriter.setDebugType(DEBUG_TYPE);
#endif
- unsigned numFolded = Rewriter.
- replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
+ unsigned numFolded =
+ Rewriter.replaceCongruentIVs(L, &getAnalysis<DominatorTree>(),
+ DeadInsts,
+ &getAnalysis<TargetTransformInfo>());
if (numFolded) {
Changed = true;
DeleteTriviallyDeadInstructions(DeadInsts);
diff --git a/lib/Transforms/Scalar/LoopUnrollPass.cpp b/lib/Transforms/Scalar/LoopUnrollPass.cpp
index 09a186f..e0f915b 100644
--- a/lib/Transforms/Scalar/LoopUnrollPass.cpp
+++ b/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -13,16 +13,16 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-unroll"
-#include "llvm/IntrinsicInst.h"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
-#include "llvm/Target/TargetData.h"
#include <climits>
using namespace llvm;
@@ -113,12 +113,13 @@ Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial) {
/// ApproximateLoopSize - Approximate the size of the loop.
static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
- const TargetData *TD) {
+ bool &NotDuplicatable, const DataLayout *TD) {
CodeMetrics Metrics;
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
Metrics.analyzeBasicBlock(*I, TD);
NumCalls = Metrics.NumInlineCandidates;
+ NotDuplicatable = Metrics.notDuplicatable;
unsigned LoopSize = Metrics.NumInsts;
@@ -145,7 +146,9 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
// not user specified.
unsigned Threshold = CurrentThreshold;
if (!UserThreshold &&
- Header->getParent()->hasFnAttr(Attribute::OptimizeForSize))
+ Header->getParent()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize))
Threshold = OptSizeUnrollThreshold;
// Find trip count and trip multiple if count is not available
@@ -178,10 +181,17 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
// Enforce the threshold.
if (Threshold != NoThreshold) {
- const TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
unsigned NumInlineCandidates;
- unsigned LoopSize = ApproximateLoopSize(L, NumInlineCandidates, TD);
+ bool notDuplicatable;
+ unsigned LoopSize = ApproximateLoopSize(L, NumInlineCandidates,
+ notDuplicatable, TD);
DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
+ if (notDuplicatable) {
+ DEBUG(dbgs() << " Not unrolling loop which contains non duplicatable"
+ << " instructions.\n");
+ return false;
+ }
if (NumInlineCandidates != 0) {
DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
return false;
diff --git a/lib/Transforms/Scalar/LoopUnswitch.cpp b/lib/Transforms/Scalar/LoopUnswitch.cpp
index 58f7739..68d4423 100644
--- a/lib/Transforms/Scalar/LoopUnswitch.cpp
+++ b/lib/Transforms/Scalar/LoopUnswitch.cpp
@@ -28,25 +28,25 @@
#define DEBUG_TYPE "loop-unswitch"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <map>
#include <set>
@@ -248,6 +248,13 @@ bool LUAnalysisCache::countLoop(const Loop* L) {
Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
+
+ if (Metrics.notDuplicatable) {
+ DEBUG(dbgs() << "NOT unswitching loop %"
+ << L->getHeader()->getName() << ", contents cannot be "
+ << "duplicated!\n");
+ return false;
+ }
}
if (!Props.CanBeUnswitchedCount) {
@@ -638,7 +645,9 @@ bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
// Check to see if it would be profitable to unswitch current loop.
// Do not do non-trivial unswitch while optimizing for size.
- if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
+ if (OptimizeForSize ||
+ F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize))
return false;
UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
@@ -906,13 +915,9 @@ void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
/// specified.
static void RemoveFromWorklist(Instruction *I,
std::vector<Instruction*> &Worklist) {
- std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
- Worklist.end(), I);
- while (WI != Worklist.end()) {
- unsigned Offset = WI-Worklist.begin();
- Worklist.erase(WI);
- WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
- }
+
+ Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
+ Worklist.end());
}
/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
diff --git a/lib/Transforms/Scalar/LowerAtomic.cpp b/lib/Transforms/Scalar/LowerAtomic.cpp
index 7419a65..8ced494 100644
--- a/lib/Transforms/Scalar/LowerAtomic.cpp
+++ b/lib/Transforms/Scalar/LowerAtomic.cpp
@@ -14,9 +14,9 @@
#define DEBUG_TYPE "loweratomic"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
using namespace llvm;
diff --git a/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
index 2a5ee33..be0f0e8 100644
--- a/lib/Transforms/Scalar/MemCpyOptimizer.cpp
+++ b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
@@ -14,20 +14,20 @@
#define DEBUG_TYPE "memcpyopt"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include <list>
@@ -38,8 +38,8 @@ STATISTIC(NumMemSetInfer, "Number of memsets inferred");
STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
-static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
- bool &VariableIdxFound, const TargetData &TD){
+static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
+ bool &VariableIdxFound, const DataLayout &TD){
// Skip over the first indices.
gep_type_iterator GTI = gep_type_begin(GEP);
for (unsigned i = 1; i != Idx; ++i, ++GTI)
@@ -72,11 +72,11 @@ static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
/// constant offset, and return that constant offset. For example, Ptr1 might
/// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
- const TargetData &TD) {
+ const DataLayout &TD) {
Ptr1 = Ptr1->stripPointerCasts();
Ptr2 = Ptr2->stripPointerCasts();
- GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
- GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
+ GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
+ GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
bool VariableIdxFound = false;
@@ -141,12 +141,12 @@ struct MemsetRange {
/// TheStores - The actual stores that make up this range.
SmallVector<Instruction*, 16> TheStores;
- bool isProfitableToUseMemset(const TargetData &TD) const;
+ bool isProfitableToUseMemset(const DataLayout &TD) const;
};
} // end anon namespace
-bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
+bool MemsetRange::isProfitableToUseMemset(const DataLayout &TD) const {
// If we found more than 4 stores to merge or 16 bytes, use memset.
if (TheStores.size() >= 4 || End-Start >= 16) return true;
@@ -192,9 +192,9 @@ class MemsetRanges {
/// because each element is relatively large and expensive to copy.
std::list<MemsetRange> Ranges;
typedef std::list<MemsetRange>::iterator range_iterator;
- const TargetData &TD;
+ const DataLayout &TD;
public:
- MemsetRanges(const TargetData &td) : TD(td) {}
+ MemsetRanges(const DataLayout &td) : TD(td) {}
typedef std::list<MemsetRange>::const_iterator const_iterator;
const_iterator begin() const { return Ranges.begin(); }
@@ -302,7 +302,7 @@ namespace {
class MemCpyOpt : public FunctionPass {
MemoryDependenceAnalysis *MD;
TargetLibraryInfo *TLI;
- const TargetData *TD;
+ const DataLayout *TD;
public:
static char ID; // Pass identification, replacement for typeid
MemCpyOpt() : FunctionPass(ID) {
@@ -332,7 +332,7 @@ namespace {
bool processMemCpy(MemCpyInst *M);
bool processMemMove(MemMoveInst *M);
bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
- uint64_t cpyLen, CallInst *C);
+ uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
uint64_t MSize);
bool processByValArgument(CallSite CS, unsigned ArgNo);
@@ -509,10 +509,18 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
}
if (C) {
+ unsigned storeAlign = SI->getAlignment();
+ if (!storeAlign)
+ storeAlign = TD->getABITypeAlignment(SI->getOperand(0)->getType());
+ unsigned loadAlign = LI->getAlignment();
+ if (!loadAlign)
+ loadAlign = TD->getABITypeAlignment(LI->getType());
+
bool changed = performCallSlotOptzn(LI,
SI->getPointerOperand()->stripPointerCasts(),
LI->getPointerOperand()->stripPointerCasts(),
- TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
+ TD->getTypeStoreSize(SI->getOperand(0)->getType()),
+ std::min(storeAlign, loadAlign), C);
if (changed) {
MD->removeInstruction(SI);
SI->eraseFromParent();
@@ -559,7 +567,8 @@ bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
/// the call write its result directly into the destination of the memcpy.
bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
Value *cpyDest, Value *cpySrc,
- uint64_t cpyLen, CallInst *C) {
+ uint64_t cpyLen, unsigned cpyAlign,
+ CallInst *C) {
// The general transformation to keep in mind is
//
// call @func(..., src, ...)
@@ -625,6 +634,16 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
return false;
}
+ // Check that dest points to memory that is at least as aligned as src.
+ unsigned srcAlign = srcAlloca->getAlignment();
+ if (!srcAlign)
+ srcAlign = TD->getABITypeAlignment(srcAlloca->getAllocatedType());
+ bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
+ // If dest is not aligned enough and we can't increase its alignment then
+ // bail out.
+ if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
+ return false;
+
// Check that src is not accessed except via the call and the memcpy. This
// guarantees that it holds only undefined values when passed in (so the final
// memcpy can be dropped), that it is not read or written between the call and
@@ -673,20 +692,26 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
bool changedArgument = false;
for (unsigned i = 0; i < CS.arg_size(); ++i)
if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
- if (cpySrc->getType() != cpyDest->getType())
- cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
- cpyDest->getName(), C);
+ Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
+ : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
+ cpyDest->getName(), C);
changedArgument = true;
- if (CS.getArgument(i)->getType() == cpyDest->getType())
- CS.setArgument(i, cpyDest);
+ if (CS.getArgument(i)->getType() == Dest->getType())
+ CS.setArgument(i, Dest);
else
- CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
- CS.getArgument(i)->getType(), cpyDest->getName(), C));
+ CS.setArgument(i, CastInst::CreatePointerCast(Dest,
+ CS.getArgument(i)->getType(), Dest->getName(), C));
}
if (!changedArgument)
return false;
+ // If the destination wasn't sufficiently aligned then increase its alignment.
+ if (!isDestSufficientlyAligned) {
+ assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
+ cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
+ }
+
// Drop any cached information about the call, because we may have changed
// its dependence information by changing its parameter.
MD->removeInstruction(C);
@@ -813,7 +838,8 @@ bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
if (DepInfo.isClobber()) {
if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
- CopySize->getZExtValue(), C)) {
+ CopySize->getZExtValue(), M->getAlignment(),
+ C)) {
MD->removeInstruction(M);
M->eraseFromParent();
return true;
@@ -974,7 +1000,7 @@ bool MemCpyOpt::iterateOnFunction(Function &F) {
bool MemCpyOpt::runOnFunction(Function &F) {
bool MadeChange = false;
MD = &getAnalysis<MemoryDependenceAnalysis>();
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
// If we don't have at least memset and memcpy, there is little point of doing
diff --git a/lib/Transforms/Scalar/ObjCARC.cpp b/lib/Transforms/Scalar/ObjCARC.cpp
index dce8e8b..e6ec841 100644
--- a/lib/Transforms/Scalar/ObjCARC.cpp
+++ b/lib/Transforms/Scalar/ObjCARC.cpp
@@ -29,8 +29,10 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "objc-arc"
-#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// A handy option to enable/disable all optimizations in this file.
@@ -131,12 +133,12 @@ namespace {
// ARC Utilities.
//===----------------------------------------------------------------------===//
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
+#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CallSite.h"
-#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Transforms/Utils/Local.h"
namespace {
/// InstructionClass - A simple classification for instructions.
@@ -659,9 +661,9 @@ static bool DoesObjCBlockEscape(const Value *BlockPtr) {
// ARC AliasAnalysis.
//===----------------------------------------------------------------------===//
-#include "llvm/Pass.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
+#include "llvm/Pass.h"
namespace {
/// ObjCARCAliasAnalysis - This is a simple alias analysis
@@ -885,25 +887,33 @@ bool ObjCARCExpand::runOnFunction(Function &F) {
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
Instruction *Inst = &*I;
+ DEBUG(dbgs() << "ObjCARCExpand: Visiting: " << *Inst << "\n");
+
switch (GetBasicInstructionClass(Inst)) {
case IC_Retain:
case IC_RetainRV:
case IC_Autorelease:
case IC_AutoreleaseRV:
case IC_FusedRetainAutorelease:
- case IC_FusedRetainAutoreleaseRV:
+ case IC_FusedRetainAutoreleaseRV: {
// These calls return their argument verbatim, as a low-level
// optimization. However, this makes high-level optimizations
// harder. Undo any uses of this optimization that the front-end
// emitted here. We'll redo them in the contract pass.
Changed = true;
- Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
+ Value *Value = cast<CallInst>(Inst)->getArgOperand(0);
+ DEBUG(dbgs() << "ObjCARCExpand: Old = " << *Inst << "\n"
+ " New = " << *Value << "\n");
+ Inst->replaceAllUsesWith(Value);
break;
+ }
default:
break;
}
}
+ DEBUG(dbgs() << "ObjCARCExpand: Finished List.\n\n");
+
return Changed;
}
@@ -911,8 +921,8 @@ bool ObjCARCExpand::runOnFunction(Function &F) {
// ARC autorelease pool elimination.
//===----------------------------------------------------------------------===//
-#include "llvm/Constants.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/Constants.h"
namespace {
/// ObjCARCAPElim - Autorelease pool elimination.
@@ -985,6 +995,9 @@ bool ObjCARCAPElim::OptimizeBB(BasicBlock *BB) {
// zap the pair.
if (Push && cast<CallInst>(Inst)->getArgOperand(0) == Push) {
Changed = true;
+ DEBUG(dbgs() << "ObjCARCAPElim::OptimizeBB: Zapping push pop autorelease pair:\n"
+ << " Pop: " << *Inst << "\n"
+ << " Push: " << *Push << "\n");
Inst->eraseFromParent();
Push->eraseFromParent();
}
@@ -1092,10 +1105,10 @@ bool ObjCARCAPElim::runOnModule(Module &M) {
// TODO: Delete release+retain pairs (rare).
-#include "llvm/LLVMContext.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/CFG.h"
STATISTIC(NumNoops, "Number of no-op objc calls eliminated");
STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
@@ -1120,9 +1133,8 @@ namespace {
bool relatedSelect(const SelectInst *A, const Value *B);
bool relatedPHI(const PHINode *A, const Value *B);
- // Do not implement.
- void operator=(const ProvenanceAnalysis &);
- ProvenanceAnalysis(const ProvenanceAnalysis &);
+ void operator=(const ProvenanceAnalysis &) LLVM_DELETED_FUNCTION;
+ ProvenanceAnalysis(const ProvenanceAnalysis &) LLVM_DELETED_FUNCTION;
public:
ProvenanceAnalysis() {}
@@ -1597,6 +1609,12 @@ void BBState::MergePred(const BBState &Other) {
// loop backedge. Loop backedges are special.
TopDownPathCount += Other.TopDownPathCount;
+ // Check for overflow. If we have overflow, fall back to conservative behavior.
+ if (TopDownPathCount < Other.TopDownPathCount) {
+ clearTopDownPointers();
+ return;
+ }
+
// For each entry in the other set, if our set has an entry with the same key,
// merge the entries. Otherwise, copy the entry and merge it with an empty
// entry.
@@ -1622,6 +1640,12 @@ void BBState::MergeSucc(const BBState &Other) {
// loop backedge. Loop backedges are special.
BottomUpPathCount += Other.BottomUpPathCount;
+ // Check for overflow. If we have overflow, fall back to conservative behavior.
+ if (BottomUpPathCount < Other.BottomUpPathCount) {
+ clearBottomUpPointers();
+ return;
+ }
+
// For each entry in the other set, if our set has an entry with the
// same key, merge the entries. Otherwise, copy the entry and merge
// it with an empty entry.
@@ -1776,10 +1800,12 @@ Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
Type *Params[] = { I8X };
FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttrListPtr Attributes = AttrListPtr().addAttr(~0u, Attribute::NoUnwind);
+ AttributeSet Attribute =
+ AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::get(C, Attribute::NoUnwind));
RetainRVCallee =
M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy,
- Attributes);
+ Attribute);
}
return RetainRVCallee;
}
@@ -1790,10 +1816,12 @@ Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
Type *Params[] = { I8X };
FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttrListPtr Attributes = AttrListPtr().addAttr(~0u, Attribute::NoUnwind);
+ AttributeSet Attribute =
+ AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::get(C, Attribute::NoUnwind));
AutoreleaseRVCallee =
M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy,
- Attributes);
+ Attribute);
}
return AutoreleaseRVCallee;
}
@@ -1802,12 +1830,14 @@ Constant *ObjCARCOpt::getReleaseCallee(Module *M) {
if (!ReleaseCallee) {
LLVMContext &C = M->getContext();
Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- AttrListPtr Attributes = AttrListPtr().addAttr(~0u, Attribute::NoUnwind);
+ AttributeSet Attribute =
+ AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::get(C, Attribute::NoUnwind));
ReleaseCallee =
M->getOrInsertFunction(
"objc_release",
FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
- Attributes);
+ Attribute);
}
return ReleaseCallee;
}
@@ -1816,12 +1846,14 @@ Constant *ObjCARCOpt::getRetainCallee(Module *M) {
if (!RetainCallee) {
LLVMContext &C = M->getContext();
Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- AttrListPtr Attributes = AttrListPtr().addAttr(~0u, Attribute::NoUnwind);
+ AttributeSet Attribute =
+ AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::get(C, Attribute::NoUnwind));
RetainCallee =
M->getOrInsertFunction(
"objc_retain",
FunctionType::get(Params[0], Params, /*isVarArg=*/false),
- Attributes);
+ Attribute);
}
return RetainCallee;
}
@@ -1836,7 +1868,7 @@ Constant *ObjCARCOpt::getRetainBlockCallee(Module *M) {
M->getOrInsertFunction(
"objc_retainBlock",
FunctionType::get(Params[0], Params, /*isVarArg=*/false),
- AttrListPtr());
+ AttributeSet());
}
return RetainBlockCallee;
}
@@ -1845,12 +1877,14 @@ Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) {
if (!AutoreleaseCallee) {
LLVMContext &C = M->getContext();
Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- AttrListPtr Attributes = AttrListPtr().addAttr(~0u, Attribute::NoUnwind);
+ AttributeSet Attribute =
+ AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::get(C, Attribute::NoUnwind));
AutoreleaseCallee =
M->getOrInsertFunction(
"objc_autorelease",
FunctionType::get(Params[0], Params, /*isVarArg=*/false),
- Attributes);
+ Attribute);
}
return AutoreleaseCallee;
}
@@ -2165,7 +2199,17 @@ ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
// Turn it to an objc_retainAutoreleasedReturnValue..
Changed = true;
++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainCall: Transforming "
+ "objc_retainAutoreleasedReturnValue => "
+ "objc_retain since the operand is not a return value.\n"
+ " Old: "
+ << *Retain << "\n");
+
cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent()));
+
+ DEBUG(dbgs() << " New: "
+ << *Retain << "\n");
}
/// OptimizeRetainRVCall - Turn objc_retainAutoreleasedReturnValue into
@@ -2203,6 +2247,11 @@ ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
GetObjCArg(I) == Arg) {
Changed = true;
++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainRVCall: Erasing " << *I << "\n"
+ << " Erasing " << *RetainRV
+ << "\n");
+
EraseInstruction(I);
EraseInstruction(RetainRV);
return true;
@@ -2212,7 +2261,18 @@ ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
// Turn it to a plain objc_retain.
Changed = true;
++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainRVCall: Transforming "
+ "objc_retainAutoreleasedReturnValue => "
+ "objc_retain since the operand is not a return value.\n"
+ " Old: "
+ << *RetainRV << "\n");
+
cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent()));
+
+ DEBUG(dbgs() << " New: "
+ << *RetainRV << "\n");
+
return false;
}
@@ -2238,8 +2298,20 @@ ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV) {
Changed = true;
++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeAutoreleaseRVCall: Transforming "
+ "objc_autoreleaseReturnValue => "
+ "objc_autorelease since its operand is not used as a return "
+ "value.\n"
+ " Old: "
+ << *AutoreleaseRV << "\n");
+
cast<CallInst>(AutoreleaseRV)->
setCalledFunction(getAutoreleaseCallee(F.getParent()));
+
+ DEBUG(dbgs() << " New: "
+ << *AutoreleaseRV << "\n");
+
}
/// OptimizeIndividualCalls - Visit each call, one at a time, and make
@@ -2251,6 +2323,10 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
// Visit all objc_* calls in F.
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
Instruction *Inst = &*I++;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Visiting: " <<
+ *Inst << "\n");
+
InstructionClass Class = GetBasicInstructionClass(Inst);
switch (Class) {
@@ -2267,6 +2343,8 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
case IC_NoopCast:
Changed = true;
++NumNoops;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Erasing no-op cast:"
+ " " << *Inst << "\n");
EraseInstruction(Inst);
continue;
@@ -2283,7 +2361,13 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
Constant::getNullValue(Ty),
CI);
- CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
+ llvm::Value *NewValue = UndefValue::get(CI->getType());
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: A null "
+ "pointer-to-weak-pointer is undefined behavior.\n"
+ " Old = " << *CI <<
+ "\n New = " <<
+ *NewValue << "\n");
+ CI->replaceAllUsesWith(NewValue);
CI->eraseFromParent();
continue;
}
@@ -2299,7 +2383,15 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
Constant::getNullValue(Ty),
CI);
- CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
+
+ llvm::Value *NewValue = UndefValue::get(CI->getType());
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: A null "
+ "pointer-to-weak-pointer is undefined behavior.\n"
+ " Old = " << *CI <<
+ "\n New = " <<
+ *NewValue << "\n");
+
+ CI->replaceAllUsesWith(NewValue);
CI->eraseFromParent();
continue;
}
@@ -2333,6 +2425,14 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
Call->getArgOperand(0), "", Call);
NewCall->setMetadata(ImpreciseReleaseMDKind,
MDNode::get(C, ArrayRef<Value *>()));
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Replacing "
+ "objc_autorelease(x) with objc_release(x) since x is "
+ "otherwise unused.\n"
+ " Old: " << *Call <<
+ "\n New: " <<
+ *NewCall << "\n");
+
EraseInstruction(Call);
Inst = NewCall;
Class = IC_Release;
@@ -2343,12 +2443,17 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
// a tail keyword.
if (IsAlwaysTail(Class)) {
Changed = true;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Adding tail keyword"
+ " to function since it can never be passed stack args: " << *Inst <<
+ "\n");
cast<CallInst>(Inst)->setTailCall();
}
// Set nounwind as needed.
if (IsNoThrow(Class)) {
Changed = true;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Found no throw"
+ " class. Setting nounwind on: " << *Inst << "\n");
cast<CallInst>(Inst)->setDoesNotThrow();
}
@@ -2363,6 +2468,8 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
if (isNullOrUndef(Arg)) {
Changed = true;
++NumNoops;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: ARC calls with "
+ " null are no-ops. Erasing: " << *Inst << "\n");
EraseInstruction(Inst);
continue;
}
@@ -2464,6 +2571,9 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
}
}
} while (!Worklist.empty());
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Finished Queue.\n\n");
+
}
}
@@ -3367,6 +3477,10 @@ void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
// queries instead.
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
Instruction *Inst = &*I++;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeWeakCalls: Visiting: " << *Inst <<
+ "\n");
+
InstructionClass Class = GetBasicInstructionClass(Inst);
if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
continue;
@@ -3512,6 +3626,9 @@ void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
done:;
}
}
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeWeakCalls: Finished List.\n\n");
+
}
/// OptimizeSequences - Identify program paths which execute sequences of
@@ -3537,19 +3654,19 @@ bool ObjCARCOpt::OptimizeSequences(Function &F) {
}
/// OptimizeReturns - Look for this pattern:
-///
+/// \code
/// %call = call i8* @something(...)
/// %2 = call i8* @objc_retain(i8* %call)
/// %3 = call i8* @objc_autorelease(i8* %2)
/// ret i8* %3
-///
+/// \endcode
/// And delete the retain and autorelease.
///
/// Otherwise if it's just this:
-///
+/// \code
/// %3 = call i8* @objc_autorelease(i8* %2)
/// ret i8* %3
-///
+/// \endcode
/// convert the autorelease to autoreleaseRV.
void ObjCARCOpt::OptimizeReturns(Function &F) {
if (!F.getReturnType()->isPointerTy())
@@ -3560,6 +3677,9 @@ void ObjCARCOpt::OptimizeReturns(Function &F) {
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
BasicBlock *BB = FI;
ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Visiting: " << *Ret << "\n");
+
if (!Ret) continue;
const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
@@ -3633,6 +3753,9 @@ void ObjCARCOpt::OptimizeReturns(Function &F) {
// If so, we can zap the retain and autorelease.
Changed = true;
++NumRets;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Erasing: " << *Retain
+ << "\n Erasing: "
+ << *Autorelease << "\n");
EraseInstruction(Retain);
EraseInstruction(Autorelease);
}
@@ -3643,6 +3766,9 @@ void ObjCARCOpt::OptimizeReturns(Function &F) {
DependingInstructions.clear();
Visited.clear();
}
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Finished List.\n\n");
+
}
bool ObjCARCOpt::doInitialization(Module &M) {
@@ -3734,9 +3860,9 @@ void ObjCARCOpt::releaseMemory() {
// TODO: ObjCARCContract could insert PHI nodes when uses aren't
// dominated by single calls.
-#include "llvm/Operator.h"
-#include "llvm/InlineAsm.h"
#include "llvm/Analysis/Dominators.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Operator.h"
STATISTIC(NumStoreStrongs, "Number objc_storeStrong calls formed");
@@ -3818,15 +3944,16 @@ Constant *ObjCARCContract::getStoreStrongCallee(Module *M) {
Type *I8XX = PointerType::getUnqual(I8X);
Type *Params[] = { I8XX, I8X };
- AttrListPtr Attributes = AttrListPtr()
- .addAttr(~0u, Attribute::NoUnwind)
- .addAttr(1, Attribute::NoCapture);
+ AttributeSet Attribute = AttributeSet()
+ .addAttr(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::get(C, Attribute::NoUnwind))
+ .addAttr(M->getContext(), 1, Attribute::get(C, Attribute::NoCapture));
StoreStrongCallee =
M->getOrInsertFunction(
"objc_storeStrong",
FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
- Attributes);
+ Attribute);
}
return StoreStrongCallee;
}
@@ -3837,9 +3964,11 @@ Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) {
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
Type *Params[] = { I8X };
FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttrListPtr Attributes = AttrListPtr().addAttr(~0u, Attribute::NoUnwind);
+ AttributeSet Attribute =
+ AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::get(C, Attribute::NoUnwind));
RetainAutoreleaseCallee =
- M->getOrInsertFunction("objc_retainAutorelease", FTy, Attributes);
+ M->getOrInsertFunction("objc_retainAutorelease", FTy, Attribute);
}
return RetainAutoreleaseCallee;
}
@@ -3850,10 +3979,12 @@ Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) {
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
Type *Params[] = { I8X };
FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttrListPtr Attributes = AttrListPtr().addAttr(~0u, Attribute::NoUnwind);
+ AttributeSet Attribute =
+ AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::get(C, Attribute::NoUnwind));
RetainAutoreleaseRVCallee =
M->getOrInsertFunction("objc_retainAutoreleaseReturnValue", FTy,
- Attributes);
+ Attribute);
}
return RetainAutoreleaseRVCallee;
}
@@ -3897,11 +4028,19 @@ ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
Changed = true;
++NumPeeps;
+ DEBUG(dbgs() << "ObjCARCContract::ContractAutorelease: Fusing "
+ "retain/autorelease. Erasing: " << *Autorelease << "\n"
+ " Old Retain: "
+ << *Retain << "\n");
+
if (Class == IC_AutoreleaseRV)
Retain->setCalledFunction(getRetainAutoreleaseRVCallee(F.getParent()));
else
Retain->setCalledFunction(getRetainAutoreleaseCallee(F.getParent()));
+ DEBUG(dbgs() << " New Retain: "
+ << *Retain << "\n");
+
EraseInstruction(Autorelease);
return true;
}
@@ -4052,6 +4191,8 @@ bool ObjCARCContract::runOnFunction(Function &F) {
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
Instruction *Inst = &*I++;
+ DEBUG(dbgs() << "ObjCARCContract: Visiting: " << *Inst << "\n");
+
// Only these library routines return their argument. In particular,
// objc_retainBlock does not necessarily return its argument.
InstructionClass Class = GetBasicInstructionClass(Inst);
@@ -4089,6 +4230,8 @@ bool ObjCARCContract::runOnFunction(Function &F) {
} while (isNoopInstruction(BBI));
if (&*BBI == GetObjCArg(Inst)) {
+ DEBUG(dbgs() << "ObjCARCContract: Adding inline asm marker for "
+ "retainAutoreleasedReturnValue optimization.\n");
Changed = true;
InlineAsm *IA =
InlineAsm::get(FunctionType::get(Type::getVoidTy(Inst->getContext()),
@@ -4108,6 +4251,10 @@ bool ObjCARCContract::runOnFunction(Function &F) {
ConstantPointerNull::get(cast<PointerType>(CI->getType()));
Changed = true;
new StoreInst(Null, CI->getArgOperand(0), CI);
+
+ DEBUG(dbgs() << "OBJCARCContract: Old = " << *CI << "\n"
+ << " New = " << *Null << "\n");
+
CI->replaceAllUsesWith(Null);
CI->eraseFromParent();
}
@@ -4127,6 +4274,8 @@ bool ObjCARCContract::runOnFunction(Function &F) {
continue;
}
+ DEBUG(dbgs() << "ObjCARCContract: Finished List.\n\n");
+
// Don't use GetObjCArg because we don't want to look through bitcasts
// and such; to do the replacement, the argument must have type i8*.
const Value *Arg = cast<CallInst>(Inst)->getArgOperand(0);
diff --git a/lib/Transforms/Scalar/Reassociate.cpp b/lib/Transforms/Scalar/Reassociate.cpp
index 09687d8..0da3746 100644
--- a/lib/Transforms/Scalar/Reassociate.cpp
+++ b/lib/Transforms/Scalar/Reassociate.cpp
@@ -22,24 +22,24 @@
#define DEBUG_TYPE "reassociate"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Assembly/Writer.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;
@@ -339,36 +339,6 @@ static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
}
}
-/// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C
-/// is repeated Weight times.
-static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C,
- APInt Weight) {
- // For addition the result can be efficiently computed as the product of the
- // constant and the weight.
- if (Opcode == Instruction::Add)
- return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight));
-
- // The weight might be huge, so compute by repeated squaring to ensure that
- // compile time is proportional to the logarithm of the weight.
- Constant *Result = 0;
- Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc.
- // Visit the bits in Weight.
- while (Weight != 0) {
- // If the current bit in Weight is non-zero do Result = Result op Power.
- if (Weight[0])
- Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power;
- // Move on to the next bit if any more are non-zero.
- Weight = Weight.lshr(1);
- if (Weight.isMinValue())
- break;
- // Square the power.
- Power = ConstantExpr::get(Opcode, Power, Power);
- }
-
- assert(Result && "Only positive weights supported!");
- return Result;
-}
-
typedef std::pair<Value*, APInt> RepeatedValue;
/// LinearizeExprTree - Given an associative binary expression, return the leaf
@@ -382,9 +352,7 @@ typedef std::pair<Value*, APInt> RepeatedValue;
/// op
/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
///
-/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and
-/// they are all non-constant except possibly for the last one, which if it is
-/// constant will have weight one (Ops[N].second === 1).
+/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
///
/// This routine may modify the function, in which case it returns 'true'. The
/// changes it makes may well be destructive, changing the value computed by 'I'
@@ -455,10 +423,6 @@ static bool LinearizeExprTree(BinaryOperator *I,
assert(Instruction::isAssociative(Opcode) &&
Instruction::isCommutative(Opcode) &&
"Expected an associative and commutative operation!");
- // If we see an absorbing element then the entire expression must be equal to
- // it. For example, if this is a multiplication expression and zero occurs as
- // an operand somewhere in it then the result of the expression must be zero.
- Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
// Visit all operands of the expression, keeping track of their weight (the
// number of paths from the expression root to the operand, or if you like
@@ -506,13 +470,6 @@ static bool LinearizeExprTree(BinaryOperator *I,
DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
assert(!Op->use_empty() && "No uses, so how did we get to it?!");
- // If the expression contains an absorbing element then there is no need
- // to analyze it further: it must evaluate to the absorbing element.
- if (Op == Absorber && !Weight.isMinValue()) {
- Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1)));
- return MadeChange;
- }
-
// If this is a binary operation of the right kind with only one use then
// add its operands to the expression.
if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
@@ -604,7 +561,6 @@ static bool LinearizeExprTree(BinaryOperator *I,
// The leaves, repeated according to their weights, represent the linearized
// form of the expression.
- Constant *Cst = 0; // Accumulate constants here.
for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
Value *V = LeafOrder[i];
LeafMap::iterator It = Leaves.find(V);
@@ -618,31 +574,14 @@ static bool LinearizeExprTree(BinaryOperator *I,
continue;
// Ensure the leaf is only output once.
It->second = 0;
- // Glob all constants together into Cst.
- if (Constant *C = dyn_cast<Constant>(V)) {
- C = EvaluateRepeatedConstant(Opcode, C, Weight);
- Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C;
- continue;
- }
- // Add non-constant
Ops.push_back(std::make_pair(V, Weight));
}
- // Add any constants back into Ops, all globbed together and reduced to having
- // weight 1 for the convenience of users.
- Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
- if (Cst && Cst != Identity) {
- // If combining multiple constants resulted in the absorber then the entire
- // expression must evaluate to the absorber.
- if (Cst == Absorber)
- Ops.clear();
- Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1)));
- }
-
// For nilpotent operations or addition there may be no operands, for example
// because the expression was "X xor X" or consisted of 2^Bitwidth additions:
// in both cases the weight reduces to 0 causing the value to be skipped.
if (Ops.empty()) {
+ Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
assert(Identity && "Associative operation without identity!");
Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
}
@@ -656,8 +595,8 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
SmallVectorImpl<ValueEntry> &Ops) {
assert(Ops.size() > 1 && "Single values should be used directly!");
- // Since our optimizations never increase the number of operations, the new
- // expression can always be written by reusing the existing binary operators
+ // Since our optimizations should never increase the number of operations, the
+ // new expression can usually be written reusing the existing binary operators
// from the original expression tree, without creating any new instructions,
// though the rewritten expression may have a completely different topology.
// We take care to not change anything if the new expression will be the same
@@ -671,6 +610,20 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
unsigned Opcode = I->getOpcode();
BinaryOperator *Op = I;
+ /// NotRewritable - The operands being written will be the leaves of the new
+ /// expression and must not be used as inner nodes (via NodesToRewrite) by
+ /// mistake. Inner nodes are always reassociable, and usually leaves are not
+ /// (if they were they would have been incorporated into the expression and so
+ /// would not be leaves), so most of the time there is no danger of this. But
+ /// in rare cases a leaf may become reassociable if an optimization kills uses
+ /// of it, or it may momentarily become reassociable during rewriting (below)
+ /// due it being removed as an operand of one of its uses. Ensure that misuse
+ /// of leaf nodes as inner nodes cannot occur by remembering all of the future
+ /// leaves and refusing to reuse any of them as inner nodes.
+ SmallPtrSet<Value*, 8> NotRewritable;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ NotRewritable.insert(Ops[i].Op);
+
// ExpressionChanged - Non-null if the rewritten expression differs from the
// original in some non-trivial way, requiring the clearing of optional flags.
// Flags are cleared from the operator in ExpressionChanged up to I inclusive.
@@ -703,12 +656,14 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
// the old operands with the new ones.
DEBUG(dbgs() << "RA: " << *Op << '\n');
if (NewLHS != OldLHS) {
- if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
+ BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
+ if (BO && !NotRewritable.count(BO))
NodesToRewrite.push_back(BO);
Op->setOperand(0, NewLHS);
}
if (NewRHS != OldRHS) {
- if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
+ BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
+ if (BO && !NotRewritable.count(BO))
NodesToRewrite.push_back(BO);
Op->setOperand(1, NewRHS);
}
@@ -732,7 +687,8 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
Op->swapOperands();
} else {
// Overwrite with the new right-hand side.
- if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
+ BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
+ if (BO && !NotRewritable.count(BO))
NodesToRewrite.push_back(BO);
Op->setOperand(1, NewRHS);
ExpressionChanged = Op;
@@ -745,7 +701,8 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
// Now deal with the left-hand side. If this is already an operation node
// from the original expression then just rewrite the rest of the expression
// into it.
- if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
+ BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
+ if (BO && !NotRewritable.count(BO)) {
Op = BO;
continue;
}
@@ -1446,9 +1403,26 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
SmallVectorImpl<ValueEntry> &Ops) {
// Now that we have the linearized expression tree, try to optimize it.
// Start by folding any constants that we found.
- if (Ops.size() == 1) return Ops[0].Op;
-
+ Constant *Cst = 0;
unsigned Opcode = I->getOpcode();
+ while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
+ Constant *C = cast<Constant>(Ops.pop_back_val().Op);
+ Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
+ }
+ // If there was nothing but constants then we are done.
+ if (Ops.empty())
+ return Cst;
+
+ // Put the combined constant back at the end of the operand list, except if
+ // there is no point. For example, an add of 0 gets dropped here, while a
+ // multiplication by zero turns the whole expression into zero.
+ if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
+ if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
+ return Cst;
+ Ops.push_back(ValueEntry(0, Cst));
+ }
+
+ if (Ops.size() == 1) return Ops[0].Op;
// Handle destructive annihilation due to identities between elements in the
// argument list here.
diff --git a/lib/Transforms/Scalar/Reg2Mem.cpp b/lib/Transforms/Scalar/Reg2Mem.cpp
index ea1de63..07f540a 100644
--- a/lib/Transforms/Scalar/Reg2Mem.cpp
+++ b/lib/Transforms/Scalar/Reg2Mem.cpp
@@ -18,15 +18,15 @@
#define DEBUG_TYPE "reg2mem"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Pass.h"
-#include "llvm/Function.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Instructions.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <list>
using namespace llvm;
diff --git a/lib/Transforms/Scalar/SCCP.cpp b/lib/Transforms/Scalar/SCCP.cpp
index 2c39aab..3e935d8 100644
--- a/lib/Transforms/Scalar/SCCP.cpp
+++ b/lib/Transforms/Scalar/SCCP.cpp
@@ -19,26 +19,26 @@
#define DEBUG_TYPE "sccp"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;
@@ -153,7 +153,7 @@ namespace {
/// Constant Propagation.
///
class SCCPSolver : public InstVisitor<SCCPSolver> {
- const TargetData *TD;
+ const DataLayout *TD;
const TargetLibraryInfo *TLI;
SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
DenseMap<Value*, LatticeVal> ValueState; // The state each value is in.
@@ -205,7 +205,7 @@ class SCCPSolver : public InstVisitor<SCCPSolver> {
typedef std::pair<BasicBlock*, BasicBlock*> Edge;
DenseSet<Edge> KnownFeasibleEdges;
public:
- SCCPSolver(const TargetData *td, const TargetLibraryInfo *tli)
+ SCCPSolver(const DataLayout *td, const TargetLibraryInfo *tli)
: TD(td), TLI(tli) {}
/// MarkBlockExecutable - This method can be used by clients to mark all of
@@ -1564,7 +1564,7 @@ static void DeleteInstructionInBlock(BasicBlock *BB) {
//
bool SCCP::runOnFunction(Function &F) {
DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
- const TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
SCCPSolver Solver(TD, TLI);
@@ -1693,7 +1693,7 @@ static bool AddressIsTaken(const GlobalValue *GV) {
}
bool IPSCCP::runOnModule(Module &M) {
- const TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
SCCPSolver Solver(TD, TLI);
diff --git a/lib/Transforms/Scalar/SROA.cpp b/lib/Transforms/Scalar/SROA.cpp
new file mode 100644
index 0000000..4204171
--- /dev/null
+++ b/lib/Transforms/Scalar/SROA.cpp
@@ -0,0 +1,3711 @@
+//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This transformation implements the well known scalar replacement of
+/// aggregates transformation. It tries to identify promotable elements of an
+/// aggregate alloca, and promote them to registers. It will also try to
+/// convert uses of an element (or set of elements) of an alloca into a vector
+/// or bitfield-style integer scalar if appropriate.
+///
+/// It works to do this with minimal slicing of the alloca so that regions
+/// which are merely transferred in and out of external memory remain unchanged
+/// and are not decomposed to scalar code.
+///
+/// Because this also performs alloca promotion, it can be thought of as also
+/// serving the purpose of SSA formation. The algorithm iterates on the
+/// function until all opportunities for promotion have been realized.
+///
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "sroa"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/PtrUseVisitor.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/PromoteMemToReg.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+using namespace llvm;
+
+STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
+STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
+STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
+STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
+STATISTIC(NumDeleted, "Number of instructions deleted");
+STATISTIC(NumVectorized, "Number of vectorized aggregates");
+
+/// Hidden option to force the pass to not use DomTree and mem2reg, instead
+/// forming SSA values through the SSAUpdater infrastructure.
+static cl::opt<bool>
+ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
+
+namespace {
+/// \brief Alloca partitioning representation.
+///
+/// This class represents a partitioning of an alloca into slices, and
+/// information about the nature of uses of each slice of the alloca. The goal
+/// is that this information is sufficient to decide if and how to split the
+/// alloca apart and replace slices with scalars. It is also intended that this
+/// structure can capture the relevant information needed both to decide about
+/// and to enact these transformations.
+class AllocaPartitioning {
+public:
+ /// \brief A common base class for representing a half-open byte range.
+ struct ByteRange {
+ /// \brief The beginning offset of the range.
+ uint64_t BeginOffset;
+
+ /// \brief The ending offset, not included in the range.
+ uint64_t EndOffset;
+
+ ByteRange() : BeginOffset(), EndOffset() {}
+ ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
+ : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
+
+ /// \brief Support for ordering ranges.
+ ///
+ /// This provides an ordering over ranges such that start offsets are
+ /// always increasing, and within equal start offsets, the end offsets are
+ /// decreasing. Thus the spanning range comes first in a cluster with the
+ /// same start position.
+ bool operator<(const ByteRange &RHS) const {
+ if (BeginOffset < RHS.BeginOffset) return true;
+ if (BeginOffset > RHS.BeginOffset) return false;
+ if (EndOffset > RHS.EndOffset) return true;
+ return false;
+ }
+
+ /// \brief Support comparison with a single offset to allow binary searches.
+ friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
+ return LHS.BeginOffset < RHSOffset;
+ }
+
+ friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
+ const ByteRange &RHS) {
+ return LHSOffset < RHS.BeginOffset;
+ }
+
+ bool operator==(const ByteRange &RHS) const {
+ return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
+ }
+ bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
+ };
+
+ /// \brief A partition of an alloca.
+ ///
+ /// This structure represents a contiguous partition of the alloca. These are
+ /// formed by examining the uses of the alloca. During formation, they may
+ /// overlap but once an AllocaPartitioning is built, the Partitions within it
+ /// are all disjoint.
+ struct Partition : public ByteRange {
+ /// \brief Whether this partition is splittable into smaller partitions.
+ ///
+ /// We flag partitions as splittable when they are formed entirely due to
+ /// accesses by trivially splittable operations such as memset and memcpy.
+ bool IsSplittable;
+
+ /// \brief Test whether a partition has been marked as dead.
+ bool isDead() const {
+ if (BeginOffset == UINT64_MAX) {
+ assert(EndOffset == UINT64_MAX);
+ return true;
+ }
+ return false;
+ }
+
+ /// \brief Kill a partition.
+ /// This is accomplished by setting both its beginning and end offset to
+ /// the maximum possible value.
+ void kill() {
+ assert(!isDead() && "He's Dead, Jim!");
+ BeginOffset = EndOffset = UINT64_MAX;
+ }
+
+ Partition() : ByteRange(), IsSplittable() {}
+ Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
+ : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
+ };
+
+ /// \brief A particular use of a partition of the alloca.
+ ///
+ /// This structure is used to associate uses of a partition with it. They
+ /// mark the range of bytes which are referenced by a particular instruction,
+ /// and includes a handle to the user itself and the pointer value in use.
+ /// The bounds of these uses are determined by intersecting the bounds of the
+ /// memory use itself with a particular partition. As a consequence there is
+ /// intentionally overlap between various uses of the same partition.
+ struct PartitionUse : public ByteRange {
+ /// \brief The use in question. Provides access to both user and used value.
+ ///
+ /// Note that this may be null if the partition use is *dead*, that is, it
+ /// should be ignored.
+ Use *U;
+
+ PartitionUse() : ByteRange(), U() {}
+ PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
+ : ByteRange(BeginOffset, EndOffset), U(U) {}
+ };
+
+ /// \brief Construct a partitioning of a particular alloca.
+ ///
+ /// Construction does most of the work for partitioning the alloca. This
+ /// performs the necessary walks of users and builds a partitioning from it.
+ AllocaPartitioning(const DataLayout &TD, AllocaInst &AI);
+
+ /// \brief Test whether a pointer to the allocation escapes our analysis.
+ ///
+ /// If this is true, the partitioning is never fully built and should be
+ /// ignored.
+ bool isEscaped() const { return PointerEscapingInstr; }
+
+ /// \brief Support for iterating over the partitions.
+ /// @{
+ typedef SmallVectorImpl<Partition>::iterator iterator;
+ iterator begin() { return Partitions.begin(); }
+ iterator end() { return Partitions.end(); }
+
+ typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
+ const_iterator begin() const { return Partitions.begin(); }
+ const_iterator end() const { return Partitions.end(); }
+ /// @}
+
+ /// \brief Support for iterating over and manipulating a particular
+ /// partition's uses.
+ ///
+ /// The iteration support provided for uses is more limited, but also
+ /// includes some manipulation routines to support rewriting the uses of
+ /// partitions during SROA.
+ /// @{
+ typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
+ use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
+ use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
+ use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
+ use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
+
+ typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
+ const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
+ const_use_iterator use_begin(const_iterator I) const {
+ return Uses[I - begin()].begin();
+ }
+ const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
+ const_use_iterator use_end(const_iterator I) const {
+ return Uses[I - begin()].end();
+ }
+
+ unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
+ unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
+ const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
+ return Uses[PIdx][UIdx];
+ }
+ const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
+ return Uses[I - begin()][UIdx];
+ }
+
+ void use_push_back(unsigned Idx, const PartitionUse &PU) {
+ Uses[Idx].push_back(PU);
+ }
+ void use_push_back(const_iterator I, const PartitionUse &PU) {
+ Uses[I - begin()].push_back(PU);
+ }
+ /// @}
+
+ /// \brief Allow iterating the dead users for this alloca.
+ ///
+ /// These are instructions which will never actually use the alloca as they
+ /// are outside the allocated range. They are safe to replace with undef and
+ /// delete.
+ /// @{
+ typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
+ dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
+ dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
+ /// @}
+
+ /// \brief Allow iterating the dead expressions referring to this alloca.
+ ///
+ /// These are operands which have cannot actually be used to refer to the
+ /// alloca as they are outside its range and the user doesn't correct for
+ /// that. These mostly consist of PHI node inputs and the like which we just
+ /// need to replace with undef.
+ /// @{
+ typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
+ dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
+ dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
+ /// @}
+
+ /// \brief MemTransferInst auxiliary data.
+ /// This struct provides some auxiliary data about memory transfer
+ /// intrinsics such as memcpy and memmove. These intrinsics can use two
+ /// different ranges within the same alloca, and provide other challenges to
+ /// correctly represent. We stash extra data to help us untangle this
+ /// after the partitioning is complete.
+ struct MemTransferOffsets {
+ /// The destination begin and end offsets when the destination is within
+ /// this alloca. If the end offset is zero the destination is not within
+ /// this alloca.
+ uint64_t DestBegin, DestEnd;
+
+ /// The source begin and end offsets when the source is within this alloca.
+ /// If the end offset is zero, the source is not within this alloca.
+ uint64_t SourceBegin, SourceEnd;
+
+ /// Flag for whether an alloca is splittable.
+ bool IsSplittable;
+ };
+ MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
+ return MemTransferInstData.lookup(&II);
+ }
+
+ /// \brief Map from a PHI or select operand back to a partition.
+ ///
+ /// When manipulating PHI nodes or selects, they can use more than one
+ /// partition of an alloca. We store a special mapping to allow finding the
+ /// partition referenced by each of these operands, if any.
+ iterator findPartitionForPHIOrSelectOperand(Use *U) {
+ SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
+ = PHIOrSelectOpMap.find(U);
+ if (MapIt == PHIOrSelectOpMap.end())
+ return end();
+
+ return begin() + MapIt->second.first;
+ }
+
+ /// \brief Map from a PHI or select operand back to the specific use of
+ /// a partition.
+ ///
+ /// Similar to mapping these operands back to the partitions, this maps
+ /// directly to the use structure of that partition.
+ use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
+ SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
+ = PHIOrSelectOpMap.find(U);
+ assert(MapIt != PHIOrSelectOpMap.end());
+ return Uses[MapIt->second.first].begin() + MapIt->second.second;
+ }
+
+ /// \brief Compute a common type among the uses of a particular partition.
+ ///
+ /// This routines walks all of the uses of a particular partition and tries
+ /// to find a common type between them. Untyped operations such as memset and
+ /// memcpy are ignored.
+ Type *getCommonType(iterator I) const;
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
+ void printUsers(raw_ostream &OS, const_iterator I,
+ StringRef Indent = " ") const;
+ void print(raw_ostream &OS) const;
+ void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
+ void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
+#endif
+
+private:
+ template <typename DerivedT, typename RetT = void> class BuilderBase;
+ class PartitionBuilder;
+ friend class AllocaPartitioning::PartitionBuilder;
+ class UseBuilder;
+ friend class AllocaPartitioning::UseBuilder;
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ /// \brief Handle to alloca instruction to simplify method interfaces.
+ AllocaInst &AI;
+#endif
+
+ /// \brief The instruction responsible for this alloca having no partitioning.
+ ///
+ /// When an instruction (potentially) escapes the pointer to the alloca, we
+ /// store a pointer to that here and abort trying to partition the alloca.
+ /// This will be null if the alloca is partitioned successfully.
+ Instruction *PointerEscapingInstr;
+
+ /// \brief The partitions of the alloca.
+ ///
+ /// We store a vector of the partitions over the alloca here. This vector is
+ /// sorted by increasing begin offset, and then by decreasing end offset. See
+ /// the Partition inner class for more details. Initially (during
+ /// construction) there are overlaps, but we form a disjoint sequence of
+ /// partitions while finishing construction and a fully constructed object is
+ /// expected to always have this as a disjoint space.
+ SmallVector<Partition, 8> Partitions;
+
+ /// \brief The uses of the partitions.
+ ///
+ /// This is essentially a mapping from each partition to a list of uses of
+ /// that partition. The mapping is done with a Uses vector that has the exact
+ /// same number of entries as the partition vector. Each entry is itself
+ /// a vector of the uses.
+ SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
+
+ /// \brief Instructions which will become dead if we rewrite the alloca.
+ ///
+ /// Note that these are not separated by partition. This is because we expect
+ /// a partitioned alloca to be completely rewritten or not rewritten at all.
+ /// If rewritten, all these instructions can simply be removed and replaced
+ /// with undef as they come from outside of the allocated space.
+ SmallVector<Instruction *, 8> DeadUsers;
+
+ /// \brief Operands which will become dead if we rewrite the alloca.
+ ///
+ /// These are operands that in their particular use can be replaced with
+ /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
+ /// to PHI nodes and the like. They aren't entirely dead (there might be
+ /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
+ /// want to swap this particular input for undef to simplify the use lists of
+ /// the alloca.
+ SmallVector<Use *, 8> DeadOperands;
+
+ /// \brief The underlying storage for auxiliary memcpy and memset info.
+ SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
+
+ /// \brief A side datastructure used when building up the partitions and uses.
+ ///
+ /// This mapping is only really used during the initial building of the
+ /// partitioning so that we can retain information about PHI and select nodes
+ /// processed.
+ SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
+
+ /// \brief Auxiliary information for particular PHI or select operands.
+ SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
+
+ /// \brief A utility routine called from the constructor.
+ ///
+ /// This does what it says on the tin. It is the key of the alloca partition
+ /// splitting and merging. After it is called we have the desired disjoint
+ /// collection of partitions.
+ void splitAndMergePartitions();
+};
+}
+
+static Value *foldSelectInst(SelectInst &SI) {
+ // If the condition being selected on is a constant or the same value is
+ // being selected between, fold the select. Yes this does (rarely) happen
+ // early on.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
+ return SI.getOperand(1+CI->isZero());
+ if (SI.getOperand(1) == SI.getOperand(2)) {
+ return SI.getOperand(1);
+ }
+ return 0;
+}
+
+/// \brief Builder for the alloca partitioning.
+///
+/// This class builds an alloca partitioning by recursively visiting the uses
+/// of an alloca and splitting the partitions for each load and store at each
+/// offset.
+class AllocaPartitioning::PartitionBuilder
+ : public PtrUseVisitor<PartitionBuilder> {
+ friend class PtrUseVisitor<PartitionBuilder>;
+ friend class InstVisitor<PartitionBuilder>;
+ typedef PtrUseVisitor<PartitionBuilder> Base;
+
+ const uint64_t AllocSize;
+ AllocaPartitioning &P;
+
+ SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
+
+public:
+ PartitionBuilder(const DataLayout &DL, AllocaInst &AI, AllocaPartitioning &P)
+ : PtrUseVisitor<PartitionBuilder>(DL),
+ AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())),
+ P(P) {}
+
+private:
+ void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
+ bool IsSplittable = false) {
+ // Completely skip uses which have a zero size or start either before or
+ // past the end of the allocation.
+ if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
+ DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
+ << " which has zero size or starts outside of the "
+ << AllocSize << " byte alloca:\n"
+ << " alloca: " << P.AI << "\n"
+ << " use: " << I << "\n");
+ return;
+ }
+
+ uint64_t BeginOffset = Offset.getZExtValue();
+ uint64_t EndOffset = BeginOffset + Size;
+
+ // Clamp the end offset to the end of the allocation. Note that this is
+ // formulated to handle even the case where "BeginOffset + Size" overflows.
+ // NOTE! This may appear superficially to be something we could ignore
+ // entirely, but that is not so! There may be PHI-node uses where some
+ // instructions are dead but not others. We can't completely ignore the
+ // PHI node, and so have to record at least the information here.
+ assert(AllocSize >= BeginOffset); // Established above.
+ if (Size > AllocSize - BeginOffset) {
+ DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
+ << " to remain within the " << AllocSize << " byte alloca:\n"
+ << " alloca: " << P.AI << "\n"
+ << " use: " << I << "\n");
+ EndOffset = AllocSize;
+ }
+
+ Partition New(BeginOffset, EndOffset, IsSplittable);
+ P.Partitions.push_back(New);
+ }
+
+ void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
+ bool IsVolatile) {
+ uint64_t Size = DL.getTypeStoreSize(Ty);
+
+ // If this memory access can be shown to *statically* extend outside the
+ // bounds of of the allocation, it's behavior is undefined, so simply
+ // ignore it. Note that this is more strict than the generic clamping
+ // behavior of insertUse. We also try to handle cases which might run the
+ // risk of overflow.
+ // FIXME: We should instead consider the pointer to have escaped if this
+ // function is being instrumented for addressing bugs or race conditions.
+ if (Offset.isNegative() || Size > AllocSize ||
+ Offset.ugt(AllocSize - Size)) {
+ DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
+ << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
+ << " which extends past the end of the " << AllocSize
+ << " byte alloca:\n"
+ << " alloca: " << P.AI << "\n"
+ << " use: " << I << "\n");
+ return;
+ }
+
+ // We allow splitting of loads and stores where the type is an integer type
+ // and which cover the entire alloca. Such integer loads and stores
+ // often require decomposition into fine grained loads and stores.
+ bool IsSplittable = false;
+ if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
+ IsSplittable = !IsVolatile && ITy->getBitWidth() == AllocSize*8;
+
+ insertUse(I, Offset, Size, IsSplittable);
+ }
+
+ void visitLoadInst(LoadInst &LI) {
+ assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
+ "All simple FCA loads should have been pre-split");
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&LI);
+
+ return handleLoadOrStore(LI.getType(), LI, Offset, LI.isVolatile());
+ }
+
+ void visitStoreInst(StoreInst &SI) {
+ Value *ValOp = SI.getValueOperand();
+ if (ValOp == *U)
+ return PI.setEscapedAndAborted(&SI);
+ if (!IsOffsetKnown)
+ return PI.setAborted(&SI);
+
+ assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
+ "All simple FCA stores should have been pre-split");
+ handleLoadOrStore(ValOp->getType(), SI, Offset, SI.isVolatile());
+ }
+
+
+ void visitMemSetInst(MemSetInst &II) {
+ assert(II.getRawDest() == *U && "Pointer use is not the destination?");
+ ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
+ // Zero-length mem transfer intrinsics can be ignored entirely.
+ return;
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ insertUse(II, Offset,
+ Length ? Length->getLimitedValue()
+ : AllocSize - Offset.getLimitedValue(),
+ (bool)Length);
+ }
+
+ void visitMemTransferInst(MemTransferInst &II) {
+ ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
+ // Zero-length mem transfer intrinsics can be ignored entirely.
+ return;
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ uint64_t RawOffset = Offset.getLimitedValue();
+ uint64_t Size = Length ? Length->getLimitedValue()
+ : AllocSize - RawOffset;
+
+ MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
+
+ // Only intrinsics with a constant length can be split.
+ Offsets.IsSplittable = Length;
+
+ if (*U == II.getRawDest()) {
+ Offsets.DestBegin = RawOffset;
+ Offsets.DestEnd = RawOffset + Size;
+ }
+ if (*U == II.getRawSource()) {
+ Offsets.SourceBegin = RawOffset;
+ Offsets.SourceEnd = RawOffset + Size;
+ }
+
+ // If we have set up end offsets for both the source and the destination,
+ // we have found both sides of this transfer pointing at the same alloca.
+ bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd;
+ if (SeenBothEnds && II.getRawDest() != II.getRawSource()) {
+ unsigned PrevIdx = MemTransferPartitionMap[&II];
+
+ // Check if the begin offsets match and this is a non-volatile transfer.
+ // In that case, we can completely elide the transfer.
+ if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
+ P.Partitions[PrevIdx].kill();
+ return;
+ }
+
+ // Otherwise we have an offset transfer within the same alloca. We can't
+ // split those.
+ P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false;
+ } else if (SeenBothEnds) {
+ // Handle the case where this exact use provides both ends of the
+ // operation.
+ assert(II.getRawDest() == II.getRawSource());
+
+ // For non-volatile transfers this is a no-op.
+ if (!II.isVolatile())
+ return;
+
+ // Otherwise just suppress splitting.
+ Offsets.IsSplittable = false;
+ }
+
+
+ // Insert the use now that we've fixed up the splittable nature.
+ insertUse(II, Offset, Size, Offsets.IsSplittable);
+
+ // Setup the mapping from intrinsic to partition of we've not seen both
+ // ends of this transfer.
+ if (!SeenBothEnds) {
+ unsigned NewIdx = P.Partitions.size() - 1;
+ bool Inserted
+ = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second;
+ assert(Inserted &&
+ "Already have intrinsic in map but haven't seen both ends");
+ (void)Inserted;
+ }
+ }
+
+ // Disable SRoA for any intrinsics except for lifetime invariants.
+ // FIXME: What about debug instrinsics? This matches old behavior, but
+ // doesn't make sense.
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
+ II.getIntrinsicID() == Intrinsic::lifetime_end) {
+ ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
+ uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
+ Length->getLimitedValue());
+ insertUse(II, Offset, Size, true);
+ return;
+ }
+
+ Base::visitIntrinsicInst(II);
+ }
+
+ Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
+ // We consider any PHI or select that results in a direct load or store of
+ // the same offset to be a viable use for partitioning purposes. These uses
+ // are considered unsplittable and the size is the maximum loaded or stored
+ // size.
+ SmallPtrSet<Instruction *, 4> Visited;
+ SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
+ Visited.insert(Root);
+ Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
+ // If there are no loads or stores, the access is dead. We mark that as
+ // a size zero access.
+ Size = 0;
+ do {
+ Instruction *I, *UsedI;
+ llvm::tie(UsedI, I) = Uses.pop_back_val();
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
+ continue;
+ }
+ if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ Value *Op = SI->getOperand(0);
+ if (Op == UsedI)
+ return SI;
+ Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
+ continue;
+ }
+
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
+ if (!GEP->hasAllZeroIndices())
+ return GEP;
+ } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
+ !isa<SelectInst>(I)) {
+ return I;
+ }
+
+ for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
+ ++UI)
+ if (Visited.insert(cast<Instruction>(*UI)))
+ Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
+ } while (!Uses.empty());
+
+ return 0;
+ }
+
+ void visitPHINode(PHINode &PN) {
+ if (PN.use_empty())
+ return;
+ if (!IsOffsetKnown)
+ return PI.setAborted(&PN);
+
+ // See if we already have computed info on this node.
+ std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
+ if (PHIInfo.first) {
+ PHIInfo.second = true;
+ insertUse(PN, Offset, PHIInfo.first);
+ return;
+ }
+
+ // Check for an unsafe use of the PHI node.
+ if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
+ return PI.setAborted(UnsafeI);
+
+ insertUse(PN, Offset, PHIInfo.first);
+ }
+
+ void visitSelectInst(SelectInst &SI) {
+ if (SI.use_empty())
+ return;
+ if (Value *Result = foldSelectInst(SI)) {
+ if (Result == *U)
+ // If the result of the constant fold will be the pointer, recurse
+ // through the select as if we had RAUW'ed it.
+ enqueueUsers(SI);
+
+ return;
+ }
+ if (!IsOffsetKnown)
+ return PI.setAborted(&SI);
+
+ // See if we already have computed info on this node.
+ std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
+ if (SelectInfo.first) {
+ SelectInfo.second = true;
+ insertUse(SI, Offset, SelectInfo.first);
+ return;
+ }
+
+ // Check for an unsafe use of the PHI node.
+ if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
+ return PI.setAborted(UnsafeI);
+
+ insertUse(SI, Offset, SelectInfo.first);
+ }
+
+ /// \brief Disable SROA entirely if there are unhandled users of the alloca.
+ void visitInstruction(Instruction &I) {
+ PI.setAborted(&I);
+ }
+};
+
+/// \brief Use adder for the alloca partitioning.
+///
+/// This class adds the uses of an alloca to all of the partitions which they
+/// use. For splittable partitions, this can end up doing essentially a linear
+/// walk of the partitions, but the number of steps remains bounded by the
+/// total result instruction size:
+/// - The number of partitions is a result of the number unsplittable
+/// instructions using the alloca.
+/// - The number of users of each partition is at worst the total number of
+/// splittable instructions using the alloca.
+/// Thus we will produce N * M instructions in the end, where N are the number
+/// of unsplittable uses and M are the number of splittable. This visitor does
+/// the exact same number of updates to the partitioning.
+///
+/// In the more common case, this visitor will leverage the fact that the
+/// partition space is pre-sorted, and do a logarithmic search for the
+/// partition needed, making the total visit a classical ((N + M) * log(N))
+/// complexity operation.
+class AllocaPartitioning::UseBuilder : public PtrUseVisitor<UseBuilder> {
+ friend class PtrUseVisitor<UseBuilder>;
+ friend class InstVisitor<UseBuilder>;
+ typedef PtrUseVisitor<UseBuilder> Base;
+
+ const uint64_t AllocSize;
+ AllocaPartitioning &P;
+
+ /// \brief Set to de-duplicate dead instructions found in the use walk.
+ SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
+
+public:
+ UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
+ : PtrUseVisitor<UseBuilder>(TD),
+ AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
+ P(P) {}
+
+private:
+ void markAsDead(Instruction &I) {
+ if (VisitedDeadInsts.insert(&I))
+ P.DeadUsers.push_back(&I);
+ }
+
+ void insertUse(Instruction &User, const APInt &Offset, uint64_t Size) {
+ // If the use has a zero size or extends outside of the allocation, record
+ // it as a dead use for elimination later.
+ if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize))
+ return markAsDead(User);
+
+ uint64_t BeginOffset = Offset.getZExtValue();
+ uint64_t EndOffset = BeginOffset + Size;
+
+ // Clamp the end offset to the end of the allocation. Note that this is
+ // formulated to handle even the case where "BeginOffset + Size" overflows.
+ assert(AllocSize >= BeginOffset); // Established above.
+ if (Size > AllocSize - BeginOffset)
+ EndOffset = AllocSize;
+
+ // NB: This only works if we have zero overlapping partitions.
+ iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
+ if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
+ B = llvm::prior(B);
+ for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
+ ++I) {
+ PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
+ std::min(I->EndOffset, EndOffset), U);
+ P.use_push_back(I, NewPU);
+ if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
+ P.PHIOrSelectOpMap[U]
+ = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
+ }
+ }
+
+ void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset) {
+ uint64_t Size = DL.getTypeStoreSize(Ty);
+
+ // If this memory access can be shown to *statically* extend outside the
+ // bounds of of the allocation, it's behavior is undefined, so simply
+ // ignore it. Note that this is more strict than the generic clamping
+ // behavior of insertUse.
+ if (Offset.isNegative() || Size > AllocSize ||
+ Offset.ugt(AllocSize - Size))
+ return markAsDead(I);
+
+ insertUse(I, Offset, Size);
+ }
+
+ void visitBitCastInst(BitCastInst &BC) {
+ if (BC.use_empty())
+ return markAsDead(BC);
+
+ return Base::visitBitCastInst(BC);
+ }
+
+ void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
+ if (GEPI.use_empty())
+ return markAsDead(GEPI);
+
+ return Base::visitGetElementPtrInst(GEPI);
+ }
+
+ void visitLoadInst(LoadInst &LI) {
+ assert(IsOffsetKnown);
+ handleLoadOrStore(LI.getType(), LI, Offset);
+ }
+
+ void visitStoreInst(StoreInst &SI) {
+ assert(IsOffsetKnown);
+ handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
+ }
+
+ void visitMemSetInst(MemSetInst &II) {
+ ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
+ return markAsDead(II);
+
+ assert(IsOffsetKnown);
+ insertUse(II, Offset, Length ? Length->getLimitedValue()
+ : AllocSize - Offset.getLimitedValue());
+ }
+
+ void visitMemTransferInst(MemTransferInst &II) {
+ ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
+ return markAsDead(II);
+
+ assert(IsOffsetKnown);
+ uint64_t Size = Length ? Length->getLimitedValue()
+ : AllocSize - Offset.getLimitedValue();
+
+ MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
+ if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
+ Offsets.DestBegin == Offsets.SourceBegin)
+ return markAsDead(II); // Skip identity transfers without side-effects.
+
+ insertUse(II, Offset, Size);
+ }
+
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ assert(IsOffsetKnown);
+ assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
+ II.getIntrinsicID() == Intrinsic::lifetime_end);
+
+ ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
+ insertUse(II, Offset, std::min(Length->getLimitedValue(),
+ AllocSize - Offset.getLimitedValue()));
+ }
+
+ void insertPHIOrSelect(Instruction &User, const APInt &Offset) {
+ uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
+
+ // For PHI and select operands outside the alloca, we can't nuke the entire
+ // phi or select -- the other side might still be relevant, so we special
+ // case them here and use a separate structure to track the operands
+ // themselves which should be replaced with undef.
+ if ((Offset.isNegative() && Offset.uge(Size)) ||
+ (!Offset.isNegative() && Offset.uge(AllocSize))) {
+ P.DeadOperands.push_back(U);
+ return;
+ }
+
+ insertUse(User, Offset, Size);
+ }
+
+ void visitPHINode(PHINode &PN) {
+ if (PN.use_empty())
+ return markAsDead(PN);
+
+ assert(IsOffsetKnown);
+ insertPHIOrSelect(PN, Offset);
+ }
+
+ void visitSelectInst(SelectInst &SI) {
+ if (SI.use_empty())
+ return markAsDead(SI);
+
+ if (Value *Result = foldSelectInst(SI)) {
+ if (Result == *U)
+ // If the result of the constant fold will be the pointer, recurse
+ // through the select as if we had RAUW'ed it.
+ enqueueUsers(SI);
+ else
+ // Otherwise the operand to the select is dead, and we can replace it
+ // with undef.
+ P.DeadOperands.push_back(U);
+
+ return;
+ }
+
+ assert(IsOffsetKnown);
+ insertPHIOrSelect(SI, Offset);
+ }
+
+ /// \brief Unreachable, we've already visited the alloca once.
+ void visitInstruction(Instruction &I) {
+ llvm_unreachable("Unhandled instruction in use builder.");
+ }
+};
+
+void AllocaPartitioning::splitAndMergePartitions() {
+ size_t NumDeadPartitions = 0;
+
+ // Track the range of splittable partitions that we pass when accumulating
+ // overlapping unsplittable partitions.
+ uint64_t SplitEndOffset = 0ull;
+
+ Partition New(0ull, 0ull, false);
+
+ for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
+ ++j;
+
+ if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
+ assert(New.BeginOffset == New.EndOffset);
+ New = Partitions[i];
+ } else {
+ assert(New.IsSplittable);
+ New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
+ }
+ assert(New.BeginOffset != New.EndOffset);
+
+ // Scan the overlapping partitions.
+ while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
+ // If the new partition we are forming is splittable, stop at the first
+ // unsplittable partition.
+ if (New.IsSplittable && !Partitions[j].IsSplittable)
+ break;
+
+ // Grow the new partition to include any equally splittable range. 'j' is
+ // always equally splittable when New is splittable, but when New is not
+ // splittable, we may subsume some (or part of some) splitable partition
+ // without growing the new one.
+ if (New.IsSplittable == Partitions[j].IsSplittable) {
+ New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
+ } else {
+ assert(!New.IsSplittable);
+ assert(Partitions[j].IsSplittable);
+ SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
+ }
+
+ Partitions[j].kill();
+ ++NumDeadPartitions;
+ ++j;
+ }
+
+ // If the new partition is splittable, chop off the end as soon as the
+ // unsplittable subsequent partition starts and ensure we eventually cover
+ // the splittable area.
+ if (j != e && New.IsSplittable) {
+ SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
+ New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
+ }
+
+ // Add the new partition if it differs from the original one and is
+ // non-empty. We can end up with an empty partition here if it was
+ // splittable but there is an unsplittable one that starts at the same
+ // offset.
+ if (New != Partitions[i]) {
+ if (New.BeginOffset != New.EndOffset)
+ Partitions.push_back(New);
+ // Mark the old one for removal.
+ Partitions[i].kill();
+ ++NumDeadPartitions;
+ }
+
+ New.BeginOffset = New.EndOffset;
+ if (!New.IsSplittable) {
+ New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
+ if (j != e && !Partitions[j].IsSplittable)
+ New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
+ New.IsSplittable = true;
+ // If there is a trailing splittable partition which won't be fused into
+ // the next splittable partition go ahead and add it onto the partitions
+ // list.
+ if (New.BeginOffset < New.EndOffset &&
+ (j == e || !Partitions[j].IsSplittable ||
+ New.EndOffset < Partitions[j].BeginOffset)) {
+ Partitions.push_back(New);
+ New.BeginOffset = New.EndOffset = 0ull;
+ }
+ }
+ }
+
+ // Re-sort the partitions now that they have been split and merged into
+ // disjoint set of partitions. Also remove any of the dead partitions we've
+ // replaced in the process.
+ std::sort(Partitions.begin(), Partitions.end());
+ if (NumDeadPartitions) {
+ assert(Partitions.back().isDead());
+ assert((ptrdiff_t)NumDeadPartitions ==
+ std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
+ }
+ Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
+}
+
+AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
+ :
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ AI(AI),
+#endif
+ PointerEscapingInstr(0) {
+ PartitionBuilder PB(TD, AI, *this);
+ PartitionBuilder::PtrInfo PtrI = PB.visitPtr(AI);
+ if (PtrI.isEscaped() || PtrI.isAborted()) {
+ // FIXME: We should sink the escape vs. abort info into the caller nicely,
+ // possibly by just storing the PtrInfo in the AllocaPartitioning.
+ PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
+ : PtrI.getAbortingInst();
+ assert(PointerEscapingInstr && "Did not track a bad instruction");
+ return;
+ }
+
+ // Sort the uses. This arranges for the offsets to be in ascending order,
+ // and the sizes to be in descending order.
+ std::sort(Partitions.begin(), Partitions.end());
+
+ // Remove any partitions from the back which are marked as dead.
+ while (!Partitions.empty() && Partitions.back().isDead())
+ Partitions.pop_back();
+
+ if (Partitions.size() > 1) {
+ // Intersect splittability for all partitions with equal offsets and sizes.
+ // Then remove all but the first so that we have a sequence of non-equal but
+ // potentially overlapping partitions.
+ for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
+ I = J) {
+ ++J;
+ while (J != E && *I == *J) {
+ I->IsSplittable &= J->IsSplittable;
+ ++J;
+ }
+ }
+ Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
+ Partitions.end());
+
+ // Split splittable and merge unsplittable partitions into a disjoint set
+ // of partitions over the used space of the allocation.
+ splitAndMergePartitions();
+ }
+
+ // Now build up the user lists for each of these disjoint partitions by
+ // re-walking the recursive users of the alloca.
+ Uses.resize(Partitions.size());
+ UseBuilder UB(TD, AI, *this);
+ PtrI = UB.visitPtr(AI);
+ assert(!PtrI.isEscaped() && "Previously analyzed pointer now escapes!");
+ assert(!PtrI.isAborted() && "Early aborted the visit of the pointer.");
+}
+
+Type *AllocaPartitioning::getCommonType(iterator I) const {
+ Type *Ty = 0;
+ for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
+ if (!UI->U)
+ continue; // Skip dead uses.
+ if (isa<IntrinsicInst>(*UI->U->getUser()))
+ continue;
+ if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
+ continue;
+
+ Type *UserTy = 0;
+ if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
+ UserTy = LI->getType();
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
+ UserTy = SI->getValueOperand()->getType();
+ } else {
+ return 0; // Bail if we have weird uses.
+ }
+
+ if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
+ // If the type is larger than the partition, skip it. We only encounter
+ // this for split integer operations where we want to use the type of the
+ // entity causing the split.
+ if (ITy->getBitWidth() > (I->EndOffset - I->BeginOffset)*8)
+ continue;
+
+ // If we have found an integer type use covering the alloca, use that
+ // regardless of the other types, as integers are often used for a "bucket
+ // of bits" type.
+ return ITy;
+ }
+
+ if (Ty && Ty != UserTy)
+ return 0;
+
+ Ty = UserTy;
+ }
+ return Ty;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+
+void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
+ StringRef Indent) const {
+ OS << Indent << "partition #" << (I - begin())
+ << " [" << I->BeginOffset << "," << I->EndOffset << ")"
+ << (I->IsSplittable ? " (splittable)" : "")
+ << (Uses[I - begin()].empty() ? " (zero uses)" : "")
+ << "\n";
+}
+
+void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
+ StringRef Indent) const {
+ for (const_use_iterator UI = use_begin(I), UE = use_end(I);
+ UI != UE; ++UI) {
+ if (!UI->U)
+ continue; // Skip dead uses.
+ OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") "
+ << "used by: " << *UI->U->getUser() << "\n";
+ if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
+ const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
+ bool IsDest;
+ if (!MTO.IsSplittable)
+ IsDest = UI->BeginOffset == MTO.DestBegin;
+ else
+ IsDest = MTO.DestBegin != 0u;
+ OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": "
+ << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
+ << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
+ }
+ }
+}
+
+void AllocaPartitioning::print(raw_ostream &OS) const {
+ if (PointerEscapingInstr) {
+ OS << "No partitioning for alloca: " << AI << "\n"
+ << " A pointer to this alloca escaped by:\n"
+ << " " << *PointerEscapingInstr << "\n";
+ return;
+ }
+
+ OS << "Partitioning of alloca: " << AI << "\n";
+ unsigned Num = 0;
+ for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
+ print(OS, I);
+ printUsers(OS, I);
+ }
+}
+
+void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
+void AllocaPartitioning::dump() const { print(dbgs()); }
+
+#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+
+
+namespace {
+/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
+///
+/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
+/// the loads and stores of an alloca instruction, as well as updating its
+/// debug information. This is used when a domtree is unavailable and thus
+/// mem2reg in its full form can't be used to handle promotion of allocas to
+/// scalar values.
+class AllocaPromoter : public LoadAndStorePromoter {
+ AllocaInst &AI;
+ DIBuilder &DIB;
+
+ SmallVector<DbgDeclareInst *, 4> DDIs;
+ SmallVector<DbgValueInst *, 4> DVIs;
+
+public:
+ AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
+ AllocaInst &AI, DIBuilder &DIB)
+ : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
+
+ void run(const SmallVectorImpl<Instruction*> &Insts) {
+ // Remember which alloca we're promoting (for isInstInList).
+ if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
+ for (Value::use_iterator UI = DebugNode->use_begin(),
+ UE = DebugNode->use_end();
+ UI != UE; ++UI)
+ if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
+ DDIs.push_back(DDI);
+ else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
+ DVIs.push_back(DVI);
+ }
+
+ LoadAndStorePromoter::run(Insts);
+ AI.eraseFromParent();
+ while (!DDIs.empty())
+ DDIs.pop_back_val()->eraseFromParent();
+ while (!DVIs.empty())
+ DVIs.pop_back_val()->eraseFromParent();
+ }
+
+ virtual bool isInstInList(Instruction *I,
+ const SmallVectorImpl<Instruction*> &Insts) const {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ return LI->getOperand(0) == &AI;
+ return cast<StoreInst>(I)->getPointerOperand() == &AI;
+ }
+
+ virtual void updateDebugInfo(Instruction *Inst) const {
+ for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
+ E = DDIs.end(); I != E; ++I) {
+ DbgDeclareInst *DDI = *I;
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
+ ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
+ else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
+ ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
+ }
+ for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
+ E = DVIs.end(); I != E; ++I) {
+ DbgValueInst *DVI = *I;
+ Value *Arg = NULL;
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ // If an argument is zero extended then use argument directly. The ZExt
+ // may be zapped by an optimization pass in future.
+ if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
+ Arg = dyn_cast<Argument>(ZExt->getOperand(0));
+ if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
+ Arg = dyn_cast<Argument>(SExt->getOperand(0));
+ if (!Arg)
+ Arg = SI->getOperand(0);
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+ Arg = LI->getOperand(0);
+ } else {
+ continue;
+ }
+ Instruction *DbgVal =
+ DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
+ Inst);
+ DbgVal->setDebugLoc(DVI->getDebugLoc());
+ }
+ }
+};
+} // end anon namespace
+
+
+namespace {
+/// \brief An optimization pass providing Scalar Replacement of Aggregates.
+///
+/// This pass takes allocations which can be completely analyzed (that is, they
+/// don't escape) and tries to turn them into scalar SSA values. There are
+/// a few steps to this process.
+///
+/// 1) It takes allocations of aggregates and analyzes the ways in which they
+/// are used to try to split them into smaller allocations, ideally of
+/// a single scalar data type. It will split up memcpy and memset accesses
+/// as necessary and try to isolate invidual scalar accesses.
+/// 2) It will transform accesses into forms which are suitable for SSA value
+/// promotion. This can be replacing a memset with a scalar store of an
+/// integer value, or it can involve speculating operations on a PHI or
+/// select to be a PHI or select of the results.
+/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
+/// onto insert and extract operations on a vector value, and convert them to
+/// this form. By doing so, it will enable promotion of vector aggregates to
+/// SSA vector values.
+class SROA : public FunctionPass {
+ const bool RequiresDomTree;
+
+ LLVMContext *C;
+ const DataLayout *TD;
+ DominatorTree *DT;
+
+ /// \brief Worklist of alloca instructions to simplify.
+ ///
+ /// Each alloca in the function is added to this. Each new alloca formed gets
+ /// added to it as well to recursively simplify unless that alloca can be
+ /// directly promoted. Finally, each time we rewrite a use of an alloca other
+ /// the one being actively rewritten, we add it back onto the list if not
+ /// already present to ensure it is re-visited.
+ SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
+
+ /// \brief A collection of instructions to delete.
+ /// We try to batch deletions to simplify code and make things a bit more
+ /// efficient.
+ SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
+
+ /// \brief Post-promotion worklist.
+ ///
+ /// Sometimes we discover an alloca which has a high probability of becoming
+ /// viable for SROA after a round of promotion takes place. In those cases,
+ /// the alloca is enqueued here for re-processing.
+ ///
+ /// Note that we have to be very careful to clear allocas out of this list in
+ /// the event they are deleted.
+ SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
+
+ /// \brief A collection of alloca instructions we can directly promote.
+ std::vector<AllocaInst *> PromotableAllocas;
+
+public:
+ SROA(bool RequiresDomTree = true)
+ : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
+ C(0), TD(0), DT(0) {
+ initializeSROAPass(*PassRegistry::getPassRegistry());
+ }
+ bool runOnFunction(Function &F);
+ void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ const char *getPassName() const { return "SROA"; }
+ static char ID;
+
+private:
+ friend class PHIOrSelectSpeculator;
+ friend class AllocaPartitionRewriter;
+ friend class AllocaPartitionVectorRewriter;
+
+ bool rewriteAllocaPartition(AllocaInst &AI,
+ AllocaPartitioning &P,
+ AllocaPartitioning::iterator PI);
+ bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
+ bool runOnAlloca(AllocaInst &AI);
+ void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
+ bool promoteAllocas(Function &F);
+};
+}
+
+char SROA::ID = 0;
+
+FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
+ return new SROA(RequiresDomTree);
+}
+
+INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
+ false, false)
+
+namespace {
+/// \brief Visitor to speculate PHIs and Selects where possible.
+class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
+ // Befriend the base class so it can delegate to private visit methods.
+ friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
+
+ const DataLayout &TD;
+ AllocaPartitioning &P;
+ SROA &Pass;
+
+public:
+ PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass)
+ : TD(TD), P(P), Pass(Pass) {}
+
+ /// \brief Visit the users of an alloca partition and rewrite them.
+ void visitUsers(AllocaPartitioning::const_iterator PI) {
+ // Note that we need to use an index here as the underlying vector of uses
+ // may be grown during speculation. However, we never need to re-visit the
+ // new uses, and so we can use the initial size bound.
+ for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
+ const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx);
+ if (!PU.U)
+ continue; // Skip dead use.
+
+ visit(cast<Instruction>(PU.U->getUser()));
+ }
+ }
+
+private:
+ // By default, skip this instruction.
+ void visitInstruction(Instruction &I) {}
+
+ /// PHI instructions that use an alloca and are subsequently loaded can be
+ /// rewritten to load both input pointers in the pred blocks and then PHI the
+ /// results, allowing the load of the alloca to be promoted.
+ /// From this:
+ /// %P2 = phi [i32* %Alloca, i32* %Other]
+ /// %V = load i32* %P2
+ /// to:
+ /// %V1 = load i32* %Alloca -> will be mem2reg'd
+ /// ...
+ /// %V2 = load i32* %Other
+ /// ...
+ /// %V = phi [i32 %V1, i32 %V2]
+ ///
+ /// We can do this to a select if its only uses are loads and if the operands
+ /// to the select can be loaded unconditionally.
+ ///
+ /// FIXME: This should be hoisted into a generic utility, likely in
+ /// Transforms/Util/Local.h
+ bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
+ // For now, we can only do this promotion if the load is in the same block
+ // as the PHI, and if there are no stores between the phi and load.
+ // TODO: Allow recursive phi users.
+ // TODO: Allow stores.
+ BasicBlock *BB = PN.getParent();
+ unsigned MaxAlign = 0;
+ for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
+ UI != UE; ++UI) {
+ LoadInst *LI = dyn_cast<LoadInst>(*UI);
+ if (LI == 0 || !LI->isSimple()) return false;
+
+ // For now we only allow loads in the same block as the PHI. This is
+ // a common case that happens when instcombine merges two loads through
+ // a PHI.
+ if (LI->getParent() != BB) return false;
+
+ // Ensure that there are no instructions between the PHI and the load that
+ // could store.
+ for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
+ if (BBI->mayWriteToMemory())
+ return false;
+
+ MaxAlign = std::max(MaxAlign, LI->getAlignment());
+ Loads.push_back(LI);
+ }
+
+ // We can only transform this if it is safe to push the loads into the
+ // predecessor blocks. The only thing to watch out for is that we can't put
+ // a possibly trapping load in the predecessor if it is a critical edge.
+ for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
+ ++Idx) {
+ TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
+ Value *InVal = PN.getIncomingValue(Idx);
+
+ // If the value is produced by the terminator of the predecessor (an
+ // invoke) or it has side-effects, there is no valid place to put a load
+ // in the predecessor.
+ if (TI == InVal || TI->mayHaveSideEffects())
+ return false;
+
+ // If the predecessor has a single successor, then the edge isn't
+ // critical.
+ if (TI->getNumSuccessors() == 1)
+ continue;
+
+ // If this pointer is always safe to load, or if we can prove that there
+ // is already a load in the block, then we can move the load to the pred
+ // block.
+ if (InVal->isDereferenceablePointer() ||
+ isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
+ continue;
+
+ return false;
+ }
+
+ return true;
+ }
+
+ void visitPHINode(PHINode &PN) {
+ DEBUG(dbgs() << " original: " << PN << "\n");
+
+ SmallVector<LoadInst *, 4> Loads;
+ if (!isSafePHIToSpeculate(PN, Loads))
+ return;
+
+ assert(!Loads.empty());
+
+ Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
+ IRBuilder<> PHIBuilder(&PN);
+ PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
+ PN.getName() + ".sroa.speculated");
+
+ // Get the TBAA tag and alignment to use from one of the loads. It doesn't
+ // matter which one we get and if any differ, it doesn't matter.
+ LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
+ MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
+ unsigned Align = SomeLoad->getAlignment();
+
+ // Rewrite all loads of the PN to use the new PHI.
+ do {
+ LoadInst *LI = Loads.pop_back_val();
+ LI->replaceAllUsesWith(NewPN);
+ Pass.DeadInsts.insert(LI);
+ } while (!Loads.empty());
+
+ // Inject loads into all of the pred blocks.
+ for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
+ BasicBlock *Pred = PN.getIncomingBlock(Idx);
+ TerminatorInst *TI = Pred->getTerminator();
+ Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
+ Value *InVal = PN.getIncomingValue(Idx);
+ IRBuilder<> PredBuilder(TI);
+
+ LoadInst *Load
+ = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
+ Pred->getName()));
+ ++NumLoadsSpeculated;
+ Load->setAlignment(Align);
+ if (TBAATag)
+ Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
+ NewPN->addIncoming(Load, Pred);
+
+ Instruction *Ptr = dyn_cast<Instruction>(InVal);
+ if (!Ptr)
+ // No uses to rewrite.
+ continue;
+
+ // Try to lookup and rewrite any partition uses corresponding to this phi
+ // input.
+ AllocaPartitioning::iterator PI
+ = P.findPartitionForPHIOrSelectOperand(InUse);
+ if (PI == P.end())
+ continue;
+
+ // Replace the Use in the PartitionUse for this operand with the Use
+ // inside the load.
+ AllocaPartitioning::use_iterator UI
+ = P.findPartitionUseForPHIOrSelectOperand(InUse);
+ assert(isa<PHINode>(*UI->U->getUser()));
+ UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
+ }
+ DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
+ }
+
+ /// Select instructions that use an alloca and are subsequently loaded can be
+ /// rewritten to load both input pointers and then select between the result,
+ /// allowing the load of the alloca to be promoted.
+ /// From this:
+ /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
+ /// %V = load i32* %P2
+ /// to:
+ /// %V1 = load i32* %Alloca -> will be mem2reg'd
+ /// %V2 = load i32* %Other
+ /// %V = select i1 %cond, i32 %V1, i32 %V2
+ ///
+ /// We can do this to a select if its only uses are loads and if the operand
+ /// to the select can be loaded unconditionally.
+ bool isSafeSelectToSpeculate(SelectInst &SI,
+ SmallVectorImpl<LoadInst *> &Loads) {
+ Value *TValue = SI.getTrueValue();
+ Value *FValue = SI.getFalseValue();
+ bool TDerefable = TValue->isDereferenceablePointer();
+ bool FDerefable = FValue->isDereferenceablePointer();
+
+ for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
+ UI != UE; ++UI) {
+ LoadInst *LI = dyn_cast<LoadInst>(*UI);
+ if (LI == 0 || !LI->isSimple()) return false;
+
+ // Both operands to the select need to be dereferencable, either
+ // absolutely (e.g. allocas) or at this point because we can see other
+ // accesses to it.
+ if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
+ LI->getAlignment(), &TD))
+ return false;
+ if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
+ LI->getAlignment(), &TD))
+ return false;
+ Loads.push_back(LI);
+ }
+
+ return true;
+ }
+
+ void visitSelectInst(SelectInst &SI) {
+ DEBUG(dbgs() << " original: " << SI << "\n");
+ IRBuilder<> IRB(&SI);
+
+ // If the select isn't safe to speculate, just use simple logic to emit it.
+ SmallVector<LoadInst *, 4> Loads;
+ if (!isSafeSelectToSpeculate(SI, Loads))
+ return;
+
+ Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
+ AllocaPartitioning::iterator PIs[2];
+ AllocaPartitioning::PartitionUse PUs[2];
+ for (unsigned i = 0, e = 2; i != e; ++i) {
+ PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
+ if (PIs[i] != P.end()) {
+ // If the pointer is within the partitioning, remove the select from
+ // its uses. We'll add in the new loads below.
+ AllocaPartitioning::use_iterator UI
+ = P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
+ PUs[i] = *UI;
+ // Clear out the use here so that the offsets into the use list remain
+ // stable but this use is ignored when rewriting.
+ UI->U = 0;
+ }
+ }
+
+ Value *TV = SI.getTrueValue();
+ Value *FV = SI.getFalseValue();
+ // Replace the loads of the select with a select of two loads.
+ while (!Loads.empty()) {
+ LoadInst *LI = Loads.pop_back_val();
+
+ IRB.SetInsertPoint(LI);
+ LoadInst *TL =
+ IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
+ LoadInst *FL =
+ IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
+ NumLoadsSpeculated += 2;
+
+ // Transfer alignment and TBAA info if present.
+ TL->setAlignment(LI->getAlignment());
+ FL->setAlignment(LI->getAlignment());
+ if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
+ TL->setMetadata(LLVMContext::MD_tbaa, Tag);
+ FL->setMetadata(LLVMContext::MD_tbaa, Tag);
+ }
+
+ Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
+ LI->getName() + ".sroa.speculated");
+
+ LoadInst *Loads[2] = { TL, FL };
+ for (unsigned i = 0, e = 2; i != e; ++i) {
+ if (PIs[i] != P.end()) {
+ Use *LoadUse = &Loads[i]->getOperandUse(0);
+ assert(PUs[i].U->get() == LoadUse->get());
+ PUs[i].U = LoadUse;
+ P.use_push_back(PIs[i], PUs[i]);
+ }
+ }
+
+ DEBUG(dbgs() << " speculated to: " << *V << "\n");
+ LI->replaceAllUsesWith(V);
+ Pass.DeadInsts.insert(LI);
+ }
+ }
+};
+}
+
+/// \brief Build a GEP out of a base pointer and indices.
+///
+/// This will return the BasePtr if that is valid, or build a new GEP
+/// instruction using the IRBuilder if GEP-ing is needed.
+static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
+ SmallVectorImpl<Value *> &Indices,
+ const Twine &Prefix) {
+ if (Indices.empty())
+ return BasePtr;
+
+ // A single zero index is a no-op, so check for this and avoid building a GEP
+ // in that case.
+ if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
+ return BasePtr;
+
+ return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
+}
+
+/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
+/// TargetTy without changing the offset of the pointer.
+///
+/// This routine assumes we've already established a properly offset GEP with
+/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
+/// zero-indices down through type layers until we find one the same as
+/// TargetTy. If we can't find one with the same type, we at least try to use
+/// one with the same size. If none of that works, we just produce the GEP as
+/// indicated by Indices to have the correct offset.
+static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD,
+ Value *BasePtr, Type *Ty, Type *TargetTy,
+ SmallVectorImpl<Value *> &Indices,
+ const Twine &Prefix) {
+ if (Ty == TargetTy)
+ return buildGEP(IRB, BasePtr, Indices, Prefix);
+
+ // See if we can descend into a struct and locate a field with the correct
+ // type.
+ unsigned NumLayers = 0;
+ Type *ElementTy = Ty;
+ do {
+ if (ElementTy->isPointerTy())
+ break;
+ if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
+ ElementTy = SeqTy->getElementType();
+ // Note that we use the default address space as this index is over an
+ // array or a vector, not a pointer.
+ Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(0), 0)));
+ } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
+ if (STy->element_begin() == STy->element_end())
+ break; // Nothing left to descend into.
+ ElementTy = *STy->element_begin();
+ Indices.push_back(IRB.getInt32(0));
+ } else {
+ break;
+ }
+ ++NumLayers;
+ } while (ElementTy != TargetTy);
+ if (ElementTy != TargetTy)
+ Indices.erase(Indices.end() - NumLayers, Indices.end());
+
+ return buildGEP(IRB, BasePtr, Indices, Prefix);
+}
+
+/// \brief Recursively compute indices for a natural GEP.
+///
+/// This is the recursive step for getNaturalGEPWithOffset that walks down the
+/// element types adding appropriate indices for the GEP.
+static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
+ Value *Ptr, Type *Ty, APInt &Offset,
+ Type *TargetTy,
+ SmallVectorImpl<Value *> &Indices,
+ const Twine &Prefix) {
+ if (Offset == 0)
+ return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
+
+ // We can't recurse through pointer types.
+ if (Ty->isPointerTy())
+ return 0;
+
+ // We try to analyze GEPs over vectors here, but note that these GEPs are
+ // extremely poorly defined currently. The long-term goal is to remove GEPing
+ // over a vector from the IR completely.
+ if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
+ unsigned ElementSizeInBits = TD.getTypeSizeInBits(VecTy->getScalarType());
+ if (ElementSizeInBits % 8)
+ return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
+ APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
+ APInt NumSkippedElements = Offset.sdiv(ElementSize);
+ if (NumSkippedElements.ugt(VecTy->getNumElements()))
+ return 0;
+ Offset -= NumSkippedElements * ElementSize;
+ Indices.push_back(IRB.getInt(NumSkippedElements));
+ return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
+ Offset, TargetTy, Indices, Prefix);
+ }
+
+ if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
+ Type *ElementTy = ArrTy->getElementType();
+ APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
+ APInt NumSkippedElements = Offset.sdiv(ElementSize);
+ if (NumSkippedElements.ugt(ArrTy->getNumElements()))
+ return 0;
+
+ Offset -= NumSkippedElements * ElementSize;
+ Indices.push_back(IRB.getInt(NumSkippedElements));
+ return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
+ Indices, Prefix);
+ }
+
+ StructType *STy = dyn_cast<StructType>(Ty);
+ if (!STy)
+ return 0;
+
+ const StructLayout *SL = TD.getStructLayout(STy);
+ uint64_t StructOffset = Offset.getZExtValue();
+ if (StructOffset >= SL->getSizeInBytes())
+ return 0;
+ unsigned Index = SL->getElementContainingOffset(StructOffset);
+ Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
+ Type *ElementTy = STy->getElementType(Index);
+ if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
+ return 0; // The offset points into alignment padding.
+
+ Indices.push_back(IRB.getInt32(Index));
+ return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
+ Indices, Prefix);
+}
+
+/// \brief Get a natural GEP from a base pointer to a particular offset and
+/// resulting in a particular type.
+///
+/// The goal is to produce a "natural" looking GEP that works with the existing
+/// composite types to arrive at the appropriate offset and element type for
+/// a pointer. TargetTy is the element type the returned GEP should point-to if
+/// possible. We recurse by decreasing Offset, adding the appropriate index to
+/// Indices, and setting Ty to the result subtype.
+///
+/// If no natural GEP can be constructed, this function returns null.
+static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
+ Value *Ptr, APInt Offset, Type *TargetTy,
+ SmallVectorImpl<Value *> &Indices,
+ const Twine &Prefix) {
+ PointerType *Ty = cast<PointerType>(Ptr->getType());
+
+ // Don't consider any GEPs through an i8* as natural unless the TargetTy is
+ // an i8.
+ if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
+ return 0;
+
+ Type *ElementTy = Ty->getElementType();
+ if (!ElementTy->isSized())
+ return 0; // We can't GEP through an unsized element.
+ APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
+ if (ElementSize == 0)
+ return 0; // Zero-length arrays can't help us build a natural GEP.
+ APInt NumSkippedElements = Offset.sdiv(ElementSize);
+
+ Offset -= NumSkippedElements * ElementSize;
+ Indices.push_back(IRB.getInt(NumSkippedElements));
+ return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
+ Indices, Prefix);
+}
+
+/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
+/// resulting pointer has PointerTy.
+///
+/// This tries very hard to compute a "natural" GEP which arrives at the offset
+/// and produces the pointer type desired. Where it cannot, it will try to use
+/// the natural GEP to arrive at the offset and bitcast to the type. Where that
+/// fails, it will try to use an existing i8* and GEP to the byte offset and
+/// bitcast to the type.
+///
+/// The strategy for finding the more natural GEPs is to peel off layers of the
+/// pointer, walking back through bit casts and GEPs, searching for a base
+/// pointer from which we can compute a natural GEP with the desired
+/// properities. The algorithm tries to fold as many constant indices into
+/// a single GEP as possible, thus making each GEP more independent of the
+/// surrounding code.
+static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
+ Value *Ptr, APInt Offset, Type *PointerTy,
+ const Twine &Prefix) {
+ // Even though we don't look through PHI nodes, we could be called on an
+ // instruction in an unreachable block, which may be on a cycle.
+ SmallPtrSet<Value *, 4> Visited;
+ Visited.insert(Ptr);
+ SmallVector<Value *, 4> Indices;
+
+ // We may end up computing an offset pointer that has the wrong type. If we
+ // never are able to compute one directly that has the correct type, we'll
+ // fall back to it, so keep it around here.
+ Value *OffsetPtr = 0;
+
+ // Remember any i8 pointer we come across to re-use if we need to do a raw
+ // byte offset.
+ Value *Int8Ptr = 0;
+ APInt Int8PtrOffset(Offset.getBitWidth(), 0);
+
+ Type *TargetTy = PointerTy->getPointerElementType();
+
+ do {
+ // First fold any existing GEPs into the offset.
+ while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
+ APInt GEPOffset(Offset.getBitWidth(), 0);
+ if (!GEP->accumulateConstantOffset(TD, GEPOffset))
+ break;
+ Offset += GEPOffset;
+ Ptr = GEP->getPointerOperand();
+ if (!Visited.insert(Ptr))
+ break;
+ }
+
+ // See if we can perform a natural GEP here.
+ Indices.clear();
+ if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
+ Indices, Prefix)) {
+ if (P->getType() == PointerTy) {
+ // Zap any offset pointer that we ended up computing in previous rounds.
+ if (OffsetPtr && OffsetPtr->use_empty())
+ if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
+ I->eraseFromParent();
+ return P;
+ }
+ if (!OffsetPtr) {
+ OffsetPtr = P;
+ }
+ }
+
+ // Stash this pointer if we've found an i8*.
+ if (Ptr->getType()->isIntegerTy(8)) {
+ Int8Ptr = Ptr;
+ Int8PtrOffset = Offset;
+ }
+
+ // Peel off a layer of the pointer and update the offset appropriately.
+ if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
+ Ptr = cast<Operator>(Ptr)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
+ if (GA->mayBeOverridden())
+ break;
+ Ptr = GA->getAliasee();
+ } else {
+ break;
+ }
+ assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
+ } while (Visited.insert(Ptr));
+
+ if (!OffsetPtr) {
+ if (!Int8Ptr) {
+ Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
+ Prefix + ".raw_cast");
+ Int8PtrOffset = Offset;
+ }
+
+ OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
+ IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
+ Prefix + ".raw_idx");
+ }
+ Ptr = OffsetPtr;
+
+ // On the off chance we were targeting i8*, guard the bitcast here.
+ if (Ptr->getType() != PointerTy)
+ Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
+
+ return Ptr;
+}
+
+/// \brief Test whether we can convert a value from the old to the new type.
+///
+/// This predicate should be used to guard calls to convertValue in order to
+/// ensure that we only try to convert viable values. The strategy is that we
+/// will peel off single element struct and array wrappings to get to an
+/// underlying value, and convert that value.
+static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
+ if (OldTy == NewTy)
+ return true;
+ if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
+ return false;
+ if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
+ return false;
+
+ if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
+ if (NewTy->isPointerTy() && OldTy->isPointerTy())
+ return true;
+ if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
+ return true;
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Generic routine to convert an SSA value to a value of a different
+/// type.
+///
+/// This will try various different casting techniques, such as bitcasts,
+/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
+/// two types for viability with this routine.
+static Value *convertValue(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
+ Type *Ty) {
+ assert(canConvertValue(DL, V->getType(), Ty) &&
+ "Value not convertable to type");
+ if (V->getType() == Ty)
+ return V;
+ if (V->getType()->isIntegerTy() && Ty->isPointerTy())
+ return IRB.CreateIntToPtr(V, Ty);
+ if (V->getType()->isPointerTy() && Ty->isIntegerTy())
+ return IRB.CreatePtrToInt(V, Ty);
+
+ return IRB.CreateBitCast(V, Ty);
+}
+
+/// \brief Test whether the given alloca partition can be promoted to a vector.
+///
+/// This is a quick test to check whether we can rewrite a particular alloca
+/// partition (and its newly formed alloca) into a vector alloca with only
+/// whole-vector loads and stores such that it could be promoted to a vector
+/// SSA value. We only can ensure this for a limited set of operations, and we
+/// don't want to do the rewrites unless we are confident that the result will
+/// be promotable, so we have an early test here.
+static bool isVectorPromotionViable(const DataLayout &TD,
+ Type *AllocaTy,
+ AllocaPartitioning &P,
+ uint64_t PartitionBeginOffset,
+ uint64_t PartitionEndOffset,
+ AllocaPartitioning::const_use_iterator I,
+ AllocaPartitioning::const_use_iterator E) {
+ VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
+ if (!Ty)
+ return false;
+
+ uint64_t ElementSize = TD.getTypeSizeInBits(Ty->getScalarType());
+
+ // While the definition of LLVM vectors is bitpacked, we don't support sizes
+ // that aren't byte sized.
+ if (ElementSize % 8)
+ return false;
+ assert((TD.getTypeSizeInBits(Ty) % 8) == 0 &&
+ "vector size not a multiple of element size?");
+ ElementSize /= 8;
+
+ for (; I != E; ++I) {
+ if (!I->U)
+ continue; // Skip dead use.
+
+ uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
+ uint64_t BeginIndex = BeginOffset / ElementSize;
+ if (BeginIndex * ElementSize != BeginOffset ||
+ BeginIndex >= Ty->getNumElements())
+ return false;
+ uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
+ uint64_t EndIndex = EndOffset / ElementSize;
+ if (EndIndex * ElementSize != EndOffset ||
+ EndIndex > Ty->getNumElements())
+ return false;
+
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ uint64_t NumElements = EndIndex - BeginIndex;
+ Type *PartitionTy
+ = (NumElements == 1) ? Ty->getElementType()
+ : VectorType::get(Ty->getElementType(), NumElements);
+
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
+ if (MI->isVolatile())
+ return false;
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
+ const AllocaPartitioning::MemTransferOffsets &MTO
+ = P.getMemTransferOffsets(*MTI);
+ if (!MTO.IsSplittable)
+ return false;
+ }
+ } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
+ // Disable vector promotion when there are loads or stores of an FCA.
+ return false;
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
+ if (LI->isVolatile())
+ return false;
+ if (!canConvertValue(TD, PartitionTy, LI->getType()))
+ return false;
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
+ if (SI->isVolatile())
+ return false;
+ if (!canConvertValue(TD, SI->getValueOperand()->getType(), PartitionTy))
+ return false;
+ } else {
+ return false;
+ }
+ }
+ return true;
+}
+
+/// \brief Test whether the given alloca partition's integer operations can be
+/// widened to promotable ones.
+///
+/// This is a quick test to check whether we can rewrite the integer loads and
+/// stores to a particular alloca into wider loads and stores and be able to
+/// promote the resulting alloca.
+static bool isIntegerWideningViable(const DataLayout &TD,
+ Type *AllocaTy,
+ uint64_t AllocBeginOffset,
+ AllocaPartitioning &P,
+ AllocaPartitioning::const_use_iterator I,
+ AllocaPartitioning::const_use_iterator E) {
+ uint64_t SizeInBits = TD.getTypeSizeInBits(AllocaTy);
+ // Don't create integer types larger than the maximum bitwidth.
+ if (SizeInBits > IntegerType::MAX_INT_BITS)
+ return false;
+
+ // Don't try to handle allocas with bit-padding.
+ if (SizeInBits != TD.getTypeStoreSizeInBits(AllocaTy))
+ return false;
+
+ // We need to ensure that an integer type with the appropriate bitwidth can
+ // be converted to the alloca type, whatever that is. We don't want to force
+ // the alloca itself to have an integer type if there is a more suitable one.
+ Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
+ if (!canConvertValue(TD, AllocaTy, IntTy) ||
+ !canConvertValue(TD, IntTy, AllocaTy))
+ return false;
+
+ uint64_t Size = TD.getTypeStoreSize(AllocaTy);
+
+ // Check the uses to ensure the uses are (likely) promoteable integer uses.
+ // Also ensure that the alloca has a covering load or store. We don't want
+ // to widen the integer operotains only to fail to promote due to some other
+ // unsplittable entry (which we may make splittable later).
+ bool WholeAllocaOp = false;
+ for (; I != E; ++I) {
+ if (!I->U)
+ continue; // Skip dead use.
+
+ uint64_t RelBegin = I->BeginOffset - AllocBeginOffset;
+ uint64_t RelEnd = I->EndOffset - AllocBeginOffset;
+
+ // We can't reasonably handle cases where the load or store extends past
+ // the end of the aloca's type and into its padding.
+ if (RelEnd > Size)
+ return false;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
+ if (LI->isVolatile())
+ return false;
+ if (RelBegin == 0 && RelEnd == Size)
+ WholeAllocaOp = true;
+ if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
+ if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
+ return false;
+ continue;
+ }
+ // Non-integer loads need to be convertible from the alloca type so that
+ // they are promotable.
+ if (RelBegin != 0 || RelEnd != Size ||
+ !canConvertValue(TD, AllocaTy, LI->getType()))
+ return false;
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
+ Type *ValueTy = SI->getValueOperand()->getType();
+ if (SI->isVolatile())
+ return false;
+ if (RelBegin == 0 && RelEnd == Size)
+ WholeAllocaOp = true;
+ if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
+ if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
+ return false;
+ continue;
+ }
+ // Non-integer stores need to be convertible to the alloca type so that
+ // they are promotable.
+ if (RelBegin != 0 || RelEnd != Size ||
+ !canConvertValue(TD, ValueTy, AllocaTy))
+ return false;
+ } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
+ if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
+ return false;
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
+ const AllocaPartitioning::MemTransferOffsets &MTO
+ = P.getMemTransferOffsets(*MTI);
+ if (!MTO.IsSplittable)
+ return false;
+ }
+ } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->U->getUser())) {
+ if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
+ II->getIntrinsicID() != Intrinsic::lifetime_end)
+ return false;
+ } else {
+ return false;
+ }
+ }
+ return WholeAllocaOp;
+}
+
+static Value *extractInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
+ IntegerType *Ty, uint64_t Offset,
+ const Twine &Name) {
+ DEBUG(dbgs() << " start: " << *V << "\n");
+ IntegerType *IntTy = cast<IntegerType>(V->getType());
+ assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
+ "Element extends past full value");
+ uint64_t ShAmt = 8*Offset;
+ if (DL.isBigEndian())
+ ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
+ if (ShAmt) {
+ V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
+ DEBUG(dbgs() << " shifted: " << *V << "\n");
+ }
+ assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
+ "Cannot extract to a larger integer!");
+ if (Ty != IntTy) {
+ V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
+ DEBUG(dbgs() << " trunced: " << *V << "\n");
+ }
+ return V;
+}
+
+static Value *insertInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *Old,
+ Value *V, uint64_t Offset, const Twine &Name) {
+ IntegerType *IntTy = cast<IntegerType>(Old->getType());
+ IntegerType *Ty = cast<IntegerType>(V->getType());
+ assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
+ "Cannot insert a larger integer!");
+ DEBUG(dbgs() << " start: " << *V << "\n");
+ if (Ty != IntTy) {
+ V = IRB.CreateZExt(V, IntTy, Name + ".ext");
+ DEBUG(dbgs() << " extended: " << *V << "\n");
+ }
+ assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
+ "Element store outside of alloca store");
+ uint64_t ShAmt = 8*Offset;
+ if (DL.isBigEndian())
+ ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
+ if (ShAmt) {
+ V = IRB.CreateShl(V, ShAmt, Name + ".shift");
+ DEBUG(dbgs() << " shifted: " << *V << "\n");
+ }
+
+ if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
+ APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
+ Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
+ DEBUG(dbgs() << " masked: " << *Old << "\n");
+ V = IRB.CreateOr(Old, V, Name + ".insert");
+ DEBUG(dbgs() << " inserted: " << *V << "\n");
+ }
+ return V;
+}
+
+static Value *extractVector(IRBuilder<> &IRB, Value *V,
+ unsigned BeginIndex, unsigned EndIndex,
+ const Twine &Name) {
+ VectorType *VecTy = cast<VectorType>(V->getType());
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+
+ if (NumElements == VecTy->getNumElements())
+ return V;
+
+ if (NumElements == 1) {
+ V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
+ Name + ".extract");
+ DEBUG(dbgs() << " extract: " << *V << "\n");
+ return V;
+ }
+
+ SmallVector<Constant*, 8> Mask;
+ Mask.reserve(NumElements);
+ for (unsigned i = BeginIndex; i != EndIndex; ++i)
+ Mask.push_back(IRB.getInt32(i));
+ V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
+ ConstantVector::get(Mask),
+ Name + ".extract");
+ DEBUG(dbgs() << " shuffle: " << *V << "\n");
+ return V;
+}
+
+static Value *insertVector(IRBuilder<> &IRB, Value *Old, Value *V,
+ unsigned BeginIndex, const Twine &Name) {
+ VectorType *VecTy = cast<VectorType>(Old->getType());
+ assert(VecTy && "Can only insert a vector into a vector");
+
+ VectorType *Ty = dyn_cast<VectorType>(V->getType());
+ if (!Ty) {
+ // Single element to insert.
+ V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
+ Name + ".insert");
+ DEBUG(dbgs() << " insert: " << *V << "\n");
+ return V;
+ }
+
+ assert(Ty->getNumElements() <= VecTy->getNumElements() &&
+ "Too many elements!");
+ if (Ty->getNumElements() == VecTy->getNumElements()) {
+ assert(V->getType() == VecTy && "Vector type mismatch");
+ return V;
+ }
+ unsigned EndIndex = BeginIndex + Ty->getNumElements();
+
+ // When inserting a smaller vector into the larger to store, we first
+ // use a shuffle vector to widen it with undef elements, and then
+ // a second shuffle vector to select between the loaded vector and the
+ // incoming vector.
+ SmallVector<Constant*, 8> Mask;
+ Mask.reserve(VecTy->getNumElements());
+ for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
+ if (i >= BeginIndex && i < EndIndex)
+ Mask.push_back(IRB.getInt32(i - BeginIndex));
+ else
+ Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
+ V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
+ ConstantVector::get(Mask),
+ Name + ".expand");
+ DEBUG(dbgs() << " shuffle1: " << *V << "\n");
+
+ Mask.clear();
+ for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
+ if (i >= BeginIndex && i < EndIndex)
+ Mask.push_back(IRB.getInt32(i));
+ else
+ Mask.push_back(IRB.getInt32(i + VecTy->getNumElements()));
+ V = IRB.CreateShuffleVector(V, Old, ConstantVector::get(Mask),
+ Name + "insert");
+ DEBUG(dbgs() << " shuffle2: " << *V << "\n");
+ return V;
+}
+
+namespace {
+/// \brief Visitor to rewrite instructions using a partition of an alloca to
+/// use a new alloca.
+///
+/// Also implements the rewriting to vector-based accesses when the partition
+/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
+/// lives here.
+class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
+ bool> {
+ // Befriend the base class so it can delegate to private visit methods.
+ friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
+
+ const DataLayout &TD;
+ AllocaPartitioning &P;
+ SROA &Pass;
+ AllocaInst &OldAI, &NewAI;
+ const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
+ Type *NewAllocaTy;
+
+ // If we are rewriting an alloca partition which can be written as pure
+ // vector operations, we stash extra information here. When VecTy is
+ // non-null, we have some strict guarantees about the rewriten alloca:
+ // - The new alloca is exactly the size of the vector type here.
+ // - The accesses all either map to the entire vector or to a single
+ // element.
+ // - The set of accessing instructions is only one of those handled above
+ // in isVectorPromotionViable. Generally these are the same access kinds
+ // which are promotable via mem2reg.
+ VectorType *VecTy;
+ Type *ElementTy;
+ uint64_t ElementSize;
+
+ // This is a convenience and flag variable that will be null unless the new
+ // alloca's integer operations should be widened to this integer type due to
+ // passing isIntegerWideningViable above. If it is non-null, the desired
+ // integer type will be stored here for easy access during rewriting.
+ IntegerType *IntTy;
+
+ // The offset of the partition user currently being rewritten.
+ uint64_t BeginOffset, EndOffset;
+ Use *OldUse;
+ Instruction *OldPtr;
+
+ // The name prefix to use when rewriting instructions for this alloca.
+ std::string NamePrefix;
+
+public:
+ AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
+ AllocaPartitioning::iterator PI,
+ SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
+ uint64_t NewBeginOffset, uint64_t NewEndOffset)
+ : TD(TD), P(P), Pass(Pass),
+ OldAI(OldAI), NewAI(NewAI),
+ NewAllocaBeginOffset(NewBeginOffset),
+ NewAllocaEndOffset(NewEndOffset),
+ NewAllocaTy(NewAI.getAllocatedType()),
+ VecTy(), ElementTy(), ElementSize(), IntTy(),
+ BeginOffset(), EndOffset() {
+ }
+
+ /// \brief Visit the users of the alloca partition and rewrite them.
+ bool visitUsers(AllocaPartitioning::const_use_iterator I,
+ AllocaPartitioning::const_use_iterator E) {
+ if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
+ NewAllocaBeginOffset, NewAllocaEndOffset,
+ I, E)) {
+ ++NumVectorized;
+ VecTy = cast<VectorType>(NewAI.getAllocatedType());
+ ElementTy = VecTy->getElementType();
+ assert((TD.getTypeSizeInBits(VecTy->getScalarType()) % 8) == 0 &&
+ "Only multiple-of-8 sized vector elements are viable");
+ ElementSize = TD.getTypeSizeInBits(VecTy->getScalarType()) / 8;
+ } else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
+ NewAllocaBeginOffset, P, I, E)) {
+ IntTy = Type::getIntNTy(NewAI.getContext(),
+ TD.getTypeSizeInBits(NewAI.getAllocatedType()));
+ }
+ bool CanSROA = true;
+ for (; I != E; ++I) {
+ if (!I->U)
+ continue; // Skip dead uses.
+ BeginOffset = I->BeginOffset;
+ EndOffset = I->EndOffset;
+ OldUse = I->U;
+ OldPtr = cast<Instruction>(I->U->get());
+ NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
+ CanSROA &= visit(cast<Instruction>(I->U->getUser()));
+ }
+ if (VecTy) {
+ assert(CanSROA);
+ VecTy = 0;
+ ElementTy = 0;
+ ElementSize = 0;
+ }
+ if (IntTy) {
+ assert(CanSROA);
+ IntTy = 0;
+ }
+ return CanSROA;
+ }
+
+private:
+ // Every instruction which can end up as a user must have a rewrite rule.
+ bool visitInstruction(Instruction &I) {
+ DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
+ llvm_unreachable("No rewrite rule for this instruction!");
+ }
+
+ Twine getName(const Twine &Suffix) {
+ return NamePrefix + Suffix;
+ }
+
+ Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
+ assert(BeginOffset >= NewAllocaBeginOffset);
+ APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
+ return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
+ }
+
+ /// \brief Compute suitable alignment to access an offset into the new alloca.
+ unsigned getOffsetAlign(uint64_t Offset) {
+ unsigned NewAIAlign = NewAI.getAlignment();
+ if (!NewAIAlign)
+ NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
+ return MinAlign(NewAIAlign, Offset);
+ }
+
+ /// \brief Compute suitable alignment to access this partition of the new
+ /// alloca.
+ unsigned getPartitionAlign() {
+ return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
+ }
+
+ /// \brief Compute suitable alignment to access a type at an offset of the
+ /// new alloca.
+ ///
+ /// \returns zero if the type's ABI alignment is a suitable alignment,
+ /// otherwise returns the maximal suitable alignment.
+ unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
+ unsigned Align = getOffsetAlign(Offset);
+ return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
+ }
+
+ /// \brief Compute suitable alignment to access a type at the beginning of
+ /// this partition of the new alloca.
+ ///
+ /// See \c getOffsetTypeAlign for details; this routine delegates to it.
+ unsigned getPartitionTypeAlign(Type *Ty) {
+ return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
+ }
+
+ unsigned getIndex(uint64_t Offset) {
+ assert(VecTy && "Can only call getIndex when rewriting a vector");
+ uint64_t RelOffset = Offset - NewAllocaBeginOffset;
+ assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
+ uint32_t Index = RelOffset / ElementSize;
+ assert(Index * ElementSize == RelOffset);
+ return Index;
+ }
+
+ void deleteIfTriviallyDead(Value *V) {
+ Instruction *I = cast<Instruction>(V);
+ if (isInstructionTriviallyDead(I))
+ Pass.DeadInsts.insert(I);
+ }
+
+ Value *rewriteVectorizedLoadInst(IRBuilder<> &IRB) {
+ unsigned BeginIndex = getIndex(BeginOffset);
+ unsigned EndIndex = getIndex(EndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+
+ Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".load"));
+ return extractVector(IRB, V, BeginIndex, EndIndex, getName(".vec"));
+ }
+
+ Value *rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
+ assert(IntTy && "We cannot insert an integer to the alloca");
+ assert(!LI.isVolatile());
+ Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".load"));
+ V = convertValue(TD, IRB, V, IntTy);
+ assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
+ uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
+ if (Offset > 0 || EndOffset < NewAllocaEndOffset)
+ V = extractInteger(TD, IRB, V, cast<IntegerType>(LI.getType()), Offset,
+ getName(".extract"));
+ return V;
+ }
+
+ bool visitLoadInst(LoadInst &LI) {
+ DEBUG(dbgs() << " original: " << LI << "\n");
+ Value *OldOp = LI.getOperand(0);
+ assert(OldOp == OldPtr);
+ IRBuilder<> IRB(&LI);
+
+ uint64_t Size = EndOffset - BeginOffset;
+ bool IsSplitIntLoad = Size < TD.getTypeStoreSize(LI.getType());
+
+ // If this memory access can be shown to *statically* extend outside the
+ // bounds of the original allocation it's behavior is undefined. Rather
+ // than trying to transform it, just replace it with undef.
+ // FIXME: We should do something more clever for functions being
+ // instrumented by asan.
+ // FIXME: Eventually, once ASan and friends can flush out bugs here, this
+ // should be transformed to a load of null making it unreachable.
+ uint64_t OldAllocSize = TD.getTypeAllocSize(OldAI.getAllocatedType());
+ if (TD.getTypeStoreSize(LI.getType()) > OldAllocSize) {
+ LI.replaceAllUsesWith(UndefValue::get(LI.getType()));
+ Pass.DeadInsts.insert(&LI);
+ deleteIfTriviallyDead(OldOp);
+ DEBUG(dbgs() << " to: undef!!\n");
+ return true;
+ }
+
+ Type *TargetTy = IsSplitIntLoad ? Type::getIntNTy(LI.getContext(), Size * 8)
+ : LI.getType();
+ bool IsPtrAdjusted = false;
+ Value *V;
+ if (VecTy) {
+ V = rewriteVectorizedLoadInst(IRB);
+ } else if (IntTy && LI.getType()->isIntegerTy()) {
+ V = rewriteIntegerLoad(IRB, LI);
+ } else if (BeginOffset == NewAllocaBeginOffset &&
+ canConvertValue(TD, NewAllocaTy, LI.getType())) {
+ V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ LI.isVolatile(), getName(".load"));
+ } else {
+ Type *LTy = TargetTy->getPointerTo();
+ V = IRB.CreateAlignedLoad(getAdjustedAllocaPtr(IRB, LTy),
+ getPartitionTypeAlign(TargetTy),
+ LI.isVolatile(), getName(".load"));
+ IsPtrAdjusted = true;
+ }
+ V = convertValue(TD, IRB, V, TargetTy);
+
+ if (IsSplitIntLoad) {
+ assert(!LI.isVolatile());
+ assert(LI.getType()->isIntegerTy() &&
+ "Only integer type loads and stores are split");
+ assert(LI.getType()->getIntegerBitWidth() ==
+ TD.getTypeStoreSizeInBits(LI.getType()) &&
+ "Non-byte-multiple bit width");
+ assert(LI.getType()->getIntegerBitWidth() ==
+ TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
+ "Only alloca-wide loads can be split and recomposed");
+ // Move the insertion point just past the load so that we can refer to it.
+ IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
+ // Create a placeholder value with the same type as LI to use as the
+ // basis for the new value. This allows us to replace the uses of LI with
+ // the computed value, and then replace the placeholder with LI, leaving
+ // LI only used for this computation.
+ Value *Placeholder
+ = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
+ V = insertInteger(TD, IRB, Placeholder, V, BeginOffset,
+ getName(".insert"));
+ LI.replaceAllUsesWith(V);
+ Placeholder->replaceAllUsesWith(&LI);
+ delete Placeholder;
+ } else {
+ LI.replaceAllUsesWith(V);
+ }
+
+ Pass.DeadInsts.insert(&LI);
+ deleteIfTriviallyDead(OldOp);
+ DEBUG(dbgs() << " to: " << *V << "\n");
+ return !LI.isVolatile() && !IsPtrAdjusted;
+ }
+
+ bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, Value *V,
+ StoreInst &SI, Value *OldOp) {
+ unsigned BeginIndex = getIndex(BeginOffset);
+ unsigned EndIndex = getIndex(EndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+ Type *PartitionTy
+ = (NumElements == 1) ? ElementTy
+ : VectorType::get(ElementTy, NumElements);
+ if (V->getType() != PartitionTy)
+ V = convertValue(TD, IRB, V, PartitionTy);
+
+ // Mix in the existing elements.
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".load"));
+ V = insertVector(IRB, Old, V, BeginIndex, getName(".vec"));
+
+ StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
+ Pass.DeadInsts.insert(&SI);
+
+ (void)Store;
+ DEBUG(dbgs() << " to: " << *Store << "\n");
+ return true;
+ }
+
+ bool rewriteIntegerStore(IRBuilder<> &IRB, Value *V, StoreInst &SI) {
+ assert(IntTy && "We cannot extract an integer from the alloca");
+ assert(!SI.isVolatile());
+ if (TD.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".oldload"));
+ Old = convertValue(TD, IRB, Old, IntTy);
+ assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
+ uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
+ V = insertInteger(TD, IRB, Old, SI.getValueOperand(), Offset,
+ getName(".insert"));
+ }
+ V = convertValue(TD, IRB, V, NewAllocaTy);
+ StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
+ Pass.DeadInsts.insert(&SI);
+ (void)Store;
+ DEBUG(dbgs() << " to: " << *Store << "\n");
+ return true;
+ }
+
+ bool visitStoreInst(StoreInst &SI) {
+ DEBUG(dbgs() << " original: " << SI << "\n");
+ Value *OldOp = SI.getOperand(1);
+ assert(OldOp == OldPtr);
+ IRBuilder<> IRB(&SI);
+
+ Value *V = SI.getValueOperand();
+
+ // Strip all inbounds GEPs and pointer casts to try to dig out any root
+ // alloca that should be re-examined after promoting this alloca.
+ if (V->getType()->isPointerTy())
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
+ Pass.PostPromotionWorklist.insert(AI);
+
+ uint64_t Size = EndOffset - BeginOffset;
+ if (Size < TD.getTypeStoreSize(V->getType())) {
+ assert(!SI.isVolatile());
+ assert(V->getType()->isIntegerTy() &&
+ "Only integer type loads and stores are split");
+ assert(V->getType()->getIntegerBitWidth() ==
+ TD.getTypeStoreSizeInBits(V->getType()) &&
+ "Non-byte-multiple bit width");
+ assert(V->getType()->getIntegerBitWidth() ==
+ TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
+ "Only alloca-wide stores can be split and recomposed");
+ IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
+ V = extractInteger(TD, IRB, V, NarrowTy, BeginOffset,
+ getName(".extract"));
+ }
+
+ if (VecTy)
+ return rewriteVectorizedStoreInst(IRB, V, SI, OldOp);
+ if (IntTy && V->getType()->isIntegerTy())
+ return rewriteIntegerStore(IRB, V, SI);
+
+ StoreInst *NewSI;
+ if (BeginOffset == NewAllocaBeginOffset &&
+ canConvertValue(TD, V->getType(), NewAllocaTy)) {
+ V = convertValue(TD, IRB, V, NewAllocaTy);
+ NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
+ SI.isVolatile());
+ } else {
+ Value *NewPtr = getAdjustedAllocaPtr(IRB, V->getType()->getPointerTo());
+ NewSI = IRB.CreateAlignedStore(V, NewPtr,
+ getPartitionTypeAlign(V->getType()),
+ SI.isVolatile());
+ }
+ (void)NewSI;
+ Pass.DeadInsts.insert(&SI);
+ deleteIfTriviallyDead(OldOp);
+
+ DEBUG(dbgs() << " to: " << *NewSI << "\n");
+ return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
+ }
+
+ /// \brief Compute an integer value from splatting an i8 across the given
+ /// number of bytes.
+ ///
+ /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
+ /// call this routine.
+ /// FIXME: Heed the abvice above.
+ ///
+ /// \param V The i8 value to splat.
+ /// \param Size The number of bytes in the output (assuming i8 is one byte)
+ Value *getIntegerSplat(IRBuilder<> &IRB, Value *V, unsigned Size) {
+ assert(Size > 0 && "Expected a positive number of bytes.");
+ IntegerType *VTy = cast<IntegerType>(V->getType());
+ assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
+ if (Size == 1)
+ return V;
+
+ Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
+ V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
+ ConstantExpr::getUDiv(
+ Constant::getAllOnesValue(SplatIntTy),
+ ConstantExpr::getZExt(
+ Constant::getAllOnesValue(V->getType()),
+ SplatIntTy)),
+ getName(".isplat"));
+ return V;
+ }
+
+ /// \brief Compute a vector splat for a given element value.
+ Value *getVectorSplat(IRBuilder<> &IRB, Value *V, unsigned NumElements) {
+ V = IRB.CreateVectorSplat(NumElements, V, NamePrefix);
+ DEBUG(dbgs() << " splat: " << *V << "\n");
+ return V;
+ }
+
+ bool visitMemSetInst(MemSetInst &II) {
+ DEBUG(dbgs() << " original: " << II << "\n");
+ IRBuilder<> IRB(&II);
+ assert(II.getRawDest() == OldPtr);
+
+ // If the memset has a variable size, it cannot be split, just adjust the
+ // pointer to the new alloca.
+ if (!isa<Constant>(II.getLength())) {
+ II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
+ Type *CstTy = II.getAlignmentCst()->getType();
+ II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
+
+ deleteIfTriviallyDead(OldPtr);
+ return false;
+ }
+
+ // Record this instruction for deletion.
+ Pass.DeadInsts.insert(&II);
+
+ Type *AllocaTy = NewAI.getAllocatedType();
+ Type *ScalarTy = AllocaTy->getScalarType();
+
+ // If this doesn't map cleanly onto the alloca type, and that type isn't
+ // a single value type, just emit a memset.
+ if (!VecTy && !IntTy &&
+ (BeginOffset != NewAllocaBeginOffset ||
+ EndOffset != NewAllocaEndOffset ||
+ !AllocaTy->isSingleValueType() ||
+ !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)) ||
+ TD.getTypeSizeInBits(ScalarTy)%8 != 0)) {
+ Type *SizeTy = II.getLength()->getType();
+ Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
+ CallInst *New
+ = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
+ II.getRawDest()->getType()),
+ II.getValue(), Size, getPartitionAlign(),
+ II.isVolatile());
+ (void)New;
+ DEBUG(dbgs() << " to: " << *New << "\n");
+ return false;
+ }
+
+ // If we can represent this as a simple value, we have to build the actual
+ // value to store, which requires expanding the byte present in memset to
+ // a sensible representation for the alloca type. This is essentially
+ // splatting the byte to a sufficiently wide integer, splatting it across
+ // any desired vector width, and bitcasting to the final type.
+ Value *V;
+
+ if (VecTy) {
+ // If this is a memset of a vectorized alloca, insert it.
+ assert(ElementTy == ScalarTy);
+
+ unsigned BeginIndex = getIndex(BeginOffset);
+ unsigned EndIndex = getIndex(EndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+
+ Value *Splat = getIntegerSplat(IRB, II.getValue(),
+ TD.getTypeSizeInBits(ElementTy)/8);
+ Splat = convertValue(TD, IRB, Splat, ElementTy);
+ if (NumElements > 1)
+ Splat = getVectorSplat(IRB, Splat, NumElements);
+
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".oldload"));
+ V = insertVector(IRB, Old, Splat, BeginIndex, getName(".vec"));
+ } else if (IntTy) {
+ // If this is a memset on an alloca where we can widen stores, insert the
+ // set integer.
+ assert(!II.isVolatile());
+
+ uint64_t Size = EndOffset - BeginOffset;
+ V = getIntegerSplat(IRB, II.getValue(), Size);
+
+ if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
+ EndOffset != NewAllocaBeginOffset)) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".oldload"));
+ Old = convertValue(TD, IRB, Old, IntTy);
+ assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
+ uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
+ V = insertInteger(TD, IRB, Old, V, Offset, getName(".insert"));
+ } else {
+ assert(V->getType() == IntTy &&
+ "Wrong type for an alloca wide integer!");
+ }
+ V = convertValue(TD, IRB, V, AllocaTy);
+ } else {
+ // Established these invariants above.
+ assert(BeginOffset == NewAllocaBeginOffset);
+ assert(EndOffset == NewAllocaEndOffset);
+
+ V = getIntegerSplat(IRB, II.getValue(),
+ TD.getTypeSizeInBits(ScalarTy)/8);
+ if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
+ V = getVectorSplat(IRB, V, AllocaVecTy->getNumElements());
+
+ V = convertValue(TD, IRB, V, AllocaTy);
+ }
+
+ Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
+ II.isVolatile());
+ (void)New;
+ DEBUG(dbgs() << " to: " << *New << "\n");
+ return !II.isVolatile();
+ }
+
+ bool visitMemTransferInst(MemTransferInst &II) {
+ // Rewriting of memory transfer instructions can be a bit tricky. We break
+ // them into two categories: split intrinsics and unsplit intrinsics.
+
+ DEBUG(dbgs() << " original: " << II << "\n");
+ IRBuilder<> IRB(&II);
+
+ assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
+ bool IsDest = II.getRawDest() == OldPtr;
+
+ const AllocaPartitioning::MemTransferOffsets &MTO
+ = P.getMemTransferOffsets(II);
+
+ // Compute the relative offset within the transfer.
+ unsigned IntPtrWidth = TD.getPointerSizeInBits();
+ APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
+ : MTO.SourceBegin));
+
+ unsigned Align = II.getAlignment();
+ if (Align > 1)
+ Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
+ MinAlign(II.getAlignment(), getPartitionAlign()));
+
+ // For unsplit intrinsics, we simply modify the source and destination
+ // pointers in place. This isn't just an optimization, it is a matter of
+ // correctness. With unsplit intrinsics we may be dealing with transfers
+ // within a single alloca before SROA ran, or with transfers that have
+ // a variable length. We may also be dealing with memmove instead of
+ // memcpy, and so simply updating the pointers is the necessary for us to
+ // update both source and dest of a single call.
+ if (!MTO.IsSplittable) {
+ Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
+ if (IsDest)
+ II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
+ else
+ II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
+
+ Type *CstTy = II.getAlignmentCst()->getType();
+ II.setAlignment(ConstantInt::get(CstTy, Align));
+
+ DEBUG(dbgs() << " to: " << II << "\n");
+ deleteIfTriviallyDead(OldOp);
+ return false;
+ }
+ // For split transfer intrinsics we have an incredibly useful assurance:
+ // the source and destination do not reside within the same alloca, and at
+ // least one of them does not escape. This means that we can replace
+ // memmove with memcpy, and we don't need to worry about all manner of
+ // downsides to splitting and transforming the operations.
+
+ // If this doesn't map cleanly onto the alloca type, and that type isn't
+ // a single value type, just emit a memcpy.
+ bool EmitMemCpy
+ = !VecTy && !IntTy && (BeginOffset != NewAllocaBeginOffset ||
+ EndOffset != NewAllocaEndOffset ||
+ !NewAI.getAllocatedType()->isSingleValueType());
+
+ // If we're just going to emit a memcpy, the alloca hasn't changed, and the
+ // size hasn't been shrunk based on analysis of the viable range, this is
+ // a no-op.
+ if (EmitMemCpy && &OldAI == &NewAI) {
+ uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
+ uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
+ // Ensure the start lines up.
+ assert(BeginOffset == OrigBegin);
+ (void)OrigBegin;
+
+ // Rewrite the size as needed.
+ if (EndOffset != OrigEnd)
+ II.setLength(ConstantInt::get(II.getLength()->getType(),
+ EndOffset - BeginOffset));
+ return false;
+ }
+ // Record this instruction for deletion.
+ Pass.DeadInsts.insert(&II);
+
+ // Strip all inbounds GEPs and pointer casts to try to dig out any root
+ // alloca that should be re-examined after rewriting this instruction.
+ Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
+ if (AllocaInst *AI
+ = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
+ Pass.Worklist.insert(AI);
+
+ if (EmitMemCpy) {
+ Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
+ : II.getRawDest()->getType();
+
+ // Compute the other pointer, folding as much as possible to produce
+ // a single, simple GEP in most cases.
+ OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
+ getName("." + OtherPtr->getName()));
+
+ Value *OurPtr
+ = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
+ : II.getRawSource()->getType());
+ Type *SizeTy = II.getLength()->getType();
+ Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
+
+ CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
+ IsDest ? OtherPtr : OurPtr,
+ Size, Align, II.isVolatile());
+ (void)New;
+ DEBUG(dbgs() << " to: " << *New << "\n");
+ return false;
+ }
+
+ // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
+ // is equivalent to 1, but that isn't true if we end up rewriting this as
+ // a load or store.
+ if (!Align)
+ Align = 1;
+
+ bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
+ EndOffset == NewAllocaEndOffset;
+ uint64_t Size = EndOffset - BeginOffset;
+ unsigned BeginIndex = VecTy ? getIndex(BeginOffset) : 0;
+ unsigned EndIndex = VecTy ? getIndex(EndOffset) : 0;
+ unsigned NumElements = EndIndex - BeginIndex;
+ IntegerType *SubIntTy
+ = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
+
+ Type *OtherPtrTy = NewAI.getType();
+ if (VecTy && !IsWholeAlloca) {
+ if (NumElements == 1)
+ OtherPtrTy = VecTy->getElementType();
+ else
+ OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
+
+ OtherPtrTy = OtherPtrTy->getPointerTo();
+ } else if (IntTy && !IsWholeAlloca) {
+ OtherPtrTy = SubIntTy->getPointerTo();
+ }
+
+ Value *SrcPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
+ getName("." + OtherPtr->getName()));
+ Value *DstPtr = &NewAI;
+ if (!IsDest)
+ std::swap(SrcPtr, DstPtr);
+
+ Value *Src;
+ if (VecTy && !IsWholeAlloca && !IsDest) {
+ Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".load"));
+ Src = extractVector(IRB, Src, BeginIndex, EndIndex, getName(".vec"));
+ } else if (IntTy && !IsWholeAlloca && !IsDest) {
+ Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".load"));
+ Src = convertValue(TD, IRB, Src, IntTy);
+ assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
+ uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
+ Src = extractInteger(TD, IRB, Src, SubIntTy, Offset, getName(".extract"));
+ } else {
+ Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
+ getName(".copyload"));
+ }
+
+ if (VecTy && !IsWholeAlloca && IsDest) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".oldload"));
+ Src = insertVector(IRB, Old, Src, BeginIndex, getName(".vec"));
+ } else if (IntTy && !IsWholeAlloca && IsDest) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".oldload"));
+ Old = convertValue(TD, IRB, Old, IntTy);
+ assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
+ uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
+ Src = insertInteger(TD, IRB, Old, Src, Offset, getName(".insert"));
+ Src = convertValue(TD, IRB, Src, NewAllocaTy);
+ }
+
+ StoreInst *Store = cast<StoreInst>(
+ IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
+ (void)Store;
+ DEBUG(dbgs() << " to: " << *Store << "\n");
+ return !II.isVolatile();
+ }
+
+ bool visitIntrinsicInst(IntrinsicInst &II) {
+ assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
+ II.getIntrinsicID() == Intrinsic::lifetime_end);
+ DEBUG(dbgs() << " original: " << II << "\n");
+ IRBuilder<> IRB(&II);
+ assert(II.getArgOperand(1) == OldPtr);
+
+ // Record this instruction for deletion.
+ Pass.DeadInsts.insert(&II);
+
+ ConstantInt *Size
+ = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
+ EndOffset - BeginOffset);
+ Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
+ Value *New;
+ if (II.getIntrinsicID() == Intrinsic::lifetime_start)
+ New = IRB.CreateLifetimeStart(Ptr, Size);
+ else
+ New = IRB.CreateLifetimeEnd(Ptr, Size);
+
+ DEBUG(dbgs() << " to: " << *New << "\n");
+ return true;
+ }
+
+ bool visitPHINode(PHINode &PN) {
+ DEBUG(dbgs() << " original: " << PN << "\n");
+
+ // We would like to compute a new pointer in only one place, but have it be
+ // as local as possible to the PHI. To do that, we re-use the location of
+ // the old pointer, which necessarily must be in the right position to
+ // dominate the PHI.
+ IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
+
+ Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
+ // Replace the operands which were using the old pointer.
+ std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
+
+ DEBUG(dbgs() << " to: " << PN << "\n");
+ deleteIfTriviallyDead(OldPtr);
+ return false;
+ }
+
+ bool visitSelectInst(SelectInst &SI) {
+ DEBUG(dbgs() << " original: " << SI << "\n");
+ IRBuilder<> IRB(&SI);
+
+ // Find the operand we need to rewrite here.
+ bool IsTrueVal = SI.getTrueValue() == OldPtr;
+ if (IsTrueVal)
+ assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
+ else
+ assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
+
+ Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
+ SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
+ DEBUG(dbgs() << " to: " << SI << "\n");
+ deleteIfTriviallyDead(OldPtr);
+ return false;
+ }
+
+};
+}
+
+namespace {
+/// \brief Visitor to rewrite aggregate loads and stores as scalar.
+///
+/// This pass aggressively rewrites all aggregate loads and stores on
+/// a particular pointer (or any pointer derived from it which we can identify)
+/// with scalar loads and stores.
+class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
+ // Befriend the base class so it can delegate to private visit methods.
+ friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
+
+ const DataLayout &TD;
+
+ /// Queue of pointer uses to analyze and potentially rewrite.
+ SmallVector<Use *, 8> Queue;
+
+ /// Set to prevent us from cycling with phi nodes and loops.
+ SmallPtrSet<User *, 8> Visited;
+
+ /// The current pointer use being rewritten. This is used to dig up the used
+ /// value (as opposed to the user).
+ Use *U;
+
+public:
+ AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {}
+
+ /// Rewrite loads and stores through a pointer and all pointers derived from
+ /// it.
+ bool rewrite(Instruction &I) {
+ DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
+ enqueueUsers(I);
+ bool Changed = false;
+ while (!Queue.empty()) {
+ U = Queue.pop_back_val();
+ Changed |= visit(cast<Instruction>(U->getUser()));
+ }
+ return Changed;
+ }
+
+private:
+ /// Enqueue all the users of the given instruction for further processing.
+ /// This uses a set to de-duplicate users.
+ void enqueueUsers(Instruction &I) {
+ for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
+ ++UI)
+ if (Visited.insert(*UI))
+ Queue.push_back(&UI.getUse());
+ }
+
+ // Conservative default is to not rewrite anything.
+ bool visitInstruction(Instruction &I) { return false; }
+
+ /// \brief Generic recursive split emission class.
+ template <typename Derived>
+ class OpSplitter {
+ protected:
+ /// The builder used to form new instructions.
+ IRBuilder<> IRB;
+ /// The indices which to be used with insert- or extractvalue to select the
+ /// appropriate value within the aggregate.
+ SmallVector<unsigned, 4> Indices;
+ /// The indices to a GEP instruction which will move Ptr to the correct slot
+ /// within the aggregate.
+ SmallVector<Value *, 4> GEPIndices;
+ /// The base pointer of the original op, used as a base for GEPing the
+ /// split operations.
+ Value *Ptr;
+
+ /// Initialize the splitter with an insertion point, Ptr and start with a
+ /// single zero GEP index.
+ OpSplitter(Instruction *InsertionPoint, Value *Ptr)
+ : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
+
+ public:
+ /// \brief Generic recursive split emission routine.
+ ///
+ /// This method recursively splits an aggregate op (load or store) into
+ /// scalar or vector ops. It splits recursively until it hits a single value
+ /// and emits that single value operation via the template argument.
+ ///
+ /// The logic of this routine relies on GEPs and insertvalue and
+ /// extractvalue all operating with the same fundamental index list, merely
+ /// formatted differently (GEPs need actual values).
+ ///
+ /// \param Ty The type being split recursively into smaller ops.
+ /// \param Agg The aggregate value being built up or stored, depending on
+ /// whether this is splitting a load or a store respectively.
+ void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
+ if (Ty->isSingleValueType())
+ return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
+
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ unsigned OldSize = Indices.size();
+ (void)OldSize;
+ for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
+ ++Idx) {
+ assert(Indices.size() == OldSize && "Did not return to the old size");
+ Indices.push_back(Idx);
+ GEPIndices.push_back(IRB.getInt32(Idx));
+ emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
+ GEPIndices.pop_back();
+ Indices.pop_back();
+ }
+ return;
+ }
+
+ if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ unsigned OldSize = Indices.size();
+ (void)OldSize;
+ for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
+ ++Idx) {
+ assert(Indices.size() == OldSize && "Did not return to the old size");
+ Indices.push_back(Idx);
+ GEPIndices.push_back(IRB.getInt32(Idx));
+ emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
+ GEPIndices.pop_back();
+ Indices.pop_back();
+ }
+ return;
+ }
+
+ llvm_unreachable("Only arrays and structs are aggregate loadable types");
+ }
+ };
+
+ struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
+ LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
+ : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
+
+ /// Emit a leaf load of a single value. This is called at the leaves of the
+ /// recursive emission to actually load values.
+ void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
+ assert(Ty->isSingleValueType());
+ // Load the single value and insert it using the indices.
+ Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
+ Name + ".gep"),
+ Name + ".load");
+ Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
+ DEBUG(dbgs() << " to: " << *Load << "\n");
+ }
+ };
+
+ bool visitLoadInst(LoadInst &LI) {
+ assert(LI.getPointerOperand() == *U);
+ if (!LI.isSimple() || LI.getType()->isSingleValueType())
+ return false;
+
+ // We have an aggregate being loaded, split it apart.
+ DEBUG(dbgs() << " original: " << LI << "\n");
+ LoadOpSplitter Splitter(&LI, *U);
+ Value *V = UndefValue::get(LI.getType());
+ Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
+ LI.replaceAllUsesWith(V);
+ LI.eraseFromParent();
+ return true;
+ }
+
+ struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
+ StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
+ : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
+
+ /// Emit a leaf store of a single value. This is called at the leaves of the
+ /// recursive emission to actually produce stores.
+ void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
+ assert(Ty->isSingleValueType());
+ // Extract the single value and store it using the indices.
+ Value *Store = IRB.CreateStore(
+ IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
+ IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
+ (void)Store;
+ DEBUG(dbgs() << " to: " << *Store << "\n");
+ }
+ };
+
+ bool visitStoreInst(StoreInst &SI) {
+ if (!SI.isSimple() || SI.getPointerOperand() != *U)
+ return false;
+ Value *V = SI.getValueOperand();
+ if (V->getType()->isSingleValueType())
+ return false;
+
+ // We have an aggregate being stored, split it apart.
+ DEBUG(dbgs() << " original: " << SI << "\n");
+ StoreOpSplitter Splitter(&SI, *U);
+ Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
+ SI.eraseFromParent();
+ return true;
+ }
+
+ bool visitBitCastInst(BitCastInst &BC) {
+ enqueueUsers(BC);
+ return false;
+ }
+
+ bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
+ enqueueUsers(GEPI);
+ return false;
+ }
+
+ bool visitPHINode(PHINode &PN) {
+ enqueueUsers(PN);
+ return false;
+ }
+
+ bool visitSelectInst(SelectInst &SI) {
+ enqueueUsers(SI);
+ return false;
+ }
+};
+}
+
+/// \brief Strip aggregate type wrapping.
+///
+/// This removes no-op aggregate types wrapping an underlying type. It will
+/// strip as many layers of types as it can without changing either the type
+/// size or the allocated size.
+static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
+ if (Ty->isSingleValueType())
+ return Ty;
+
+ uint64_t AllocSize = DL.getTypeAllocSize(Ty);
+ uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
+
+ Type *InnerTy;
+ if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
+ InnerTy = ArrTy->getElementType();
+ } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ unsigned Index = SL->getElementContainingOffset(0);
+ InnerTy = STy->getElementType(Index);
+ } else {
+ return Ty;
+ }
+
+ if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
+ TypeSize > DL.getTypeSizeInBits(InnerTy))
+ return Ty;
+
+ return stripAggregateTypeWrapping(DL, InnerTy);
+}
+
+/// \brief Try to find a partition of the aggregate type passed in for a given
+/// offset and size.
+///
+/// This recurses through the aggregate type and tries to compute a subtype
+/// based on the offset and size. When the offset and size span a sub-section
+/// of an array, it will even compute a new array type for that sub-section,
+/// and the same for structs.
+///
+/// Note that this routine is very strict and tries to find a partition of the
+/// type which produces the *exact* right offset and size. It is not forgiving
+/// when the size or offset cause either end of type-based partition to be off.
+/// Also, this is a best-effort routine. It is reasonable to give up and not
+/// return a type if necessary.
+static Type *getTypePartition(const DataLayout &TD, Type *Ty,
+ uint64_t Offset, uint64_t Size) {
+ if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
+ return stripAggregateTypeWrapping(TD, Ty);
+ if (Offset > TD.getTypeAllocSize(Ty) ||
+ (TD.getTypeAllocSize(Ty) - Offset) < Size)
+ return 0;
+
+ if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
+ // We can't partition pointers...
+ if (SeqTy->isPointerTy())
+ return 0;
+
+ Type *ElementTy = SeqTy->getElementType();
+ uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
+ uint64_t NumSkippedElements = Offset / ElementSize;
+ if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
+ if (NumSkippedElements >= ArrTy->getNumElements())
+ return 0;
+ if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
+ if (NumSkippedElements >= VecTy->getNumElements())
+ return 0;
+ Offset -= NumSkippedElements * ElementSize;
+
+ // First check if we need to recurse.
+ if (Offset > 0 || Size < ElementSize) {
+ // Bail if the partition ends in a different array element.
+ if ((Offset + Size) > ElementSize)
+ return 0;
+ // Recurse through the element type trying to peel off offset bytes.
+ return getTypePartition(TD, ElementTy, Offset, Size);
+ }
+ assert(Offset == 0);
+
+ if (Size == ElementSize)
+ return stripAggregateTypeWrapping(TD, ElementTy);
+ assert(Size > ElementSize);
+ uint64_t NumElements = Size / ElementSize;
+ if (NumElements * ElementSize != Size)
+ return 0;
+ return ArrayType::get(ElementTy, NumElements);
+ }
+
+ StructType *STy = dyn_cast<StructType>(Ty);
+ if (!STy)
+ return 0;
+
+ const StructLayout *SL = TD.getStructLayout(STy);
+ if (Offset >= SL->getSizeInBytes())
+ return 0;
+ uint64_t EndOffset = Offset + Size;
+ if (EndOffset > SL->getSizeInBytes())
+ return 0;
+
+ unsigned Index = SL->getElementContainingOffset(Offset);
+ Offset -= SL->getElementOffset(Index);
+
+ Type *ElementTy = STy->getElementType(Index);
+ uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
+ if (Offset >= ElementSize)
+ return 0; // The offset points into alignment padding.
+
+ // See if any partition must be contained by the element.
+ if (Offset > 0 || Size < ElementSize) {
+ if ((Offset + Size) > ElementSize)
+ return 0;
+ return getTypePartition(TD, ElementTy, Offset, Size);
+ }
+ assert(Offset == 0);
+
+ if (Size == ElementSize)
+ return stripAggregateTypeWrapping(TD, ElementTy);
+
+ StructType::element_iterator EI = STy->element_begin() + Index,
+ EE = STy->element_end();
+ if (EndOffset < SL->getSizeInBytes()) {
+ unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
+ if (Index == EndIndex)
+ return 0; // Within a single element and its padding.
+
+ // Don't try to form "natural" types if the elements don't line up with the
+ // expected size.
+ // FIXME: We could potentially recurse down through the last element in the
+ // sub-struct to find a natural end point.
+ if (SL->getElementOffset(EndIndex) != EndOffset)
+ return 0;
+
+ assert(Index < EndIndex);
+ EE = STy->element_begin() + EndIndex;
+ }
+
+ // Try to build up a sub-structure.
+ StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
+ STy->isPacked());
+ const StructLayout *SubSL = TD.getStructLayout(SubTy);
+ if (Size != SubSL->getSizeInBytes())
+ return 0; // The sub-struct doesn't have quite the size needed.
+
+ return SubTy;
+}
+
+/// \brief Rewrite an alloca partition's users.
+///
+/// This routine drives both of the rewriting goals of the SROA pass. It tries
+/// to rewrite uses of an alloca partition to be conducive for SSA value
+/// promotion. If the partition needs a new, more refined alloca, this will
+/// build that new alloca, preserving as much type information as possible, and
+/// rewrite the uses of the old alloca to point at the new one and have the
+/// appropriate new offsets. It also evaluates how successful the rewrite was
+/// at enabling promotion and if it was successful queues the alloca to be
+/// promoted.
+bool SROA::rewriteAllocaPartition(AllocaInst &AI,
+ AllocaPartitioning &P,
+ AllocaPartitioning::iterator PI) {
+ uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
+ bool IsLive = false;
+ for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
+ UE = P.use_end(PI);
+ UI != UE && !IsLive; ++UI)
+ if (UI->U)
+ IsLive = true;
+ if (!IsLive)
+ return false; // No live uses left of this partition.
+
+ DEBUG(dbgs() << "Speculating PHIs and selects in partition "
+ << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
+
+ PHIOrSelectSpeculator Speculator(*TD, P, *this);
+ DEBUG(dbgs() << " speculating ");
+ DEBUG(P.print(dbgs(), PI, ""));
+ Speculator.visitUsers(PI);
+
+ // Try to compute a friendly type for this partition of the alloca. This
+ // won't always succeed, in which case we fall back to a legal integer type
+ // or an i8 array of an appropriate size.
+ Type *AllocaTy = 0;
+ if (Type *PartitionTy = P.getCommonType(PI))
+ if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
+ AllocaTy = PartitionTy;
+ if (!AllocaTy)
+ if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
+ PI->BeginOffset, AllocaSize))
+ AllocaTy = PartitionTy;
+ if ((!AllocaTy ||
+ (AllocaTy->isArrayTy() &&
+ AllocaTy->getArrayElementType()->isIntegerTy())) &&
+ TD->isLegalInteger(AllocaSize * 8))
+ AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
+ if (!AllocaTy)
+ AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
+ assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
+
+ // Check for the case where we're going to rewrite to a new alloca of the
+ // exact same type as the original, and with the same access offsets. In that
+ // case, re-use the existing alloca, but still run through the rewriter to
+ // performe phi and select speculation.
+ AllocaInst *NewAI;
+ if (AllocaTy == AI.getAllocatedType()) {
+ assert(PI->BeginOffset == 0 &&
+ "Non-zero begin offset but same alloca type");
+ assert(PI == P.begin() && "Begin offset is zero on later partition");
+ NewAI = &AI;
+ } else {
+ unsigned Alignment = AI.getAlignment();
+ if (!Alignment) {
+ // The minimum alignment which users can rely on when the explicit
+ // alignment is omitted or zero is that required by the ABI for this
+ // type.
+ Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
+ }
+ Alignment = MinAlign(Alignment, PI->BeginOffset);
+ // If we will get at least this much alignment from the type alone, leave
+ // the alloca's alignment unconstrained.
+ if (Alignment <= TD->getABITypeAlignment(AllocaTy))
+ Alignment = 0;
+ NewAI = new AllocaInst(AllocaTy, 0, Alignment,
+ AI.getName() + ".sroa." + Twine(PI - P.begin()),
+ &AI);
+ ++NumNewAllocas;
+ }
+
+ DEBUG(dbgs() << "Rewriting alloca partition "
+ << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
+ << *NewAI << "\n");
+
+ // Track the high watermark of the post-promotion worklist. We will reset it
+ // to this point if the alloca is not in fact scheduled for promotion.
+ unsigned PPWOldSize = PostPromotionWorklist.size();
+
+ AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
+ PI->BeginOffset, PI->EndOffset);
+ DEBUG(dbgs() << " rewriting ");
+ DEBUG(P.print(dbgs(), PI, ""));
+ bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
+ if (Promotable) {
+ DEBUG(dbgs() << " and queuing for promotion\n");
+ PromotableAllocas.push_back(NewAI);
+ } else if (NewAI != &AI) {
+ // If we can't promote the alloca, iterate on it to check for new
+ // refinements exposed by splitting the current alloca. Don't iterate on an
+ // alloca which didn't actually change and didn't get promoted.
+ Worklist.insert(NewAI);
+ }
+
+ // Drop any post-promotion work items if promotion didn't happen.
+ if (!Promotable)
+ while (PostPromotionWorklist.size() > PPWOldSize)
+ PostPromotionWorklist.pop_back();
+
+ return true;
+}
+
+/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
+bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
+ bool Changed = false;
+ for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
+ ++PI)
+ Changed |= rewriteAllocaPartition(AI, P, PI);
+
+ return Changed;
+}
+
+/// \brief Analyze an alloca for SROA.
+///
+/// This analyzes the alloca to ensure we can reason about it, builds
+/// a partitioning of the alloca, and then hands it off to be split and
+/// rewritten as needed.
+bool SROA::runOnAlloca(AllocaInst &AI) {
+ DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
+ ++NumAllocasAnalyzed;
+
+ // Special case dead allocas, as they're trivial.
+ if (AI.use_empty()) {
+ AI.eraseFromParent();
+ return true;
+ }
+
+ // Skip alloca forms that this analysis can't handle.
+ if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
+ TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
+ return false;
+
+ bool Changed = false;
+
+ // First, split any FCA loads and stores touching this alloca to promote
+ // better splitting and promotion opportunities.
+ AggLoadStoreRewriter AggRewriter(*TD);
+ Changed |= AggRewriter.rewrite(AI);
+
+ // Build the partition set using a recursive instruction-visiting builder.
+ AllocaPartitioning P(*TD, AI);
+ DEBUG(P.print(dbgs()));
+ if (P.isEscaped())
+ return Changed;
+
+ // Delete all the dead users of this alloca before splitting and rewriting it.
+ for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
+ DE = P.dead_user_end();
+ DI != DE; ++DI) {
+ Changed = true;
+ (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
+ DeadInsts.insert(*DI);
+ }
+ for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
+ DE = P.dead_op_end();
+ DO != DE; ++DO) {
+ Value *OldV = **DO;
+ // Clobber the use with an undef value.
+ **DO = UndefValue::get(OldV->getType());
+ if (Instruction *OldI = dyn_cast<Instruction>(OldV))
+ if (isInstructionTriviallyDead(OldI)) {
+ Changed = true;
+ DeadInsts.insert(OldI);
+ }
+ }
+
+ // No partitions to split. Leave the dead alloca for a later pass to clean up.
+ if (P.begin() == P.end())
+ return Changed;
+
+ return splitAlloca(AI, P) || Changed;
+}
+
+/// \brief Delete the dead instructions accumulated in this run.
+///
+/// Recursively deletes the dead instructions we've accumulated. This is done
+/// at the very end to maximize locality of the recursive delete and to
+/// minimize the problems of invalidated instruction pointers as such pointers
+/// are used heavily in the intermediate stages of the algorithm.
+///
+/// We also record the alloca instructions deleted here so that they aren't
+/// subsequently handed to mem2reg to promote.
+void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
+ while (!DeadInsts.empty()) {
+ Instruction *I = DeadInsts.pop_back_val();
+ DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
+
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
+
+ for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
+ if (Instruction *U = dyn_cast<Instruction>(*OI)) {
+ // Zero out the operand and see if it becomes trivially dead.
+ *OI = 0;
+ if (isInstructionTriviallyDead(U))
+ DeadInsts.insert(U);
+ }
+
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
+ DeletedAllocas.insert(AI);
+
+ ++NumDeleted;
+ I->eraseFromParent();
+ }
+}
+
+/// \brief Promote the allocas, using the best available technique.
+///
+/// This attempts to promote whatever allocas have been identified as viable in
+/// the PromotableAllocas list. If that list is empty, there is nothing to do.
+/// If there is a domtree available, we attempt to promote using the full power
+/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
+/// based on the SSAUpdater utilities. This function returns whether any
+/// promotion occured.
+bool SROA::promoteAllocas(Function &F) {
+ if (PromotableAllocas.empty())
+ return false;
+
+ NumPromoted += PromotableAllocas.size();
+
+ if (DT && !ForceSSAUpdater) {
+ DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
+ PromoteMemToReg(PromotableAllocas, *DT);
+ PromotableAllocas.clear();
+ return true;
+ }
+
+ DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
+ SSAUpdater SSA;
+ DIBuilder DIB(*F.getParent());
+ SmallVector<Instruction*, 64> Insts;
+
+ for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
+ AllocaInst *AI = PromotableAllocas[Idx];
+ for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
+ UI != UE;) {
+ Instruction *I = cast<Instruction>(*UI++);
+ // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
+ // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
+ // leading to them) here. Eventually it should use them to optimize the
+ // scalar values produced.
+ if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
+ assert(onlyUsedByLifetimeMarkers(I) &&
+ "Found a bitcast used outside of a lifetime marker.");
+ while (!I->use_empty())
+ cast<Instruction>(*I->use_begin())->eraseFromParent();
+ I->eraseFromParent();
+ continue;
+ }
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
+ II->getIntrinsicID() == Intrinsic::lifetime_end);
+ II->eraseFromParent();
+ continue;
+ }
+
+ Insts.push_back(I);
+ }
+ AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
+ Insts.clear();
+ }
+
+ PromotableAllocas.clear();
+ return true;
+}
+
+namespace {
+ /// \brief A predicate to test whether an alloca belongs to a set.
+ class IsAllocaInSet {
+ typedef SmallPtrSet<AllocaInst *, 4> SetType;
+ const SetType &Set;
+
+ public:
+ typedef AllocaInst *argument_type;
+
+ IsAllocaInSet(const SetType &Set) : Set(Set) {}
+ bool operator()(AllocaInst *AI) const { return Set.count(AI); }
+ };
+}
+
+bool SROA::runOnFunction(Function &F) {
+ DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
+ C = &F.getContext();
+ TD = getAnalysisIfAvailable<DataLayout>();
+ if (!TD) {
+ DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
+ return false;
+ }
+ DT = getAnalysisIfAvailable<DominatorTree>();
+
+ BasicBlock &EntryBB = F.getEntryBlock();
+ for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
+ I != E; ++I)
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
+ Worklist.insert(AI);
+
+ bool Changed = false;
+ // A set of deleted alloca instruction pointers which should be removed from
+ // the list of promotable allocas.
+ SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
+
+ do {
+ while (!Worklist.empty()) {
+ Changed |= runOnAlloca(*Worklist.pop_back_val());
+ deleteDeadInstructions(DeletedAllocas);
+
+ // Remove the deleted allocas from various lists so that we don't try to
+ // continue processing them.
+ if (!DeletedAllocas.empty()) {
+ Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
+ PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
+ PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
+ PromotableAllocas.end(),
+ IsAllocaInSet(DeletedAllocas)),
+ PromotableAllocas.end());
+ DeletedAllocas.clear();
+ }
+ }
+
+ Changed |= promoteAllocas(F);
+
+ Worklist = PostPromotionWorklist;
+ PostPromotionWorklist.clear();
+ } while (!Worklist.empty());
+
+ return Changed;
+}
+
+void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
+ if (RequiresDomTree)
+ AU.addRequired<DominatorTree>();
+ AU.setPreservesCFG();
+}
diff --git a/lib/Transforms/Scalar/Scalar.cpp b/lib/Transforms/Scalar/Scalar.cpp
index 48318c8..35d2fa0 100644
--- a/lib/Transforms/Scalar/Scalar.cpp
+++ b/lib/Transforms/Scalar/Scalar.cpp
@@ -13,14 +13,14 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm-c/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar.h"
#include "llvm-c/Initialization.h"
-#include "llvm/InitializePasses.h"
-#include "llvm/PassManager.h"
+#include "llvm-c/Transforms/Scalar.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Verifier.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Transforms/Scalar.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/PassManager.h"
using namespace llvm;
@@ -59,6 +59,7 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
initializeRegToMemPass(Registry);
initializeSCCPPass(Registry);
initializeIPSCCPPass(Registry);
+ initializeSROAPass(Registry);
initializeSROA_DTPass(Registry);
initializeSROA_SSAUpPass(Registry);
initializeCFGSimplifyPassPass(Registry);
diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index 8090fdf..e590a37 100644
--- a/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -21,32 +21,32 @@
#define DEBUG_TYPE "scalarrepl"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DIBuilder.h"
-#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
@@ -87,7 +87,7 @@ namespace {
private:
bool HasDomTree;
- TargetData *TD;
+ DataLayout *TD;
/// DeadInsts - Keep track of instructions we have made dead, so that
/// we can remove them after we are done working.
@@ -258,7 +258,7 @@ namespace {
class ConvertToScalarInfo {
/// AllocaSize - The size of the alloca being considered in bytes.
unsigned AllocaSize;
- const TargetData &TD;
+ const DataLayout &TD;
unsigned ScalarLoadThreshold;
/// IsNotTrivial - This is set to true if there is some access to the object
@@ -301,7 +301,7 @@ class ConvertToScalarInfo {
bool HadDynamicAccess;
public:
- explicit ConvertToScalarInfo(unsigned Size, const TargetData &td,
+ explicit ConvertToScalarInfo(unsigned Size, const DataLayout &td,
unsigned SLT)
: AllocaSize(Size), TD(td), ScalarLoadThreshold(SLT), IsNotTrivial(false),
ScalarKind(Unknown), VectorTy(0), HadNonMemTransferAccess(false),
@@ -1020,11 +1020,11 @@ ConvertScalar_InsertValue(Value *SV, Value *Old,
bool SROA::runOnFunction(Function &F) {
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
bool Changed = performPromotion(F);
- // FIXME: ScalarRepl currently depends on TargetData more than it
+ // FIXME: ScalarRepl currently depends on DataLayout more than it
// theoretically needs to. It should be refactored in order to support
// target-independent IR. Until this is done, just skip the actual
// scalar-replacement portion of this pass.
@@ -1134,7 +1134,7 @@ public:
///
/// We can do this to a select if its only uses are loads and if the operand to
/// the select can be loaded unconditionally.
-static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
+static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *TD) {
bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
@@ -1172,7 +1172,7 @@ static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
///
/// We can do this to a select if its only uses are loads and if the operand to
/// the select can be loaded unconditionally.
-static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
+static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *TD) {
// For now, we can only do this promotion if the load is in the same block as
// the PHI, and if there are no stores between the phi and load.
// TODO: Allow recursive phi users.
@@ -1236,7 +1236,7 @@ static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
/// direct (non-volatile) loads and stores to it. If the alloca is close but
/// not quite there, this will transform the code to allow promotion. As such,
/// it is a non-pure predicate.
-static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
+static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *TD) {
SetVector<Instruction*, SmallVector<Instruction*, 4>,
SmallPtrSet<Instruction*, 4> > InstsToRewrite;
@@ -2537,7 +2537,7 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
/// HasPadding - Return true if the specified type has any structure or
/// alignment padding in between the elements that would be split apart
/// by SROA; return false otherwise.
-static bool HasPadding(Type *Ty, const TargetData &TD) {
+static bool HasPadding(Type *Ty, const DataLayout &TD) {
if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Ty = ATy->getElementType();
return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
diff --git a/lib/Transforms/Scalar/SimplifyCFGPass.cpp b/lib/Transforms/Scalar/SimplifyCFGPass.cpp
index 6d27db1..c243d34 100644
--- a/lib/Transforms/Scalar/SimplifyCFGPass.cpp
+++ b/lib/Transforms/Scalar/SimplifyCFGPass.cpp
@@ -23,18 +23,19 @@
#define DEBUG_TYPE "simplifycfg"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
-#include "llvm/Attributes.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Pass.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumSimpl, "Number of blocks simplified");
@@ -47,12 +48,19 @@ namespace {
}
virtual bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetTransformInfo>();
+ }
};
}
char CFGSimplifyPass::ID = 0;
-INITIALIZE_PASS(CFGSimplifyPass, "simplifycfg",
- "Simplify the CFG", false, false)
+INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG",
+ false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG",
+ false, false)
// Public interface to the CFGSimplification pass
FunctionPass *llvm::createCFGSimplificationPass() {
@@ -110,13 +118,11 @@ static bool markAliveBlocks(BasicBlock *BB,
SmallVector<BasicBlock*, 128> Worklist;
Worklist.push_back(BB);
+ Reachable.insert(BB);
bool Changed = false;
do {
BB = Worklist.pop_back_val();
- if (!Reachable.insert(BB))
- continue;
-
// Do a quick scan of the basic block, turning any obviously unreachable
// instructions into LLVM unreachable insts. The instruction combining pass
// canonicalizes unreachable insts into stores to null or undef.
@@ -175,7 +181,8 @@ static bool markAliveBlocks(BasicBlock *BB,
Changed |= ConstantFoldTerminator(BB, true);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
- Worklist.push_back(*SI);
+ if (Reachable.insert(*SI))
+ Worklist.push_back(*SI);
} while (!Worklist.empty());
return Changed;
}
@@ -293,7 +300,8 @@ static bool mergeEmptyReturnBlocks(Function &F) {
/// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function,
/// iterating until no more changes are made.
-static bool iterativelySimplifyCFG(Function &F, const TargetData *TD) {
+static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
+ const DataLayout *TD) {
bool Changed = false;
bool LocalChange = true;
while (LocalChange) {
@@ -302,7 +310,7 @@ static bool iterativelySimplifyCFG(Function &F, const TargetData *TD) {
// Loop over all of the basic blocks and remove them if they are unneeded...
//
for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
- if (SimplifyCFG(BBIt++, TD)) {
+ if (SimplifyCFG(BBIt++, TTI, TD)) {
LocalChange = true;
++NumSimpl;
}
@@ -316,10 +324,11 @@ static bool iterativelySimplifyCFG(Function &F, const TargetData *TD) {
// simplify the CFG.
//
bool CFGSimplifyPass::runOnFunction(Function &F) {
- const TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
+ const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
bool EverChanged = removeUnreachableBlocksFromFn(F);
EverChanged |= mergeEmptyReturnBlocks(F);
- EverChanged |= iterativelySimplifyCFG(F, TD);
+ EverChanged |= iterativelySimplifyCFG(F, TTI, TD);
// If neither pass changed anything, we're done.
if (!EverChanged) return false;
@@ -333,7 +342,7 @@ bool CFGSimplifyPass::runOnFunction(Function &F) {
return true;
do {
- EverChanged = iterativelySimplifyCFG(F, TD);
+ EverChanged = iterativelySimplifyCFG(F, TTI, TD);
EverChanged |= removeUnreachableBlocksFromFn(F);
} while (EverChanged);
diff --git a/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
index 65311fe..d5cefa3 100644
--- a/lib/Transforms/Scalar/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
@@ -17,32 +17,26 @@
#define DEBUG_TYPE "simplify-libcalls"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BuildLibCalls.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Config/config.h" // FIXME: Shouldn't depend on host!
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Config/config.h" // FIXME: Shouldn't depend on host!
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
using namespace llvm;
-STATISTIC(NumSimplified, "Number of library calls simplified");
STATISTIC(NumAnnotated, "Number of attributes added to library functions");
-static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
- cl::init(false),
- cl::desc("Enable unsafe double to float "
- "shrinking for math lib calls"));
//===----------------------------------------------------------------------===//
// Optimizer Base Class
//===----------------------------------------------------------------------===//
@@ -53,7 +47,7 @@ namespace {
class LibCallOptimization {
protected:
Function *Caller;
- const TargetData *TD;
+ const DataLayout *TD;
const TargetLibraryInfo *TLI;
LLVMContext* Context;
public:
@@ -68,7 +62,7 @@ public:
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
=0;
- Value *OptimizeCall(CallInst *CI, const TargetData *TD,
+ Value *OptimizeCall(CallInst *CI, const DataLayout *TD,
const TargetLibraryInfo *TLI, IRBuilder<> &B) {
Caller = CI->getParent()->getParent();
this->TD = TD;
@@ -87,1470 +81,6 @@ public:
//===----------------------------------------------------------------------===//
-// Helper Functions
-//===----------------------------------------------------------------------===//
-
-/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
-/// value is equal or not-equal to zero.
-static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
- for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
- UI != E; ++UI) {
- if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
- if (IC->isEquality())
- if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
- if (C->isNullValue())
- continue;
- // Unknown instruction.
- return false;
- }
- return true;
-}
-
-static bool CallHasFloatingPointArgument(const CallInst *CI) {
- for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
- it != e; ++it) {
- if ((*it)->getType()->isFloatingPointTy())
- return true;
- }
- return false;
-}
-
-/// IsOnlyUsedInEqualityComparison - Return true if it is only used in equality
-/// comparisons with With.
-static bool IsOnlyUsedInEqualityComparison(Value *V, Value *With) {
- for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
- UI != E; ++UI) {
- if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
- if (IC->isEquality() && IC->getOperand(1) == With)
- continue;
- // Unknown instruction.
- return false;
- }
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// String and Memory LibCall Optimizations
-//===----------------------------------------------------------------------===//
-
-//===---------------------------------------===//
-// 'strcat' Optimizations
-namespace {
-struct StrCatOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Verify the "strcat" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getReturnType() != B.getInt8PtrTy() ||
- FT->getParamType(0) != FT->getReturnType() ||
- FT->getParamType(1) != FT->getReturnType())
- return 0;
-
- // Extract some information from the instruction
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
-
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0) return 0;
- --Len; // Unbias length.
-
- // Handle the simple, do-nothing case: strcat(x, "") -> x
- if (Len == 0)
- return Dst;
-
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- return EmitStrLenMemCpy(Src, Dst, Len, B);
- }
-
- Value *EmitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) {
- // We need to find the end of the destination string. That's where the
- // memory is to be moved to. We just generate a call to strlen.
- Value *DstLen = EmitStrLen(Dst, B, TD, TLI);
- if (!DstLen)
- return 0;
-
- // Now that we have the destination's length, we must index into the
- // destination's pointer to get the actual memcpy destination (end of
- // the string .. we're concatenating).
- Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
-
- // We have enough information to now generate the memcpy call to do the
- // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(CpyDst, Src,
- ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1);
- return Dst;
- }
-};
-
-//===---------------------------------------===//
-// 'strncat' Optimizations
-
-struct StrNCatOpt : public StrCatOpt {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Verify the "strncat" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 ||
- FT->getReturnType() != B.getInt8PtrTy() ||
- FT->getParamType(0) != FT->getReturnType() ||
- FT->getParamType(1) != FT->getReturnType() ||
- !FT->getParamType(2)->isIntegerTy())
- return 0;
-
- // Extract some information from the instruction
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- uint64_t Len;
-
- // We don't do anything if length is not constant
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
- Len = LengthArg->getZExtValue();
- else
- return 0;
-
- // See if we can get the length of the input string.
- uint64_t SrcLen = GetStringLength(Src);
- if (SrcLen == 0) return 0;
- --SrcLen; // Unbias length.
-
- // Handle the simple, do-nothing cases:
- // strncat(x, "", c) -> x
- // strncat(x, c, 0) -> x
- if (SrcLen == 0 || Len == 0) return Dst;
-
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- // We don't optimize this case
- if (Len < SrcLen) return 0;
-
- // strncat(x, s, c) -> strcat(x, s)
- // s is constant so the strcat can be optimized further
- return EmitStrLenMemCpy(Src, Dst, SrcLen, B);
- }
-};
-
-//===---------------------------------------===//
-// 'strchr' Optimizations
-
-struct StrChrOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Verify the "strchr" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getReturnType() != B.getInt8PtrTy() ||
- FT->getParamType(0) != FT->getReturnType() ||
- !FT->getParamType(1)->isIntegerTy(32))
- return 0;
-
- Value *SrcStr = CI->getArgOperand(0);
-
- // If the second operand is non-constant, see if we can compute the length
- // of the input string and turn this into memchr.
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- if (CharC == 0) {
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- uint64_t Len = GetStringLength(SrcStr);
- if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
- return 0;
-
- return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
- ConstantInt::get(TD->getIntPtrType(*Context), Len),
- B, TD, TLI);
- }
-
- // Otherwise, the character is a constant, see if the first argument is
- // a string literal. If so, we can constant fold.
- StringRef Str;
- if (!getConstantStringInfo(SrcStr, Str))
- return 0;
-
- // Compute the offset, make sure to handle the case when we're searching for
- // zero (a weird way to spell strlen).
- size_t I = CharC->getSExtValue() == 0 ?
- Str.size() : Str.find(CharC->getSExtValue());
- if (I == StringRef::npos) // Didn't find the char. strchr returns null.
- return Constant::getNullValue(CI->getType());
-
- // strchr(s+n,c) -> gep(s+n+i,c)
- return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
- }
-};
-
-//===---------------------------------------===//
-// 'strrchr' Optimizations
-
-struct StrRChrOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Verify the "strrchr" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getReturnType() != B.getInt8PtrTy() ||
- FT->getParamType(0) != FT->getReturnType() ||
- !FT->getParamType(1)->isIntegerTy(32))
- return 0;
-
- Value *SrcStr = CI->getArgOperand(0);
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
-
- // Cannot fold anything if we're not looking for a constant.
- if (!CharC)
- return 0;
-
- StringRef Str;
- if (!getConstantStringInfo(SrcStr, Str)) {
- // strrchr(s, 0) -> strchr(s, 0)
- if (TD && CharC->isZero())
- return EmitStrChr(SrcStr, '\0', B, TD, TLI);
- return 0;
- }
-
- // Compute the offset.
- size_t I = CharC->getSExtValue() == 0 ?
- Str.size() : Str.rfind(CharC->getSExtValue());
- if (I == StringRef::npos) // Didn't find the char. Return null.
- return Constant::getNullValue(CI->getType());
-
- // strrchr(s+n,c) -> gep(s+n+i,c)
- return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
- }
-};
-
-//===---------------------------------------===//
-// 'strcmp' Optimizations
-
-struct StrCmpOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Verify the "strcmp" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- !FT->getReturnType()->isIntegerTy(32) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != B.getInt8PtrTy())
- return 0;
-
- Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
- if (Str1P == Str2P) // strcmp(x,x) -> 0
- return ConstantInt::get(CI->getType(), 0);
-
- StringRef Str1, Str2;
- bool HasStr1 = getConstantStringInfo(Str1P, Str1);
- bool HasStr2 = getConstantStringInfo(Str2P, Str2);
-
- // strcmp(x, y) -> cnst (if both x and y are constant strings)
- if (HasStr1 && HasStr2)
- return ConstantInt::get(CI->getType(), Str1.compare(Str2));
-
- if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
- return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
- CI->getType()));
-
- if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
- return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
-
- // strcmp(P, "x") -> memcmp(P, "x", 2)
- uint64_t Len1 = GetStringLength(Str1P);
- uint64_t Len2 = GetStringLength(Str2P);
- if (Len1 && Len2) {
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- return EmitMemCmp(Str1P, Str2P,
- ConstantInt::get(TD->getIntPtrType(*Context),
- std::min(Len1, Len2)), B, TD, TLI);
- }
-
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'strncmp' Optimizations
-
-struct StrNCmpOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Verify the "strncmp" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 ||
- !FT->getReturnType()->isIntegerTy(32) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- !FT->getParamType(2)->isIntegerTy())
- return 0;
-
- Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
- if (Str1P == Str2P) // strncmp(x,x,n) -> 0
- return ConstantInt::get(CI->getType(), 0);
-
- // Get the length argument if it is constant.
- uint64_t Length;
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
- Length = LengthArg->getZExtValue();
- else
- return 0;
-
- if (Length == 0) // strncmp(x,y,0) -> 0
- return ConstantInt::get(CI->getType(), 0);
-
- if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
- return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI);
-
- StringRef Str1, Str2;
- bool HasStr1 = getConstantStringInfo(Str1P, Str1);
- bool HasStr2 = getConstantStringInfo(Str2P, Str2);
-
- // strncmp(x, y) -> cnst (if both x and y are constant strings)
- if (HasStr1 && HasStr2) {
- StringRef SubStr1 = Str1.substr(0, Length);
- StringRef SubStr2 = Str2.substr(0, Length);
- return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
- }
-
- if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
- return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
- CI->getType()));
-
- if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
- return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
-
- return 0;
- }
-};
-
-
-//===---------------------------------------===//
-// 'strcpy' Optimizations
-
-struct StrCpyOpt : public LibCallOptimization {
- bool OptChkCall; // True if it's optimizing a __strcpy_chk libcall.
-
- StrCpyOpt(bool c) : OptChkCall(c) {}
-
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Verify the "strcpy" function prototype.
- unsigned NumParams = OptChkCall ? 3 : 2;
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != NumParams ||
- FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != B.getInt8PtrTy())
- return 0;
-
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
- if (Dst == Src) // strcpy(x,x) -> x
- return Src;
-
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0) return 0;
-
- // We have enough information to now generate the memcpy call to do the
- // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
- if (!OptChkCall ||
- !EmitMemCpyChk(Dst, Src,
- ConstantInt::get(TD->getIntPtrType(*Context), Len),
- CI->getArgOperand(2), B, TD, TLI))
- B.CreateMemCpy(Dst, Src,
- ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
- return Dst;
- }
-};
-
-//===---------------------------------------===//
-// 'stpcpy' Optimizations
-
-struct StpCpyOpt: public LibCallOptimization {
- bool OptChkCall; // True if it's optimizing a __stpcpy_chk libcall.
-
- StpCpyOpt(bool c) : OptChkCall(c) {}
-
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Verify the "stpcpy" function prototype.
- unsigned NumParams = OptChkCall ? 3 : 2;
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != NumParams ||
- FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != B.getInt8PtrTy())
- return 0;
-
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
- if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
- Value *StrLen = EmitStrLen(Src, B, TD, TLI);
- return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0;
- }
-
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0) return 0;
-
- Value *LenV = ConstantInt::get(TD->getIntPtrType(*Context), Len);
- Value *DstEnd = B.CreateGEP(Dst,
- ConstantInt::get(TD->getIntPtrType(*Context),
- Len - 1));
-
- // We have enough information to now generate the memcpy call to do the
- // copy for us. Make a memcpy to copy the nul byte with align = 1.
- if (!OptChkCall || !EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B,
- TD, TLI))
- B.CreateMemCpy(Dst, Src, LenV, 1);
- return DstEnd;
- }
-};
-
-//===---------------------------------------===//
-// 'strncpy' Optimizations
-
-struct StrNCpyOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- !FT->getParamType(2)->isIntegerTy())
- return 0;
-
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- Value *LenOp = CI->getArgOperand(2);
-
- // See if we can get the length of the input string.
- uint64_t SrcLen = GetStringLength(Src);
- if (SrcLen == 0) return 0;
- --SrcLen;
-
- if (SrcLen == 0) {
- // strncpy(x, "", y) -> memset(x, '\0', y, 1)
- B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
- return Dst;
- }
-
- uint64_t Len;
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
- Len = LengthArg->getZExtValue();
- else
- return 0;
-
- if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
-
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- // Let strncpy handle the zero padding
- if (Len > SrcLen+1) return 0;
-
- // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
- B.CreateMemCpy(Dst, Src,
- ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
-
- return Dst;
- }
-};
-
-//===---------------------------------------===//
-// 'strlen' Optimizations
-
-struct StrLenOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 1 ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- !FT->getReturnType()->isIntegerTy())
- return 0;
-
- Value *Src = CI->getArgOperand(0);
-
- // Constant folding: strlen("xyz") -> 3
- if (uint64_t Len = GetStringLength(Src))
- return ConstantInt::get(CI->getType(), Len-1);
-
- // strlen(x) != 0 --> *x != 0
- // strlen(x) == 0 --> *x == 0
- if (IsOnlyUsedInZeroEqualityComparison(CI))
- return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
- return 0;
- }
-};
-
-
-//===---------------------------------------===//
-// 'strpbrk' Optimizations
-
-struct StrPBrkOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- FT->getParamType(1) != FT->getParamType(0) ||
- FT->getReturnType() != FT->getParamType(0))
- return 0;
-
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
-
- // strpbrk(s, "") -> NULL
- // strpbrk("", s) -> NULL
- if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
- return Constant::getNullValue(CI->getType());
-
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t I = S1.find_first_of(S2);
- if (I == std::string::npos) // No match.
- return Constant::getNullValue(CI->getType());
-
- return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
- }
-
- // strpbrk(s, "a") -> strchr(s, 'a')
- if (TD && HasS2 && S2.size() == 1)
- return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD, TLI);
-
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'strto*' Optimizations. This handles strtol, strtod, strtof, strtoul, etc.
-
-struct StrToOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy())
- return 0;
-
- Value *EndPtr = CI->getArgOperand(1);
- if (isa<ConstantPointerNull>(EndPtr)) {
- // With a null EndPtr, this function won't capture the main argument.
- // It would be readonly too, except that it still may write to errno.
- CI->addAttribute(1, Attribute::NoCapture);
- }
-
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'strspn' Optimizations
-
-struct StrSpnOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- FT->getParamType(1) != FT->getParamType(0) ||
- !FT->getReturnType()->isIntegerTy())
- return 0;
-
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
-
- // strspn(s, "") -> 0
- // strspn("", s) -> 0
- if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
- return Constant::getNullValue(CI->getType());
-
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t Pos = S1.find_first_not_of(S2);
- if (Pos == StringRef::npos) Pos = S1.size();
- return ConstantInt::get(CI->getType(), Pos);
- }
-
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'strcspn' Optimizations
-
-struct StrCSpnOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- FT->getParamType(1) != FT->getParamType(0) ||
- !FT->getReturnType()->isIntegerTy())
- return 0;
-
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
-
- // strcspn("", s) -> 0
- if (HasS1 && S1.empty())
- return Constant::getNullValue(CI->getType());
-
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t Pos = S1.find_first_of(S2);
- if (Pos == StringRef::npos) Pos = S1.size();
- return ConstantInt::get(CI->getType(), Pos);
- }
-
- // strcspn(s, "") -> strlen(s)
- if (TD && HasS2 && S2.empty())
- return EmitStrLen(CI->getArgOperand(0), B, TD, TLI);
-
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'strstr' Optimizations
-
-struct StrStrOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isPointerTy())
- return 0;
-
- // fold strstr(x, x) -> x.
- if (CI->getArgOperand(0) == CI->getArgOperand(1))
- return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
-
- // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
- if (TD && IsOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
- Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD, TLI);
- if (!StrLen)
- return 0;
- Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
- StrLen, B, TD, TLI);
- if (!StrNCmp)
- return 0;
- for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end();
- UI != UE; ) {
- ICmpInst *Old = cast<ICmpInst>(*UI++);
- Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
- ConstantInt::getNullValue(StrNCmp->getType()),
- "cmp");
- Old->replaceAllUsesWith(Cmp);
- Old->eraseFromParent();
- }
- return CI;
- }
-
- // See if either input string is a constant string.
- StringRef SearchStr, ToFindStr;
- bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
- bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
-
- // fold strstr(x, "") -> x.
- if (HasStr2 && ToFindStr.empty())
- return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
-
- // If both strings are known, constant fold it.
- if (HasStr1 && HasStr2) {
- std::string::size_type Offset = SearchStr.find(ToFindStr);
-
- if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
- return Constant::getNullValue(CI->getType());
-
- // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
- Value *Result = CastToCStr(CI->getArgOperand(0), B);
- Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
- return B.CreateBitCast(Result, CI->getType());
- }
-
- // fold strstr(x, "y") -> strchr(x, 'y').
- if (HasStr2 && ToFindStr.size() == 1) {
- Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TD, TLI);
- return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : 0;
- }
- return 0;
- }
-};
-
-
-//===---------------------------------------===//
-// 'memcmp' Optimizations
-
-struct MemCmpOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy(32))
- return 0;
-
- Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
-
- if (LHS == RHS) // memcmp(s,s,x) -> 0
- return Constant::getNullValue(CI->getType());
-
- // Make sure we have a constant length.
- ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- if (!LenC) return 0;
- uint64_t Len = LenC->getZExtValue();
-
- if (Len == 0) // memcmp(s1,s2,0) -> 0
- return Constant::getNullValue(CI->getType());
-
- // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
- if (Len == 1) {
- Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
- CI->getType(), "lhsv");
- Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
- CI->getType(), "rhsv");
- return B.CreateSub(LHSV, RHSV, "chardiff");
- }
-
- // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
- StringRef LHSStr, RHSStr;
- if (getConstantStringInfo(LHS, LHSStr) &&
- getConstantStringInfo(RHS, RHSStr)) {
- // Make sure we're not reading out-of-bounds memory.
- if (Len > LHSStr.size() || Len > RHSStr.size())
- return 0;
- uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len);
- return ConstantInt::get(CI->getType(), Ret);
- }
-
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'memcpy' Optimizations
-
-struct MemCpyOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(*Context))
- return 0;
-
- // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
-};
-
-//===---------------------------------------===//
-// 'memmove' Optimizations
-
-struct MemMoveOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(*Context))
- return 0;
-
- // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
- B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
-};
-
-//===---------------------------------------===//
-// 'memset' Optimizations
-
-struct MemSetOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isIntegerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(*Context))
- return 0;
-
- // memset(p, v, n) -> llvm.memset(p, v, n, 1)
- Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
- B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
-};
-
-//===----------------------------------------------------------------------===//
-// Math Library Optimizations
-//===----------------------------------------------------------------------===//
-
-//===---------------------------------------===//
-// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
-
-struct UnaryDoubleFPOpt : public LibCallOptimization {
- bool CheckRetType;
- UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
- !FT->getParamType(0)->isDoubleTy())
- return 0;
-
- if (CheckRetType) {
- // Check if all the uses for function like 'sin' are converted to float.
- for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end();
- ++UseI) {
- FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI);
- if (Cast == 0 || !Cast->getType()->isFloatTy())
- return 0;
- }
- }
-
- // If this is something like 'floor((double)floatval)', convert to floorf.
- FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
- if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
- return 0;
-
- // floor((double)floatval) -> (double)floorf(floatval)
- Value *V = Cast->getOperand(0);
- V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
- return B.CreateFPExt(V, B.getDoubleTy());
- }
-};
-
-//===---------------------------------------===//
-// 'cos*' Optimizations
-struct CosOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- Value *Ret = NULL;
- if (UnsafeFPShrink && Callee->getName() == "cos" &&
- TLI->has(LibFunc::cosf)) {
- UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
- Ret = UnsafeUnaryDoubleFP.CallOptimizer(Callee, CI, B);
- }
-
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 1 argument of FP type, which matches the
- // result type.
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
-
- // cos(-x) -> cos(x)
- Value *Op1 = CI->getArgOperand(0);
- if (BinaryOperator::isFNeg(Op1)) {
- BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
- return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
- }
- return Ret;
- }
-};
-
-//===---------------------------------------===//
-// 'pow*' Optimizations
-
-struct PowOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- Value *Ret = NULL;
- if (UnsafeFPShrink && Callee->getName() == "pow" &&
- TLI->has(LibFunc::powf)) {
- UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
- Ret = UnsafeUnaryDoubleFP.CallOptimizer(Callee, CI, B);
- }
-
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 2 arguments of the same FP type, which match the
- // result type.
- if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
-
- Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
- if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
- if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
- return Op1C;
- if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
- return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
- }
-
- ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
- if (Op2C == 0) return Ret;
-
- if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
- return ConstantFP::get(CI->getType(), 1.0);
-
- if (Op2C->isExactlyValue(0.5)) {
- // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
- // This is faster than calling pow, and still handles negative zero
- // and negative infinity correctly.
- // TODO: In fast-math mode, this could be just sqrt(x).
- // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
- Value *Inf = ConstantFP::getInfinity(CI->getType());
- Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
- Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
- Callee->getAttributes());
- Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
- Callee->getAttributes());
- Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
- Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
- return Sel;
- }
-
- if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
- return Op1;
- if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
- return B.CreateFMul(Op1, Op1, "pow2");
- if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
- return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
- Op1, "powrecip");
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'exp2' Optimizations
-
-struct Exp2Opt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- Value *Ret = NULL;
- if (UnsafeFPShrink && Callee->getName() == "exp2" &&
- TLI->has(LibFunc::exp2)) {
- UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
- Ret = UnsafeUnaryDoubleFP.CallOptimizer(Callee, CI, B);
- }
-
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 1 argument of FP type, which matches the
- // result type.
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
-
- Value *Op = CI->getArgOperand(0);
- // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
- // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
- Value *LdExpArg = 0;
- if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
- if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
- LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
- } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
- if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
- LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
- }
-
- if (LdExpArg) {
- const char *Name;
- if (Op->getType()->isFloatTy())
- Name = "ldexpf";
- else if (Op->getType()->isDoubleTy())
- Name = "ldexp";
- else
- Name = "ldexpl";
-
- Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
- if (!Op->getType()->isFloatTy())
- One = ConstantExpr::getFPExtend(One, Op->getType());
-
- Module *M = Caller->getParent();
- Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
- Op->getType(),
- B.getInt32Ty(), NULL);
- CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
- if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
-
- return CI;
- }
- return Ret;
- }
-};
-
-//===----------------------------------------------------------------------===//
-// Integer Optimizations
-//===----------------------------------------------------------------------===//
-
-//===---------------------------------------===//
-// 'ffs*' Optimizations
-
-struct FFSOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 2 arguments of the same FP type, which match the
- // result type.
- if (FT->getNumParams() != 1 ||
- !FT->getReturnType()->isIntegerTy(32) ||
- !FT->getParamType(0)->isIntegerTy())
- return 0;
-
- Value *Op = CI->getArgOperand(0);
-
- // Constant fold.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
- if (CI->getValue() == 0) // ffs(0) -> 0.
- return Constant::getNullValue(CI->getType());
- // ffs(c) -> cttz(c)+1
- return B.getInt32(CI->getValue().countTrailingZeros() + 1);
- }
-
- // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
- Type *ArgType = Op->getType();
- Value *F = Intrinsic::getDeclaration(Callee->getParent(),
- Intrinsic::cttz, ArgType);
- Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
- V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
- V = B.CreateIntCast(V, B.getInt32Ty(), false);
-
- Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
- return B.CreateSelect(Cond, V, B.getInt32(0));
- }
-};
-
-//===---------------------------------------===//
-// 'isdigit' Optimizations
-
-struct IsDigitOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- // We require integer(i32)
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
- !FT->getParamType(0)->isIntegerTy(32))
- return 0;
-
- // isdigit(c) -> (c-'0') <u 10
- Value *Op = CI->getArgOperand(0);
- Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
- Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
- return B.CreateZExt(Op, CI->getType());
- }
-};
-
-//===---------------------------------------===//
-// 'isascii' Optimizations
-
-struct IsAsciiOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- // We require integer(i32)
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
- !FT->getParamType(0)->isIntegerTy(32))
- return 0;
-
- // isascii(c) -> c <u 128
- Value *Op = CI->getArgOperand(0);
- Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
- return B.CreateZExt(Op, CI->getType());
- }
-};
-
-//===---------------------------------------===//
-// 'abs', 'labs', 'llabs' Optimizations
-
-struct AbsOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- // We require integer(integer) where the types agree.
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
- FT->getParamType(0) != FT->getReturnType())
- return 0;
-
- // abs(x) -> x >s -1 ? x : -x
- Value *Op = CI->getArgOperand(0);
- Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
- "ispos");
- Value *Neg = B.CreateNeg(Op, "neg");
- return B.CreateSelect(Pos, Op, Neg);
- }
-};
-
-
-//===---------------------------------------===//
-// 'toascii' Optimizations
-
-struct ToAsciiOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- // We require i32(i32)
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isIntegerTy(32))
- return 0;
-
- // isascii(c) -> c & 0x7f
- return B.CreateAnd(CI->getArgOperand(0),
- ConstantInt::get(CI->getType(),0x7F));
- }
-};
-
-//===----------------------------------------------------------------------===//
-// Formatting and IO Optimizations
-//===----------------------------------------------------------------------===//
-
-//===---------------------------------------===//
-// 'printf' Optimizations
-
-struct PrintFOpt : public LibCallOptimization {
- Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
- IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
- return 0;
-
- // Empty format string -> noop.
- if (FormatStr.empty()) // Tolerate printf's declared void.
- return CI->use_empty() ? (Value*)CI :
- ConstantInt::get(CI->getType(), 0);
-
- // Do not do any of the following transformations if the printf return value
- // is used, in general the printf return value is not compatible with either
- // putchar() or puts().
- if (!CI->use_empty())
- return 0;
-
- // printf("x") -> putchar('x'), even for '%'.
- if (FormatStr.size() == 1) {
- Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD, TLI);
- if (CI->use_empty() || !Res) return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
-
- // printf("foo\n") --> puts("foo")
- if (FormatStr[FormatStr.size()-1] == '\n' &&
- FormatStr.find('%') == std::string::npos) { // no format characters.
- // Create a string literal with no \n on it. We expect the constant merge
- // pass to be run after this pass, to merge duplicate strings.
- FormatStr = FormatStr.drop_back();
- Value *GV = B.CreateGlobalString(FormatStr, "str");
- Value *NewCI = EmitPutS(GV, B, TD, TLI);
- return (CI->use_empty() || !NewCI) ?
- NewCI :
- ConstantInt::get(CI->getType(), FormatStr.size()+1);
- }
-
- // Optimize specific format strings.
- // printf("%c", chr) --> putchar(chr)
- if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
- CI->getArgOperand(1)->getType()->isIntegerTy()) {
- Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD, TLI);
-
- if (CI->use_empty() || !Res) return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
-
- // printf("%s\n", str) --> puts(str)
- if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
- CI->getArgOperand(1)->getType()->isPointerTy()) {
- return EmitPutS(CI->getArgOperand(1), B, TD, TLI);
- }
- return 0;
- }
-
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Require one fixed pointer argument and an integer/void result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
- !(FT->getReturnType()->isIntegerTy() ||
- FT->getReturnType()->isVoidTy()))
- return 0;
-
- if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
- return V;
- }
-
- // printf(format, ...) -> iprintf(format, ...) if no floating point
- // arguments.
- if (TLI->has(LibFunc::iprintf) && !CallHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *IPrintFFn =
- M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(IPrintFFn);
- B.Insert(New);
- return New;
- }
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'sprintf' Optimizations
-
-struct SPrintFOpt : public LibCallOptimization {
- Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
- IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
- return 0;
-
- // If we just have a format string (nothing else crazy) transform it.
- if (CI->getNumArgOperands() == 2) {
- // Make sure there's no % in the constant array. We could try to handle
- // %% -> % in the future if we cared.
- for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
- if (FormatStr[i] == '%')
- return 0; // we found a format specifier, bail out.
-
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- ConstantInt::get(TD->getIntPtrType(*Context), // Copy the
- FormatStr.size() + 1), 1); // nul byte.
- return ConstantInt::get(CI->getType(), FormatStr.size());
- }
-
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
- CI->getNumArgOperands() < 3)
- return 0;
-
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
- if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
- Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
- Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
- B.CreateStore(V, Ptr);
- Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
- B.CreateStore(B.getInt8(0), Ptr);
-
- return ConstantInt::get(CI->getType(), 1);
- }
-
- if (FormatStr[1] == 's') {
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
- if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
-
- Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD, TLI);
- if (!Len)
- return 0;
- Value *IncLen = B.CreateAdd(Len,
- ConstantInt::get(Len->getType(), 1),
- "leninc");
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
-
- // The sprintf result is the unincremented number of bytes in the string.
- return B.CreateIntCast(Len, CI->getType(), false);
- }
- return 0;
- }
-
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Require two fixed pointer arguments and an integer result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy())
- return 0;
-
- if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
- return V;
- }
-
- // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
- // point arguments.
- if (TLI->has(LibFunc::siprintf) && !CallHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *SIPrintFFn =
- M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(SIPrintFFn);
- B.Insert(New);
- return New;
- }
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'fwrite' Optimizations
-
-struct FWriteOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Require a pointer, an integer, an integer, a pointer, returning integer.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isIntegerTy() ||
- !FT->getParamType(2)->isIntegerTy() ||
- !FT->getParamType(3)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy())
- return 0;
-
- // Get the element size and count.
- ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- if (!SizeC || !CountC) return 0;
- uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
-
- // If this is writing zero records, remove the call (it's a noop).
- if (Bytes == 0)
- return ConstantInt::get(CI->getType(), 0);
-
- // If this is writing one byte, turn it into fputc.
- // This optimisation is only valid, if the return value is unused.
- if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
- Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
- Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TD, TLI);
- return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
- }
-
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'fputs' Optimizations
-
-struct FPutsOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- // Require two pointers. Also, we can't optimize if return value is used.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !CI->use_empty())
- return 0;
-
- // fputs(s,F) --> fwrite(s,1,strlen(s),F)
- uint64_t Len = GetStringLength(CI->getArgOperand(0));
- if (!Len) return 0;
- // Known to have no uses (see above).
- return EmitFWrite(CI->getArgOperand(0),
- ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
- CI->getArgOperand(1), B, TD, TLI);
- }
-};
-
-//===---------------------------------------===//
-// 'fprintf' Optimizations
-
-struct FPrintFOpt : public LibCallOptimization {
- Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
- IRBuilder<> &B) {
- // All the optimizations depend on the format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
- return 0;
-
- // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
- if (CI->getNumArgOperands() == 2) {
- for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
- if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
- return 0; // We found a format specifier.
-
- // These optimizations require TargetData.
- if (!TD) return 0;
-
- Value *NewCI = EmitFWrite(CI->getArgOperand(1),
- ConstantInt::get(TD->getIntPtrType(*Context),
- FormatStr.size()),
- CI->getArgOperand(0), B, TD, TLI);
- return NewCI ? ConstantInt::get(CI->getType(), FormatStr.size()) : 0;
- }
-
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
- CI->getNumArgOperands() < 3)
- return 0;
-
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- // fprintf(F, "%c", chr) --> fputc(chr, F)
- if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
- Value *NewCI = EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B,
- TD, TLI);
- return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
- }
-
- if (FormatStr[1] == 's') {
- // fprintf(F, "%s", str) --> fputs(str, F)
- if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty())
- return 0;
- return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI);
- }
- return 0;
- }
-
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Require two fixed paramters as pointers and integer result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy())
- return 0;
-
- if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
- return V;
- }
-
- // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
- // floating point arguments.
- if (TLI->has(LibFunc::fiprintf) && !CallHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *FIPrintFFn =
- M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(FIPrintFFn);
- B.Insert(New);
- return New;
- }
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'puts' Optimizations
-
-struct PutsOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Require one fixed pointer argument and an integer/void result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
- !(FT->getReturnType()->isIntegerTy() ||
- FT->getReturnType()->isVoidTy()))
- return 0;
-
- // Check for a constant string.
- StringRef Str;
- if (!getConstantStringInfo(CI->getArgOperand(0), Str))
- return 0;
-
- if (Str.empty() && CI->use_empty()) {
- // puts("") -> putchar('\n')
- Value *Res = EmitPutChar(B.getInt32('\n'), B, TD, TLI);
- if (CI->use_empty() || !Res) return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
-
- return 0;
- }
-};
-
-} // end anonymous namespace.
-
-//===----------------------------------------------------------------------===//
// SimplifyLibCalls Pass Implementation
//===----------------------------------------------------------------------===//
@@ -1561,32 +91,11 @@ namespace {
TargetLibraryInfo *TLI;
StringMap<LibCallOptimization*> Optimizations;
- // String and Memory LibCall Optimizations
- StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrRChrOpt StrRChr;
- StrCmpOpt StrCmp; StrNCmpOpt StrNCmp;
- StrCpyOpt StrCpy; StrCpyOpt StrCpyChk;
- StpCpyOpt StpCpy; StpCpyOpt StpCpyChk;
- StrNCpyOpt StrNCpy;
- StrLenOpt StrLen; StrPBrkOpt StrPBrk;
- StrToOpt StrTo; StrSpnOpt StrSpn; StrCSpnOpt StrCSpn; StrStrOpt StrStr;
- MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet;
- // Math Library Optimizations
- CosOpt Cos; PowOpt Pow; Exp2Opt Exp2;
- UnaryDoubleFPOpt UnaryDoubleFP, UnsafeUnaryDoubleFP;
- // Integer Optimizations
- FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii;
- ToAsciiOpt ToAscii;
- // Formatting and IO Optimizations
- SPrintFOpt SPrintF; PrintFOpt PrintF;
- FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
- PutsOpt Puts;
bool Modified; // This is only used by doInitialization.
public:
static char ID; // Pass identification
- SimplifyLibCalls() : FunctionPass(ID), StrCpy(false), StrCpyChk(true),
- StpCpy(false), StpCpyChk(true),
- UnaryDoubleFP(false), UnsafeUnaryDoubleFP(true) {
+ SimplifyLibCalls() : FunctionPass(ID) {
initializeSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
}
void AddOpt(LibFunc::Func F, LibCallOptimization* Opt);
@@ -1636,108 +145,6 @@ void SimplifyLibCalls::AddOpt(LibFunc::Func F1, LibFunc::Func F2,
/// Optimizations - Populate the Optimizations map with all the optimizations
/// we know.
void SimplifyLibCalls::InitOptimizations() {
- // String and Memory LibCall Optimizations
- Optimizations["strcat"] = &StrCat;
- Optimizations["strncat"] = &StrNCat;
- Optimizations["strchr"] = &StrChr;
- Optimizations["strrchr"] = &StrRChr;
- Optimizations["strcmp"] = &StrCmp;
- Optimizations["strncmp"] = &StrNCmp;
- Optimizations["strcpy"] = &StrCpy;
- Optimizations["strncpy"] = &StrNCpy;
- Optimizations["stpcpy"] = &StpCpy;
- Optimizations["strlen"] = &StrLen;
- Optimizations["strpbrk"] = &StrPBrk;
- Optimizations["strtol"] = &StrTo;
- Optimizations["strtod"] = &StrTo;
- Optimizations["strtof"] = &StrTo;
- Optimizations["strtoul"] = &StrTo;
- Optimizations["strtoll"] = &StrTo;
- Optimizations["strtold"] = &StrTo;
- Optimizations["strtoull"] = &StrTo;
- Optimizations["strspn"] = &StrSpn;
- Optimizations["strcspn"] = &StrCSpn;
- Optimizations["strstr"] = &StrStr;
- Optimizations["memcmp"] = &MemCmp;
- AddOpt(LibFunc::memcpy, &MemCpy);
- Optimizations["memmove"] = &MemMove;
- AddOpt(LibFunc::memset, &MemSet);
-
- // _chk variants of String and Memory LibCall Optimizations.
- Optimizations["__strcpy_chk"] = &StrCpyChk;
- Optimizations["__stpcpy_chk"] = &StpCpyChk;
-
- // Math Library Optimizations
- Optimizations["cosf"] = &Cos;
- Optimizations["cos"] = &Cos;
- Optimizations["cosl"] = &Cos;
- Optimizations["powf"] = &Pow;
- Optimizations["pow"] = &Pow;
- Optimizations["powl"] = &Pow;
- Optimizations["llvm.pow.f32"] = &Pow;
- Optimizations["llvm.pow.f64"] = &Pow;
- Optimizations["llvm.pow.f80"] = &Pow;
- Optimizations["llvm.pow.f128"] = &Pow;
- Optimizations["llvm.pow.ppcf128"] = &Pow;
- Optimizations["exp2l"] = &Exp2;
- Optimizations["exp2"] = &Exp2;
- Optimizations["exp2f"] = &Exp2;
- Optimizations["llvm.exp2.ppcf128"] = &Exp2;
- Optimizations["llvm.exp2.f128"] = &Exp2;
- Optimizations["llvm.exp2.f80"] = &Exp2;
- Optimizations["llvm.exp2.f64"] = &Exp2;
- Optimizations["llvm.exp2.f32"] = &Exp2;
-
- AddOpt(LibFunc::ceil, LibFunc::ceilf, &UnaryDoubleFP);
- AddOpt(LibFunc::fabs, LibFunc::fabsf, &UnaryDoubleFP);
- AddOpt(LibFunc::floor, LibFunc::floorf, &UnaryDoubleFP);
- AddOpt(LibFunc::rint, LibFunc::rintf, &UnaryDoubleFP);
- AddOpt(LibFunc::round, LibFunc::roundf, &UnaryDoubleFP);
- AddOpt(LibFunc::nearbyint, LibFunc::nearbyintf, &UnaryDoubleFP);
- AddOpt(LibFunc::trunc, LibFunc::truncf, &UnaryDoubleFP);
-
- if(UnsafeFPShrink) {
- AddOpt(LibFunc::acos, LibFunc::acosf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::acosh, LibFunc::acoshf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::asin, LibFunc::asinf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::asinh, LibFunc::asinhf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::atan, LibFunc::atanf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::atanh, LibFunc::atanhf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::cbrt, LibFunc::cbrtf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::cosh, LibFunc::coshf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::exp, LibFunc::expf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::exp10, LibFunc::exp10f, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::expm1, LibFunc::expm1f, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::log, LibFunc::logf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::log10, LibFunc::log10f, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::log1p, LibFunc::log1pf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::log2, LibFunc::log2f, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::logb, LibFunc::logbf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::sin, LibFunc::sinf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::sinh, LibFunc::sinhf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::sqrt, LibFunc::sqrtf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::tan, LibFunc::tanf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::tanh, LibFunc::tanhf, &UnsafeUnaryDoubleFP);
- }
-
- // Integer Optimizations
- Optimizations["ffs"] = &FFS;
- Optimizations["ffsl"] = &FFS;
- Optimizations["ffsll"] = &FFS;
- Optimizations["abs"] = &Abs;
- Optimizations["labs"] = &Abs;
- Optimizations["llabs"] = &Abs;
- Optimizations["isdigit"] = &IsDigit;
- Optimizations["isascii"] = &IsAscii;
- Optimizations["toascii"] = &ToAscii;
-
- // Formatting and IO Optimizations
- Optimizations["sprintf"] = &SPrintF;
- Optimizations["printf"] = &PrintF;
- AddOpt(LibFunc::fwrite, &FWrite);
- AddOpt(LibFunc::fputs, &FPuts);
- Optimizations["fprintf"] = &FPrintF;
- Optimizations["puts"] = &Puts;
}
@@ -1749,7 +156,7 @@ bool SimplifyLibCalls::runOnFunction(Function &F) {
if (Optimizations.empty())
InitOptimizations();
- const TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
IRBuilder<> Builder(F.getContext());
@@ -1785,7 +192,6 @@ bool SimplifyLibCalls::runOnFunction(Function &F) {
// Something changed!
Changed = true;
- ++NumSimplified;
// Inspect the instruction after the call (which was potentially just
// added) next.
diff --git a/lib/Transforms/Scalar/Sink.cpp b/lib/Transforms/Scalar/Sink.cpp
index 34f1d6c..d4595bb 100644
--- a/lib/Transforms/Scalar/Sink.cpp
+++ b/lib/Transforms/Scalar/Sink.cpp
@@ -14,13 +14,13 @@
#define DEBUG_TYPE "sink"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/lib/Transforms/Scalar/TailRecursionElimination.cpp b/lib/Transforms/Scalar/TailRecursionElimination.cpp
index 6557d63..6572e09 100644
--- a/lib/Transforms/Scalar/TailRecursionElimination.cpp
+++ b/lib/Transforms/Scalar/TailRecursionElimination.cpp
@@ -52,25 +52,25 @@
#define DEBUG_TYPE "tailcallelim"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
-#include "llvm/Support/CallSite.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumEliminated, "Number of tail calls removed");
diff --git a/lib/Transforms/Utils/AddrModeMatcher.cpp b/lib/Transforms/Utils/AddrModeMatcher.cpp
deleted file mode 100644
index 1e6586b..0000000
--- a/lib/Transforms/Utils/AddrModeMatcher.cpp
+++ /dev/null
@@ -1,577 +0,0 @@
-//===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements target addressing mode matcher class.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Utils/AddrModeMatcher.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/GlobalValue.h"
-#include "llvm/Instruction.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/PatternMatch.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Support/CallSite.h"
-
-using namespace llvm;
-using namespace llvm::PatternMatch;
-
-void ExtAddrMode::print(raw_ostream &OS) const {
- bool NeedPlus = false;
- OS << "[";
- if (BaseGV) {
- OS << (NeedPlus ? " + " : "")
- << "GV:";
- WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
- NeedPlus = true;
- }
-
- if (BaseOffs)
- OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
-
- if (BaseReg) {
- OS << (NeedPlus ? " + " : "")
- << "Base:";
- WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
- NeedPlus = true;
- }
- if (Scale) {
- OS << (NeedPlus ? " + " : "")
- << Scale << "*";
- WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
- NeedPlus = true;
- }
-
- OS << ']';
-}
-
-#ifndef NDEBUG
-void ExtAddrMode::dump() const {
- print(dbgs());
- dbgs() << '\n';
-}
-#endif
-
-
-/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
-/// Return true and update AddrMode if this addr mode is legal for the target,
-/// false if not.
-bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
- unsigned Depth) {
- // If Scale is 1, then this is the same as adding ScaleReg to the addressing
- // mode. Just process that directly.
- if (Scale == 1)
- return MatchAddr(ScaleReg, Depth);
-
- // If the scale is 0, it takes nothing to add this.
- if (Scale == 0)
- return true;
-
- // If we already have a scale of this value, we can add to it, otherwise, we
- // need an available scale field.
- if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
- return false;
-
- ExtAddrMode TestAddrMode = AddrMode;
-
- // Add scale to turn X*4+X*3 -> X*7. This could also do things like
- // [A+B + A*7] -> [B+A*8].
- TestAddrMode.Scale += Scale;
- TestAddrMode.ScaledReg = ScaleReg;
-
- // If the new address isn't legal, bail out.
- if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
- return false;
-
- // It was legal, so commit it.
- AddrMode = TestAddrMode;
-
- // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
- // to see if ScaleReg is actually X+C. If so, we can turn this into adding
- // X*Scale + C*Scale to addr mode.
- ConstantInt *CI = 0; Value *AddLHS = 0;
- if (isa<Instruction>(ScaleReg) && // not a constant expr.
- match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
- TestAddrMode.ScaledReg = AddLHS;
- TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
-
- // If this addressing mode is legal, commit it and remember that we folded
- // this instruction.
- if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
- AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
- AddrMode = TestAddrMode;
- return true;
- }
- }
-
- // Otherwise, not (x+c)*scale, just return what we have.
- return true;
-}
-
-/// MightBeFoldableInst - This is a little filter, which returns true if an
-/// addressing computation involving I might be folded into a load/store
-/// accessing it. This doesn't need to be perfect, but needs to accept at least
-/// the set of instructions that MatchOperationAddr can.
-static bool MightBeFoldableInst(Instruction *I) {
- switch (I->getOpcode()) {
- case Instruction::BitCast:
- // Don't touch identity bitcasts.
- if (I->getType() == I->getOperand(0)->getType())
- return false;
- return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
- case Instruction::PtrToInt:
- // PtrToInt is always a noop, as we know that the int type is pointer sized.
- return true;
- case Instruction::IntToPtr:
- // We know the input is intptr_t, so this is foldable.
- return true;
- case Instruction::Add:
- return true;
- case Instruction::Mul:
- case Instruction::Shl:
- // Can only handle X*C and X << C.
- return isa<ConstantInt>(I->getOperand(1));
- case Instruction::GetElementPtr:
- return true;
- default:
- return false;
- }
-}
-
-
-/// MatchOperationAddr - Given an instruction or constant expr, see if we can
-/// fold the operation into the addressing mode. If so, update the addressing
-/// mode and return true, otherwise return false without modifying AddrMode.
-bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
- unsigned Depth) {
- // Avoid exponential behavior on extremely deep expression trees.
- if (Depth >= 5) return false;
-
- switch (Opcode) {
- case Instruction::PtrToInt:
- // PtrToInt is always a noop, as we know that the int type is pointer sized.
- return MatchAddr(AddrInst->getOperand(0), Depth);
- case Instruction::IntToPtr:
- // This inttoptr is a no-op if the integer type is pointer sized.
- if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
- TLI.getPointerTy())
- return MatchAddr(AddrInst->getOperand(0), Depth);
- return false;
- case Instruction::BitCast:
- // BitCast is always a noop, and we can handle it as long as it is
- // int->int or pointer->pointer (we don't want int<->fp or something).
- if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
- AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
- // Don't touch identity bitcasts. These were probably put here by LSR,
- // and we don't want to mess around with them. Assume it knows what it
- // is doing.
- AddrInst->getOperand(0)->getType() != AddrInst->getType())
- return MatchAddr(AddrInst->getOperand(0), Depth);
- return false;
- case Instruction::Add: {
- // Check to see if we can merge in the RHS then the LHS. If so, we win.
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
- if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
- MatchAddr(AddrInst->getOperand(0), Depth+1))
- return true;
-
- // Restore the old addr mode info.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
-
- // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
- if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
- MatchAddr(AddrInst->getOperand(1), Depth+1))
- return true;
-
- // Otherwise we definitely can't merge the ADD in.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- break;
- }
- //case Instruction::Or:
- // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
- //break;
- case Instruction::Mul:
- case Instruction::Shl: {
- // Can only handle X*C and X << C.
- ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
- if (!RHS) return false;
- int64_t Scale = RHS->getSExtValue();
- if (Opcode == Instruction::Shl)
- Scale = 1LL << Scale;
-
- return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
- }
- case Instruction::GetElementPtr: {
- // Scan the GEP. We check it if it contains constant offsets and at most
- // one variable offset.
- int VariableOperand = -1;
- unsigned VariableScale = 0;
-
- int64_t ConstantOffset = 0;
- const TargetData *TD = TLI.getTargetData();
- gep_type_iterator GTI = gep_type_begin(AddrInst);
- for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- const StructLayout *SL = TD->getStructLayout(STy);
- unsigned Idx =
- cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
- ConstantOffset += SL->getElementOffset(Idx);
- } else {
- uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
- if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
- ConstantOffset += CI->getSExtValue()*TypeSize;
- } else if (TypeSize) { // Scales of zero don't do anything.
- // We only allow one variable index at the moment.
- if (VariableOperand != -1)
- return false;
-
- // Remember the variable index.
- VariableOperand = i;
- VariableScale = TypeSize;
- }
- }
- }
-
- // A common case is for the GEP to only do a constant offset. In this case,
- // just add it to the disp field and check validity.
- if (VariableOperand == -1) {
- AddrMode.BaseOffs += ConstantOffset;
- if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
- // Check to see if we can fold the base pointer in too.
- if (MatchAddr(AddrInst->getOperand(0), Depth+1))
- return true;
- }
- AddrMode.BaseOffs -= ConstantOffset;
- return false;
- }
-
- // Save the valid addressing mode in case we can't match.
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
-
- // See if the scale and offset amount is valid for this target.
- AddrMode.BaseOffs += ConstantOffset;
-
- // Match the base operand of the GEP.
- if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
- // If it couldn't be matched, just stuff the value in a register.
- if (AddrMode.HasBaseReg) {
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- return false;
- }
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = AddrInst->getOperand(0);
- }
-
- // Match the remaining variable portion of the GEP.
- if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
- Depth)) {
- // If it couldn't be matched, try stuffing the base into a register
- // instead of matching it, and retrying the match of the scale.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- if (AddrMode.HasBaseReg)
- return false;
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = AddrInst->getOperand(0);
- AddrMode.BaseOffs += ConstantOffset;
- if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
- VariableScale, Depth)) {
- // If even that didn't work, bail.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- return false;
- }
- }
-
- return true;
- }
- }
- return false;
-}
-
-/// MatchAddr - If we can, try to add the value of 'Addr' into the current
-/// addressing mode. If Addr can't be added to AddrMode this returns false and
-/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
-/// or intptr_t for the target.
-///
-bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
- // Fold in immediates if legal for the target.
- AddrMode.BaseOffs += CI->getSExtValue();
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.BaseOffs -= CI->getSExtValue();
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
- // If this is a global variable, try to fold it into the addressing mode.
- if (AddrMode.BaseGV == 0) {
- AddrMode.BaseGV = GV;
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.BaseGV = 0;
- }
- } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
-
- // Check to see if it is possible to fold this operation.
- if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
- // Okay, it's possible to fold this. Check to see if it is actually
- // *profitable* to do so. We use a simple cost model to avoid increasing
- // register pressure too much.
- if (I->hasOneUse() ||
- IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
- AddrModeInsts.push_back(I);
- return true;
- }
-
- // It isn't profitable to do this, roll back.
- //cerr << "NOT FOLDING: " << *I;
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- }
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
- if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
- return true;
- } else if (isa<ConstantPointerNull>(Addr)) {
- // Null pointer gets folded without affecting the addressing mode.
- return true;
- }
-
- // Worse case, the target should support [reg] addressing modes. :)
- if (!AddrMode.HasBaseReg) {
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = Addr;
- // Still check for legality in case the target supports [imm] but not [i+r].
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.HasBaseReg = false;
- AddrMode.BaseReg = 0;
- }
-
- // If the base register is already taken, see if we can do [r+r].
- if (AddrMode.Scale == 0) {
- AddrMode.Scale = 1;
- AddrMode.ScaledReg = Addr;
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.Scale = 0;
- AddrMode.ScaledReg = 0;
- }
- // Couldn't match.
- return false;
-}
-
-
-/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
-/// inline asm call are due to memory operands. If so, return true, otherwise
-/// return false.
-static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
- const TargetLowering &TLI) {
- TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
-
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(OpInfo, SDValue());
-
- // If this asm operand is our Value*, and if it isn't an indirect memory
- // operand, we can't fold it!
- if (OpInfo.CallOperandVal == OpVal &&
- (OpInfo.ConstraintType != TargetLowering::C_Memory ||
- !OpInfo.isIndirect))
- return false;
- }
-
- return true;
-}
-
-
-/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
-/// memory use. If we find an obviously non-foldable instruction, return true.
-/// Add the ultimately found memory instructions to MemoryUses.
-static bool FindAllMemoryUses(Instruction *I,
- SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
- SmallPtrSet<Instruction*, 16> &ConsideredInsts,
- const TargetLowering &TLI) {
- // If we already considered this instruction, we're done.
- if (!ConsideredInsts.insert(I))
- return false;
-
- // If this is an obviously unfoldable instruction, bail out.
- if (!MightBeFoldableInst(I))
- return true;
-
- // Loop over all the uses, recursively processing them.
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
- UI != E; ++UI) {
- User *U = *UI;
-
- if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
- continue;
- }
-
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- unsigned opNo = UI.getOperandNo();
- if (opNo == 0) return true; // Storing addr, not into addr.
- MemoryUses.push_back(std::make_pair(SI, opNo));
- continue;
- }
-
- if (CallInst *CI = dyn_cast<CallInst>(U)) {
- InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
- if (!IA) return true;
-
- // If this is a memory operand, we're cool, otherwise bail out.
- if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
- return true;
- continue;
- }
-
- if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
- TLI))
- return true;
- }
-
- return false;
-}
-
-
-/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
-/// the use site that we're folding it into. If so, there is no cost to
-/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
-/// that we know are live at the instruction already.
-bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
- Value *KnownLive2) {
- // If Val is either of the known-live values, we know it is live!
- if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
- return true;
-
- // All values other than instructions and arguments (e.g. constants) are live.
- if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
-
- // If Val is a constant sized alloca in the entry block, it is live, this is
- // true because it is just a reference to the stack/frame pointer, which is
- // live for the whole function.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
- if (AI->isStaticAlloca())
- return true;
-
- // Check to see if this value is already used in the memory instruction's
- // block. If so, it's already live into the block at the very least, so we
- // can reasonably fold it.
- return Val->isUsedInBasicBlock(MemoryInst->getParent());
-}
-
-
-
-/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
-/// mode of the machine to fold the specified instruction into a load or store
-/// that ultimately uses it. However, the specified instruction has multiple
-/// uses. Given this, it may actually increase register pressure to fold it
-/// into the load. For example, consider this code:
-///
-/// X = ...
-/// Y = X+1
-/// use(Y) -> nonload/store
-/// Z = Y+1
-/// load Z
-///
-/// In this case, Y has multiple uses, and can be folded into the load of Z
-/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
-/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
-/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
-/// number of computations either.
-///
-/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
-/// X was live across 'load Z' for other reasons, we actually *would* want to
-/// fold the addressing mode in the Z case. This would make Y die earlier.
-bool AddressingModeMatcher::
-IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
- ExtAddrMode &AMAfter) {
- if (IgnoreProfitability) return true;
-
- // AMBefore is the addressing mode before this instruction was folded into it,
- // and AMAfter is the addressing mode after the instruction was folded. Get
- // the set of registers referenced by AMAfter and subtract out those
- // referenced by AMBefore: this is the set of values which folding in this
- // address extends the lifetime of.
- //
- // Note that there are only two potential values being referenced here,
- // BaseReg and ScaleReg (global addresses are always available, as are any
- // folded immediates).
- Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
-
- // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
- // lifetime wasn't extended by adding this instruction.
- if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
- BaseReg = 0;
- if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
- ScaledReg = 0;
-
- // If folding this instruction (and it's subexprs) didn't extend any live
- // ranges, we're ok with it.
- if (BaseReg == 0 && ScaledReg == 0)
- return true;
-
- // If all uses of this instruction are ultimately load/store/inlineasm's,
- // check to see if their addressing modes will include this instruction. If
- // so, we can fold it into all uses, so it doesn't matter if it has multiple
- // uses.
- SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
- SmallPtrSet<Instruction*, 16> ConsideredInsts;
- if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
- return false; // Has a non-memory, non-foldable use!
-
- // Now that we know that all uses of this instruction are part of a chain of
- // computation involving only operations that could theoretically be folded
- // into a memory use, loop over each of these uses and see if they could
- // *actually* fold the instruction.
- SmallVector<Instruction*, 32> MatchedAddrModeInsts;
- for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
- Instruction *User = MemoryUses[i].first;
- unsigned OpNo = MemoryUses[i].second;
-
- // Get the access type of this use. If the use isn't a pointer, we don't
- // know what it accesses.
- Value *Address = User->getOperand(OpNo);
- if (!Address->getType()->isPointerTy())
- return false;
- Type *AddressAccessTy =
- cast<PointerType>(Address->getType())->getElementType();
-
- // Do a match against the root of this address, ignoring profitability. This
- // will tell us if the addressing mode for the memory operation will
- // *actually* cover the shared instruction.
- ExtAddrMode Result;
- AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
- MemoryInst, Result);
- Matcher.IgnoreProfitability = true;
- bool Success = Matcher.MatchAddr(Address, 0);
- (void)Success; assert(Success && "Couldn't select *anything*?");
-
- // If the match didn't cover I, then it won't be shared by it.
- if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
- I) == MatchedAddrModeInsts.end())
- return false;
-
- MatchedAddrModeInsts.clear();
- }
-
- return true;
-}
diff --git a/lib/Transforms/Utils/BasicBlockUtils.cpp b/lib/Transforms/Utils/BasicBlockUtils.cpp
index 75a7817..8330e84 100644
--- a/lib/Transforms/Utils/BasicBlockUtils.cpp
+++ b/lib/Transforms/Utils/BasicBlockUtils.cpp
@@ -13,20 +13,20 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Constant.h"
-#include "llvm/Type.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Scalar.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ValueHandle.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;
@@ -687,3 +687,42 @@ ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
return cast<ReturnInst>(NewRet);
}
+/// SplitBlockAndInsertIfThen - Split the containing block at the
+/// specified instruction - everything before and including Cmp stays
+/// in the old basic block, and everything after Cmp is moved to a
+/// new block. The two blocks are connected by a conditional branch
+/// (with value of Cmp being the condition).
+/// Before:
+/// Head
+/// Cmp
+/// Tail
+/// After:
+/// Head
+/// Cmp
+/// if (Cmp)
+/// ThenBlock
+/// Tail
+///
+/// If Unreachable is true, then ThenBlock ends with
+/// UnreachableInst, otherwise it branches to Tail.
+/// Returns the NewBasicBlock's terminator.
+
+TerminatorInst *llvm::SplitBlockAndInsertIfThen(Instruction *Cmp,
+ bool Unreachable, MDNode *BranchWeights) {
+ Instruction *SplitBefore = Cmp->getNextNode();
+ BasicBlock *Head = SplitBefore->getParent();
+ BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
+ TerminatorInst *HeadOldTerm = Head->getTerminator();
+ LLVMContext &C = Head->getContext();
+ BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
+ TerminatorInst *CheckTerm;
+ if (Unreachable)
+ CheckTerm = new UnreachableInst(C, ThenBlock);
+ else
+ CheckTerm = BranchInst::Create(Tail, ThenBlock);
+ BranchInst *HeadNewTerm =
+ BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cmp);
+ HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
+ ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
+ return CheckTerm;
+}
diff --git a/lib/Transforms/Utils/BreakCriticalEdges.cpp b/lib/Transforms/Utils/BreakCriticalEdges.cpp
index 6b04e3d..8513772 100644
--- a/lib/Transforms/Utils/BreakCriticalEdges.cpp
+++ b/lib/Transforms/Utils/BreakCriticalEdges.cpp
@@ -17,17 +17,17 @@
#define DEBUG_TYPE "break-crit-edges"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileInfo.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Type.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
STATISTIC(NumBroken, "Number of blocks inserted");
diff --git a/lib/Transforms/Utils/BuildLibCalls.cpp b/lib/Transforms/Utils/BuildLibCalls.cpp
index e13fd71..bf540b0 100644
--- a/lib/Transforms/Utils/BuildLibCalls.cpp
+++ b/lib/Transforms/Utils/BuildLibCalls.cpp
@@ -12,17 +12,15 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/BuildLibCalls.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
#include "llvm/ADT/SmallString.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;
@@ -34,19 +32,22 @@ Value *llvm::CastToCStr(Value *V, IRBuilder<> &B) {
/// EmitStrLen - Emit a call to the strlen function to the builder, for the
/// specified pointer. This always returns an integer value of size intptr_t.
-Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const TargetData *TD,
+Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::strlen))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(~0u, Attribute::ReadOnly |
- Attribute::NoUnwind);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
+ AWI[1] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Constant *StrLen = M->getOrInsertFunction("strlen", AttrListPtr::get(AWI),
+ Constant *StrLen = M->getOrInsertFunction("strlen",
+ AttributeSet::get(M->getContext(),
+ AWI),
TD->getIntPtrType(Context),
B.getInt8PtrTy(),
NULL);
@@ -61,18 +62,21 @@ Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const TargetData *TD,
/// specified pointer. Ptr is required to be some pointer type, MaxLen must
/// be of size_t type, and the return value has 'intptr_t' type.
Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI) {
+ const DataLayout *TD, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::strnlen))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(~0u, Attribute::ReadOnly |
- Attribute::NoUnwind);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
+ AWI[1] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Constant *StrNLen = M->getOrInsertFunction("strnlen", AttrListPtr::get(AWI),
+ Constant *StrNLen = M->getOrInsertFunction("strnlen",
+ AttributeSet::get(M->getContext(),
+ AWI),
TD->getIntPtrType(Context),
B.getInt8PtrTy(),
TD->getIntPtrType(Context),
@@ -88,17 +92,21 @@ Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
/// specified pointer and character. Ptr is required to be some pointer type,
/// and the return value has 'i8*' type.
Value *llvm::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI) {
+ const DataLayout *TD, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::strchr))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
AttributeWithIndex AWI =
- AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind);
+ AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
Type *I8Ptr = B.getInt8PtrTy();
Type *I32Ty = B.getInt32Ty();
- Constant *StrChr = M->getOrInsertFunction("strchr", AttrListPtr::get(AWI),
+ Constant *StrChr = M->getOrInsertFunction("strchr",
+ AttributeSet::get(M->getContext(),
+ AWI),
I8Ptr, I8Ptr, I32Ty, NULL);
CallInst *CI = B.CreateCall2(StrChr, CastToCStr(Ptr, B),
ConstantInt::get(I32Ty, C), "strchr");
@@ -109,20 +117,23 @@ Value *llvm::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B,
/// EmitStrNCmp - Emit a call to the strncmp function to the builder.
Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
- IRBuilder<> &B, const TargetData *TD,
+ IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::strncmp))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture);
- AWI[2] = AttributeWithIndex::get(~0u, Attribute::ReadOnly |
- Attribute::NoUnwind);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(M->getContext(), 2, Attribute::NoCapture);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
+ AWI[2] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Value *StrNCmp = M->getOrInsertFunction("strncmp", AttrListPtr::get(AWI),
+ Value *StrNCmp = M->getOrInsertFunction("strncmp",
+ AttributeSet::get(M->getContext(),
+ AWI),
B.getInt32Ty(),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
@@ -139,17 +150,19 @@ Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
/// EmitStrCpy - Emit a call to the strcpy function to the builder, for the
/// specified pointer arguments.
Value *llvm::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *TD, const TargetLibraryInfo *TLI,
StringRef Name) {
if (!TLI->has(LibFunc::strcpy))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 2, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
Type *I8Ptr = B.getInt8PtrTy();
- Value *StrCpy = M->getOrInsertFunction(Name, AttrListPtr::get(AWI),
+ Value *StrCpy = M->getOrInsertFunction(Name,
+ AttributeSet::get(M->getContext(), AWI),
I8Ptr, I8Ptr, I8Ptr, NULL);
CallInst *CI = B.CreateCall2(StrCpy, CastToCStr(Dst, B), CastToCStr(Src, B),
Name);
@@ -161,17 +174,20 @@ Value *llvm::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
/// EmitStrNCpy - Emit a call to the strncpy function to the builder, for the
/// specified pointer arguments.
Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len,
- IRBuilder<> &B, const TargetData *TD,
+ IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI, StringRef Name) {
if (!TLI->has(LibFunc::strncpy))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 2, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
Type *I8Ptr = B.getInt8PtrTy();
- Value *StrNCpy = M->getOrInsertFunction(Name, AttrListPtr::get(AWI),
+ Value *StrNCpy = M->getOrInsertFunction(Name,
+ AttributeSet::get(M->getContext(),
+ AWI),
I8Ptr, I8Ptr, I8Ptr,
Len->getType(), NULL);
CallInst *CI = B.CreateCall3(StrNCpy, CastToCStr(Dst, B), CastToCStr(Src, B),
@@ -185,17 +201,18 @@ Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len,
/// This expects that the Len and ObjSize have type 'intptr_t' and Dst/Src
/// are pointers.
Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
- IRBuilder<> &B, const TargetData *TD,
+ IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::memcpy_chk))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI;
- AWI = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
+ AWI = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *MemCpy = M->getOrInsertFunction("__memcpy_chk",
- AttrListPtr::get(AWI),
+ AttributeSet::get(M->getContext(), AWI),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
@@ -212,16 +229,19 @@ Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
- Value *Len, IRBuilder<> &B, const TargetData *TD,
+ Value *Len, IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::memchr))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI;
- AWI = AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
+ AWI = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Value *MemChr = M->getOrInsertFunction("memchr", AttrListPtr::get(AWI),
+ Value *MemChr = M->getOrInsertFunction("memchr",
+ AttributeSet::get(M->getContext(), AWI),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
B.getInt32Ty(),
@@ -237,20 +257,22 @@ Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
/// EmitMemCmp - Emit a call to the memcmp function.
Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
- Value *Len, IRBuilder<> &B, const TargetData *TD,
+ Value *Len, IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::memcmp))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture);
- AWI[2] = AttributeWithIndex::get(~0u, Attribute::ReadOnly |
- Attribute::NoUnwind);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(M->getContext(), 2, Attribute::NoCapture);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
+ AWI[2] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Value *MemCmp = M->getOrInsertFunction("memcmp", AttrListPtr::get(AWI),
+ Value *MemCmp = M->getOrInsertFunction("memcmp",
+ AttributeSet::get(M->getContext(), AWI),
B.getInt32Ty(),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
@@ -269,7 +291,7 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
/// returns one value with the same type. If 'Op' is a long double, 'l' is
/// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
Value *llvm::EmitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilder<> &B,
- const AttrListPtr &Attrs) {
+ const AttributeSet &Attrs) {
SmallString<20> NameBuffer;
if (!Op->getType()->isDoubleTy()) {
// If we need to add a suffix, copy into NameBuffer.
@@ -294,7 +316,7 @@ Value *llvm::EmitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilder<> &B,
/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
/// is an integer.
-Value *llvm::EmitPutChar(Value *Char, IRBuilder<> &B, const TargetData *TD,
+Value *llvm::EmitPutChar(Value *Char, IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::putchar))
return 0;
@@ -316,17 +338,19 @@ Value *llvm::EmitPutChar(Value *Char, IRBuilder<> &B, const TargetData *TD,
/// EmitPutS - Emit a call to the puts function. This assumes that Str is
/// some pointer.
-Value *llvm::EmitPutS(Value *Str, IRBuilder<> &B, const TargetData *TD,
+Value *llvm::EmitPutS(Value *Str, IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::puts))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
- Value *PutS = M->getOrInsertFunction("puts", AttrListPtr::get(AWI),
+ Value *PutS = M->getOrInsertFunction("puts",
+ AttributeSet::get(M->getContext(), AWI),
B.getInt32Ty(),
B.getInt8PtrTy(),
NULL);
@@ -339,17 +363,19 @@ Value *llvm::EmitPutS(Value *Str, IRBuilder<> &B, const TargetData *TD,
/// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
/// an integer and File is a pointer to FILE.
Value *llvm::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI) {
+ const DataLayout *TD, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::fputc))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 2, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
Constant *F;
if (File->getType()->isPointerTy())
- F = M->getOrInsertFunction("fputc", AttrListPtr::get(AWI),
+ F = M->getOrInsertFunction("fputc",
+ AttributeSet::get(M->getContext(), AWI),
B.getInt32Ty(),
B.getInt32Ty(), File->getType(),
NULL);
@@ -370,19 +396,21 @@ Value *llvm::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B,
/// EmitFPutS - Emit a call to the puts function. Str is required to be a
/// pointer and File is a pointer to FILE.
Value *llvm::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI) {
+ const DataLayout *TD, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::fputs))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture);
- AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(M->getContext(), 2, Attribute::NoCapture);
+ AWI[2] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
StringRef FPutsName = TLI->getName(LibFunc::fputs);
Constant *F;
if (File->getType()->isPointerTy())
- F = M->getOrInsertFunction(FPutsName, AttrListPtr::get(AWI),
+ F = M->getOrInsertFunction(FPutsName,
+ AttributeSet::get(M->getContext(), AWI),
B.getInt32Ty(),
B.getInt8PtrTy(),
File->getType(), NULL);
@@ -400,21 +428,23 @@ Value *llvm::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B,
/// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File,
- IRBuilder<> &B, const TargetData *TD,
+ IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::fwrite))
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(4, Attribute::NoCapture);
- AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(M->getContext(), 4, Attribute::NoCapture);
+ AWI[2] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
LLVMContext &Context = B.GetInsertBlock()->getContext();
StringRef FWriteName = TLI->getName(LibFunc::fwrite);
Constant *F;
if (File->getType()->isPointerTy())
- F = M->getOrInsertFunction(FWriteName, AttrListPtr::get(AWI),
+ F = M->getOrInsertFunction(FWriteName,
+ AttributeSet::get(M->getContext(), AWI),
TD->getIntPtrType(Context),
B.getInt8PtrTy(),
TD->getIntPtrType(Context),
@@ -436,9 +466,9 @@ Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File,
SimplifyFortifiedLibCalls::~SimplifyFortifiedLibCalls() { }
-bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const TargetData *TD,
+bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
- // We really need TargetData for later.
+ // We really need DataLayout for later.
if (!TD) return false;
this->CI = CI;
diff --git a/lib/Transforms/Utils/BypassSlowDivision.cpp b/lib/Transforms/Utils/BypassSlowDivision.cpp
index 30d60be..00cda8e 100644
--- a/lib/Transforms/Utils/BypassSlowDivision.cpp
+++ b/lib/Transforms/Utils/BypassSlowDivision.cpp
@@ -16,11 +16,11 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "bypass-slow-division"
-#include "llvm/Instructions.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/ADT/DenseMap.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
using namespace llvm;
@@ -221,7 +221,7 @@ static bool reuseOrInsertFastDiv(Function &F,
// be profitably bypassed and carried out with a shorter, faster divide.
bool llvm::bypassSlowDivision(Function &F,
Function::iterator &I,
- const DenseMap<Type *, Type *> &BypassTypeMap) {
+ const DenseMap<unsigned int, unsigned int> &BypassWidths) {
DivCacheTy DivCache;
bool MadeChange = false;
@@ -238,14 +238,23 @@ bool llvm::bypassSlowDivision(Function &F,
if (!UseDivOp && !UseRemOp)
continue;
- // Continue if div/rem type is not bypassed
- DenseMap<Type *, Type *>::const_iterator BT =
- BypassTypeMap.find(J->getType());
- if (BT == BypassTypeMap.end())
+ // Skip division on vector types, only optimize integer instructions
+ if (!J->getType()->isIntegerTy())
+ continue;
+
+ // Get bitwidth of div/rem instruction
+ IntegerType *T = cast<IntegerType>(J->getType());
+ int bitwidth = T->getBitWidth();
+
+ // Continue if bitwidth is not bypassed
+ DenseMap<unsigned int, unsigned int>::const_iterator BI = BypassWidths.find(bitwidth);
+ if (BI == BypassWidths.end())
continue;
- IntegerType *BypassType = cast<IntegerType>(BT->second);
- MadeChange |= reuseOrInsertFastDiv(F, I, J, BypassType, UseDivOp,
+ // Get type for div/rem instruction with bypass bitwidth
+ IntegerType *BT = IntegerType::get(J->getContext(), BI->second);
+
+ MadeChange |= reuseOrInsertFastDiv(F, I, J, BT, UseDivOp,
UseSignedOp, DivCache);
}
diff --git a/lib/Transforms/Utils/CMakeLists.txt b/lib/Transforms/Utils/CMakeLists.txt
index 215a16f..b71628b 100644
--- a/lib/Transforms/Utils/CMakeLists.txt
+++ b/lib/Transforms/Utils/CMakeLists.txt
@@ -1,5 +1,4 @@
add_llvm_library(LLVMTransformUtils
- AddrModeMatcher.cpp
BasicBlockUtils.cpp
BreakCriticalEdges.cpp
BuildLibCalls.cpp
@@ -11,6 +10,7 @@ add_llvm_library(LLVMTransformUtils
DemoteRegToStack.cpp
InlineFunction.cpp
InstructionNamer.cpp
+ IntegerDivision.cpp
LCSSA.cpp
Local.cpp
LoopSimplify.cpp
@@ -20,12 +20,14 @@ add_llvm_library(LLVMTransformUtils
LowerInvoke.cpp
LowerSwitch.cpp
Mem2Reg.cpp
+ MetaRenamer.cpp
ModuleUtils.cpp
PromoteMemoryToRegister.cpp
SSAUpdater.cpp
SimplifyCFG.cpp
SimplifyIndVar.cpp
SimplifyInstructions.cpp
+ SimplifyLibCalls.cpp
UnifyFunctionExitNodes.cpp
Utils.cpp
ValueMapper.cpp
diff --git a/lib/Transforms/Utils/CloneFunction.cpp b/lib/Transforms/Utils/CloneFunction.cpp
index 99237b8..ccc3eae 100644
--- a/lib/Transforms/Utils/CloneFunction.cpp
+++ b/lib/Transforms/Utils/CloneFunction.cpp
@@ -14,22 +14,22 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Constants.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Function.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/ADT/SmallVector.h"
#include <map>
using namespace llvm;
@@ -98,10 +98,14 @@ void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
Anew->addAttr( OldFunc->getAttributes()
.getParamAttributes(I->getArgNo() + 1));
NewFunc->setAttributes(NewFunc->getAttributes()
- .addAttr(0, OldFunc->getAttributes()
+ .addAttr(NewFunc->getContext(),
+ AttributeSet::ReturnIndex,
+ OldFunc->getAttributes()
.getRetAttributes()));
NewFunc->setAttributes(NewFunc->getAttributes()
- .addAttr(~0, OldFunc->getAttributes()
+ .addAttr(NewFunc->getContext(),
+ AttributeSet::FunctionIndex,
+ OldFunc->getAttributes()
.getFnAttributes()));
}
@@ -202,14 +206,14 @@ namespace {
bool ModuleLevelChanges;
const char *NameSuffix;
ClonedCodeInfo *CodeInfo;
- const TargetData *TD;
+ const DataLayout *TD;
public:
PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
ValueToValueMapTy &valueMap,
bool moduleLevelChanges,
const char *nameSuffix,
ClonedCodeInfo *codeInfo,
- const TargetData *td)
+ const DataLayout *td)
: NewFunc(newFunc), OldFunc(oldFunc),
VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
@@ -365,7 +369,7 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
SmallVectorImpl<ReturnInst*> &Returns,
const char *NameSuffix,
ClonedCodeInfo *CodeInfo,
- const TargetData *TD,
+ const DataLayout *TD,
Instruction *TheCall) {
assert(NameSuffix && "NameSuffix cannot be null!");
diff --git a/lib/Transforms/Utils/CloneModule.cpp b/lib/Transforms/Utils/CloneModule.cpp
index 1dac6b5..64df089 100644
--- a/lib/Transforms/Utils/CloneModule.cpp
+++ b/lib/Transforms/Utils/CloneModule.cpp
@@ -13,9 +13,9 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Module.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Constant.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;
@@ -38,10 +38,6 @@ Module *llvm::CloneModule(const Module *M, ValueToValueMapTy &VMap) {
New->setTargetTriple(M->getTargetTriple());
New->setModuleInlineAsm(M->getModuleInlineAsm());
- // Copy all of the dependent libraries over.
- for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
- New->addLibrary(*I);
-
// Loop over all of the global variables, making corresponding globals in the
// new module. Here we add them to the VMap and to the new Module. We
// don't worry about attributes or initializers, they will come later.
diff --git a/lib/Transforms/Utils/CmpInstAnalysis.cpp b/lib/Transforms/Utils/CmpInstAnalysis.cpp
index 9b09915..8fa412a 100644
--- a/lib/Transforms/Utils/CmpInstAnalysis.cpp
+++ b/lib/Transforms/Utils/CmpInstAnalysis.cpp
@@ -13,8 +13,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
using namespace llvm;
diff --git a/lib/Transforms/Utils/CodeExtractor.cpp b/lib/Transforms/Utils/CodeExtractor.cpp
index c545cd6..3a21528 100644
--- a/lib/Transforms/Utils/CodeExtractor.cpp
+++ b/lib/Transforms/Utils/CodeExtractor.cpp
@@ -14,25 +14,25 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/CodeExtractor.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/Verifier.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/StringExtras.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <set>
using namespace llvm;
@@ -346,7 +346,7 @@ Function *CodeExtractor::constructFunction(const ValueSet &inputs,
header->getName(), M);
// If the old function is no-throw, so is the new one.
if (oldFunction->doesNotThrow())
- newFunction->setDoesNotThrow(true);
+ newFunction->setDoesNotThrow();
newFunction->getBasicBlockList().push_back(newRootNode);
diff --git a/lib/Transforms/Utils/DemoteRegToStack.cpp b/lib/Transforms/Utils/DemoteRegToStack.cpp
index 99b5830..d5c41f5 100644
--- a/lib/Transforms/Utils/DemoteRegToStack.cpp
+++ b/lib/Transforms/Utils/DemoteRegToStack.cpp
@@ -8,10 +8,10 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Type.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
using namespace llvm;
/// DemoteRegToStack - This function takes a virtual register computed by an
@@ -124,7 +124,12 @@ AllocaInst *llvm::DemotePHIToStack(PHINode *P, Instruction *AllocaPoint) {
}
// Insert a load in place of the PHI and replace all uses.
- Value *V = new LoadInst(Slot, P->getName()+".reload", P);
+ BasicBlock::iterator InsertPt = P;
+
+ for (; isa<PHINode>(InsertPt) || isa<LandingPadInst>(InsertPt); ++InsertPt)
+ /* empty */; // Don't insert before PHI nodes or landingpad instrs.
+
+ Value *V = new LoadInst(Slot, P->getName()+".reload", InsertPt);
P->replaceAllUsesWith(V);
// Delete PHI.
diff --git a/lib/Transforms/Utils/InlineFunction.cpp b/lib/Transforms/Utils/InlineFunction.cpp
index 89e89e7..0d2598a 100644
--- a/lib/Transforms/Utils/InlineFunction.cpp
+++ b/lib/Transforms/Utils/InlineFunction.cpp
@@ -13,21 +13,21 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Attributes.h"
-#include "llvm/Constants.h"
-#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CallSite.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -357,7 +357,7 @@ static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
Type *VoidPtrTy = Type::getInt8PtrTy(Context);
- // Create the alloca. If we have TargetData, use nice alignment.
+ // Create the alloca. If we have DataLayout, use nice alignment.
unsigned Align = 1;
if (IFI.TD)
Align = IFI.TD->getPrefTypeAlignment(AggTy);
@@ -668,10 +668,29 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
if (hasLifetimeMarkers(AI))
continue;
- builder.CreateLifetimeStart(AI);
+ // Try to determine the size of the allocation.
+ ConstantInt *AllocaSize = 0;
+ if (ConstantInt *AIArraySize =
+ dyn_cast<ConstantInt>(AI->getArraySize())) {
+ if (IFI.TD) {
+ Type *AllocaType = AI->getAllocatedType();
+ uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType);
+ uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
+ assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
+ // Check that array size doesn't saturate uint64_t and doesn't
+ // overflow when it's multiplied by type size.
+ if (AllocaArraySize != ~0ULL &&
+ UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
+ AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
+ AllocaArraySize * AllocaTypeSize);
+ }
+ }
+ }
+
+ builder.CreateLifetimeStart(AI, AllocaSize);
for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
IRBuilder<> builder(Returns[ri]);
- builder.CreateLifetimeEnd(AI);
+ builder.CreateLifetimeEnd(AI, AllocaSize);
}
}
}
diff --git a/lib/Transforms/Utils/InstructionNamer.cpp b/lib/Transforms/Utils/InstructionNamer.cpp
index 45c15de..a020bc7 100644
--- a/lib/Transforms/Utils/InstructionNamer.cpp
+++ b/lib/Transforms/Utils/InstructionNamer.cpp
@@ -15,9 +15,9 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Function.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
-#include "llvm/Type.h"
using namespace llvm;
namespace {
diff --git a/lib/Transforms/Utils/IntegerDivision.cpp b/lib/Transforms/Utils/IntegerDivision.cpp
new file mode 100644
index 0000000..5187d7c
--- /dev/null
+++ b/lib/Transforms/Utils/IntegerDivision.cpp
@@ -0,0 +1,420 @@
+//===-- IntegerDivision.cpp - Expand integer division ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains an implementation of 32bit scalar integer division for
+// targets that don't have native support. It's largely derived from
+// compiler-rt's implementation of __udivsi3, but hand-tuned to reduce the
+// amount of control flow
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "integer-division"
+#include "llvm/Transforms/Utils/IntegerDivision.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+
+using namespace llvm;
+
+/// Generate code to compute the remainder of two signed integers. Returns the
+/// remainder, which will have the sign of the dividend. Builder's insert point
+/// should be pointing where the caller wants code generated, e.g. at the srem
+/// instruction. This will generate a urem in the process, and Builder's insert
+/// point will be pointing at the uren (if present, i.e. not folded), ready to
+/// be expanded if the user wishes
+static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
+ IRBuilder<> &Builder) {
+ ConstantInt *ThirtyOne = Builder.getInt32(31);
+
+ // ; %dividend_sgn = ashr i32 %dividend, 31
+ // ; %divisor_sgn = ashr i32 %divisor, 31
+ // ; %dvd_xor = xor i32 %dividend, %dividend_sgn
+ // ; %dvs_xor = xor i32 %divisor, %divisor_sgn
+ // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn
+ // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn
+ // ; %urem = urem i32 %dividend, %divisor
+ // ; %xored = xor i32 %urem, %dividend_sgn
+ // ; %srem = sub i32 %xored, %dividend_sgn
+ Value *DividendSign = Builder.CreateAShr(Dividend, ThirtyOne);
+ Value *DivisorSign = Builder.CreateAShr(Divisor, ThirtyOne);
+ Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
+ Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
+ Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
+ Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign);
+ Value *URem = Builder.CreateURem(UDividend, UDivisor);
+ Value *Xored = Builder.CreateXor(URem, DividendSign);
+ Value *SRem = Builder.CreateSub(Xored, DividendSign);
+
+ if (Instruction *URemInst = dyn_cast<Instruction>(URem))
+ Builder.SetInsertPoint(URemInst);
+
+ return SRem;
+}
+
+
+/// Generate code to compute the remainder of two unsigned integers. Returns the
+/// remainder. Builder's insert point should be pointing where the caller wants
+/// code generated, e.g. at the urem instruction. This will generate a udiv in
+/// the process, and Builder's insert point will be pointing at the udiv (if
+/// present, i.e. not folded), ready to be expanded if the user wishes
+static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
+ IRBuilder<> &Builder) {
+ // Remainder = Dividend - Quotient*Divisor
+
+ // ; %quotient = udiv i32 %dividend, %divisor
+ // ; %product = mul i32 %divisor, %quotient
+ // ; %remainder = sub i32 %dividend, %product
+ Value *Quotient = Builder.CreateUDiv(Dividend, Divisor);
+ Value *Product = Builder.CreateMul(Divisor, Quotient);
+ Value *Remainder = Builder.CreateSub(Dividend, Product);
+
+ if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
+ Builder.SetInsertPoint(UDiv);
+
+ return Remainder;
+}
+
+/// Generate code to divide two signed integers. Returns the quotient, rounded
+/// towards 0. Builder's insert point should be pointing where the caller wants
+/// code generated, e.g. at the sdiv instruction. This will generate a udiv in
+/// the process, and Builder's insert point will be pointing at the udiv (if
+/// present, i.e. not folded), ready to be expanded if the user wishes.
+static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
+ IRBuilder<> &Builder) {
+ // Implementation taken from compiler-rt's __divsi3
+
+ ConstantInt *ThirtyOne = Builder.getInt32(31);
+
+ // ; %tmp = ashr i32 %dividend, 31
+ // ; %tmp1 = ashr i32 %divisor, 31
+ // ; %tmp2 = xor i32 %tmp, %dividend
+ // ; %u_dvnd = sub nsw i32 %tmp2, %tmp
+ // ; %tmp3 = xor i32 %tmp1, %divisor
+ // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1
+ // ; %q_sgn = xor i32 %tmp1, %tmp
+ // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
+ // ; %tmp4 = xor i32 %q_mag, %q_sgn
+ // ; %q = sub i32 %tmp4, %q_sgn
+ Value *Tmp = Builder.CreateAShr(Dividend, ThirtyOne);
+ Value *Tmp1 = Builder.CreateAShr(Divisor, ThirtyOne);
+ Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
+ Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
+ Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
+ Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
+ Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp);
+ Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
+ Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn);
+ Value *Q = Builder.CreateSub(Tmp4, Q_Sgn);
+
+ if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
+ Builder.SetInsertPoint(UDiv);
+
+ return Q;
+}
+
+/// Generates code to divide two unsigned scalar 32-bit integers. Returns the
+/// quotient, rounded towards 0. Builder's insert point should be pointing where
+/// the caller wants code generated, e.g. at the udiv instruction.
+static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
+ IRBuilder<> &Builder) {
+ // The basic algorithm can be found in the compiler-rt project's
+ // implementation of __udivsi3.c. Here, we do a lower-level IR based approach
+ // that's been hand-tuned to lessen the amount of control flow involved.
+
+ // Some helper values
+ IntegerType *I32Ty = Builder.getInt32Ty();
+
+ ConstantInt *Zero = Builder.getInt32(0);
+ ConstantInt *One = Builder.getInt32(1);
+ ConstantInt *ThirtyOne = Builder.getInt32(31);
+ ConstantInt *NegOne = ConstantInt::getSigned(I32Ty, -1);
+ ConstantInt *True = Builder.getTrue();
+
+ BasicBlock *IBB = Builder.GetInsertBlock();
+ Function *F = IBB->getParent();
+ Function *CTLZi32 = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
+ I32Ty);
+
+ // Our CFG is going to look like:
+ // +---------------------+
+ // | special-cases |
+ // | ... |
+ // +---------------------+
+ // | |
+ // | +----------+
+ // | | bb1 |
+ // | | ... |
+ // | +----------+
+ // | | |
+ // | | +------------+
+ // | | | preheader |
+ // | | | ... |
+ // | | +------------+
+ // | | |
+ // | | | +---+
+ // | | | | |
+ // | | +------------+ |
+ // | | | do-while | |
+ // | | | ... | |
+ // | | +------------+ |
+ // | | | | |
+ // | +-----------+ +---+
+ // | | loop-exit |
+ // | | ... |
+ // | +-----------+
+ // | |
+ // +-------+
+ // | ... |
+ // | end |
+ // +-------+
+ BasicBlock *SpecialCases = Builder.GetInsertBlock();
+ SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
+ BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
+ "udiv-end");
+ BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(),
+ "udiv-loop-exit", F, End);
+ BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(),
+ "udiv-do-while", F, End);
+ BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
+ "udiv-preheader", F, End);
+ BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(),
+ "udiv-bb1", F, End);
+
+ // We'll be overwriting the terminator to insert our extra blocks
+ SpecialCases->getTerminator()->eraseFromParent();
+
+ // First off, check for special cases: dividend or divisor is zero, divisor
+ // is greater than dividend, and divisor is 1.
+ // ; special-cases:
+ // ; %ret0_1 = icmp eq i32 %divisor, 0
+ // ; %ret0_2 = icmp eq i32 %dividend, 0
+ // ; %ret0_3 = or i1 %ret0_1, %ret0_2
+ // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
+ // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
+ // ; %sr = sub nsw i32 %tmp0, %tmp1
+ // ; %ret0_4 = icmp ugt i32 %sr, 31
+ // ; %ret0 = or i1 %ret0_3, %ret0_4
+ // ; %retDividend = icmp eq i32 %sr, 31
+ // ; %retVal = select i1 %ret0, i32 0, i32 %dividend
+ // ; %earlyRet = or i1 %ret0, %retDividend
+ // ; br i1 %earlyRet, label %end, label %bb1
+ Builder.SetInsertPoint(SpecialCases);
+ Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
+ Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
+ Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
+ Value *Tmp0 = Builder.CreateCall2(CTLZi32, Divisor, True);
+ Value *Tmp1 = Builder.CreateCall2(CTLZi32, Dividend, True);
+ Value *SR = Builder.CreateSub(Tmp0, Tmp1);
+ Value *Ret0_4 = Builder.CreateICmpUGT(SR, ThirtyOne);
+ Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
+ Value *RetDividend = Builder.CreateICmpEQ(SR, ThirtyOne);
+ Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
+ Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
+ Builder.CreateCondBr(EarlyRet, End, BB1);
+
+ // ; bb1: ; preds = %special-cases
+ // ; %sr_1 = add i32 %sr, 1
+ // ; %tmp2 = sub i32 31, %sr
+ // ; %q = shl i32 %dividend, %tmp2
+ // ; %skipLoop = icmp eq i32 %sr_1, 0
+ // ; br i1 %skipLoop, label %loop-exit, label %preheader
+ Builder.SetInsertPoint(BB1);
+ Value *SR_1 = Builder.CreateAdd(SR, One);
+ Value *Tmp2 = Builder.CreateSub(ThirtyOne, SR);
+ Value *Q = Builder.CreateShl(Dividend, Tmp2);
+ Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
+ Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
+
+ // ; preheader: ; preds = %bb1
+ // ; %tmp3 = lshr i32 %dividend, %sr_1
+ // ; %tmp4 = add i32 %divisor, -1
+ // ; br label %do-while
+ Builder.SetInsertPoint(Preheader);
+ Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
+ Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
+ Builder.CreateBr(DoWhile);
+
+ // ; do-while: ; preds = %do-while, %preheader
+ // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
+ // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
+ // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
+ // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
+ // ; %tmp5 = shl i32 %r_1, 1
+ // ; %tmp6 = lshr i32 %q_2, 31
+ // ; %tmp7 = or i32 %tmp5, %tmp6
+ // ; %tmp8 = shl i32 %q_2, 1
+ // ; %q_1 = or i32 %carry_1, %tmp8
+ // ; %tmp9 = sub i32 %tmp4, %tmp7
+ // ; %tmp10 = ashr i32 %tmp9, 31
+ // ; %carry = and i32 %tmp10, 1
+ // ; %tmp11 = and i32 %tmp10, %divisor
+ // ; %r = sub i32 %tmp7, %tmp11
+ // ; %sr_2 = add i32 %sr_3, -1
+ // ; %tmp12 = icmp eq i32 %sr_2, 0
+ // ; br i1 %tmp12, label %loop-exit, label %do-while
+ Builder.SetInsertPoint(DoWhile);
+ PHINode *Carry_1 = Builder.CreatePHI(I32Ty, 2);
+ PHINode *SR_3 = Builder.CreatePHI(I32Ty, 2);
+ PHINode *R_1 = Builder.CreatePHI(I32Ty, 2);
+ PHINode *Q_2 = Builder.CreatePHI(I32Ty, 2);
+ Value *Tmp5 = Builder.CreateShl(R_1, One);
+ Value *Tmp6 = Builder.CreateLShr(Q_2, ThirtyOne);
+ Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
+ Value *Tmp8 = Builder.CreateShl(Q_2, One);
+ Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
+ Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
+ Value *Tmp10 = Builder.CreateAShr(Tmp9, 31);
+ Value *Carry = Builder.CreateAnd(Tmp10, One);
+ Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
+ Value *R = Builder.CreateSub(Tmp7, Tmp11);
+ Value *SR_2 = Builder.CreateAdd(SR_3, NegOne);
+ Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
+ Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
+
+ // ; loop-exit: ; preds = %do-while, %bb1
+ // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
+ // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
+ // ; %tmp13 = shl i32 %q_3, 1
+ // ; %q_4 = or i32 %carry_2, %tmp13
+ // ; br label %end
+ Builder.SetInsertPoint(LoopExit);
+ PHINode *Carry_2 = Builder.CreatePHI(I32Ty, 2);
+ PHINode *Q_3 = Builder.CreatePHI(I32Ty, 2);
+ Value *Tmp13 = Builder.CreateShl(Q_3, One);
+ Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
+ Builder.CreateBr(End);
+
+ // ; end: ; preds = %loop-exit, %special-cases
+ // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
+ // ; ret i32 %q_5
+ Builder.SetInsertPoint(End, End->begin());
+ PHINode *Q_5 = Builder.CreatePHI(I32Ty, 2);
+
+ // Populate the Phis, since all values have now been created. Our Phis were:
+ // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
+ Carry_1->addIncoming(Zero, Preheader);
+ Carry_1->addIncoming(Carry, DoWhile);
+ // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
+ SR_3->addIncoming(SR_1, Preheader);
+ SR_3->addIncoming(SR_2, DoWhile);
+ // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
+ R_1->addIncoming(Tmp3, Preheader);
+ R_1->addIncoming(R, DoWhile);
+ // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
+ Q_2->addIncoming(Q, Preheader);
+ Q_2->addIncoming(Q_1, DoWhile);
+ // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
+ Carry_2->addIncoming(Zero, BB1);
+ Carry_2->addIncoming(Carry, DoWhile);
+ // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
+ Q_3->addIncoming(Q, BB1);
+ Q_3->addIncoming(Q_1, DoWhile);
+ // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
+ Q_5->addIncoming(Q_4, LoopExit);
+ Q_5->addIncoming(RetVal, SpecialCases);
+
+ return Q_5;
+}
+
+/// Generate code to calculate the remainder of two integers, replacing Rem with
+/// the generated code. This currently generates code using the udiv expansion,
+/// but future work includes generating more specialized code, e.g. when more
+/// information about the operands are known. Currently only implements 32bit
+/// scalar division (due to udiv's limitation), but future work is removing this
+/// limitation.
+///
+/// @brief Replace Rem with generated code.
+bool llvm::expandRemainder(BinaryOperator *Rem) {
+ assert((Rem->getOpcode() == Instruction::SRem ||
+ Rem->getOpcode() == Instruction::URem) &&
+ "Trying to expand remainder from a non-remainder function");
+
+ IRBuilder<> Builder(Rem);
+
+ // First prepare the sign if it's a signed remainder
+ if (Rem->getOpcode() == Instruction::SRem) {
+ Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
+ Rem->getOperand(1), Builder);
+
+ Rem->replaceAllUsesWith(Remainder);
+ Rem->dropAllReferences();
+ Rem->eraseFromParent();
+
+ // If we didn't actually generate a udiv instruction, we're done
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
+ if (!BO || BO->getOpcode() != Instruction::URem)
+ return true;
+
+ Rem = BO;
+ }
+
+ Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
+ Rem->getOperand(1),
+ Builder);
+
+ Rem->replaceAllUsesWith(Remainder);
+ Rem->dropAllReferences();
+ Rem->eraseFromParent();
+
+ // Expand the udiv
+ if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
+ assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
+ expandDivision(UDiv);
+ }
+
+ return true;
+}
+
+
+/// Generate code to divide two integers, replacing Div with the generated
+/// code. This currently generates code similarly to compiler-rt's
+/// implementations, but future work includes generating more specialized code
+/// when more information about the operands are known. Currently only
+/// implements 32bit scalar division, but future work is removing this
+/// limitation.
+///
+/// @brief Replace Div with generated code.
+bool llvm::expandDivision(BinaryOperator *Div) {
+ assert((Div->getOpcode() == Instruction::SDiv ||
+ Div->getOpcode() == Instruction::UDiv) &&
+ "Trying to expand division from a non-division function");
+
+ IRBuilder<> Builder(Div);
+
+ if (Div->getType()->isVectorTy())
+ llvm_unreachable("Div over vectors not supported");
+
+ // First prepare the sign if it's a signed division
+ if (Div->getOpcode() == Instruction::SDiv) {
+ // Lower the code to unsigned division, and reset Div to point to the udiv.
+ Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
+ Div->getOperand(1), Builder);
+ Div->replaceAllUsesWith(Quotient);
+ Div->dropAllReferences();
+ Div->eraseFromParent();
+
+ // If we didn't actually generate a udiv instruction, we're done
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
+ if (!BO || BO->getOpcode() != Instruction::UDiv)
+ return true;
+
+ Div = BO;
+ }
+
+ // Insert the unsigned division code
+ Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
+ Div->getOperand(1),
+ Builder);
+ Div->replaceAllUsesWith(Quotient);
+ Div->dropAllReferences();
+ Div->eraseFromParent();
+
+ return true;
+}
diff --git a/lib/Transforms/Utils/LCSSA.cpp b/lib/Transforms/Utils/LCSSA.cpp
index b654111..2d1b166 100644
--- a/lib/Transforms/Utils/LCSSA.cpp
+++ b/lib/Transforms/Utils/LCSSA.cpp
@@ -29,17 +29,17 @@
#define DEBUG_TYPE "lcssa"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/Pass.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Pass.h"
#include "llvm/Support/PredIteratorCache.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
@@ -53,6 +53,8 @@ namespace {
// Cached analysis information for the current function.
DominatorTree *DT;
+ LoopInfo *LI;
+ ScalarEvolution *SE;
std::vector<BasicBlock*> LoopBlocks;
PredIteratorCache PredCache;
Loop *L;
@@ -117,6 +119,8 @@ bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) {
L = TheLoop;
DT = &getAnalysis<DominatorTree>();
+ LI = &getAnalysis<LoopInfo>();
+ SE = getAnalysisIfAvailable<ScalarEvolution>();
// Get the set of exiting blocks.
SmallVector<BasicBlock*, 8> ExitBlocks;
@@ -156,6 +160,12 @@ bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) {
MadeChange |= ProcessInstruction(I, ExitBlocks);
}
}
+
+ // If we modified the code, remove any caches about the loop from SCEV to
+ // avoid dangling entries.
+ // FIXME: This is a big hammer, can we clear the cache more selectively?
+ if (SE && MadeChange)
+ SE->forgetLoop(L);
assert(L->isLCSSAForm(*DT));
PredCache.clear();
@@ -245,7 +255,7 @@ bool LCSSA::ProcessInstruction(Instruction *Inst,
// Remember that this phi makes the value alive in this block.
SSAUpdate.AddAvailableValue(ExitBB, PN);
}
-
+
// Rewrite all uses outside the loop in terms of the new PHIs we just
// inserted.
for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
@@ -260,6 +270,9 @@ bool LCSSA::ProcessInstruction(Instruction *Inst,
if (isa<PHINode>(UserBB->begin()) &&
isExitBlock(UserBB, ExitBlocks)) {
+ // Tell the VHs that the uses changed. This updates SCEV's caches.
+ if (UsesToRewrite[i]->get()->hasValueHandle())
+ ValueHandleBase::ValueIsRAUWd(*UsesToRewrite[i], UserBB->begin());
UsesToRewrite[i]->set(UserBB->begin());
continue;
}
diff --git a/lib/Transforms/Utils/Local.cpp b/lib/Transforms/Utils/Local.cpp
index 0601433..a54ee08 100644
--- a/lib/Transforms/Utils/Local.cpp
+++ b/lib/Transforms/Utils/Local.cpp
@@ -13,32 +13,34 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Constants.h"
-#include "llvm/DIBuilder.h"
-#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/GlobalAlias.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Metadata.h"
-#include "llvm/Operator.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Operator.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -122,6 +124,27 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
// Check to see if this branch is going to the same place as the default
// dest. If so, eliminate it as an explicit compare.
if (i.getCaseSuccessor() == DefaultDest) {
+ MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
+ // MD should have 2 + NumCases operands.
+ if (MD && MD->getNumOperands() == 2 + SI->getNumCases()) {
+ // Collect branch weights into a vector.
+ SmallVector<uint32_t, 8> Weights;
+ for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
+ ++MD_i) {
+ ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
+ assert(CI);
+ Weights.push_back(CI->getValue().getZExtValue());
+ }
+ // Merge weight of this case to the default weight.
+ unsigned idx = i.getCaseIndex();
+ Weights[0] += Weights[idx+1];
+ // Remove weight for this case.
+ std::swap(Weights[idx+1], Weights.back());
+ Weights.pop_back();
+ SI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(BB->getContext()).
+ createBranchWeights(Weights));
+ }
// Remove this entry.
DefaultDest->removePredecessor(SI->getParent());
SI->removeCase(i);
@@ -178,8 +201,20 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
"cond");
// Insert the new branch.
- Builder.CreateCondBr(Cond, FirstCase.getCaseSuccessor(),
- SI->getDefaultDest());
+ BranchInst *NewBr = Builder.CreateCondBr(Cond,
+ FirstCase.getCaseSuccessor(),
+ SI->getDefaultDest());
+ MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
+ if (MD && MD->getNumOperands() == 3) {
+ ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
+ ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
+ assert(SICase && SIDef);
+ // The TrueWeight should be the weight for the single case of SI.
+ NewBr->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(BB->getContext()).
+ createBranchWeights(SICase->getValue().getZExtValue(),
+ SIDef->getValue().getZExtValue()));
+ }
// Delete the old switch.
SI->eraseFromParent();
@@ -363,7 +398,7 @@ bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
-bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD,
+bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
bool MadeChange = false;
@@ -411,7 +446,7 @@ bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD,
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the and to 0.
void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
- TargetData *TD) {
+ DataLayout *TD) {
// This only adjusts blocks with PHI nodes.
if (!isa<PHINode>(BB->begin()))
return;
@@ -570,7 +605,7 @@ bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
// possible to handle such cases, but difficult: it requires checking whether
// BB dominates Succ, which is non-trivial to calculate in the case where
// Succ has multiple predecessors. Also, it requires checking whether
- // constructing the necessary self-referential PHI node doesn't intoduce any
+ // constructing the necessary self-referential PHI node doesn't introduce any
// conflicts; this isn't too difficult, but the previous code for doing this
// was incorrect.
//
@@ -726,7 +761,7 @@ bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
/// their preferred alignment from the beginning.
///
static unsigned enforceKnownAlignment(Value *V, unsigned Align,
- unsigned PrefAlign, const TargetData *TD) {
+ unsigned PrefAlign, const DataLayout *TD) {
V = V->stripPointerCasts();
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
@@ -769,7 +804,7 @@ static unsigned enforceKnownAlignment(Value *V, unsigned Align,
/// and it is more than the alignment of the ultimate object, see if we can
/// increase the alignment of the ultimate object, making this check succeed.
unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
- const TargetData *TD) {
+ const DataLayout *TD) {
assert(V->getType()->isPointerTy() &&
"getOrEnforceKnownAlignment expects a pointer!");
unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
@@ -894,3 +929,78 @@ DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
return 0;
}
+
+bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
+ DIBuilder &Builder) {
+ DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
+ if (!DDI)
+ return false;
+ DIVariable DIVar(DDI->getVariable());
+ if (!DIVar.Verify())
+ return false;
+
+ // Create a copy of the original DIDescriptor for user variable, appending
+ // "deref" operation to a list of address elements, as new llvm.dbg.declare
+ // will take a value storing address of the memory for variable, not
+ // alloca itself.
+ Type *Int64Ty = Type::getInt64Ty(AI->getContext());
+ SmallVector<Value*, 4> NewDIVarAddress;
+ if (DIVar.hasComplexAddress()) {
+ for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) {
+ NewDIVarAddress.push_back(
+ ConstantInt::get(Int64Ty, DIVar.getAddrElement(i)));
+ }
+ }
+ NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref));
+ DIVariable NewDIVar = Builder.createComplexVariable(
+ DIVar.getTag(), DIVar.getContext(), DIVar.getName(),
+ DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(),
+ NewDIVarAddress, DIVar.getArgNumber());
+
+ // Insert llvm.dbg.declare in the same basic block as the original alloca,
+ // and remove old llvm.dbg.declare.
+ BasicBlock *BB = AI->getParent();
+ Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB);
+ DDI->eraseFromParent();
+ return true;
+}
+
+bool llvm::removeUnreachableBlocks(Function &F) {
+ SmallPtrSet<BasicBlock*, 16> Reachable;
+ SmallVector<BasicBlock*, 128> Worklist;
+ Worklist.push_back(&F.getEntryBlock());
+ Reachable.insert(&F.getEntryBlock());
+ do {
+ BasicBlock *BB = Worklist.pop_back_val();
+ for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
+ if (Reachable.insert(*SI))
+ Worklist.push_back(*SI);
+ } while (!Worklist.empty());
+
+ if (Reachable.size() == F.size())
+ return false;
+
+ assert(Reachable.size() < F.size());
+ for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ++I) {
+ if (Reachable.count(I))
+ continue;
+
+ // Remove the block as predecessor of all its reachable successors.
+ // Unreachable successors don't matter as they'll soon be removed, too.
+ for (succ_iterator SI = succ_begin(I), SE = succ_end(I); SI != SE; ++SI)
+ if (Reachable.count(*SI))
+ (*SI)->removePredecessor(I);
+
+ // Zap all instructions in this basic block.
+ while (!I->empty()) {
+ Instruction &Inst = I->back();
+ if (!Inst.use_empty())
+ Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
+ I->getInstList().pop_back();
+ }
+
+ --I;
+ llvm::next(I)->eraseFromParent();
+ }
+ return true;
+}
diff --git a/lib/Transforms/Utils/LoopSimplify.cpp b/lib/Transforms/Utils/LoopSimplify.cpp
index 0bc185d..37819cc 100644
--- a/lib/Transforms/Utils/LoopSimplify.cpp
+++ b/lib/Transforms/Utils/LoopSimplify.cpp
@@ -39,25 +39,26 @@
#define DEBUG_TYPE "loop-simplify"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Function.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Type.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
-#include "llvm/ADT/SetOperations.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
@@ -89,6 +90,7 @@ namespace {
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<ScalarEvolution>();
+ AU.addPreserved<DependenceAnalysis>();
AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
}
@@ -194,6 +196,11 @@ ReprocessLoop:
BI->setCondition(ConstantInt::get(Cond->getType(),
!L->contains(BI->getSuccessor(0))));
+
+ // This may make the loop analyzable, force SCEV recomputation.
+ if (SE)
+ SE->forgetLoop(L);
+
Changed = true;
}
}
diff --git a/lib/Transforms/Utils/LoopUnroll.cpp b/lib/Transforms/Utils/LoopUnroll.cpp
index 2023750..cb581b3 100644
--- a/lib/Transforms/Utils/LoopUnroll.cpp
+++ b/lib/Transforms/Utils/LoopUnroll.cpp
@@ -18,12 +18,12 @@
#define DEBUG_TYPE "loop-unroll"
#include "llvm/Transforms/Utils/UnrollLoop.h"
-#include "llvm/BasicBlock.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
diff --git a/lib/Transforms/Utils/LoopUnrollRuntime.cpp b/lib/Transforms/Utils/LoopUnrollRuntime.cpp
index 67e17f4..d801d5f 100644
--- a/lib/Transforms/Utils/LoopUnrollRuntime.cpp
+++ b/lib/Transforms/Utils/LoopUnrollRuntime.cpp
@@ -23,12 +23,12 @@
#define DEBUG_TYPE "loop-unroll"
#include "llvm/Transforms/Utils/UnrollLoop.h"
-#include "llvm/BasicBlock.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
diff --git a/lib/Transforms/Utils/LowerExpectIntrinsic.cpp b/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
index 02bdcda..4aee8ff 100644
--- a/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
+++ b/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
@@ -12,17 +12,17 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lower-expect-intrinsic"
-#include "llvm/BasicBlock.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/MDBuilder.h"
-#include "llvm/Metadata.h"
-#include "llvm/Pass.h"
-#include "llvm/ADT/Statistic.h"
#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <vector>
diff --git a/lib/Transforms/Utils/LowerInvoke.cpp b/lib/Transforms/Utils/LowerInvoke.cpp
index 9305554..9ec84d7 100644
--- a/lib/Transforms/Utils/LowerInvoke.cpp
+++ b/lib/Transforms/Utils/LowerInvoke.cpp
@@ -36,19 +36,19 @@
#define DEBUG_TYPE "lowerinvoke"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetLowering.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <csetjmp>
#include <set>
using namespace llvm;
diff --git a/lib/Transforms/Utils/LowerSwitch.cpp b/lib/Transforms/Utils/LowerSwitch.cpp
index 1547439..955b853 100644
--- a/lib/Transforms/Utils/LowerSwitch.cpp
+++ b/lib/Transforms/Utils/LowerSwitch.cpp
@@ -14,16 +14,16 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include <algorithm>
using namespace llvm;
diff --git a/lib/Transforms/Utils/Mem2Reg.cpp b/lib/Transforms/Utils/Mem2Reg.cpp
index f4ca81a..61b3965 100644
--- a/lib/Transforms/Utils/Mem2Reg.cpp
+++ b/lib/Transforms/Utils/Mem2Reg.cpp
@@ -14,12 +14,12 @@
#define DEBUG_TYPE "mem2reg"
#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
-#include "llvm/Analysis/Dominators.h"
-#include "llvm/Instructions.h"
-#include "llvm/Function.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumPromoted, "Number of alloca's promoted");
diff --git a/lib/Transforms/Utils/MetaRenamer.cpp b/lib/Transforms/Utils/MetaRenamer.cpp
new file mode 100644
index 0000000..d519fb7
--- /dev/null
+++ b/lib/Transforms/Utils/MetaRenamer.cpp
@@ -0,0 +1,131 @@
+//===- MetaRenamer.cpp - Rename everything with metasyntatic names --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass renames everything with metasyntatic names. The intent is to use
+// this pass after bugpoint reduction to conceal the nature of the original
+// program.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/TypeFinder.h"
+#include "llvm/Pass.h"
+using namespace llvm;
+
+namespace {
+
+ // This PRNG is from the ISO C spec. It is intentionally simple and
+ // unsuitable for cryptographic use. We're just looking for enough
+ // variety to surprise and delight users.
+ struct PRNG {
+ unsigned long next;
+
+ void srand(unsigned int seed) {
+ next = seed;
+ }
+
+ int rand() {
+ next = next * 1103515245 + 12345;
+ return (unsigned int)(next / 65536) % 32768;
+ }
+ };
+
+ struct MetaRenamer : public ModulePass {
+ static char ID; // Pass identification, replacement for typeid
+ MetaRenamer() : ModulePass(ID) {
+ initializeMetaRenamerPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ }
+
+ bool runOnModule(Module &M) {
+ static const char *metaNames[] = {
+ // See http://en.wikipedia.org/wiki/Metasyntactic_variable
+ "foo", "bar", "baz", "quux", "barney", "snork", "zot", "blam", "hoge",
+ "wibble", "wobble", "widget", "wombat", "ham", "eggs", "pluto", "spam"
+ };
+
+ // Seed our PRNG with simple additive sum of ModuleID. We're looking to
+ // simply avoid always having the same function names, and we need to
+ // remain deterministic.
+ unsigned int randSeed = 0;
+ for (std::string::const_iterator I = M.getModuleIdentifier().begin(),
+ E = M.getModuleIdentifier().end(); I != E; ++I)
+ randSeed += *I;
+
+ PRNG prng;
+ prng.srand(randSeed);
+
+ // Rename all aliases
+ for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end();
+ AI != AE; ++AI)
+ AI->setName("alias");
+
+ // Rename all global variables
+ for (Module::global_iterator GI = M.global_begin(), GE = M.global_end();
+ GI != GE; ++GI)
+ GI->setName("global");
+
+ // Rename all struct types
+ TypeFinder StructTypes;
+ StructTypes.run(M, true);
+ for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) {
+ StructType *STy = StructTypes[i];
+ if (STy->isLiteral() || STy->getName().empty()) continue;
+
+ SmallString<128> NameStorage;
+ STy->setName((Twine("struct.") + metaNames[prng.rand() %
+ array_lengthof(metaNames)]).toStringRef(NameStorage));
+ }
+
+ // Rename all functions
+ for (Module::iterator FI = M.begin(), FE = M.end();
+ FI != FE; ++FI) {
+ FI->setName(metaNames[prng.rand() % array_lengthof(metaNames)]);
+ runOnFunction(*FI);
+ }
+ return true;
+ }
+
+ bool runOnFunction(Function &F) {
+ for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end();
+ AI != AE; ++AI)
+ if (!AI->getType()->isVoidTy())
+ AI->setName("arg");
+
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ BB->setName("bb");
+
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (!I->getType()->isVoidTy())
+ I->setName("tmp");
+ }
+ return true;
+ }
+ };
+}
+
+char MetaRenamer::ID = 0;
+INITIALIZE_PASS(MetaRenamer, "metarenamer",
+ "Assign new names to everything", false, false)
+//===----------------------------------------------------------------------===//
+//
+// MetaRenamer - Rename everything with metasyntactic names.
+//
+ModulePass *llvm::createMetaRenamerPass() {
+ return new MetaRenamer();
+}
diff --git a/lib/Transforms/Utils/ModuleUtils.cpp b/lib/Transforms/Utils/ModuleUtils.cpp
index dbcf3b2..d090b48 100644
--- a/lib/Transforms/Utils/ModuleUtils.cpp
+++ b/lib/Transforms/Utils/ModuleUtils.cpp
@@ -12,10 +12,10 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ModuleUtils.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Module.h"
using namespace llvm;
diff --git a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
index dd5e20e..de335ec 100644
--- a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
+++ b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
@@ -27,26 +27,26 @@
#define DEBUG_TYPE "mem2reg"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
-#include "llvm/Constants.h"
-#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/DIBuilder.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Metadata.h"
-#include "llvm/Analysis/AliasSetTracker.h"
-#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <queue>
using namespace llvm;
@@ -212,9 +212,13 @@ namespace {
///
DenseMap<AllocaInst*, unsigned> AllocaLookup;
- /// NewPhiNodes - The PhiNodes we're adding.
+ /// NewPhiNodes - The PhiNodes we're adding. That map is used to simplify
+ /// some Phi nodes as we iterate over it, so it should have deterministic
+ /// iterators. We could use a MapVector, but since we already maintain a
+ /// map from BasicBlock* to a stable numbering (BBNumbers), the DenseMap is
+ /// more efficient (also supports removal).
///
- DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
+ DenseMap<std::pair<unsigned, unsigned>, PHINode*> NewPhiNodes;
/// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
/// it corresponds to.
@@ -588,7 +592,11 @@ void PromoteMem2Reg::run() {
while (EliminatedAPHI) {
EliminatedAPHI = false;
- for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
+ // Iterating over NewPhiNodes is deterministic, so it is safe to try to
+ // simplify and RAUW them as we go. If it was not, we could add uses to
+ // the values we replace with in a non deterministic order, thus creating
+ // non deterministic def->use chains.
+ for (DenseMap<std::pair<unsigned, unsigned>, PHINode*>::iterator I =
NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
PHINode *PN = I->second;
@@ -612,7 +620,7 @@ void PromoteMem2Reg::run() {
// have incoming values for all predecessors. Loop over all PHI nodes we have
// created, inserting undef values if they are missing any incoming values.
//
- for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
+ for (DenseMap<std::pair<unsigned, unsigned>, PHINode*>::iterator I =
NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
// We want to do this once per basic block. As such, only process a block
// when we find the PHI that is the first entry in the block.
@@ -992,7 +1000,7 @@ void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
unsigned &Version) {
// Look up the basic-block in question.
- PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
+ PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
// If the BB already has a phi node added for the i'th alloca then we're done!
if (PN) return false;
diff --git a/lib/Transforms/Utils/SSAUpdater.cpp b/lib/Transforms/Utils/SSAUpdater.cpp
index 72d4199..9d90fbe 100644
--- a/lib/Transforms/Utils/SSAUpdater.cpp
+++ b/lib/Transforms/Utils/SSAUpdater.cpp
@@ -12,12 +12,13 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ssaupdater"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CFG.h"
@@ -25,7 +26,6 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
using namespace llvm;
diff --git a/lib/Transforms/Utils/SimplifyCFG.cpp b/lib/Transforms/Utils/SimplifyCFG.cpp
index 32d7fa1..f10c35f 100644
--- a/lib/Transforms/Utils/SimplifyCFG.cpp
+++ b/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -13,18 +13,6 @@
#define DEBUG_TYPE "simplifycfg"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/MDBuilder.h"
-#include "llvm/Metadata.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
-#include "llvm/Type.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
@@ -32,18 +20,31 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/NoFolder.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
-#include <set>
#include <map>
+#include <set>
using namespace llvm;
static cl::opt<unsigned>
@@ -54,8 +55,14 @@ static cl::opt<bool>
DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
cl::desc("Duplicate return instructions into unconditional branches"));
-STATISTIC(NumSpeculations, "Number of speculative executed instructions");
+static cl::opt<bool>
+SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
+ cl::desc("Sink common instructions down to the end block"));
+
+STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
+STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
+STATISTIC(NumSpeculations, "Number of speculative executed instructions");
namespace {
/// ValueEqualityComparisonCase - Represents a case of a switch.
@@ -70,10 +77,13 @@ namespace {
// Comparing pointers is ok as we only rely on the order for uniquing.
return Value < RHS.Value;
}
+
+ bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
};
class SimplifyCFGOpt {
- const TargetData *const TD;
+ const TargetTransformInfo &TTI;
+ const DataLayout *const TD;
Value *isValueEqualityComparison(TerminatorInst *TI);
BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
@@ -93,7 +103,8 @@ class SimplifyCFGOpt {
bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
public:
- explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
+ SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD)
+ : TTI(TTI), TD(TD) {}
bool run(BasicBlock *BB);
};
}
@@ -376,7 +387,7 @@ static bool DominatesMergePoint(Value *V, BasicBlock *BB,
/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
/// and PointerNullValue. Return NULL if value is not a constant int.
-static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
+static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) {
// Normal constant int.
ConstantInt *CI = dyn_cast<ConstantInt>(V);
if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
@@ -384,7 +395,7 @@ static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
// This is some kind of pointer constant. Turn it into a pointer-sized
// ConstantInt if possible.
- IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
+ IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType()));
// Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
if (isa<ConstantPointerNull>(V))
@@ -410,7 +421,7 @@ static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
/// Values vector.
static Value *
GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
- const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
+ const DataLayout *TD, bool isEQ, unsigned &UsedICmps) {
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return 0;
@@ -558,11 +569,7 @@ GetValueEqualityComparisonCases(TerminatorInst *TI,
/// in the list that match the specified block.
static void EliminateBlockCases(BasicBlock *BB,
std::vector<ValueEqualityComparisonCase> &Cases) {
- for (unsigned i = 0, e = Cases.size(); i != e; ++i)
- if (Cases[i].Dest == BB) {
- Cases.erase(Cases.begin()+i);
- --i; --e;
- }
+ Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
}
/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
@@ -667,13 +674,32 @@ SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI);
+ // Collect branch weights into a vector.
+ SmallVector<uint32_t, 8> Weights;
+ MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
+ bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
+ if (HasWeight)
+ for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
+ ++MD_i) {
+ ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
+ assert(CI);
+ Weights.push_back(CI->getValue().getZExtValue());
+ }
for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
--i;
if (DeadCases.count(i.getCaseValue())) {
+ if (HasWeight) {
+ std::swap(Weights[i.getCaseIndex()+1], Weights.back());
+ Weights.pop_back();
+ }
i.getCaseSuccessor()->removePredecessor(TI->getParent());
SI->removeCase(i);
}
}
+ if (HasWeight && Weights.size() >= 2)
+ SI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(SI->getParent()->getContext()).
+ createBranchWeights(Weights));
DEBUG(dbgs() << "Leaving: " << *TI << "\n");
return true;
@@ -752,38 +778,27 @@ static inline bool HasBranchWeights(const Instruction* I) {
return false;
}
-/// Tries to get a branch weight for the given instruction, returns NULL if it
-/// can't. Pos starts at 0.
-static ConstantInt* GetWeight(Instruction* I, int Pos) {
- MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
- if (ProfMD && ProfMD->getOperand(0)) {
- if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) {
- if (MDS->getString().equals("branch_weights")) {
- assert(ProfMD->getNumOperands() >= 3);
- return dyn_cast<ConstantInt>(ProfMD->getOperand(1 + Pos));
- }
- }
- }
-
- return 0;
-}
-
-/// Scale the given weights based on the successor TI's metadata. Scaling is
-/// done by multiplying every weight by the sum of the successor's weights.
-static void ScaleWeights(Instruction* STI, MutableArrayRef<uint64_t> Weights) {
- // Sum the successor's weights
- assert(HasBranchWeights(STI));
- unsigned Scale = 0;
- MDNode* ProfMD = STI->getMetadata(LLVMContext::MD_prof);
- for (unsigned i = 1; i < ProfMD->getNumOperands(); ++i) {
- ConstantInt* CI = dyn_cast<ConstantInt>(ProfMD->getOperand(i));
+/// Get Weights of a given TerminatorInst, the default weight is at the front
+/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
+/// metadata.
+static void GetBranchWeights(TerminatorInst *TI,
+ SmallVectorImpl<uint64_t> &Weights) {
+ MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
+ assert(MD);
+ for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
+ ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
assert(CI);
- Scale += CI->getValue().getZExtValue();
+ Weights.push_back(CI->getValue().getZExtValue());
}
- // Skip default, as it's replaced during the folding
- for (unsigned i = 1; i < Weights.size(); ++i) {
- Weights[i] *= Scale;
+ // If TI is a conditional eq, the default case is the false case,
+ // and the corresponding branch-weight data is at index 2. We swap the
+ // default weight to be the first entry.
+ if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
+ assert(Weights.size() == 2);
+ ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+ std::swap(Weights.front(), Weights.back());
}
}
@@ -838,52 +853,28 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
// Update the branch weight metadata along the way
SmallVector<uint64_t, 8> Weights;
- uint64_t PredDefaultWeight = 0;
bool PredHasWeights = HasBranchWeights(PTI);
bool SuccHasWeights = HasBranchWeights(TI);
if (PredHasWeights) {
- MDNode* MD = PTI->getMetadata(LLVMContext::MD_prof);
- assert(MD);
- for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
- ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
- assert(CI);
- Weights.push_back(CI->getValue().getZExtValue());
- }
-
- // If the predecessor is a conditional eq, then swap the default weight
- // to be the first entry.
- if (BranchInst* BI = dyn_cast<BranchInst>(PTI)) {
- assert(Weights.size() == 2);
- ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
-
- if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
- std::swap(Weights.front(), Weights.back());
- }
- }
-
- PredDefaultWeight = Weights.front();
- } else if (SuccHasWeights) {
+ GetBranchWeights(PTI, Weights);
+ // branch-weight metadata is inconsistent here.
+ if (Weights.size() != 1 + PredCases.size())
+ PredHasWeights = SuccHasWeights = false;
+ } else if (SuccHasWeights)
// If there are no predecessor weights but there are successor weights,
// populate Weights with 1, which will later be scaled to the sum of
// successor's weights
Weights.assign(1 + PredCases.size(), 1);
- PredDefaultWeight = 1;
- }
- uint64_t SuccDefaultWeight = 0;
+ SmallVector<uint64_t, 8> SuccWeights;
if (SuccHasWeights) {
- int Index = 0;
- if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
- ICmpInst* ICI = dyn_cast<ICmpInst>(BI->getCondition());
- assert(ICI);
-
- if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
- Index = 1;
- }
-
- SuccDefaultWeight = GetWeight(TI, Index)->getValue().getZExtValue();
- }
+ GetBranchWeights(TI, SuccWeights);
+ // branch-weight metadata is inconsistent here.
+ if (SuccWeights.size() != 1 + BBCases.size())
+ PredHasWeights = SuccHasWeights = false;
+ } else if (PredHasWeights)
+ SuccWeights.assign(1 + BBCases.size(), 1);
if (PredDefault == BB) {
// If this is the default destination from PTI, only the edges in TI
@@ -896,7 +887,9 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
// The default destination is BB, we don't need explicit targets.
std::swap(PredCases[i], PredCases.back());
- if (PredHasWeights) {
+ if (PredHasWeights || SuccHasWeights) {
+ // Increase weight for the default case.
+ Weights[0] += Weights[i+1];
std::swap(Weights[i+1], Weights.back());
Weights.pop_back();
}
@@ -912,40 +905,46 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
NewSuccessors.push_back(BBDefault);
}
- if (SuccHasWeights) {
- ScaleWeights(TI, Weights);
- Weights.front() *= SuccDefaultWeight;
- } else if (PredHasWeights) {
- Weights.front() /= (1 + BBCases.size());
- }
-
+ unsigned CasesFromPred = Weights.size();
+ uint64_t ValidTotalSuccWeight = 0;
for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
if (!PTIHandled.count(BBCases[i].Value) &&
BBCases[i].Dest != BBDefault) {
PredCases.push_back(BBCases[i]);
NewSuccessors.push_back(BBCases[i].Dest);
- if (SuccHasWeights) {
- Weights.push_back(PredDefaultWeight *
- GetWeight(TI, i)->getValue().getZExtValue());
- } else if (PredHasWeights) {
- // Split the old default's weight amongst the children
- Weights.push_back(PredDefaultWeight / (1 + BBCases.size()));
+ if (SuccHasWeights || PredHasWeights) {
+ // The default weight is at index 0, so weight for the ith case
+ // should be at index i+1. Scale the cases from successor by
+ // PredDefaultWeight (Weights[0]).
+ Weights.push_back(Weights[0] * SuccWeights[i+1]);
+ ValidTotalSuccWeight += SuccWeights[i+1];
}
}
+ if (SuccHasWeights || PredHasWeights) {
+ ValidTotalSuccWeight += SuccWeights[0];
+ // Scale the cases from predecessor by ValidTotalSuccWeight.
+ for (unsigned i = 1; i < CasesFromPred; ++i)
+ Weights[i] *= ValidTotalSuccWeight;
+ // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
+ Weights[0] *= SuccWeights[0];
+ }
} else {
- // FIXME: preserve branch weight metadata, similarly to the 'then'
- // above. For now, drop it.
- PredHasWeights = false;
- SuccHasWeights = false;
-
// If this is not the default destination from PSI, only the edges
// in SI that occur in PSI with a destination of BB will be
// activated.
std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
+ std::map<ConstantInt*, uint64_t> WeightsForHandled;
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
if (PredCases[i].Dest == BB) {
PTIHandled.insert(PredCases[i].Value);
+
+ if (PredHasWeights || SuccHasWeights) {
+ WeightsForHandled[PredCases[i].Value] = Weights[i+1];
+ std::swap(Weights[i+1], Weights.back());
+ Weights.pop_back();
+ }
+
std::swap(PredCases[i], PredCases.back());
PredCases.pop_back();
--i; --e;
@@ -956,6 +955,8 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
if (PTIHandled.count(BBCases[i].Value)) {
// If this is one we are capable of getting...
+ if (PredHasWeights || SuccHasWeights)
+ Weights.push_back(WeightsForHandled[BBCases[i].Value]);
PredCases.push_back(BBCases[i]);
NewSuccessors.push_back(BBCases[i].Dest);
PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
@@ -966,6 +967,8 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
PTIHandled.begin(),
E = PTIHandled.end(); I != E; ++I) {
+ if (PredHasWeights || SuccHasWeights)
+ Weights.push_back(WeightsForHandled[*I]);
PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
NewSuccessors.push_back(BBDefault);
}
@@ -980,7 +983,7 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
Builder.SetInsertPoint(PTI);
// Convert pointer to int before we switch.
if (CV->getType()->isPointerTy()) {
- assert(TD && "Cannot switch on pointer without TargetData");
+ assert(TD && "Cannot switch on pointer without DataLayout");
CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
"magicptr");
}
@@ -1160,6 +1163,175 @@ HoistTerminator:
return true;
}
+/// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
+/// check whether BBEnd has only two predecessors and the other predecessor
+/// ends with an unconditional branch. If it is true, sink any common code
+/// in the two predecessors to BBEnd.
+static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
+ assert(BI1->isUnconditional());
+ BasicBlock *BB1 = BI1->getParent();
+ BasicBlock *BBEnd = BI1->getSuccessor(0);
+
+ // Check that BBEnd has two predecessors and the other predecessor ends with
+ // an unconditional branch.
+ pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
+ BasicBlock *Pred0 = *PI++;
+ if (PI == PE) // Only one predecessor.
+ return false;
+ BasicBlock *Pred1 = *PI++;
+ if (PI != PE) // More than two predecessors.
+ return false;
+ BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
+ BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
+ if (!BI2 || !BI2->isUnconditional())
+ return false;
+
+ // Gather the PHI nodes in BBEnd.
+ std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
+ Instruction *FirstNonPhiInBBEnd = 0;
+ for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
+ I != E; ++I) {
+ if (PHINode *PN = dyn_cast<PHINode>(I)) {
+ Value *BB1V = PN->getIncomingValueForBlock(BB1);
+ Value *BB2V = PN->getIncomingValueForBlock(BB2);
+ MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
+ } else {
+ FirstNonPhiInBBEnd = &*I;
+ break;
+ }
+ }
+ if (!FirstNonPhiInBBEnd)
+ return false;
+
+
+ // This does very trivial matching, with limited scanning, to find identical
+ // instructions in the two blocks. We scan backward for obviously identical
+ // instructions in an identical order.
+ BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
+ RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
+ RE2 = BB2->getInstList().rend();
+ // Skip debug info.
+ while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
+ if (RI1 == RE1)
+ return false;
+ while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
+ if (RI2 == RE2)
+ return false;
+ // Skip the unconditional branches.
+ ++RI1;
+ ++RI2;
+
+ bool Changed = false;
+ while (RI1 != RE1 && RI2 != RE2) {
+ // Skip debug info.
+ while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
+ if (RI1 == RE1)
+ return Changed;
+ while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
+ if (RI2 == RE2)
+ return Changed;
+
+ Instruction *I1 = &*RI1, *I2 = &*RI2;
+ // I1 and I2 should have a single use in the same PHI node, and they
+ // perform the same operation.
+ // Cannot move control-flow-involving, volatile loads, vaarg, etc.
+ if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
+ isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
+ isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
+ isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
+ I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
+ I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
+ !I1->hasOneUse() || !I2->hasOneUse() ||
+ MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
+ MapValueFromBB1ToBB2[I1].first != I2)
+ return Changed;
+
+ // Check whether we should swap the operands of ICmpInst.
+ ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
+ bool SwapOpnds = false;
+ if (ICmp1 && ICmp2 &&
+ ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
+ ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
+ (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
+ ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
+ ICmp2->swapOperands();
+ SwapOpnds = true;
+ }
+ if (!I1->isSameOperationAs(I2)) {
+ if (SwapOpnds)
+ ICmp2->swapOperands();
+ return Changed;
+ }
+
+ // The operands should be either the same or they need to be generated
+ // with a PHI node after sinking. We only handle the case where there is
+ // a single pair of different operands.
+ Value *DifferentOp1 = 0, *DifferentOp2 = 0;
+ unsigned Op1Idx = 0;
+ for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
+ if (I1->getOperand(I) == I2->getOperand(I))
+ continue;
+ // Early exit if we have more-than one pair of different operands or
+ // the different operand is already in MapValueFromBB1ToBB2.
+ // Early exit if we need a PHI node to replace a constant.
+ if (DifferentOp1 ||
+ MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
+ MapValueFromBB1ToBB2.end() ||
+ isa<Constant>(I1->getOperand(I)) ||
+ isa<Constant>(I2->getOperand(I))) {
+ // If we can't sink the instructions, undo the swapping.
+ if (SwapOpnds)
+ ICmp2->swapOperands();
+ return Changed;
+ }
+ DifferentOp1 = I1->getOperand(I);
+ Op1Idx = I;
+ DifferentOp2 = I2->getOperand(I);
+ }
+
+ // We insert the pair of different operands to MapValueFromBB1ToBB2 and
+ // remove (I1, I2) from MapValueFromBB1ToBB2.
+ if (DifferentOp1) {
+ PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
+ DifferentOp1->getName() + ".sink",
+ BBEnd->begin());
+ MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
+ // I1 should use NewPN instead of DifferentOp1.
+ I1->setOperand(Op1Idx, NewPN);
+ NewPN->addIncoming(DifferentOp1, BB1);
+ NewPN->addIncoming(DifferentOp2, BB2);
+ DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
+ }
+ PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
+ MapValueFromBB1ToBB2.erase(I1);
+
+ DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
+ DEBUG(dbgs() << " " << *I2 << "\n";);
+ // We need to update RE1 and RE2 if we are going to sink the first
+ // instruction in the basic block down.
+ bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
+ // Sink the instruction.
+ BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
+ if (!OldPN->use_empty())
+ OldPN->replaceAllUsesWith(I1);
+ OldPN->eraseFromParent();
+
+ if (!I2->use_empty())
+ I2->replaceAllUsesWith(I1);
+ I1->intersectOptionalDataWith(I2);
+ I2->eraseFromParent();
+
+ if (UpdateRE1)
+ RE1 = BB1->getInstList().rend();
+ if (UpdateRE2)
+ RE2 = BB2->getInstList().rend();
+ FirstNonPhiInBBEnd = I1;
+ NumSinkCommons++;
+ Changed = true;
+ }
+ return Changed;
+}
+
/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
/// (for now, restricted to a single instruction that's side effect free) from
@@ -1243,7 +1415,7 @@ static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
if (BB1V == BIParentV)
continue;
- // Check for saftey.
+ // Check for safety.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
// An unfolded ConstantExpr could end up getting expanded into
// Instructions. Don't speculate this and another instruction at
@@ -1339,7 +1511,7 @@ static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
/// that is defined in the same block as the branch and if any PHI entries are
/// constants, thread edges corresponding to that entry to be branches to their
/// ultimate destination.
-static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
+static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) {
BasicBlock *BB = BI->getParent();
PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
// NOTE: we currently cannot transform this case if the PHI node is used
@@ -1435,7 +1607,7 @@ static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
/// PHI node, see if we can eliminate it.
-static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
+static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) {
// Ok, this is a two entry PHI node. Check to see if this is a simple "if
// statement", which has a very simple dominance structure. Basically, we
// are trying to find the condition that is being branched on, which
@@ -1662,7 +1834,7 @@ static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
/// parameters and return true, or returns false if no or invalid metadata was
/// found.
static bool ExtractBranchMetadata(BranchInst *BI,
- APInt &ProbTrue, APInt &ProbFalse) {
+ uint64_t &ProbTrue, uint64_t &ProbFalse) {
assert(BI->isConditional() &&
"Looking for probabilities on unconditional branch?");
MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
@@ -1670,35 +1842,11 @@ static bool ExtractBranchMetadata(BranchInst *BI,
ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
if (!CITrue || !CIFalse) return false;
- ProbTrue = CITrue->getValue();
- ProbFalse = CIFalse->getValue();
- assert(ProbTrue.getBitWidth() == 32 && ProbFalse.getBitWidth() == 32 &&
- "Branch probability metadata must be 32-bit integers");
+ ProbTrue = CITrue->getValue().getZExtValue();
+ ProbFalse = CIFalse->getValue().getZExtValue();
return true;
}
-/// MultiplyAndLosePrecision - Multiplies A and B, then returns the result. In
-/// the event of overflow, logically-shifts all four inputs right until the
-/// multiply fits.
-static APInt MultiplyAndLosePrecision(APInt &A, APInt &B, APInt &C, APInt &D,
- unsigned &BitsLost) {
- BitsLost = 0;
- bool Overflow = false;
- APInt Result = A.umul_ov(B, Overflow);
- if (Overflow) {
- APInt MaxB = APInt::getMaxValue(A.getBitWidth()).udiv(A);
- do {
- B = B.lshr(1);
- ++BitsLost;
- } while (B.ugt(MaxB));
- A = A.lshr(BitsLost);
- C = C.lshr(BitsLost);
- D = D.lshr(BitsLost);
- Result = A * B;
- }
- return Result;
-}
-
/// checkCSEInPredecessor - Return true if the given instruction is available
/// in its predecessor block. If yes, the instruction will be removed.
///
@@ -1824,7 +1972,7 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
continue;
// Determine if the two branches share a common destination.
- Instruction::BinaryOps Opc;
+ Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
bool InvertPredCond = false;
if (BI->isConditional()) {
@@ -1923,14 +2071,53 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
New, "or.cond"));
PBI->setCondition(NewCond);
+ uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
+ bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
+ PredFalseWeight);
+ bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
+ SuccFalseWeight);
+ SmallVector<uint64_t, 8> NewWeights;
+
if (PBI->getSuccessor(0) == BB) {
+ if (PredHasWeights && SuccHasWeights) {
+ // PBI: br i1 %x, BB, FalseDest
+ // BI: br i1 %y, TrueDest, FalseDest
+ //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
+ NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
+ //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
+ // TrueWeight for PBI * FalseWeight for BI.
+ // We assume that total weights of a BranchInst can fit into 32 bits.
+ // Therefore, we will not have overflow using 64-bit arithmetic.
+ NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
+ SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
+ }
AddPredecessorToBlock(TrueDest, PredBlock, BB);
PBI->setSuccessor(0, TrueDest);
}
if (PBI->getSuccessor(1) == BB) {
+ if (PredHasWeights && SuccHasWeights) {
+ // PBI: br i1 %x, TrueDest, BB
+ // BI: br i1 %y, TrueDest, FalseDest
+ //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
+ // FalseWeight for PBI * TrueWeight for BI.
+ NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
+ SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
+ //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
+ NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
+ }
AddPredecessorToBlock(FalseDest, PredBlock, BB);
PBI->setSuccessor(1, FalseDest);
}
+ if (NewWeights.size() == 2) {
+ // Halve the weights if any of them cannot fit in an uint32_t
+ FitWeights(NewWeights);
+
+ SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
+ PBI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(BI->getContext()).
+ createBranchWeights(MDWeights));
+ } else
+ PBI->setMetadata(LLVMContext::MD_prof, NULL);
} else {
// Update PHI nodes in the common successors.
for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
@@ -1985,90 +2172,6 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
// TODO: If BB is reachable from all paths through PredBlock, then we
// could replace PBI's branch probabilities with BI's.
- // Merge probability data into PredBlock's branch.
- APInt A, B, C, D;
- if (PBI->isConditional() && BI->isConditional() &&
- ExtractBranchMetadata(PBI, C, D) && ExtractBranchMetadata(BI, A, B)) {
- // Given IR which does:
- // bbA:
- // br i1 %x, label %bbB, label %bbC
- // bbB:
- // br i1 %y, label %bbD, label %bbC
- // Let's call the probability that we take the edge from %bbA to %bbB
- // 'a', from %bbA to %bbC, 'b', from %bbB to %bbD 'c' and from %bbB to
- // %bbC probability 'd'.
- //
- // We transform the IR into:
- // bbA:
- // br i1 %z, label %bbD, label %bbC
- // where the probability of going to %bbD is (a*c) and going to bbC is
- // (b+a*d).
- //
- // Probabilities aren't stored as ratios directly. Using branch weights,
- // we get:
- // (a*c)% = A*C, (b+(a*d))% = A*D+B*C+B*D.
-
- // In the event of overflow, we want to drop the LSB of the input
- // probabilities.
- unsigned BitsLost;
-
- // Ignore overflow result on ProbTrue.
- APInt ProbTrue = MultiplyAndLosePrecision(A, C, B, D, BitsLost);
-
- APInt Tmp1 = MultiplyAndLosePrecision(B, D, A, C, BitsLost);
- if (BitsLost) {
- ProbTrue = ProbTrue.lshr(BitsLost*2);
- }
-
- APInt Tmp2 = MultiplyAndLosePrecision(A, D, C, B, BitsLost);
- if (BitsLost) {
- ProbTrue = ProbTrue.lshr(BitsLost*2);
- Tmp1 = Tmp1.lshr(BitsLost*2);
- }
-
- APInt Tmp3 = MultiplyAndLosePrecision(B, C, A, D, BitsLost);
- if (BitsLost) {
- ProbTrue = ProbTrue.lshr(BitsLost*2);
- Tmp1 = Tmp1.lshr(BitsLost*2);
- Tmp2 = Tmp2.lshr(BitsLost*2);
- }
-
- bool Overflow1 = false, Overflow2 = false;
- APInt Tmp4 = Tmp2.uadd_ov(Tmp3, Overflow1);
- APInt ProbFalse = Tmp4.uadd_ov(Tmp1, Overflow2);
-
- if (Overflow1 || Overflow2) {
- ProbTrue = ProbTrue.lshr(1);
- Tmp1 = Tmp1.lshr(1);
- Tmp2 = Tmp2.lshr(1);
- Tmp3 = Tmp3.lshr(1);
- Tmp4 = Tmp2 + Tmp3;
- ProbFalse = Tmp4 + Tmp1;
- }
-
- // The sum of branch weights must fit in 32-bits.
- if (ProbTrue.isNegative() && ProbFalse.isNegative()) {
- ProbTrue = ProbTrue.lshr(1);
- ProbFalse = ProbFalse.lshr(1);
- }
-
- if (ProbTrue != ProbFalse) {
- // Normalize the result.
- APInt GCD = APIntOps::GreatestCommonDivisor(ProbTrue, ProbFalse);
- ProbTrue = ProbTrue.udiv(GCD);
- ProbFalse = ProbFalse.udiv(GCD);
-
- MDBuilder MDB(BI->getContext());
- MDNode *N = MDB.createBranchWeights(ProbTrue.getZExtValue(),
- ProbFalse.getZExtValue());
- PBI->setMetadata(LLVMContext::MD_prof, N);
- } else {
- PBI->setMetadata(LLVMContext::MD_prof, NULL);
- }
- } else {
- PBI->setMetadata(LLVMContext::MD_prof, NULL);
- }
-
// Copy any debug value intrinsics into the end of PredBlock.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (isa<DbgInfoIntrinsic>(*I))
@@ -2223,6 +2326,33 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
PBI->setSuccessor(0, CommonDest);
PBI->setSuccessor(1, OtherDest);
+ // Update branch weight for PBI.
+ uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
+ bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
+ PredFalseWeight);
+ bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
+ SuccFalseWeight);
+ if (PredHasWeights && SuccHasWeights) {
+ uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
+ uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
+ uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
+ uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
+ // The weight to CommonDest should be PredCommon * SuccTotal +
+ // PredOther * SuccCommon.
+ // The weight to OtherDest should be PredOther * SuccOther.
+ SmallVector<uint64_t, 2> NewWeights;
+ NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
+ PredOther * SuccCommon);
+ NewWeights.push_back(PredOther * SuccOther);
+ // Halve the weights if any of them cannot fit in an uint32_t
+ FitWeights(NewWeights);
+
+ SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
+ PBI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(BI->getContext()).
+ createBranchWeights(MDWeights));
+ }
+
// OtherDest may have phi nodes. If so, add an entry from PBI's
// block that are identical to the entries for BI's block.
AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
@@ -2259,7 +2389,9 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
// Also makes sure not to introduce new successors by assuming that edges to
// non-successor TrueBBs and FalseBBs aren't reachable.
static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
- BasicBlock *TrueBB, BasicBlock *FalseBB){
+ BasicBlock *TrueBB, BasicBlock *FalseBB,
+ uint32_t TrueWeight,
+ uint32_t FalseWeight){
// Remove any superfluous successor edges from the CFG.
// First, figure out which successors to preserve.
// If TrueBB and FalseBB are equal, only try to preserve one copy of that
@@ -2288,10 +2420,15 @@ static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
// We were only looking for one successor, and it was present.
// Create an unconditional branch to it.
Builder.CreateBr(TrueBB);
- else
+ else {
// We found both of the successors we were looking for.
// Create a conditional branch sharing the condition of the select.
- Builder.CreateCondBr(Cond, TrueBB, FalseBB);
+ BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
+ if (TrueWeight != FalseWeight)
+ NewBI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(OldTerm->getContext()).
+ createBranchWeights(TrueWeight, FalseWeight));
+ }
} else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
// Neither of the selected blocks were successors, so this
// terminator must be unreachable.
@@ -2328,8 +2465,23 @@ static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
+ // Get weight for TrueBB and FalseBB.
+ uint32_t TrueWeight = 0, FalseWeight = 0;
+ SmallVector<uint64_t, 8> Weights;
+ bool HasWeights = HasBranchWeights(SI);
+ if (HasWeights) {
+ GetBranchWeights(SI, Weights);
+ if (Weights.size() == 1 + SI->getNumCases()) {
+ TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
+ getSuccessorIndex()];
+ FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
+ getSuccessorIndex()];
+ }
+ }
+
// Perform the actual simplification.
- return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
+ return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
+ TrueWeight, FalseWeight);
}
// SimplifyIndirectBrOnSelect - Replaces
@@ -2349,7 +2501,8 @@ static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
BasicBlock *FalseBB = FBA->getBasicBlock();
// Perform the actual simplification.
- return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
+ return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
+ 0, 0);
}
/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
@@ -2369,9 +2522,9 @@ static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
///
/// We prefer to split the edge to 'end' so that there is a true/false entry to
/// the PHI, merging the third icmp into the switch.
-static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
- const TargetData *TD,
- IRBuilder<> &Builder) {
+static bool TryToSimplifyUncondBranchWithICmpInIt(
+ ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
+ const DataLayout *TD) {
BasicBlock *BB = ICI->getParent();
// If the block has any PHIs in it or the icmp has multiple uses, it is too
@@ -2404,7 +2557,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
ICI->eraseFromParent();
}
// BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
// Ok, the block is reachable from the default dest. If the constant we're
@@ -2420,7 +2573,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
ICI->replaceAllUsesWith(V);
ICI->eraseFromParent();
// BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
// The use of the icmp has to be in the 'end' block, by the only PHI node in
@@ -2448,6 +2601,21 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
// the switch to the merge point on the compared value.
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
BB->getParent(), BB);
+ SmallVector<uint64_t, 8> Weights;
+ bool HasWeights = HasBranchWeights(SI);
+ if (HasWeights) {
+ GetBranchWeights(SI, Weights);
+ if (Weights.size() == 1 + SI->getNumCases()) {
+ // Split weight for default case to case for "Cst".
+ Weights[0] = (Weights[0]+1) >> 1;
+ Weights.push_back(Weights[0]);
+
+ SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
+ SI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(SI->getContext()).
+ createBranchWeights(MDWeights));
+ }
+ }
SI->addCase(Cst, NewBB);
// NewBB branches to the phi block, add the uncond branch and the phi entry.
@@ -2461,7 +2629,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
/// Check to see if it is branching on an or/and chain of icmp instructions, and
/// fold it into a switch instruction if so.
-static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
+static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD,
IRBuilder<> &Builder) {
Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
if (Cond == 0) return false;
@@ -2542,7 +2710,7 @@ static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
Builder.SetInsertPoint(BI);
// Convert pointer to int before we switch.
if (CompVal->getType()->isPointerTy()) {
- assert(TD && "Cannot switch on pointer without TargetData");
+ assert(TD && "Cannot switch on pointer without DataLayout");
CompVal = Builder.CreatePtrToInt(CompVal,
TD->getIntPtrType(CompVal->getContext()),
"magicptr");
@@ -2861,9 +3029,28 @@ static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
if (!Offset->isNullValue())
Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
- Builder.CreateCondBr(
+ BranchInst *NewBI = Builder.CreateCondBr(
Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
+ // Update weight for the newly-created conditional branch.
+ SmallVector<uint64_t, 8> Weights;
+ bool HasWeights = HasBranchWeights(SI);
+ if (HasWeights) {
+ GetBranchWeights(SI, Weights);
+ if (Weights.size() == 1 + SI->getNumCases()) {
+ // Combine all weights for the cases to be the true weight of NewBI.
+ // We assume that the sum of all weights for a Terminator can fit into 32
+ // bits.
+ uint32_t NewTrueWeight = 0;
+ for (unsigned I = 1, E = Weights.size(); I != E; ++I)
+ NewTrueWeight += (uint32_t)Weights[I];
+ NewBI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(SI->getContext()).
+ createBranchWeights(NewTrueWeight,
+ (uint32_t)Weights[0]));
+ }
+ }
+
// Prune obsolete incoming values off the successor's PHI nodes.
for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
isa<PHINode>(BBI); ++BBI) {
@@ -2894,15 +3081,33 @@ static bool EliminateDeadSwitchCases(SwitchInst *SI) {
}
}
+ SmallVector<uint64_t, 8> Weights;
+ bool HasWeight = HasBranchWeights(SI);
+ if (HasWeight) {
+ GetBranchWeights(SI, Weights);
+ HasWeight = (Weights.size() == 1 + SI->getNumCases());
+ }
+
// Remove dead cases from the switch.
for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
assert(Case != SI->case_default() &&
"Case was not found. Probably mistake in DeadCases forming.");
+ if (HasWeight) {
+ std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
+ Weights.pop_back();
+ }
+
// Prune unused values from PHI nodes.
Case.getCaseSuccessor()->removePredecessor(SI->getParent());
SI->removeCase(Case);
}
+ if (HasWeight) {
+ SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
+ SI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(SI->getParent()->getContext()).
+ createBranchWeights(MDWeights));
+ }
return !DeadCases.empty();
}
@@ -2991,26 +3196,95 @@ static bool ValidLookupTableConstant(Constant *C) {
isa<UndefValue>(C);
}
-/// GetCaseResulsts - Try to determine the resulting constant values in phi
-/// nodes at the common destination basic block for one of the case
-/// destinations of a switch instruction.
+/// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
+/// its constant value in ConstantPool, returning 0 if it's not there.
+static Constant *LookupConstant(Value *V,
+ const SmallDenseMap<Value*, Constant*>& ConstantPool) {
+ if (Constant *C = dyn_cast<Constant>(V))
+ return C;
+ return ConstantPool.lookup(V);
+}
+
+/// ConstantFold - Try to fold instruction I into a constant. This works for
+/// simple instructions such as binary operations where both operands are
+/// constant or can be replaced by constants from the ConstantPool. Returns the
+/// resulting constant on success, 0 otherwise.
+static Constant *ConstantFold(Instruction *I,
+ const SmallDenseMap<Value*, Constant*>& ConstantPool) {
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
+ Constant *A = LookupConstant(BO->getOperand(0), ConstantPool);
+ if (!A)
+ return 0;
+ Constant *B = LookupConstant(BO->getOperand(1), ConstantPool);
+ if (!B)
+ return 0;
+ return ConstantExpr::get(BO->getOpcode(), A, B);
+ }
+
+ if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
+ Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
+ if (!A)
+ return 0;
+ Constant *B = LookupConstant(I->getOperand(1), ConstantPool);
+ if (!B)
+ return 0;
+ return ConstantExpr::getCompare(Cmp->getPredicate(), A, B);
+ }
+
+ if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
+ Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
+ if (!A)
+ return 0;
+ if (A->isAllOnesValue())
+ return LookupConstant(Select->getTrueValue(), ConstantPool);
+ if (A->isNullValue())
+ return LookupConstant(Select->getFalseValue(), ConstantPool);
+ return 0;
+ }
+
+ if (CastInst *Cast = dyn_cast<CastInst>(I)) {
+ Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
+ if (!A)
+ return 0;
+ return ConstantExpr::getCast(Cast->getOpcode(), A, Cast->getDestTy());
+ }
+
+ return 0;
+}
+
+/// GetCaseResults - Try to determine the resulting constant values in phi nodes
+/// at the common destination basic block, *CommonDest, for one of the case
+/// destionations CaseDest corresponding to value CaseVal (0 for the default
+/// case), of a switch instruction SI.
static bool GetCaseResults(SwitchInst *SI,
+ ConstantInt *CaseVal,
BasicBlock *CaseDest,
BasicBlock **CommonDest,
SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) {
// The block from which we enter the common destination.
BasicBlock *Pred = SI->getParent();
- // If CaseDest is empty, continue to its successor.
- if (CaseDest->getFirstNonPHIOrDbg() == CaseDest->getTerminator() &&
- !isa<PHINode>(CaseDest->begin())) {
-
- TerminatorInst *Terminator = CaseDest->getTerminator();
- if (Terminator->getNumSuccessors() != 1)
- return false;
-
- Pred = CaseDest;
- CaseDest = Terminator->getSuccessor(0);
+ // If CaseDest is empty except for some side-effect free instructions through
+ // which we can constant-propagate the CaseVal, continue to its successor.
+ SmallDenseMap<Value*, Constant*> ConstantPool;
+ ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
+ for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
+ ++I) {
+ if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
+ // If the terminator is a simple branch, continue to the next block.
+ if (T->getNumSuccessors() != 1)
+ return false;
+ Pred = CaseDest;
+ CaseDest = T->getSuccessor(0);
+ } else if (isa<DbgInfoIntrinsic>(I)) {
+ // Skip debug intrinsic.
+ continue;
+ } else if (Constant *C = ConstantFold(I, ConstantPool)) {
+ // Instruction is side-effect free and constant.
+ ConstantPool.insert(std::make_pair(I, C));
+ } else {
+ break;
+ }
}
// If we did not have a CommonDest before, use the current one.
@@ -3027,10 +3301,17 @@ static bool GetCaseResults(SwitchInst *SI,
if (Idx == -1)
continue;
- Constant *ConstVal = dyn_cast<Constant>(PHI->getIncomingValue(Idx));
+ Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
+ ConstantPool);
if (!ConstVal)
return false;
+ // Note: If the constant comes from constant-propagating the case value
+ // through the CaseDest basic block, it will be safe to remove the
+ // instructions in that block. They cannot be used (except in the phi nodes
+ // we visit) outside CaseDest, because that block does not dominate its
+ // successor. If it did, we would not be in this phi node.
+
// Be conservative about which kinds of constants we support.
if (!ValidLookupTableConstant(ConstVal))
return false;
@@ -3041,83 +3322,255 @@ static bool GetCaseResults(SwitchInst *SI,
return true;
}
-/// BuildLookupTable - Build a lookup table with the contents of Results, using
-/// DefaultResult to fill the holes in the table. If the table ends up
-/// containing the same result in each element, set *SingleResult to that value
-/// and return NULL.
-static GlobalVariable *BuildLookupTable(Module &M,
- uint64_t TableSize,
- ConstantInt *Offset,
- const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Results,
- Constant *DefaultResult,
- Constant **SingleResult) {
- assert(Results.size() && "Need values to build lookup table");
- assert(TableSize >= Results.size() && "Table needs to hold all values");
+namespace {
+ /// SwitchLookupTable - This class represents a lookup table that can be used
+ /// to replace a switch.
+ class SwitchLookupTable {
+ public:
+ /// SwitchLookupTable - Create a lookup table to use as a switch replacement
+ /// with the contents of Values, using DefaultValue to fill any holes in the
+ /// table.
+ SwitchLookupTable(Module &M,
+ uint64_t TableSize,
+ ConstantInt *Offset,
+ const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
+ Constant *DefaultValue,
+ const DataLayout *TD);
+
+ /// BuildLookup - Build instructions with Builder to retrieve the value at
+ /// the position given by Index in the lookup table.
+ Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
+
+ /// WouldFitInRegister - Return true if a table with TableSize elements of
+ /// type ElementType would fit in a target-legal register.
+ static bool WouldFitInRegister(const DataLayout *TD,
+ uint64_t TableSize,
+ const Type *ElementType);
+
+ private:
+ // Depending on the contents of the table, it can be represented in
+ // different ways.
+ enum {
+ // For tables where each element contains the same value, we just have to
+ // store that single value and return it for each lookup.
+ SingleValueKind,
+
+ // For small tables with integer elements, we can pack them into a bitmap
+ // that fits into a target-legal register. Values are retrieved by
+ // shift and mask operations.
+ BitMapKind,
+
+ // The table is stored as an array of values. Values are retrieved by load
+ // instructions from the table.
+ ArrayKind
+ } Kind;
+
+ // For SingleValueKind, this is the single value.
+ Constant *SingleValue;
+
+ // For BitMapKind, this is the bitmap.
+ ConstantInt *BitMap;
+ IntegerType *BitMapElementTy;
+
+ // For ArrayKind, this is the array.
+ GlobalVariable *Array;
+ };
+}
+
+SwitchLookupTable::SwitchLookupTable(Module &M,
+ uint64_t TableSize,
+ ConstantInt *Offset,
+ const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
+ Constant *DefaultValue,
+ const DataLayout *TD) {
+ assert(Values.size() && "Can't build lookup table without values!");
+ assert(TableSize >= Values.size() && "Can't fit values in table!");
// If all values in the table are equal, this is that value.
- Constant *SameResult = Results.begin()->second;
+ SingleValue = Values.begin()->second;
// Build up the table contents.
- std::vector<Constant*> TableContents(TableSize);
- for (size_t I = 0, E = Results.size(); I != E; ++I) {
- ConstantInt *CaseVal = Results[I].first;
- Constant *CaseRes = Results[I].second;
-
- uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
+ SmallVector<Constant*, 64> TableContents(TableSize);
+ for (size_t I = 0, E = Values.size(); I != E; ++I) {
+ ConstantInt *CaseVal = Values[I].first;
+ Constant *CaseRes = Values[I].second;
+ assert(CaseRes->getType() == DefaultValue->getType());
+
+ uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
+ .getLimitedValue();
TableContents[Idx] = CaseRes;
- if (CaseRes != SameResult)
- SameResult = NULL;
+ if (CaseRes != SingleValue)
+ SingleValue = 0;
}
// Fill in any holes in the table with the default result.
- if (Results.size() < TableSize) {
- for (unsigned i = 0; i < TableSize; ++i) {
- if (!TableContents[i])
- TableContents[i] = DefaultResult;
+ if (Values.size() < TableSize) {
+ for (uint64_t I = 0; I < TableSize; ++I) {
+ if (!TableContents[I])
+ TableContents[I] = DefaultValue;
}
- if (DefaultResult != SameResult)
- SameResult = NULL;
+ if (DefaultValue != SingleValue)
+ SingleValue = 0;
}
- // Same result was used in the entire table; just return that.
- if (SameResult) {
- *SingleResult = SameResult;
- return NULL;
+ // If each element in the table contains the same value, we only need to store
+ // that single value.
+ if (SingleValue) {
+ Kind = SingleValueKind;
+ return;
}
- ArrayType *ArrayTy = ArrayType::get(DefaultResult->getType(), TableSize);
+ // If the type is integer and the table fits in a register, build a bitmap.
+ if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) {
+ IntegerType *IT = cast<IntegerType>(DefaultValue->getType());
+ APInt TableInt(TableSize * IT->getBitWidth(), 0);
+ for (uint64_t I = TableSize; I > 0; --I) {
+ TableInt <<= IT->getBitWidth();
+ // Insert values into the bitmap. Undef values are set to zero.
+ if (!isa<UndefValue>(TableContents[I - 1])) {
+ ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
+ TableInt |= Val->getValue().zext(TableInt.getBitWidth());
+ }
+ }
+ BitMap = ConstantInt::get(M.getContext(), TableInt);
+ BitMapElementTy = IT;
+ Kind = BitMapKind;
+ ++NumBitMaps;
+ return;
+ }
+
+ // Store the table in an array.
+ ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize);
Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
- GlobalVariable *GV = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
- GlobalVariable::PrivateLinkage,
- Initializer,
- "switch.table");
- GV->setUnnamedAddr(true);
- return GV;
+ Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
+ GlobalVariable::PrivateLinkage,
+ Initializer,
+ "switch.table");
+ Array->setUnnamedAddr(true);
+ Kind = ArrayKind;
+}
+
+Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
+ switch (Kind) {
+ case SingleValueKind:
+ return SingleValue;
+ case BitMapKind: {
+ // Type of the bitmap (e.g. i59).
+ IntegerType *MapTy = BitMap->getType();
+
+ // Cast Index to the same type as the bitmap.
+ // Note: The Index is <= the number of elements in the table, so
+ // truncating it to the width of the bitmask is safe.
+ Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
+
+ // Multiply the shift amount by the element width.
+ ShiftAmt = Builder.CreateMul(ShiftAmt,
+ ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
+ "switch.shiftamt");
+
+ // Shift down.
+ Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
+ "switch.downshift");
+ // Mask off.
+ return Builder.CreateTrunc(DownShifted, BitMapElementTy,
+ "switch.masked");
+ }
+ case ArrayKind: {
+ Value *GEPIndices[] = { Builder.getInt32(0), Index };
+ Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
+ "switch.gep");
+ return Builder.CreateLoad(GEP, "switch.load");
+ }
+ }
+ llvm_unreachable("Unknown lookup table kind!");
+}
+
+bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
+ uint64_t TableSize,
+ const Type *ElementType) {
+ if (!TD)
+ return false;
+ const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
+ if (!IT)
+ return false;
+ // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
+ // are <= 15, we could try to narrow the type.
+
+ // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
+ if (TableSize >= UINT_MAX/IT->getBitWidth())
+ return false;
+ return TD->fitsInLegalInteger(TableSize * IT->getBitWidth());
+}
+
+/// ShouldBuildLookupTable - Determine whether a lookup table should be built
+/// for this switch, based on the number of caes, size of the table and the
+/// types of the results.
+static bool ShouldBuildLookupTable(SwitchInst *SI,
+ uint64_t TableSize,
+ const TargetTransformInfo &TTI,
+ const DataLayout *TD,
+ const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
+ if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
+ return false; // TableSize overflowed, or mul below might overflow.
+
+ bool AllTablesFitInRegister = true;
+ bool HasIllegalType = false;
+ for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
+ E = ResultTypes.end(); I != E; ++I) {
+ Type *Ty = I->second;
+
+ // Saturate this flag to true.
+ HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
+
+ // Saturate this flag to false.
+ AllTablesFitInRegister = AllTablesFitInRegister &&
+ SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty);
+
+ // If both flags saturate, we're done. NOTE: This *only* works with
+ // saturating flags, and all flags have to saturate first due to the
+ // non-deterministic behavior of iterating over a dense map.
+ if (HasIllegalType && !AllTablesFitInRegister)
+ break;
+ }
+
+ // If each table would fit in a register, we should build it anyway.
+ if (AllTablesFitInRegister)
+ return true;
+
+ // Don't build a table that doesn't fit in-register if it has illegal types.
+ if (HasIllegalType)
+ return false;
+
+ // The table density should be at least 40%. This is the same criterion as for
+ // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
+ // FIXME: Find the best cut-off.
+ return SI->getNumCases() * 10 >= TableSize * 4;
}
/// SwitchToLookupTable - If the switch is only used to initialize one or more
/// phi nodes in a common successor block with different constant values,
/// replace the switch with lookup tables.
static bool SwitchToLookupTable(SwitchInst *SI,
- IRBuilder<> &Builder) {
+ IRBuilder<> &Builder,
+ const TargetTransformInfo &TTI,
+ const DataLayout* TD) {
assert(SI->getNumCases() > 1 && "Degenerate switch?");
- // FIXME: Handle unreachable cases.
+
+ // Only build lookup table when we have a target that supports it.
+ if (!TTI.shouldBuildLookupTables())
+ return false;
// FIXME: If the switch is too sparse for a lookup table, perhaps we could
// split off a dense part and build a lookup table for that.
- // FIXME: If the results are all integers and the lookup table would fit in a
- // target-legal register, we should store them as a bitmap and use shift/mask
- // to look up the result.
-
// FIXME: This creates arrays of GEPs to constant strings, which means each
// GEP needs a runtime relocation in PIC code. We should just build one big
// string and lookup indices into that.
- // Ignore the switch if the number of cases are too small.
+ // Ignore the switch if the number of cases is too small.
// This is similar to the check when building jump tables in
// SelectionDAGBuilder::handleJTSwitchCase.
// FIXME: Determine the best cut-off.
@@ -3131,7 +3584,7 @@ static bool SwitchToLookupTable(SwitchInst *SI,
ConstantInt *MinCaseVal = CI.getCaseValue();
ConstantInt *MaxCaseVal = CI.getCaseValue();
- BasicBlock *CommonDest = NULL;
+ BasicBlock *CommonDest = 0;
typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
SmallDenseMap<PHINode*, ResultListTy> ResultLists;
SmallDenseMap<PHINode*, Constant*> DefaultResults;
@@ -3148,7 +3601,8 @@ static bool SwitchToLookupTable(SwitchInst *SI,
// Resulting value at phi nodes for this case value.
typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
ResultsTy Results;
- if (!GetCaseResults(SI, CI.getCaseSuccessor(), &CommonDest, Results))
+ if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
+ Results))
return false;
// Append the result from this case to the list for each phi.
@@ -3161,7 +3615,8 @@ static bool SwitchToLookupTable(SwitchInst *SI,
// Get the resulting values for the default case.
SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
- if (!GetCaseResults(SI, SI->getDefaultDest(), &CommonDest, DefaultResultsList))
+ if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest,
+ DefaultResultsList))
return false;
for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
PHINode *PHI = DefaultResultsList[I].first;
@@ -3171,33 +3626,12 @@ static bool SwitchToLookupTable(SwitchInst *SI,
}
APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
- // The table density should be at lest 40%. This is the same criterion as for
- // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
- // FIXME: Find the best cut-off.
- // Be careful to avoid overlow in the density computation.
- if (RangeSpread.zextOrSelf(64).ugt(UINT64_MAX / 4 - 1))
- return false;
uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
- if (SI->getNumCases() * 10 < TableSize * 4)
+ if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes))
return false;
- // Build the lookup tables.
- SmallDenseMap<PHINode*, GlobalVariable*> LookupTables;
- SmallDenseMap<PHINode*, Constant*> SingleResults;
-
- Module &Mod = *CommonDest->getParent()->getParent();
- for (SmallVector<PHINode*, 4>::iterator I = PHIs.begin(), E = PHIs.end();
- I != E; ++I) {
- PHINode *PHI = *I;
-
- Constant *SingleResult = NULL;
- LookupTables[PHI] = BuildLookupTable(Mod, TableSize, MinCaseVal,
- ResultLists[PHI], DefaultResults[PHI],
- &SingleResult);
- SingleResults[PHI] = SingleResult;
- }
-
// Create the BB that does the lookups.
+ Module &Mod = *CommonDest->getParent()->getParent();
BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
"switch.lookup",
CommonDest->getParent(),
@@ -3215,31 +3649,24 @@ static bool SwitchToLookupTable(SwitchInst *SI,
// Populate the BB that does the lookups.
Builder.SetInsertPoint(LookupBB);
bool ReturnedEarly = false;
- for (SmallVector<PHINode*, 4>::iterator I = PHIs.begin(), E = PHIs.end();
- I != E; ++I) {
- PHINode *PHI = *I;
- // There was a single result for this phi; just use that.
- if (Constant *SingleResult = SingleResults[PHI]) {
- PHI->addIncoming(SingleResult, LookupBB);
- continue;
- }
+ for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
+ PHINode *PHI = PHIs[I];
- Value *GEPIndices[] = { Builder.getInt32(0), TableIndex };
- Value *GEP = Builder.CreateInBoundsGEP(LookupTables[PHI], GEPIndices,
- "switch.gep");
- Value *Result = Builder.CreateLoad(GEP, "switch.load");
-
- // If the result is only going to be used to return from the function,
- // we want to do that right here.
- if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin())) {
- if (CommonDest->getFirstNonPHIOrDbg() == CommonDest->getTerminator()) {
- Builder.CreateRet(Result);
- ReturnedEarly = true;
- }
+ SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
+ DefaultResults[PHI], TD);
+
+ Value *Result = Table.BuildLookup(TableIndex, Builder);
+
+ // If the result is used to return immediately from the function, we want to
+ // do that right here.
+ if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) &&
+ *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) {
+ Builder.CreateRet(Result);
+ ReturnedEarly = true;
+ break;
}
- if (!ReturnedEarly)
- PHI->addIncoming(Result, LookupBB);
+ PHI->addIncoming(Result, LookupBB);
}
if (!ReturnedEarly)
@@ -3258,46 +3685,44 @@ static bool SwitchToLookupTable(SwitchInst *SI,
}
bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
- // If this switch is too complex to want to look at, ignore it.
- if (!isValueEqualityComparison(SI))
- return false;
-
BasicBlock *BB = SI->getParent();
- // If we only have one predecessor, and if it is a branch on this value,
- // see if that predecessor totally determines the outcome of this switch.
- if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
- if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
- return SimplifyCFG(BB) | true;
+ if (isValueEqualityComparison(SI)) {
+ // If we only have one predecessor, and if it is a branch on this value,
+ // see if that predecessor totally determines the outcome of this switch.
+ if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
+ if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
+ return SimplifyCFG(BB, TTI, TD) | true;
- Value *Cond = SI->getCondition();
- if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
- if (SimplifySwitchOnSelect(SI, Select))
- return SimplifyCFG(BB) | true;
+ Value *Cond = SI->getCondition();
+ if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
+ if (SimplifySwitchOnSelect(SI, Select))
+ return SimplifyCFG(BB, TTI, TD) | true;
- // If the block only contains the switch, see if we can fold the block
- // away into any preds.
- BasicBlock::iterator BBI = BB->begin();
- // Ignore dbg intrinsics.
- while (isa<DbgInfoIntrinsic>(BBI))
- ++BBI;
- if (SI == &*BBI)
- if (FoldValueComparisonIntoPredecessors(SI, Builder))
- return SimplifyCFG(BB) | true;
+ // If the block only contains the switch, see if we can fold the block
+ // away into any preds.
+ BasicBlock::iterator BBI = BB->begin();
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(BBI))
+ ++BBI;
+ if (SI == &*BBI)
+ if (FoldValueComparisonIntoPredecessors(SI, Builder))
+ return SimplifyCFG(BB, TTI, TD) | true;
+ }
// Try to transform the switch into an icmp and a branch.
if (TurnSwitchRangeIntoICmp(SI, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// Remove unreachable cases.
if (EliminateDeadSwitchCases(SI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
if (ForwardSwitchConditionToPHI(SI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
- if (SwitchToLookupTable(SI, Builder))
- return SimplifyCFG(BB) | true;
+ if (SwitchToLookupTable(SI, Builder, TTI, TD))
+ return SimplifyCFG(BB, TTI, TD) | true;
return false;
}
@@ -3334,7 +3759,7 @@ bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
if (SimplifyIndirectBrOnSelect(IBI, SI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
return Changed;
}
@@ -3342,6 +3767,9 @@ bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
BasicBlock *BB = BI->getParent();
+ if (SinkCommon && SinkThenElseCodeToEnd(BI))
+ return true;
+
// If the Terminator is the only non-phi instruction, simplify the block.
BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
@@ -3355,7 +3783,7 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
;
if (I->isTerminator() &&
- TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
+ TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD))
return true;
}
@@ -3364,7 +3792,7 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
// predecessor and use logical operations to update the incoming value
// for PHI nodes in common successor.
if (FoldBranchToCommonDest(BI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
return false;
}
@@ -3379,7 +3807,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
// switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// This block must be empty, except for the setcond inst, if it exists.
// Ignore dbg intrinsics.
@@ -3389,14 +3817,14 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
++I;
if (&*I == BI) {
if (FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
} else if (&*I == cast<Instruction>(BI->getCondition())){
++I;
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(I))
++I;
if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
}
@@ -3408,7 +3836,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
// branches to us and one of our successors, fold the comparison into the
// predecessor and use logical operations to pick the right destination.
if (FoldBranchToCommonDest(BI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// We have a conditional branch to two blocks that are only reachable
// from BI. We know that the condbr dominates the two blocks, so see if
@@ -3417,7 +3845,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
if (HoistThenElseCodeToIf(BI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
} else {
// If Successor #1 has multiple preds, we may be able to conditionally
// execute Successor #0 if it branches to successor #1.
@@ -3425,7 +3853,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (Succ0TI->getNumSuccessors() == 1 &&
Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
} else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
// If Successor #0 has multiple preds, we may be able to conditionally
@@ -3434,7 +3862,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (Succ1TI->getNumSuccessors() == 1 &&
Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
// If this is a branch on a phi node in the current block, thread control
@@ -3442,14 +3870,14 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
if (PN->getParent() == BI->getParent())
if (FoldCondBranchOnPHI(BI, TD))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// Scan predecessor blocks for conditional branches.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI != BI && PBI->isConditional())
if (SimplifyCondBranchToCondBranch(PBI, BI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
return false;
}
@@ -3460,11 +3888,12 @@ static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
if (!C)
return false;
- if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
+ if (I->use_empty())
return false;
if (C->isNullValue()) {
- Instruction *Use = I->use_back();
+ // Only look at the first use, avoid hurting compile time with long uselists
+ User *Use = *I->use_begin();
// Now make sure that there are no instructions in between that can alter
// control flow (eg. calls)
@@ -3589,6 +4018,7 @@ bool SimplifyCFGOpt::run(BasicBlock *BB) {
/// eliminates unreachable basic blocks, and does other "peephole" optimization
/// of the CFG. It returns true if a modification was made.
///
-bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
- return SimplifyCFGOpt(TD).run(BB);
+bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
+ const DataLayout *TD) {
+ return SimplifyCFGOpt(TTI, TD).run(BB);
}
diff --git a/lib/Transforms/Utils/SimplifyIndVar.cpp b/lib/Transforms/Utils/SimplifyIndVar.cpp
index 5d673f1..41c207c 100644
--- a/lib/Transforms/Utils/SimplifyIndVar.cpp
+++ b/lib/Transforms/Utils/SimplifyIndVar.cpp
@@ -15,18 +15,18 @@
#define DEBUG_TYPE "indvars"
-#include "llvm/Instructions.h"
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/SimplifyIndVar.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
@@ -44,7 +44,7 @@ namespace {
Loop *L;
LoopInfo *LI;
ScalarEvolution *SE;
- const TargetData *TD; // May be NULL
+ const DataLayout *TD; // May be NULL
SmallVectorImpl<WeakVH> &DeadInsts;
@@ -56,7 +56,7 @@ namespace {
L(Loop),
LI(LPM->getAnalysisIfAvailable<LoopInfo>()),
SE(SE),
- TD(LPM->getAnalysisIfAvailable<TargetData>()),
+ TD(LPM->getAnalysisIfAvailable<DataLayout>()),
DeadInsts(Dead),
Changed(false) {
assert(LI && "IV simplification requires LoopInfo");
diff --git a/lib/Transforms/Utils/SimplifyInstructions.cpp b/lib/Transforms/Utils/SimplifyInstructions.cpp
index 528e6a1..f9687e4 100644
--- a/lib/Transforms/Utils/SimplifyInstructions.cpp
+++ b/lib/Transforms/Utils/SimplifyInstructions.cpp
@@ -15,17 +15,17 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "instsimplify"
-#include "llvm/Function.h"
-#include "llvm/Pass.h"
-#include "llvm/Type.h"
+#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -46,7 +46,7 @@ namespace {
/// runOnFunction - Remove instructions that simplify.
bool runOnFunction(Function &F) {
const DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>();
- const TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
SmallPtrSet<const Instruction*, 8> S1, S2, *ToSimplify = &S1, *Next = &S2;
bool Changed = false;
diff --git a/lib/Transforms/Utils/SimplifyLibCalls.cpp b/lib/Transforms/Utils/SimplifyLibCalls.cpp
new file mode 100644
index 0000000..83c74e7
--- /dev/null
+++ b/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -0,0 +1,1894 @@
+//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a utility pass used for testing the InstructionSimplify analysis.
+// The analysis is applied to every instruction, and if it simplifies then the
+// instruction is replaced by the simplification. If you are looking for a pass
+// that performs serious instruction folding, use the instcombine pass instead.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
+
+using namespace llvm;
+
+/// This class is the abstract base class for the set of optimizations that
+/// corresponds to one library call.
+namespace {
+class LibCallOptimization {
+protected:
+ Function *Caller;
+ const DataLayout *TD;
+ const TargetLibraryInfo *TLI;
+ const LibCallSimplifier *LCS;
+ LLVMContext* Context;
+public:
+ LibCallOptimization() { }
+ virtual ~LibCallOptimization() {}
+
+ /// callOptimizer - This pure virtual method is implemented by base classes to
+ /// do various optimizations. If this returns null then no transformation was
+ /// performed. If it returns CI, then it transformed the call and CI is to be
+ /// deleted. If it returns something else, replace CI with the new value and
+ /// delete CI.
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
+ =0;
+
+ Value *optimizeCall(CallInst *CI, const DataLayout *TD,
+ const TargetLibraryInfo *TLI,
+ const LibCallSimplifier *LCS, IRBuilder<> &B) {
+ Caller = CI->getParent()->getParent();
+ this->TD = TD;
+ this->TLI = TLI;
+ this->LCS = LCS;
+ if (CI->getCalledFunction())
+ Context = &CI->getCalledFunction()->getContext();
+
+ // We never change the calling convention.
+ if (CI->getCallingConv() != llvm::CallingConv::C)
+ return NULL;
+
+ return callOptimizer(CI->getCalledFunction(), CI, B);
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Helper Functions
+//===----------------------------------------------------------------------===//
+
+/// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
+/// value is equal or not-equal to zero.
+static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
+ UI != E; ++UI) {
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
+ if (IC->isEquality())
+ if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
+ if (C->isNullValue())
+ continue;
+ // Unknown instruction.
+ return false;
+ }
+ return true;
+}
+
+/// isOnlyUsedInEqualityComparison - Return true if it is only used in equality
+/// comparisons with With.
+static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
+ UI != E; ++UI) {
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
+ if (IC->isEquality() && IC->getOperand(1) == With)
+ continue;
+ // Unknown instruction.
+ return false;
+ }
+ return true;
+}
+
+static bool callHasFloatingPointArgument(const CallInst *CI) {
+ for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
+ it != e; ++it) {
+ if ((*it)->getType()->isFloatingPointTy())
+ return true;
+ }
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Fortified Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+struct FortifiedLibCallOptimization : public LibCallOptimization {
+protected:
+ virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
+ bool isString) const = 0;
+};
+
+struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization {
+ CallInst *CI;
+
+ bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
+ if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
+ return true;
+ if (ConstantInt *SizeCI =
+ dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
+ if (SizeCI->isAllOnesValue())
+ return true;
+ if (isString) {
+ uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
+ // If the length is 0 we don't know how long it is and so we can't
+ // remove the check.
+ if (Len == 0) return false;
+ return SizeCI->getZExtValue() >= Len;
+ }
+ if (ConstantInt *Arg = dyn_cast<ConstantInt>(
+ CI->getArgOperand(SizeArgOp)))
+ return SizeCI->getZExtValue() >= Arg->getZExtValue();
+ }
+ return false;
+ }
+};
+
+struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ this->CI = CI;
+ FunctionType *FT = Callee->getFunctionType();
+ LLVMContext &Context = CI->getParent()->getContext();
+
+ // Check if this has the right signature.
+ if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ FT->getParamType(2) != TD->getIntPtrType(Context) ||
+ FT->getParamType(3) != TD->getIntPtrType(Context))
+ return 0;
+
+ if (isFoldable(3, 2, false)) {
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+ return 0;
+ }
+};
+
+struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ this->CI = CI;
+ FunctionType *FT = Callee->getFunctionType();
+ LLVMContext &Context = CI->getParent()->getContext();
+
+ // Check if this has the right signature.
+ if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ FT->getParamType(2) != TD->getIntPtrType(Context) ||
+ FT->getParamType(3) != TD->getIntPtrType(Context))
+ return 0;
+
+ if (isFoldable(3, 2, false)) {
+ B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+ return 0;
+ }
+};
+
+struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ this->CI = CI;
+ FunctionType *FT = Callee->getFunctionType();
+ LLVMContext &Context = CI->getParent()->getContext();
+
+ // Check if this has the right signature.
+ if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy() ||
+ FT->getParamType(2) != TD->getIntPtrType(Context) ||
+ FT->getParamType(3) != TD->getIntPtrType(Context))
+ return 0;
+
+ if (isFoldable(3, 2, false)) {
+ Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
+ false);
+ B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+ return 0;
+ }
+};
+
+struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ this->CI = CI;
+ StringRef Name = Callee->getName();
+ FunctionType *FT = Callee->getFunctionType();
+ LLVMContext &Context = CI->getParent()->getContext();
+
+ // Check if this has the right signature.
+ if (FT->getNumParams() != 3 ||
+ FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
+ FT->getParamType(2) != TD->getIntPtrType(Context))
+ return 0;
+
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) // __strcpy_chk(x,x) -> x
+ return Src;
+
+ // If a) we don't have any length information, or b) we know this will
+ // fit then just lower to a plain strcpy. Otherwise we'll keep our
+ // strcpy_chk call which may fail at runtime if the size is too long.
+ // TODO: It might be nice to get a maximum length out of the possible
+ // string lengths for varying.
+ if (isFoldable(2, 1, true)) {
+ Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6));
+ return Ret;
+ } else {
+ // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0) return 0;
+
+ // This optimization require DataLayout.
+ if (!TD) return 0;
+
+ Value *Ret =
+ EmitMemCpyChk(Dst, Src,
+ ConstantInt::get(TD->getIntPtrType(Context), Len),
+ CI->getArgOperand(2), B, TD, TLI);
+ return Ret;
+ }
+ return 0;
+ }
+};
+
+struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ this->CI = CI;
+ StringRef Name = Callee->getName();
+ FunctionType *FT = Callee->getFunctionType();
+ LLVMContext &Context = CI->getParent()->getContext();
+
+ // Check if this has the right signature.
+ if (FT->getNumParams() != 3 ||
+ FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
+ FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)))
+ return 0;
+
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
+ Value *StrLen = EmitStrLen(Src, B, TD, TLI);
+ return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0;
+ }
+
+ // If a) we don't have any length information, or b) we know this will
+ // fit then just lower to a plain stpcpy. Otherwise we'll keep our
+ // stpcpy_chk call which may fail at runtime if the size is too long.
+ // TODO: It might be nice to get a maximum length out of the possible
+ // string lengths for varying.
+ if (isFoldable(2, 1, true)) {
+ Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6));
+ return Ret;
+ } else {
+ // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0) return 0;
+
+ // This optimization require DataLayout.
+ if (!TD) return 0;
+
+ Type *PT = FT->getParamType(0);
+ Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len);
+ Value *DstEnd = B.CreateGEP(Dst,
+ ConstantInt::get(TD->getIntPtrType(PT),
+ Len - 1));
+ if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, TD, TLI))
+ return 0;
+ return DstEnd;
+ }
+ return 0;
+ }
+};
+
+struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ this->CI = CI;
+ StringRef Name = Callee->getName();
+ FunctionType *FT = Callee->getFunctionType();
+ LLVMContext &Context = CI->getParent()->getContext();
+
+ // Check if this has the right signature.
+ if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
+ !FT->getParamType(2)->isIntegerTy() ||
+ FT->getParamType(3) != TD->getIntPtrType(Context))
+ return 0;
+
+ if (isFoldable(3, 2, false)) {
+ Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TD, TLI,
+ Name.substr(2, 7));
+ return Ret;
+ }
+ return 0;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// String and Memory Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+struct StrCatOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Verify the "strcat" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ FT->getParamType(1) != FT->getReturnType())
+ return 0;
+
+ // Extract some information from the instruction
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0) return 0;
+ --Len; // Unbias length.
+
+ // Handle the simple, do-nothing case: strcat(x, "") -> x
+ if (Len == 0)
+ return Dst;
+
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ return emitStrLenMemCpy(Src, Dst, Len, B);
+ }
+
+ Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
+ IRBuilder<> &B) {
+ // We need to find the end of the destination string. That's where the
+ // memory is to be moved to. We just generate a call to strlen.
+ Value *DstLen = EmitStrLen(Dst, B, TD, TLI);
+ if (!DstLen)
+ return 0;
+
+ // Now that we have the destination's length, we must index into the
+ // destination's pointer to get the actual memcpy destination (end of
+ // the string .. we're concatenating).
+ Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
+
+ // We have enough information to now generate the memcpy call to do the
+ // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(CpyDst, Src,
+ ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1);
+ return Dst;
+ }
+};
+
+struct StrNCatOpt : public StrCatOpt {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Verify the "strncat" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 ||
+ FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ FT->getParamType(1) != FT->getReturnType() ||
+ !FT->getParamType(2)->isIntegerTy())
+ return 0;
+
+ // Extract some information from the instruction
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+ uint64_t Len;
+
+ // We don't do anything if length is not constant
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
+ Len = LengthArg->getZExtValue();
+ else
+ return 0;
+
+ // See if we can get the length of the input string.
+ uint64_t SrcLen = GetStringLength(Src);
+ if (SrcLen == 0) return 0;
+ --SrcLen; // Unbias length.
+
+ // Handle the simple, do-nothing cases:
+ // strncat(x, "", c) -> x
+ // strncat(x, c, 0) -> x
+ if (SrcLen == 0 || Len == 0) return Dst;
+
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ // We don't optimize this case
+ if (Len < SrcLen) return 0;
+
+ // strncat(x, s, c) -> strcat(x, s)
+ // s is constant so the strcat can be optimized further
+ return emitStrLenMemCpy(Src, Dst, SrcLen, B);
+ }
+};
+
+struct StrChrOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Verify the "strchr" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ !FT->getParamType(1)->isIntegerTy(32))
+ return 0;
+
+ Value *SrcStr = CI->getArgOperand(0);
+
+ // If the second operand is non-constant, see if we can compute the length
+ // of the input string and turn this into memchr.
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ if (CharC == 0) {
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ uint64_t Len = GetStringLength(SrcStr);
+ if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
+ return 0;
+
+ return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
+ ConstantInt::get(TD->getIntPtrType(*Context), Len),
+ B, TD, TLI);
+ }
+
+ // Otherwise, the character is a constant, see if the first argument is
+ // a string literal. If so, we can constant fold.
+ StringRef Str;
+ if (!getConstantStringInfo(SrcStr, Str))
+ return 0;
+
+ // Compute the offset, make sure to handle the case when we're searching for
+ // zero (a weird way to spell strlen).
+ size_t I = CharC->getSExtValue() == 0 ?
+ Str.size() : Str.find(CharC->getSExtValue());
+ if (I == StringRef::npos) // Didn't find the char. strchr returns null.
+ return Constant::getNullValue(CI->getType());
+
+ // strchr(s+n,c) -> gep(s+n+i,c)
+ return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
+ }
+};
+
+struct StrRChrOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Verify the "strrchr" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ !FT->getParamType(1)->isIntegerTy(32))
+ return 0;
+
+ Value *SrcStr = CI->getArgOperand(0);
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+
+ // Cannot fold anything if we're not looking for a constant.
+ if (!CharC)
+ return 0;
+
+ StringRef Str;
+ if (!getConstantStringInfo(SrcStr, Str)) {
+ // strrchr(s, 0) -> strchr(s, 0)
+ if (TD && CharC->isZero())
+ return EmitStrChr(SrcStr, '\0', B, TD, TLI);
+ return 0;
+ }
+
+ // Compute the offset.
+ size_t I = CharC->getSExtValue() == 0 ?
+ Str.size() : Str.rfind(CharC->getSExtValue());
+ if (I == StringRef::npos) // Didn't find the char. Return null.
+ return Constant::getNullValue(CI->getType());
+
+ // strrchr(s+n,c) -> gep(s+n+i,c)
+ return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
+ }
+};
+
+struct StrCmpOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Verify the "strcmp" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ !FT->getReturnType()->isIntegerTy(32) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy())
+ return 0;
+
+ Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
+ if (Str1P == Str2P) // strcmp(x,x) -> 0
+ return ConstantInt::get(CI->getType(), 0);
+
+ StringRef Str1, Str2;
+ bool HasStr1 = getConstantStringInfo(Str1P, Str1);
+ bool HasStr2 = getConstantStringInfo(Str2P, Str2);
+
+ // strcmp(x, y) -> cnst (if both x and y are constant strings)
+ if (HasStr1 && HasStr2)
+ return ConstantInt::get(CI->getType(), Str1.compare(Str2));
+
+ if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
+ return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
+ CI->getType()));
+
+ if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
+ return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
+
+ // strcmp(P, "x") -> memcmp(P, "x", 2)
+ uint64_t Len1 = GetStringLength(Str1P);
+ uint64_t Len2 = GetStringLength(Str2P);
+ if (Len1 && Len2) {
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ return EmitMemCmp(Str1P, Str2P,
+ ConstantInt::get(TD->getIntPtrType(*Context),
+ std::min(Len1, Len2)), B, TD, TLI);
+ }
+
+ return 0;
+ }
+};
+
+struct StrNCmpOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Verify the "strncmp" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 ||
+ !FT->getReturnType()->isIntegerTy(32) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ !FT->getParamType(2)->isIntegerTy())
+ return 0;
+
+ Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
+ if (Str1P == Str2P) // strncmp(x,x,n) -> 0
+ return ConstantInt::get(CI->getType(), 0);
+
+ // Get the length argument if it is constant.
+ uint64_t Length;
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
+ Length = LengthArg->getZExtValue();
+ else
+ return 0;
+
+ if (Length == 0) // strncmp(x,y,0) -> 0
+ return ConstantInt::get(CI->getType(), 0);
+
+ if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
+ return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI);
+
+ StringRef Str1, Str2;
+ bool HasStr1 = getConstantStringInfo(Str1P, Str1);
+ bool HasStr2 = getConstantStringInfo(Str2P, Str2);
+
+ // strncmp(x, y) -> cnst (if both x and y are constant strings)
+ if (HasStr1 && HasStr2) {
+ StringRef SubStr1 = Str1.substr(0, Length);
+ StringRef SubStr2 = Str2.substr(0, Length);
+ return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
+ }
+
+ if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
+ return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
+ CI->getType()));
+
+ if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
+ return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
+
+ return 0;
+ }
+};
+
+struct StrCpyOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Verify the "strcpy" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy())
+ return 0;
+
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) // strcpy(x,x) -> x
+ return Src;
+
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0) return 0;
+
+ // We have enough information to now generate the memcpy call to do the
+ // copy for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(Dst, Src,
+ ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
+ return Dst;
+ }
+};
+
+struct StpCpyOpt: public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Verify the "stpcpy" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy())
+ return 0;
+
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
+ Value *StrLen = EmitStrLen(Src, B, TD, TLI);
+ return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0;
+ }
+
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0) return 0;
+
+ Type *PT = FT->getParamType(0);
+ Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len);
+ Value *DstEnd = B.CreateGEP(Dst,
+ ConstantInt::get(TD->getIntPtrType(PT),
+ Len - 1));
+
+ // We have enough information to now generate the memcpy call to do the
+ // copy for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(Dst, Src, LenV, 1);
+ return DstEnd;
+ }
+};
+
+struct StrNCpyOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ !FT->getParamType(2)->isIntegerTy())
+ return 0;
+
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+ Value *LenOp = CI->getArgOperand(2);
+
+ // See if we can get the length of the input string.
+ uint64_t SrcLen = GetStringLength(Src);
+ if (SrcLen == 0) return 0;
+ --SrcLen;
+
+ if (SrcLen == 0) {
+ // strncpy(x, "", y) -> memset(x, '\0', y, 1)
+ B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
+ return Dst;
+ }
+
+ uint64_t Len;
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
+ Len = LengthArg->getZExtValue();
+ else
+ return 0;
+
+ if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
+
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ // Let strncpy handle the zero padding
+ if (Len > SrcLen+1) return 0;
+
+ Type *PT = FT->getParamType(0);
+ // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
+ B.CreateMemCpy(Dst, Src,
+ ConstantInt::get(TD->getIntPtrType(PT), Len), 1);
+
+ return Dst;
+ }
+};
+
+struct StrLenOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 1 ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return 0;
+
+ Value *Src = CI->getArgOperand(0);
+
+ // Constant folding: strlen("xyz") -> 3
+ if (uint64_t Len = GetStringLength(Src))
+ return ConstantInt::get(CI->getType(), Len-1);
+
+ // strlen(x) != 0 --> *x != 0
+ // strlen(x) == 0 --> *x == 0
+ if (isOnlyUsedInZeroEqualityComparison(CI))
+ return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
+ return 0;
+ }
+};
+
+struct StrPBrkOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ FT->getParamType(1) != FT->getParamType(0) ||
+ FT->getReturnType() != FT->getParamType(0))
+ return 0;
+
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strpbrk(s, "") -> NULL
+ // strpbrk("", s) -> NULL
+ if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t I = S1.find_first_of(S2);
+ if (I == std::string::npos) // No match.
+ return Constant::getNullValue(CI->getType());
+
+ return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
+ }
+
+ // strpbrk(s, "a") -> strchr(s, 'a')
+ if (TD && HasS2 && S2.size() == 1)
+ return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD, TLI);
+
+ return 0;
+ }
+};
+
+struct StrToOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy())
+ return 0;
+
+ Value *EndPtr = CI->getArgOperand(1);
+ if (isa<ConstantPointerNull>(EndPtr)) {
+ // With a null EndPtr, this function won't capture the main argument.
+ // It would be readonly too, except that it still may write to errno.
+ CI->addAttribute(1, Attribute::get(Callee->getContext(),
+ Attribute::NoCapture));
+ }
+
+ return 0;
+ }
+};
+
+struct StrSpnOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ FT->getParamType(1) != FT->getParamType(0) ||
+ !FT->getReturnType()->isIntegerTy())
+ return 0;
+
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strspn(s, "") -> 0
+ // strspn("", s) -> 0
+ if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t Pos = S1.find_first_not_of(S2);
+ if (Pos == StringRef::npos) Pos = S1.size();
+ return ConstantInt::get(CI->getType(), Pos);
+ }
+
+ return 0;
+ }
+};
+
+struct StrCSpnOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ FT->getParamType(1) != FT->getParamType(0) ||
+ !FT->getReturnType()->isIntegerTy())
+ return 0;
+
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strcspn("", s) -> 0
+ if (HasS1 && S1.empty())
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t Pos = S1.find_first_of(S2);
+ if (Pos == StringRef::npos) Pos = S1.size();
+ return ConstantInt::get(CI->getType(), Pos);
+ }
+
+ // strcspn(s, "") -> strlen(s)
+ if (TD && HasS2 && S2.empty())
+ return EmitStrLen(CI->getArgOperand(0), B, TD, TLI);
+
+ return 0;
+ }
+};
+
+struct StrStrOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isPointerTy())
+ return 0;
+
+ // fold strstr(x, x) -> x.
+ if (CI->getArgOperand(0) == CI->getArgOperand(1))
+ return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
+
+ // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
+ if (TD && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
+ Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD, TLI);
+ if (!StrLen)
+ return 0;
+ Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
+ StrLen, B, TD, TLI);
+ if (!StrNCmp)
+ return 0;
+ for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end();
+ UI != UE; ) {
+ ICmpInst *Old = cast<ICmpInst>(*UI++);
+ Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
+ ConstantInt::getNullValue(StrNCmp->getType()),
+ "cmp");
+ LCS->replaceAllUsesWith(Old, Cmp);
+ }
+ return CI;
+ }
+
+ // See if either input string is a constant string.
+ StringRef SearchStr, ToFindStr;
+ bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
+ bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
+
+ // fold strstr(x, "") -> x.
+ if (HasStr2 && ToFindStr.empty())
+ return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
+
+ // If both strings are known, constant fold it.
+ if (HasStr1 && HasStr2) {
+ std::string::size_type Offset = SearchStr.find(ToFindStr);
+
+ if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
+ return Constant::getNullValue(CI->getType());
+
+ // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
+ Value *Result = CastToCStr(CI->getArgOperand(0), B);
+ Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
+ return B.CreateBitCast(Result, CI->getType());
+ }
+
+ // fold strstr(x, "y") -> strchr(x, 'y').
+ if (HasStr2 && ToFindStr.size() == 1) {
+ Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TD, TLI);
+ return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : 0;
+ }
+ return 0;
+ }
+};
+
+struct MemCmpOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy(32))
+ return 0;
+
+ Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
+
+ if (LHS == RHS) // memcmp(s,s,x) -> 0
+ return Constant::getNullValue(CI->getType());
+
+ // Make sure we have a constant length.
+ ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ if (!LenC) return 0;
+ uint64_t Len = LenC->getZExtValue();
+
+ if (Len == 0) // memcmp(s1,s2,0) -> 0
+ return Constant::getNullValue(CI->getType());
+
+ // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
+ if (Len == 1) {
+ Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
+ CI->getType(), "lhsv");
+ Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
+ CI->getType(), "rhsv");
+ return B.CreateSub(LHSV, RHSV, "chardiff");
+ }
+
+ // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
+ StringRef LHSStr, RHSStr;
+ if (getConstantStringInfo(LHS, LHSStr) &&
+ getConstantStringInfo(RHS, RHSStr)) {
+ // Make sure we're not reading out-of-bounds memory.
+ if (Len > LHSStr.size() || Len > RHSStr.size())
+ return 0;
+ // Fold the memcmp and normalize the result. This way we get consistent
+ // results across multiple platforms.
+ uint64_t Ret = 0;
+ int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
+ if (Cmp < 0)
+ Ret = -1;
+ else if (Cmp > 0)
+ Ret = 1;
+ return ConstantInt::get(CI->getType(), Ret);
+ }
+
+ return 0;
+ }
+};
+
+struct MemCpyOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ FT->getParamType(2) != TD->getIntPtrType(*Context))
+ return 0;
+
+ // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+};
+
+struct MemMoveOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ FT->getParamType(2) != TD->getIntPtrType(*Context))
+ return 0;
+
+ // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
+ B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+};
+
+struct MemSetOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy() ||
+ FT->getParamType(2) != TD->getIntPtrType(*Context))
+ return 0;
+
+ // memset(p, v, n) -> llvm.memset(p, v, n, 1)
+ Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
+ B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Math Library Optimizations
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
+
+struct UnaryDoubleFPOpt : public LibCallOptimization {
+ bool CheckRetType;
+ UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
+ !FT->getParamType(0)->isDoubleTy())
+ return 0;
+
+ if (CheckRetType) {
+ // Check if all the uses for function like 'sin' are converted to float.
+ for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end();
+ ++UseI) {
+ FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI);
+ if (Cast == 0 || !Cast->getType()->isFloatTy())
+ return 0;
+ }
+ }
+
+ // If this is something like 'floor((double)floatval)', convert to floorf.
+ FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
+ if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
+ return 0;
+
+ // floor((double)floatval) -> (double)floorf(floatval)
+ Value *V = Cast->getOperand(0);
+ V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
+ return B.CreateFPExt(V, B.getDoubleTy());
+ }
+};
+
+struct UnsafeFPLibCallOptimization : public LibCallOptimization {
+ bool UnsafeFPShrink;
+ UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
+ this->UnsafeFPShrink = UnsafeFPShrink;
+ }
+};
+
+struct CosOpt : public UnsafeFPLibCallOptimization {
+ CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ Value *Ret = NULL;
+ if (UnsafeFPShrink && Callee->getName() == "cos" &&
+ TLI->has(LibFunc::cosf)) {
+ UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+ Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ // cos(-x) -> cos(x)
+ Value *Op1 = CI->getArgOperand(0);
+ if (BinaryOperator::isFNeg(Op1)) {
+ BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
+ return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
+ }
+ return Ret;
+ }
+};
+
+struct PowOpt : public UnsafeFPLibCallOptimization {
+ PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ Value *Ret = NULL;
+ if (UnsafeFPShrink && Callee->getName() == "pow" &&
+ TLI->has(LibFunc::powf)) {
+ UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+ Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
+ if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+ if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
+ return Op1C;
+ if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
+ return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
+ }
+
+ ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
+ if (Op2C == 0) return Ret;
+
+ if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
+ return ConstantFP::get(CI->getType(), 1.0);
+
+ if (Op2C->isExactlyValue(0.5)) {
+ // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
+ // This is faster than calling pow, and still handles negative zero
+ // and negative infinity correctly.
+ // TODO: In fast-math mode, this could be just sqrt(x).
+ // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
+ Value *Inf = ConstantFP::getInfinity(CI->getType());
+ Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
+ Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
+ Callee->getAttributes());
+ Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
+ Callee->getAttributes());
+ Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
+ Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
+ return Sel;
+ }
+
+ if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
+ return Op1;
+ if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
+ return B.CreateFMul(Op1, Op1, "pow2");
+ if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
+ return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
+ Op1, "powrecip");
+ return 0;
+ }
+};
+
+struct Exp2Opt : public UnsafeFPLibCallOptimization {
+ Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ Value *Ret = NULL;
+ if (UnsafeFPShrink && Callee->getName() == "exp2" &&
+ TLI->has(LibFunc::exp2)) {
+ UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+ Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op = CI->getArgOperand(0);
+ // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
+ // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
+ Value *LdExpArg = 0;
+ if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
+ if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
+ LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
+ } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
+ if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
+ LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
+ }
+
+ if (LdExpArg) {
+ const char *Name;
+ if (Op->getType()->isFloatTy())
+ Name = "ldexpf";
+ else if (Op->getType()->isDoubleTy())
+ Name = "ldexp";
+ else
+ Name = "ldexpl";
+
+ Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
+ if (!Op->getType()->isFloatTy())
+ One = ConstantExpr::getFPExtend(One, Op->getType());
+
+ Module *M = Caller->getParent();
+ Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
+ Op->getType(),
+ B.getInt32Ty(), NULL);
+ CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
+ if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+
+ return CI;
+ }
+ return Ret;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Integer Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+struct FFSOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 1 ||
+ !FT->getReturnType()->isIntegerTy(32) ||
+ !FT->getParamType(0)->isIntegerTy())
+ return 0;
+
+ Value *Op = CI->getArgOperand(0);
+
+ // Constant fold.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ if (CI->isZero()) // ffs(0) -> 0.
+ return B.getInt32(0);
+ // ffs(c) -> cttz(c)+1
+ return B.getInt32(CI->getValue().countTrailingZeros() + 1);
+ }
+
+ // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
+ Type *ArgType = Op->getType();
+ Value *F = Intrinsic::getDeclaration(Callee->getParent(),
+ Intrinsic::cttz, ArgType);
+ Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
+ V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
+ V = B.CreateIntCast(V, B.getInt32Ty(), false);
+
+ Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
+ return B.CreateSelect(Cond, V, B.getInt32(0));
+ }
+};
+
+struct AbsOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(integer) where the types agree.
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ FT->getParamType(0) != FT->getReturnType())
+ return 0;
+
+ // abs(x) -> x >s -1 ? x : -x
+ Value *Op = CI->getArgOperand(0);
+ Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
+ "ispos");
+ Value *Neg = B.CreateNeg(Op, "neg");
+ return B.CreateSelect(Pos, Op, Neg);
+ }
+};
+
+struct IsDigitOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(i32)
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return 0;
+
+ // isdigit(c) -> (c-'0') <u 10
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
+ Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
+ return B.CreateZExt(Op, CI->getType());
+ }
+};
+
+struct IsAsciiOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(i32)
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return 0;
+
+ // isascii(c) -> c <u 128
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
+ return B.CreateZExt(Op, CI->getType());
+ }
+};
+
+struct ToAsciiOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require i32(i32)
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return 0;
+
+ // toascii(c) -> c & 0x7f
+ return B.CreateAnd(CI->getArgOperand(0),
+ ConstantInt::get(CI->getType(),0x7F));
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Formatting and IO Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+struct PrintFOpt : public LibCallOptimization {
+ Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
+ return 0;
+
+ // Empty format string -> noop.
+ if (FormatStr.empty()) // Tolerate printf's declared void.
+ return CI->use_empty() ? (Value*)CI :
+ ConstantInt::get(CI->getType(), 0);
+
+ // Do not do any of the following transformations if the printf return value
+ // is used, in general the printf return value is not compatible with either
+ // putchar() or puts().
+ if (!CI->use_empty())
+ return 0;
+
+ // printf("x") -> putchar('x'), even for '%'.
+ if (FormatStr.size() == 1) {
+ Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD, TLI);
+ if (CI->use_empty() || !Res) return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ // printf("foo\n") --> puts("foo")
+ if (FormatStr[FormatStr.size()-1] == '\n' &&
+ FormatStr.find('%') == std::string::npos) { // no format characters.
+ // Create a string literal with no \n on it. We expect the constant merge
+ // pass to be run after this pass, to merge duplicate strings.
+ FormatStr = FormatStr.drop_back();
+ Value *GV = B.CreateGlobalString(FormatStr, "str");
+ Value *NewCI = EmitPutS(GV, B, TD, TLI);
+ return (CI->use_empty() || !NewCI) ?
+ NewCI :
+ ConstantInt::get(CI->getType(), FormatStr.size()+1);
+ }
+
+ // Optimize specific format strings.
+ // printf("%c", chr) --> putchar(chr)
+ if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isIntegerTy()) {
+ Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD, TLI);
+
+ if (CI->use_empty() || !Res) return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ // printf("%s\n", str) --> puts(str)
+ if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isPointerTy()) {
+ return EmitPutS(CI->getArgOperand(1), B, TD, TLI);
+ }
+ return 0;
+ }
+
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require one fixed pointer argument and an integer/void result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
+ !(FT->getReturnType()->isIntegerTy() ||
+ FT->getReturnType()->isVoidTy()))
+ return 0;
+
+ if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
+ return V;
+ }
+
+ // printf(format, ...) -> iprintf(format, ...) if no floating point
+ // arguments.
+ if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *IPrintFFn =
+ M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(IPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return 0;
+ }
+};
+
+struct SPrintFOpt : public LibCallOptimization {
+ Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return 0;
+
+ // If we just have a format string (nothing else crazy) transform it.
+ if (CI->getNumArgOperands() == 2) {
+ // Make sure there's no % in the constant array. We could try to handle
+ // %% -> % in the future if we cared.
+ for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+ if (FormatStr[i] == '%')
+ return 0; // we found a format specifier, bail out.
+
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ ConstantInt::get(TD->getIntPtrType(*Context), // Copy the
+ FormatStr.size() + 1), 1); // nul byte.
+ return ConstantInt::get(CI->getType(), FormatStr.size());
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return 0;
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
+ Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
+ Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
+ B.CreateStore(V, Ptr);
+ Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
+ B.CreateStore(B.getInt8(0), Ptr);
+
+ return ConstantInt::get(CI->getType(), 1);
+ }
+
+ if (FormatStr[1] == 's') {
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
+
+ Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD, TLI);
+ if (!Len)
+ return 0;
+ Value *IncLen = B.CreateAdd(Len,
+ ConstantInt::get(Len->getType(), 1),
+ "leninc");
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
+
+ // The sprintf result is the unincremented number of bytes in the string.
+ return B.CreateIntCast(Len, CI->getType(), false);
+ }
+ return 0;
+ }
+
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require two fixed pointer arguments and an integer result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return 0;
+
+ if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
+ return V;
+ }
+
+ // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
+ // point arguments.
+ if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *SIPrintFFn =
+ M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return 0;
+ }
+};
+
+struct FPrintFOpt : public LibCallOptimization {
+ Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) {
+ // All the optimizations depend on the format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return 0;
+
+ // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
+ if (CI->getNumArgOperands() == 2) {
+ for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+ if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
+ return 0; // We found a format specifier.
+
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ Value *NewCI = EmitFWrite(CI->getArgOperand(1),
+ ConstantInt::get(TD->getIntPtrType(*Context),
+ FormatStr.size()),
+ CI->getArgOperand(0), B, TD, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), FormatStr.size()) : 0;
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return 0;
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // fprintf(F, "%c", chr) --> fputc(chr, F)
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
+ Value *NewCI = EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B,
+ TD, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
+ }
+
+ if (FormatStr[1] == 's') {
+ // fprintf(F, "%s", str) --> fputs(str, F)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty())
+ return 0;
+ return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI);
+ }
+ return 0;
+ }
+
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require two fixed paramters as pointers and integer result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return 0;
+
+ if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
+ return V;
+ }
+
+ // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
+ // floating point arguments.
+ if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *FIPrintFFn =
+ M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(FIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return 0;
+ }
+};
+
+struct FWriteOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require a pointer, an integer, an integer, a pointer, returning integer.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy() ||
+ !FT->getParamType(2)->isIntegerTy() ||
+ !FT->getParamType(3)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return 0;
+
+ // Get the element size and count.
+ ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ if (!SizeC || !CountC) return 0;
+ uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
+
+ // If this is writing zero records, remove the call (it's a noop).
+ if (Bytes == 0)
+ return ConstantInt::get(CI->getType(), 0);
+
+ // If this is writing one byte, turn it into fputc.
+ // This optimisation is only valid, if the return value is unused.
+ if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
+ Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
+ Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TD, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
+ }
+
+ return 0;
+ }
+};
+
+struct FPutsOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ // Require two pointers. Also, we can't optimize if return value is used.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !CI->use_empty())
+ return 0;
+
+ // fputs(s,F) --> fwrite(s,1,strlen(s),F)
+ uint64_t Len = GetStringLength(CI->getArgOperand(0));
+ if (!Len) return 0;
+ // Known to have no uses (see above).
+ return EmitFWrite(CI->getArgOperand(0),
+ ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
+ CI->getArgOperand(1), B, TD, TLI);
+ }
+};
+
+struct PutsOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require one fixed pointer argument and an integer/void result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
+ !(FT->getReturnType()->isIntegerTy() ||
+ FT->getReturnType()->isVoidTy()))
+ return 0;
+
+ // Check for a constant string.
+ StringRef Str;
+ if (!getConstantStringInfo(CI->getArgOperand(0), Str))
+ return 0;
+
+ if (Str.empty() && CI->use_empty()) {
+ // puts("") -> putchar('\n')
+ Value *Res = EmitPutChar(B.getInt32('\n'), B, TD, TLI);
+ if (CI->use_empty() || !Res) return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ return 0;
+ }
+};
+
+} // End anonymous namespace.
+
+namespace llvm {
+
+class LibCallSimplifierImpl {
+ const DataLayout *TD;
+ const TargetLibraryInfo *TLI;
+ const LibCallSimplifier *LCS;
+ bool UnsafeFPShrink;
+ StringMap<LibCallOptimization*> Optimizations;
+
+ // Fortified library call optimizations.
+ MemCpyChkOpt MemCpyChk;
+ MemMoveChkOpt MemMoveChk;
+ MemSetChkOpt MemSetChk;
+ StrCpyChkOpt StrCpyChk;
+ StpCpyChkOpt StpCpyChk;
+ StrNCpyChkOpt StrNCpyChk;
+
+ // String library call optimizations.
+ StrCatOpt StrCat;
+ StrNCatOpt StrNCat;
+ StrChrOpt StrChr;
+ StrRChrOpt StrRChr;
+ StrCmpOpt StrCmp;
+ StrNCmpOpt StrNCmp;
+ StrCpyOpt StrCpy;
+ StpCpyOpt StpCpy;
+ StrNCpyOpt StrNCpy;
+ StrLenOpt StrLen;
+ StrPBrkOpt StrPBrk;
+ StrToOpt StrTo;
+ StrSpnOpt StrSpn;
+ StrCSpnOpt StrCSpn;
+ StrStrOpt StrStr;
+
+ // Memory library call optimizations.
+ MemCmpOpt MemCmp;
+ MemCpyOpt MemCpy;
+ MemMoveOpt MemMove;
+ MemSetOpt MemSet;
+
+ // Math library call optimizations.
+ UnaryDoubleFPOpt UnaryDoubleFP, UnsafeUnaryDoubleFP;
+ CosOpt Cos; PowOpt Pow; Exp2Opt Exp2;
+
+ // Integer library call optimizations.
+ FFSOpt FFS;
+ AbsOpt Abs;
+ IsDigitOpt IsDigit;
+ IsAsciiOpt IsAscii;
+ ToAsciiOpt ToAscii;
+
+ // Formatting and IO library call optimizations.
+ PrintFOpt PrintF;
+ SPrintFOpt SPrintF;
+ FPrintFOpt FPrintF;
+ FWriteOpt FWrite;
+ FPutsOpt FPuts;
+ PutsOpt Puts;
+
+ void initOptimizations();
+ void addOpt(LibFunc::Func F, LibCallOptimization* Opt);
+ void addOpt(LibFunc::Func F1, LibFunc::Func F2, LibCallOptimization* Opt);
+public:
+ LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI,
+ const LibCallSimplifier *LCS,
+ bool UnsafeFPShrink = false)
+ : UnaryDoubleFP(false), UnsafeUnaryDoubleFP(true),
+ Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
+ this->TD = TD;
+ this->TLI = TLI;
+ this->LCS = LCS;
+ this->UnsafeFPShrink = UnsafeFPShrink;
+ }
+
+ Value *optimizeCall(CallInst *CI);
+};
+
+void LibCallSimplifierImpl::initOptimizations() {
+ // Fortified library call optimizations.
+ Optimizations["__memcpy_chk"] = &MemCpyChk;
+ Optimizations["__memmove_chk"] = &MemMoveChk;
+ Optimizations["__memset_chk"] = &MemSetChk;
+ Optimizations["__strcpy_chk"] = &StrCpyChk;
+ Optimizations["__stpcpy_chk"] = &StpCpyChk;
+ Optimizations["__strncpy_chk"] = &StrNCpyChk;
+ Optimizations["__stpncpy_chk"] = &StrNCpyChk;
+
+ // String library call optimizations.
+ addOpt(LibFunc::strcat, &StrCat);
+ addOpt(LibFunc::strncat, &StrNCat);
+ addOpt(LibFunc::strchr, &StrChr);
+ addOpt(LibFunc::strrchr, &StrRChr);
+ addOpt(LibFunc::strcmp, &StrCmp);
+ addOpt(LibFunc::strncmp, &StrNCmp);
+ addOpt(LibFunc::strcpy, &StrCpy);
+ addOpt(LibFunc::stpcpy, &StpCpy);
+ addOpt(LibFunc::strncpy, &StrNCpy);
+ addOpt(LibFunc::strlen, &StrLen);
+ addOpt(LibFunc::strpbrk, &StrPBrk);
+ addOpt(LibFunc::strtol, &StrTo);
+ addOpt(LibFunc::strtod, &StrTo);
+ addOpt(LibFunc::strtof, &StrTo);
+ addOpt(LibFunc::strtoul, &StrTo);
+ addOpt(LibFunc::strtoll, &StrTo);
+ addOpt(LibFunc::strtold, &StrTo);
+ addOpt(LibFunc::strtoull, &StrTo);
+ addOpt(LibFunc::strspn, &StrSpn);
+ addOpt(LibFunc::strcspn, &StrCSpn);
+ addOpt(LibFunc::strstr, &StrStr);
+
+ // Memory library call optimizations.
+ addOpt(LibFunc::memcmp, &MemCmp);
+ addOpt(LibFunc::memcpy, &MemCpy);
+ addOpt(LibFunc::memmove, &MemMove);
+ addOpt(LibFunc::memset, &MemSet);
+
+ // Math library call optimizations.
+ addOpt(LibFunc::ceil, LibFunc::ceilf, &UnaryDoubleFP);
+ addOpt(LibFunc::fabs, LibFunc::fabsf, &UnaryDoubleFP);
+ addOpt(LibFunc::floor, LibFunc::floorf, &UnaryDoubleFP);
+ addOpt(LibFunc::rint, LibFunc::rintf, &UnaryDoubleFP);
+ addOpt(LibFunc::round, LibFunc::roundf, &UnaryDoubleFP);
+ addOpt(LibFunc::nearbyint, LibFunc::nearbyintf, &UnaryDoubleFP);
+ addOpt(LibFunc::trunc, LibFunc::truncf, &UnaryDoubleFP);
+
+ if(UnsafeFPShrink) {
+ addOpt(LibFunc::acos, LibFunc::acosf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::acosh, LibFunc::acoshf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::asin, LibFunc::asinf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::asinh, LibFunc::asinhf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::atan, LibFunc::atanf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::atanh, LibFunc::atanhf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::cbrt, LibFunc::cbrtf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::cosh, LibFunc::coshf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::exp, LibFunc::expf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::exp10, LibFunc::exp10f, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::expm1, LibFunc::expm1f, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::log, LibFunc::logf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::log10, LibFunc::log10f, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::log1p, LibFunc::log1pf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::log2, LibFunc::log2f, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::logb, LibFunc::logbf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::sin, LibFunc::sinf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::sinh, LibFunc::sinhf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::sqrt, LibFunc::sqrtf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::tan, LibFunc::tanf, &UnsafeUnaryDoubleFP);
+ addOpt(LibFunc::tanh, LibFunc::tanhf, &UnsafeUnaryDoubleFP);
+ }
+
+ addOpt(LibFunc::cosf, &Cos);
+ addOpt(LibFunc::cos, &Cos);
+ addOpt(LibFunc::cosl, &Cos);
+ addOpt(LibFunc::powf, &Pow);
+ addOpt(LibFunc::pow, &Pow);
+ addOpt(LibFunc::powl, &Pow);
+ Optimizations["llvm.pow.f32"] = &Pow;
+ Optimizations["llvm.pow.f64"] = &Pow;
+ Optimizations["llvm.pow.f80"] = &Pow;
+ Optimizations["llvm.pow.f128"] = &Pow;
+ Optimizations["llvm.pow.ppcf128"] = &Pow;
+ addOpt(LibFunc::exp2l, &Exp2);
+ addOpt(LibFunc::exp2, &Exp2);
+ addOpt(LibFunc::exp2f, &Exp2);
+ Optimizations["llvm.exp2.ppcf128"] = &Exp2;
+ Optimizations["llvm.exp2.f128"] = &Exp2;
+ Optimizations["llvm.exp2.f80"] = &Exp2;
+ Optimizations["llvm.exp2.f64"] = &Exp2;
+ Optimizations["llvm.exp2.f32"] = &Exp2;
+
+ // Integer library call optimizations.
+ addOpt(LibFunc::ffs, &FFS);
+ addOpt(LibFunc::ffsl, &FFS);
+ addOpt(LibFunc::ffsll, &FFS);
+ addOpt(LibFunc::abs, &Abs);
+ addOpt(LibFunc::labs, &Abs);
+ addOpt(LibFunc::llabs, &Abs);
+ addOpt(LibFunc::isdigit, &IsDigit);
+ addOpt(LibFunc::isascii, &IsAscii);
+ addOpt(LibFunc::toascii, &ToAscii);
+
+ // Formatting and IO library call optimizations.
+ addOpt(LibFunc::printf, &PrintF);
+ addOpt(LibFunc::sprintf, &SPrintF);
+ addOpt(LibFunc::fprintf, &FPrintF);
+ addOpt(LibFunc::fwrite, &FWrite);
+ addOpt(LibFunc::fputs, &FPuts);
+ addOpt(LibFunc::puts, &Puts);
+}
+
+Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
+ if (Optimizations.empty())
+ initOptimizations();
+
+ Function *Callee = CI->getCalledFunction();
+ LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
+ if (LCO) {
+ IRBuilder<> Builder(CI);
+ return LCO->optimizeCall(CI, TD, TLI, LCS, Builder);
+ }
+ return 0;
+}
+
+void LibCallSimplifierImpl::addOpt(LibFunc::Func F, LibCallOptimization* Opt) {
+ if (TLI->has(F))
+ Optimizations[TLI->getName(F)] = Opt;
+}
+
+void LibCallSimplifierImpl::addOpt(LibFunc::Func F1, LibFunc::Func F2,
+ LibCallOptimization* Opt) {
+ if (TLI->has(F1) && TLI->has(F2))
+ Optimizations[TLI->getName(F1)] = Opt;
+}
+
+LibCallSimplifier::LibCallSimplifier(const DataLayout *TD,
+ const TargetLibraryInfo *TLI,
+ bool UnsafeFPShrink) {
+ Impl = new LibCallSimplifierImpl(TD, TLI, this, UnsafeFPShrink);
+}
+
+LibCallSimplifier::~LibCallSimplifier() {
+ delete Impl;
+}
+
+Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
+ return Impl->optimizeCall(CI);
+}
+
+void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const {
+ I->replaceAllUsesWith(With);
+ I->eraseFromParent();
+}
+
+}
diff --git a/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp b/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
index b1cad06..560f581 100644
--- a/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
+++ b/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
@@ -15,12 +15,12 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Type.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Transforms/Scalar.h"
using namespace llvm;
char UnifyFunctionExitNodes::ID = 0;
diff --git a/lib/Transforms/Utils/Utils.cpp b/lib/Transforms/Utils/Utils.cpp
index 24e8c8f..5812d46 100644
--- a/lib/Transforms/Utils/Utils.cpp
+++ b/lib/Transforms/Utils/Utils.cpp
@@ -29,6 +29,7 @@ void llvm::initializeTransformUtils(PassRegistry &Registry) {
initializePromotePassPass(Registry);
initializeUnifyFunctionExitNodesPass(Registry);
initializeInstSimplifierPass(Registry);
+ initializeMetaRenamerPass(Registry);
}
/// LLVMInitializeTransformUtils - C binding for initializeTransformUtilsPasses.
diff --git a/lib/Transforms/Utils/ValueMapper.cpp b/lib/Transforms/Utils/ValueMapper.cpp
index fc2538d..a5e1643 100644
--- a/lib/Transforms/Utils/ValueMapper.cpp
+++ b/lib/Transforms/Utils/ValueMapper.cpp
@@ -13,15 +13,15 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ValueMapper.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Instructions.h"
-#include "llvm/Metadata.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
using namespace llvm;
// Out of line method to get vtable etc for class.
-void ValueMapTypeRemapper::Anchor() {}
+void ValueMapTypeRemapper::anchor() {}
Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper) {
diff --git a/lib/Transforms/Vectorize/BBVectorize.cpp b/lib/Transforms/Vectorize/BBVectorize.cpp
index c09dcd2..d72a4a1 100644
--- a/lib/Transforms/Vectorize/BBVectorize.cpp
+++ b/lib/Transforms/Vectorize/BBVectorize.cpp
@@ -16,42 +16,54 @@
#define BBV_NAME "bb-vectorize"
#define DEBUG_TYPE BBV_NAME
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
-#include "llvm/Pass.h"
-#include "llvm/Type.h"
+#include "llvm/Transforms/Vectorize.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/ValueHandle.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Vectorize.h"
#include <algorithm>
#include <map>
using namespace llvm;
+static cl::opt<bool>
+IgnoreTargetInfo("bb-vectorize-ignore-target-info", cl::init(false),
+ cl::Hidden, cl::desc("Ignore target information"));
+
static cl::opt<unsigned>
ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
cl::desc("The required chain depth for vectorization"));
+static cl::opt<bool>
+UseChainDepthWithTI("bb-vectorize-use-chain-depth", cl::init(false),
+ cl::Hidden, cl::desc("Use the chain depth requirement with"
+ " target information"));
+
static cl::opt<unsigned>
SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
cl::desc("The maximum search distance for instruction pairs"));
@@ -93,8 +105,9 @@ static cl::opt<bool>
NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
cl::desc("Don't try to vectorize floating-point values"));
+// FIXME: This should default to false once pointer vector support works.
static cl::opt<bool>
-NoPointers("bb-vectorize-no-pointers", cl::init(false), cl::Hidden,
+NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden,
cl::desc("Don't try to vectorize pointer values"));
static cl::opt<bool>
@@ -159,6 +172,12 @@ DebugCycleCheck("bb-vectorize-debug-cycle-check",
cl::init(false), cl::Hidden,
cl::desc("When debugging is enabled, output information on the"
" cycle-checking process"));
+
+static cl::opt<bool>
+PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair",
+ cl::init(false), cl::Hidden,
+ cl::desc("When debugging is enabled, dump the basic block after"
+ " every pair is fused"));
#endif
STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
@@ -177,13 +196,17 @@ namespace {
BBVectorize(Pass *P, const VectorizeConfig &C)
: BasicBlockPass(ID), Config(C) {
AA = &P->getAnalysis<AliasAnalysis>();
+ DT = &P->getAnalysis<DominatorTree>();
SE = &P->getAnalysis<ScalarEvolution>();
- TD = P->getAnalysisIfAvailable<TargetData>();
+ TD = P->getAnalysisIfAvailable<DataLayout>();
+ TTI = IgnoreTargetInfo ? 0 : &P->getAnalysis<TargetTransformInfo>();
}
typedef std::pair<Value *, Value *> ValuePair;
+ typedef std::pair<ValuePair, int> ValuePairWithCost;
typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
+ typedef std::pair<VPPair, unsigned> VPPairWithType;
typedef std::pair<std::multimap<Value *, Value *>::iterator,
std::multimap<Value *, Value *>::iterator> VPIteratorPair;
typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
@@ -191,8 +214,10 @@ namespace {
VPPIteratorPair;
AliasAnalysis *AA;
+ DominatorTree *DT;
ScalarEvolution *SE;
- TargetData *TD;
+ DataLayout *TD;
+ const TargetTransformInfo *TTI;
// FIXME: const correct?
@@ -201,11 +226,23 @@ namespace {
bool getCandidatePairs(BasicBlock &BB,
BasicBlock::iterator &Start,
std::multimap<Value *, Value *> &CandidatePairs,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
std::vector<Value *> &PairableInsts, bool NonPow2Len);
+ // FIXME: The current implementation does not account for pairs that
+ // are connected in multiple ways. For example:
+ // C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap)
+ enum PairConnectionType {
+ PairConnectionDirect,
+ PairConnectionSwap,
+ PairConnectionSplat
+ };
+
void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs);
+ std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes);
void buildDepMap(BasicBlock &BB,
std::multimap<Value *, Value *> &CandidatePairs,
@@ -213,19 +250,29 @@ namespace {
DenseSet<ValuePair> &PairableInstUsers);
void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+ std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
DenseSet<ValuePair> &PairableInstUsers,
DenseMap<Value *, Value *>& ChosenPairs);
void fuseChosenPairs(BasicBlock &BB,
std::vector<Value *> &PairableInsts,
- DenseMap<Value *, Value *>& ChosenPairs);
+ DenseMap<Value *, Value *>& ChosenPairs,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+ std::multimap<ValuePair, ValuePair> &ConnectedPairDeps);
+
bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
bool areInstsCompatible(Instruction *I, Instruction *J,
- bool IsSimpleLoadStore, bool NonPow2Len);
+ bool IsSimpleLoadStore, bool NonPow2Len,
+ int &CostSavings, int &FixedOrder);
bool trackUsesOfI(DenseSet<Value *> &Users,
AliasSetTracker &WriteSet, Instruction *I,
@@ -236,6 +283,7 @@ namespace {
std::multimap<Value *, Value *> &CandidatePairs,
std::vector<Value *> &PairableInsts,
std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
ValuePair P);
bool pairsConflict(ValuePair P, ValuePair Q,
@@ -267,17 +315,21 @@ namespace {
void findBestTreeFor(
std::multimap<Value *, Value *> &CandidatePairs,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+ std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
DenseSet<ValuePair> &PairableInstUsers,
std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
DenseMap<Value *, Value *> &ChosenPairs,
DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
- size_t &BestEffSize, VPIteratorPair ChoiceRange,
+ int &BestEffSize, VPIteratorPair ChoiceRange,
bool UseCycleCheck);
Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
- Instruction *J, unsigned o, bool FlipMemInputs);
+ Instruction *J, unsigned o);
void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
unsigned MaskOffset, unsigned NumInElem,
@@ -289,20 +341,20 @@ namespace {
bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
unsigned o, Value *&LOp, unsigned numElemL,
- Type *ArgTypeL, Type *ArgTypeR,
+ Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ,
unsigned IdxOff = 0);
Value *getReplacementInput(LLVMContext& Context, Instruction *I,
- Instruction *J, unsigned o, bool FlipMemInputs);
+ Instruction *J, unsigned o, bool IBeforeJ);
void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
- bool FlipMemInputs);
+ bool IBeforeJ);
void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
Instruction *J, Instruction *K,
Instruction *&InsertionPt, Instruction *&K1,
- Instruction *&K2, bool FlipMemInputs);
+ Instruction *&K2);
void collectPairLoadMoveSet(BasicBlock &BB,
DenseMap<Value *, Value *> &ChosenPairs,
@@ -314,10 +366,6 @@ namespace {
DenseMap<Value *, Value *> &ChosenPairs,
std::multimap<Value *, Value *> &LoadMoveSet);
- void collectPtrInfo(std::vector<Value *> &PairableInsts,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseSet<Value *> &LowPtrInsts);
-
bool canMoveUsesOfIAfterJ(BasicBlock &BB,
std::multimap<Value *, Value *> &LoadMoveSet,
Instruction *I, Instruction *J);
@@ -330,13 +378,22 @@ namespace {
void combineMetadata(Instruction *K, const Instruction *J);
bool vectorizeBB(BasicBlock &BB) {
+ if (!DT->isReachableFromEntry(&BB)) {
+ DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() <<
+ " in " << BB.getParent()->getName() << "\n");
+ return false;
+ }
+
+ DEBUG(if (TTI) dbgs() << "BBV: using target information\n");
+
bool changed = false;
// Iterate a sufficient number of times to merge types of size 1 bit,
// then 2 bits, then 4, etc. up to half of the target vector width of the
// target vector register.
unsigned n = 1;
for (unsigned v = 2;
- v <= Config.VectorBits && (!Config.MaxIter || n <= Config.MaxIter);
+ (TTI || v <= Config.VectorBits) &&
+ (!Config.MaxIter || n <= Config.MaxIter);
v *= 2, ++n) {
DEBUG(dbgs() << "BBV: fusing loop #" << n <<
" for " << BB.getName() << " in " <<
@@ -363,8 +420,10 @@ namespace {
virtual bool runOnBasicBlock(BasicBlock &BB) {
AA = &getAnalysis<AliasAnalysis>();
+ DT = &getAnalysis<DominatorTree>();
SE = &getAnalysis<ScalarEvolution>();
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
+ TTI = IgnoreTargetInfo ? 0 : &getAnalysis<TargetTransformInfo>();
return vectorizeBB(BB);
}
@@ -372,8 +431,11 @@ namespace {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
BasicBlockPass::getAnalysisUsage(AU);
AU.addRequired<AliasAnalysis>();
+ AU.addRequired<DominatorTree>();
AU.addRequired<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
AU.addPreserved<AliasAnalysis>();
+ AU.addPreserved<DominatorTree>();
AU.addPreserved<ScalarEvolution>();
AU.setPreservesCFG();
}
@@ -415,6 +477,14 @@ namespace {
T2 = cast<CastInst>(I)->getSrcTy();
else
T2 = T1;
+
+ if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
+ T2 = SI->getCondition()->getType();
+ } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
+ T2 = SI->getOperand(0)->getType();
+ } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
+ T2 = CI->getOperand(0)->getType();
+ }
}
// Returns the weight associated with the provided value. A chain of
@@ -446,6 +516,62 @@ namespace {
return 1;
}
+ // Returns the cost of the provided instruction using TTI.
+ // This does not handle loads and stores.
+ unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2) {
+ switch (Opcode) {
+ default: break;
+ case Instruction::GetElementPtr:
+ // We mark this instruction as zero-cost because scalar GEPs are usually
+ // lowered to the intruction addressing mode. At the moment we don't
+ // generate vector GEPs.
+ return 0;
+ case Instruction::Br:
+ return TTI->getCFInstrCost(Opcode);
+ case Instruction::PHI:
+ return 0;
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ return TTI->getArithmeticInstrCost(Opcode, T1);
+ case Instruction::Select:
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ return TTI->getCmpSelInstrCost(Opcode, T1, T2);
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast:
+ case Instruction::ShuffleVector:
+ return TTI->getCastInstrCost(Opcode, T1, T2);
+ }
+
+ return 1;
+ }
+
// This determines the relative offset of two loads or stores, returning
// true if the offset could be determined to be some constant value.
// For example, if OffsetInElmts == 1, then J accesses the memory directly
@@ -453,20 +579,30 @@ namespace {
// directly after J.
bool getPairPtrInfo(Instruction *I, Instruction *J,
Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
- int64_t &OffsetInElmts) {
+ unsigned &IAddressSpace, unsigned &JAddressSpace,
+ int64_t &OffsetInElmts, bool ComputeOffset = true) {
OffsetInElmts = 0;
- if (isa<LoadInst>(I)) {
- IPtr = cast<LoadInst>(I)->getPointerOperand();
- JPtr = cast<LoadInst>(J)->getPointerOperand();
- IAlignment = cast<LoadInst>(I)->getAlignment();
- JAlignment = cast<LoadInst>(J)->getAlignment();
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ LoadInst *LJ = cast<LoadInst>(J);
+ IPtr = LI->getPointerOperand();
+ JPtr = LJ->getPointerOperand();
+ IAlignment = LI->getAlignment();
+ JAlignment = LJ->getAlignment();
+ IAddressSpace = LI->getPointerAddressSpace();
+ JAddressSpace = LJ->getPointerAddressSpace();
} else {
- IPtr = cast<StoreInst>(I)->getPointerOperand();
- JPtr = cast<StoreInst>(J)->getPointerOperand();
- IAlignment = cast<StoreInst>(I)->getAlignment();
- JAlignment = cast<StoreInst>(J)->getAlignment();
+ StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J);
+ IPtr = SI->getPointerOperand();
+ JPtr = SJ->getPointerOperand();
+ IAlignment = SI->getAlignment();
+ JAlignment = SJ->getAlignment();
+ IAddressSpace = SI->getPointerAddressSpace();
+ JAddressSpace = SJ->getPointerAddressSpace();
}
+ if (!ComputeOffset)
+ return true;
+
const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
@@ -502,7 +638,7 @@ namespace {
Function *F = I->getCalledFunction();
if (!F) return false;
- unsigned IID = F->getIntrinsicID();
+ Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
if (!IID) return false;
switch(IID) {
@@ -520,6 +656,7 @@ namespace {
case Intrinsic::pow:
return Config.VectorizeMath;
case Intrinsic::fma:
+ case Intrinsic::fmuladd:
return Config.VectorizeFMA;
}
}
@@ -536,6 +673,19 @@ namespace {
return false;
}
+
+ bool isPureIEChain(InsertElementInst *IE) {
+ InsertElementInst *IENext = IE;
+ do {
+ if (!isa<UndefValue>(IENext->getOperand(0)) &&
+ !isa<InsertElementInst>(IENext->getOperand(0))) {
+ return false;
+ }
+ } while ((IENext =
+ dyn_cast<InsertElementInst>(IENext->getOperand(0))));
+
+ return true;
+ }
};
// This function implements one vectorization iteration on the provided
@@ -546,11 +696,18 @@ namespace {
std::vector<Value *> AllPairableInsts;
DenseMap<Value *, Value *> AllChosenPairs;
+ DenseSet<ValuePair> AllFixedOrderPairs;
+ DenseMap<VPPair, unsigned> AllPairConnectionTypes;
+ std::multimap<ValuePair, ValuePair> AllConnectedPairs, AllConnectedPairDeps;
do {
std::vector<Value *> PairableInsts;
std::multimap<Value *, Value *> CandidatePairs;
+ DenseSet<ValuePair> FixedOrderPairs;
+ DenseMap<ValuePair, int> CandidatePairCostSavings;
ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
+ FixedOrderPairs,
+ CandidatePairCostSavings,
PairableInsts, NonPow2Len);
if (PairableInsts.empty()) continue;
@@ -563,10 +720,18 @@ namespace {
// Note that it only matters that both members of the second pair use some
// element of the first pair (to allow for splatting).
- std::multimap<ValuePair, ValuePair> ConnectedPairs;
- computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
+ std::multimap<ValuePair, ValuePair> ConnectedPairs, ConnectedPairDeps;
+ DenseMap<VPPair, unsigned> PairConnectionTypes;
+ computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs,
+ PairConnectionTypes);
if (ConnectedPairs.empty()) continue;
+ for (std::multimap<ValuePair, ValuePair>::iterator
+ I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
+ I != IE; ++I) {
+ ConnectedPairDeps.insert(VPPair(I->second, I->first));
+ }
+
// Build the pairable-instruction dependency map
DenseSet<ValuePair> PairableInstUsers;
buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
@@ -578,13 +743,48 @@ namespace {
// variables.
DenseMap<Value *, Value *> ChosenPairs;
- choosePairs(CandidatePairs, PairableInsts, ConnectedPairs,
+ choosePairs(CandidatePairs, CandidatePairCostSavings,
+ PairableInsts, FixedOrderPairs, PairConnectionTypes,
+ ConnectedPairs, ConnectedPairDeps,
PairableInstUsers, ChosenPairs);
if (ChosenPairs.empty()) continue;
AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
PairableInsts.end());
AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
+
+ // Only for the chosen pairs, propagate information on fixed-order pairs,
+ // pair connections, and their types to the data structures used by the
+ // pair fusion procedures.
+ for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(),
+ IE = ChosenPairs.end(); I != IE; ++I) {
+ if (FixedOrderPairs.count(*I))
+ AllFixedOrderPairs.insert(*I);
+ else if (FixedOrderPairs.count(ValuePair(I->second, I->first)))
+ AllFixedOrderPairs.insert(ValuePair(I->second, I->first));
+
+ for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin();
+ J != IE; ++J) {
+ DenseMap<VPPair, unsigned>::iterator K =
+ PairConnectionTypes.find(VPPair(*I, *J));
+ if (K != PairConnectionTypes.end()) {
+ AllPairConnectionTypes.insert(*K);
+ } else {
+ K = PairConnectionTypes.find(VPPair(*J, *I));
+ if (K != PairConnectionTypes.end())
+ AllPairConnectionTypes.insert(*K);
+ }
+ }
+ }
+
+ for (std::multimap<ValuePair, ValuePair>::iterator
+ I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
+ I != IE; ++I) {
+ if (AllPairConnectionTypes.count(*I)) {
+ AllConnectedPairs.insert(*I);
+ AllConnectedPairDeps.insert(VPPair(I->second, I->first));
+ }
+ }
} while (ShouldContinue);
if (AllChosenPairs.empty()) return false;
@@ -597,7 +797,9 @@ namespace {
// replaced with a vector_extract on the result. Subsequent optimization
// passes should coalesce the build/extract combinations.
- fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
+ fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs,
+ AllPairConnectionTypes,
+ AllConnectedPairs, AllConnectedPairDeps);
// It is important to cleanup here so that future iterations of this
// function have less work to do.
@@ -667,15 +869,22 @@ namespace {
!(VectorType::isValidElementType(T2) || T2->isVectorTy()))
return false;
- if (T1->getScalarSizeInBits() == 1 && T2->getScalarSizeInBits() == 1) {
+ if (T1->getScalarSizeInBits() == 1) {
if (!Config.VectorizeBools)
return false;
} else {
- if (!Config.VectorizeInts
- && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy()))
+ if (!Config.VectorizeInts && T1->isIntOrIntVectorTy())
return false;
}
-
+
+ if (T2->getScalarSizeInBits() == 1) {
+ if (!Config.VectorizeBools)
+ return false;
+ } else {
+ if (!Config.VectorizeInts && T2->isIntOrIntVectorTy())
+ return false;
+ }
+
if (!Config.VectorizeFloats
&& (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
return false;
@@ -691,8 +900,8 @@ namespace {
T2->getScalarType()->isPointerTy()))
return false;
- if (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
- T2->getPrimitiveSizeInBits() >= Config.VectorBits)
+ if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
+ T2->getPrimitiveSizeInBits() >= Config.VectorBits))
return false;
return true;
@@ -703,10 +912,14 @@ namespace {
// that I has already been determined to be vectorizable and that J is not
// in the use tree of I.
bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
- bool IsSimpleLoadStore, bool NonPow2Len) {
+ bool IsSimpleLoadStore, bool NonPow2Len,
+ int &CostSavings, int &FixedOrder) {
DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
" <-> " << *J << "\n");
+ CostSavings = 0;
+ FixedOrder = 0;
+
// Loads and stores can be merged if they have different alignments,
// but are otherwise the same.
if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
@@ -719,52 +932,151 @@ namespace {
unsigned MaxTypeBits = std::max(
IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
- if (MaxTypeBits > Config.VectorBits)
+ if (!TTI && MaxTypeBits > Config.VectorBits)
return false;
// FIXME: handle addsub-type operations!
if (IsSimpleLoadStore) {
Value *IPtr, *JPtr;
- unsigned IAlignment, JAlignment;
+ unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
int64_t OffsetInElmts = 0;
if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
+ IAddressSpace, JAddressSpace,
OffsetInElmts) && abs64(OffsetInElmts) == 1) {
- if (Config.AlignedOnly) {
- Type *aTypeI = isa<StoreInst>(I) ?
- cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
- Type *aTypeJ = isa<StoreInst>(J) ?
- cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
+ FixedOrder = (int) OffsetInElmts;
+ unsigned BottomAlignment = IAlignment;
+ if (OffsetInElmts < 0) BottomAlignment = JAlignment;
+ Type *aTypeI = isa<StoreInst>(I) ?
+ cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
+ Type *aTypeJ = isa<StoreInst>(J) ?
+ cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
+ Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
+
+ if (Config.AlignedOnly) {
// An aligned load or store is possible only if the instruction
// with the lower offset has an alignment suitable for the
// vector type.
- unsigned BottomAlignment = IAlignment;
- if (OffsetInElmts < 0) BottomAlignment = JAlignment;
-
- Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
if (BottomAlignment < VecAlignment)
return false;
}
+
+ if (TTI) {
+ unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI,
+ IAlignment, IAddressSpace);
+ unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ,
+ JAlignment, JAddressSpace);
+ unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType,
+ BottomAlignment,
+ IAddressSpace);
+ if (VCost > ICost + JCost)
+ return false;
+
+ // We don't want to fuse to a type that will be split, even
+ // if the two input types will also be split and there is no other
+ // associated cost.
+ unsigned VParts = TTI->getNumberOfParts(VType);
+ if (VParts > 1)
+ return false;
+ else if (!VParts && VCost == ICost + JCost)
+ return false;
+
+ CostSavings = ICost + JCost - VCost;
+ }
} else {
return false;
}
+ } else if (TTI) {
+ unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2);
+ unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2);
+ Type *VT1 = getVecTypeForPair(IT1, JT1),
+ *VT2 = getVecTypeForPair(IT2, JT2);
+ unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2);
+
+ if (VCost > ICost + JCost)
+ return false;
+
+ // We don't want to fuse to a type that will be split, even
+ // if the two input types will also be split and there is no other
+ // associated cost.
+ unsigned VParts1 = TTI->getNumberOfParts(VT1),
+ VParts2 = TTI->getNumberOfParts(VT2);
+ if (VParts1 > 1 || VParts2 > 1)
+ return false;
+ else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
+ return false;
+
+ CostSavings = ICost + JCost - VCost;
}
// The powi intrinsic is special because only the first argument is
// vectorized, the second arguments must be equal.
CallInst *CI = dyn_cast<CallInst>(I);
Function *FI;
- if (CI && (FI = CI->getCalledFunction()) &&
- FI->getIntrinsicID() == Intrinsic::powi) {
-
- Value *A1I = CI->getArgOperand(1),
- *A1J = cast<CallInst>(J)->getArgOperand(1);
- const SCEV *A1ISCEV = SE->getSCEV(A1I),
- *A1JSCEV = SE->getSCEV(A1J);
- return (A1ISCEV == A1JSCEV);
+ if (CI && (FI = CI->getCalledFunction())) {
+ Intrinsic::ID IID = (Intrinsic::ID) FI->getIntrinsicID();
+ if (IID == Intrinsic::powi) {
+ Value *A1I = CI->getArgOperand(1),
+ *A1J = cast<CallInst>(J)->getArgOperand(1);
+ const SCEV *A1ISCEV = SE->getSCEV(A1I),
+ *A1JSCEV = SE->getSCEV(A1J);
+ return (A1ISCEV == A1JSCEV);
+ }
+
+ if (IID && TTI) {
+ SmallVector<Type*, 4> Tys;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(CI->getArgOperand(i)->getType());
+ unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys);
+
+ Tys.clear();
+ CallInst *CJ = cast<CallInst>(J);
+ for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(CJ->getArgOperand(i)->getType());
+ unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys);
+
+ Tys.clear();
+ assert(CI->getNumArgOperands() == CJ->getNumArgOperands() &&
+ "Intrinsic argument counts differ");
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ if (IID == Intrinsic::powi && i == 1)
+ Tys.push_back(CI->getArgOperand(i)->getType());
+ else
+ Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(),
+ CJ->getArgOperand(i)->getType()));
+ }
+
+ Type *RetTy = getVecTypeForPair(IT1, JT1);
+ unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys);
+
+ if (VCost > ICost + JCost)
+ return false;
+
+ // We don't want to fuse to a type that will be split, even
+ // if the two input types will also be split and there is no other
+ // associated cost.
+ unsigned RetParts = TTI->getNumberOfParts(RetTy);
+ if (RetParts > 1)
+ return false;
+ else if (!RetParts && VCost == ICost + JCost)
+ return false;
+
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ if (!Tys[i]->isVectorTy())
+ continue;
+
+ unsigned NumParts = TTI->getNumberOfParts(Tys[i]);
+ if (NumParts > 1)
+ return false;
+ else if (!NumParts && VCost == ICost + JCost)
+ return false;
+ }
+
+ CostSavings = ICost + JCost - VCost;
+ }
}
return true;
@@ -833,6 +1145,8 @@ namespace {
bool BBVectorize::getCandidatePairs(BasicBlock &BB,
BasicBlock::iterator &Start,
std::multimap<Value *, Value *> &CandidatePairs,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
std::vector<Value *> &PairableInsts, bool NonPow2Len) {
BasicBlock::iterator E = BB.end();
if (Start == E) return false;
@@ -869,7 +1183,9 @@ namespace {
// J does not use I, and comes before the first use of I, so it can be
// merged with I if the instructions are compatible.
- if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len)) continue;
+ int CostSavings, FixedOrder;
+ if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len,
+ CostSavings, FixedOrder)) continue;
// J is a candidate for merging with I.
if (!PairableInsts.size() ||
@@ -878,6 +1194,14 @@ namespace {
}
CandidatePairs.insert(ValuePair(I, J));
+ if (TTI)
+ CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
+ CostSavings));
+
+ if (FixedOrder == 1)
+ FixedOrderPairs.insert(ValuePair(I, J));
+ else if (FixedOrder == -1)
+ FixedOrderPairs.insert(ValuePair(J, I));
// The next call to this function must start after the last instruction
// selected during this invocation.
@@ -887,7 +1211,8 @@ namespace {
}
DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
- << *I << " <-> " << *J << "\n");
+ << *I << " <-> " << *J << " (cost savings: " <<
+ CostSavings << ")\n");
// If we have already found too many pairs, break here and this function
// will be called again starting after the last instruction selected
@@ -915,6 +1240,7 @@ namespace {
std::multimap<Value *, Value *> &CandidatePairs,
std::vector<Value *> &PairableInsts,
std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
ValuePair P) {
StoreInst *SI, *SJ;
@@ -946,12 +1272,18 @@ namespace {
VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
// Look for <I, J>:
- if (isSecondInIteratorPair<Value*>(*J, IPairRange))
- ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
+ if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
+ VPPair VP(P, ValuePair(*I, *J));
+ ConnectedPairs.insert(VP);
+ PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect));
+ }
// Look for <J, I>:
- if (isSecondInIteratorPair<Value*>(*I, JPairRange))
- ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
+ if (isSecondInIteratorPair<Value*>(*I, JPairRange)) {
+ VPPair VP(P, ValuePair(*J, *I));
+ ConnectedPairs.insert(VP);
+ PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap));
+ }
}
if (Config.SplatBreaksChain) continue;
@@ -962,8 +1294,11 @@ namespace {
P.first == SJ->getPointerOperand())
continue;
- if (isSecondInIteratorPair<Value*>(*J, IPairRange))
- ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
+ if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
+ VPPair VP(P, ValuePair(*I, *J));
+ ConnectedPairs.insert(VP);
+ PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
+ }
}
}
@@ -985,8 +1320,11 @@ namespace {
P.second == SJ->getPointerOperand())
continue;
- if (isSecondInIteratorPair<Value*>(*J, IPairRange))
- ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
+ if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
+ VPPair VP(P, ValuePair(*I, *J));
+ ConnectedPairs.insert(VP);
+ PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
+ }
}
}
}
@@ -997,7 +1335,8 @@ namespace {
void BBVectorize::computeConnectedPairs(
std::multimap<Value *, Value *> &CandidatePairs,
std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
+ std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes) {
for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
PE = PairableInsts.end(); PI != PE; ++PI) {
@@ -1006,7 +1345,7 @@ namespace {
for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
P != choiceRange.second; ++P)
computePairsConnectedTo(CandidatePairs, PairableInsts,
- ConnectedPairs, *P);
+ ConnectedPairs, PairConnectionTypes, *P);
}
DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
@@ -1196,7 +1535,7 @@ namespace {
PrunedTree.insert(QTop.first);
// Visit each child, pruning as necessary...
- DenseMap<ValuePair, size_t> BestChildren;
+ SmallVector<ValuePairWithDepth, 8> BestChildren;
VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
K != QTopRange.second; ++K) {
@@ -1228,7 +1567,7 @@ namespace {
DenseSet<ValuePair> CurrentPairs;
bool CanAdd = true;
- for (DenseMap<ValuePair, size_t>::iterator C2
+ for (SmallVector<ValuePairWithDepth, 8>::iterator C2
= BestChildren.begin(), E2 = BestChildren.end();
C2 != E2; ++C2) {
if (C2->first.first == C->first.first ||
@@ -1313,22 +1652,22 @@ namespace {
// to an already-selected child. Check for this here, and if a
// conflict is found, then remove the previously-selected child
// before adding this one in its place.
- for (DenseMap<ValuePair, size_t>::iterator C2
+ for (SmallVector<ValuePairWithDepth, 8>::iterator C2
= BestChildren.begin(); C2 != BestChildren.end();) {
if (C2->first.first == C->first.first ||
C2->first.first == C->first.second ||
C2->first.second == C->first.first ||
C2->first.second == C->first.second ||
pairsConflict(C2->first, C->first, PairableInstUsers))
- BestChildren.erase(C2++);
+ C2 = BestChildren.erase(C2);
else
++C2;
}
- BestChildren.insert(ValuePairWithDepth(C->first, C->second));
+ BestChildren.push_back(ValuePairWithDepth(C->first, C->second));
}
- for (DenseMap<ValuePair, size_t>::iterator C
+ for (SmallVector<ValuePairWithDepth, 8>::iterator C
= BestChildren.begin(), E2 = BestChildren.end();
C != E2; ++C) {
size_t DepthF = getDepthFactor(C->first.first);
@@ -1341,13 +1680,17 @@ namespace {
// pairs, given the choice of root pairs as an iterator range.
void BBVectorize::findBestTreeFor(
std::multimap<Value *, Value *> &CandidatePairs,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+ std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
DenseSet<ValuePair> &PairableInstUsers,
std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
DenseMap<Value *, Value *> &ChosenPairs,
DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
- size_t &BestEffSize, VPIteratorPair ChoiceRange,
+ int &BestEffSize, VPIteratorPair ChoiceRange,
bool UseCycleCheck) {
for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
J != ChoiceRange.second; ++J) {
@@ -1397,17 +1740,289 @@ namespace {
PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
PrunedTree, *J, UseCycleCheck);
- size_t EffSize = 0;
- for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
- E = PrunedTree.end(); S != E; ++S)
- EffSize += getDepthFactor(S->first);
+ int EffSize = 0;
+ if (TTI) {
+ DenseSet<Value *> PrunedTreeInstrs;
+ for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
+ E = PrunedTree.end(); S != E; ++S) {
+ PrunedTreeInstrs.insert(S->first);
+ PrunedTreeInstrs.insert(S->second);
+ }
+
+ // The set of pairs that have already contributed to the total cost.
+ DenseSet<ValuePair> IncomingPairs;
+
+ // If the cost model were perfect, this might not be necessary; but we
+ // need to make sure that we don't get stuck vectorizing our own
+ // shuffle chains.
+ bool HasNontrivialInsts = false;
+
+ // The node weights represent the cost savings associated with
+ // fusing the pair of instructions.
+ for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
+ E = PrunedTree.end(); S != E; ++S) {
+ if (!isa<ShuffleVectorInst>(S->first) &&
+ !isa<InsertElementInst>(S->first) &&
+ !isa<ExtractElementInst>(S->first))
+ HasNontrivialInsts = true;
+
+ bool FlipOrder = false;
+
+ if (getDepthFactor(S->first)) {
+ int ESContrib = CandidatePairCostSavings.find(*S)->second;
+ DEBUG(if (DebugPairSelection) dbgs() << "\tweight {"
+ << *S->first << " <-> " << *S->second << "} = " <<
+ ESContrib << "\n");
+ EffSize += ESContrib;
+ }
+
+ // The edge weights contribute in a negative sense: they represent
+ // the cost of shuffles.
+ VPPIteratorPair IP = ConnectedPairDeps.equal_range(*S);
+ if (IP.first != ConnectedPairDeps.end()) {
+ unsigned NumDepsDirect = 0, NumDepsSwap = 0;
+ for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
+ Q != IP.second; ++Q) {
+ if (!PrunedTree.count(Q->second))
+ continue;
+ DenseMap<VPPair, unsigned>::iterator R =
+ PairConnectionTypes.find(VPPair(Q->second, Q->first));
+ assert(R != PairConnectionTypes.end() &&
+ "Cannot find pair connection type");
+ if (R->second == PairConnectionDirect)
+ ++NumDepsDirect;
+ else if (R->second == PairConnectionSwap)
+ ++NumDepsSwap;
+ }
+
+ // If there are more swaps than direct connections, then
+ // the pair order will be flipped during fusion. So the real
+ // number of swaps is the minimum number.
+ FlipOrder = !FixedOrderPairs.count(*S) &&
+ ((NumDepsSwap > NumDepsDirect) ||
+ FixedOrderPairs.count(ValuePair(S->second, S->first)));
+
+ for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
+ Q != IP.second; ++Q) {
+ if (!PrunedTree.count(Q->second))
+ continue;
+ DenseMap<VPPair, unsigned>::iterator R =
+ PairConnectionTypes.find(VPPair(Q->second, Q->first));
+ assert(R != PairConnectionTypes.end() &&
+ "Cannot find pair connection type");
+ Type *Ty1 = Q->second.first->getType(),
+ *Ty2 = Q->second.second->getType();
+ Type *VTy = getVecTypeForPair(Ty1, Ty2);
+ if ((R->second == PairConnectionDirect && FlipOrder) ||
+ (R->second == PairConnectionSwap && !FlipOrder) ||
+ R->second == PairConnectionSplat) {
+ int ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
+ VTy, VTy);
+ DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
+ *Q->second.first << " <-> " << *Q->second.second <<
+ "} -> {" <<
+ *S->first << " <-> " << *S->second << "} = " <<
+ ESContrib << "\n");
+ EffSize -= ESContrib;
+ }
+ }
+ }
+
+ // Compute the cost of outgoing edges. We assume that edges outgoing
+ // to shuffles, inserts or extracts can be merged, and so contribute
+ // no additional cost.
+ if (!S->first->getType()->isVoidTy()) {
+ Type *Ty1 = S->first->getType(),
+ *Ty2 = S->second->getType();
+ Type *VTy = getVecTypeForPair(Ty1, Ty2);
+
+ bool NeedsExtraction = false;
+ for (Value::use_iterator I = S->first->use_begin(),
+ IE = S->first->use_end(); I != IE; ++I) {
+ if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(*I)) {
+ // Shuffle can be folded if it has no other input
+ if (isa<UndefValue>(SI->getOperand(1)))
+ continue;
+ }
+ if (isa<ExtractElementInst>(*I))
+ continue;
+ if (PrunedTreeInstrs.count(*I))
+ continue;
+ NeedsExtraction = true;
+ break;
+ }
+
+ if (NeedsExtraction) {
+ int ESContrib;
+ if (Ty1->isVectorTy())
+ ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
+ Ty1, VTy);
+ else
+ ESContrib = (int) TTI->getVectorInstrCost(
+ Instruction::ExtractElement, VTy, 0);
+
+ DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
+ *S->first << "} = " << ESContrib << "\n");
+ EffSize -= ESContrib;
+ }
+
+ NeedsExtraction = false;
+ for (Value::use_iterator I = S->second->use_begin(),
+ IE = S->second->use_end(); I != IE; ++I) {
+ if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(*I)) {
+ // Shuffle can be folded if it has no other input
+ if (isa<UndefValue>(SI->getOperand(1)))
+ continue;
+ }
+ if (isa<ExtractElementInst>(*I))
+ continue;
+ if (PrunedTreeInstrs.count(*I))
+ continue;
+ NeedsExtraction = true;
+ break;
+ }
+
+ if (NeedsExtraction) {
+ int ESContrib;
+ if (Ty2->isVectorTy())
+ ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
+ Ty2, VTy);
+ else
+ ESContrib = (int) TTI->getVectorInstrCost(
+ Instruction::ExtractElement, VTy, 1);
+ DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
+ *S->second << "} = " << ESContrib << "\n");
+ EffSize -= ESContrib;
+ }
+ }
+
+ // Compute the cost of incoming edges.
+ if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) {
+ Instruction *S1 = cast<Instruction>(S->first),
+ *S2 = cast<Instruction>(S->second);
+ for (unsigned o = 0; o < S1->getNumOperands(); ++o) {
+ Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o);
+
+ // Combining constants into vector constants (or small vector
+ // constants into larger ones are assumed free).
+ if (isa<Constant>(O1) && isa<Constant>(O2))
+ continue;
+
+ if (FlipOrder)
+ std::swap(O1, O2);
+
+ ValuePair VP = ValuePair(O1, O2);
+ ValuePair VPR = ValuePair(O2, O1);
+
+ // Internal edges are not handled here.
+ if (PrunedTree.count(VP) || PrunedTree.count(VPR))
+ continue;
+
+ Type *Ty1 = O1->getType(),
+ *Ty2 = O2->getType();
+ Type *VTy = getVecTypeForPair(Ty1, Ty2);
+
+ // Combining vector operations of the same type is also assumed
+ // folded with other operations.
+ if (Ty1 == Ty2) {
+ // If both are insert elements, then both can be widened.
+ InsertElementInst *IEO1 = dyn_cast<InsertElementInst>(O1),
+ *IEO2 = dyn_cast<InsertElementInst>(O2);
+ if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2))
+ continue;
+ // If both are extract elements, and both have the same input
+ // type, then they can be replaced with a shuffle
+ ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1),
+ *EIO2 = dyn_cast<ExtractElementInst>(O2);
+ if (EIO1 && EIO2 &&
+ EIO1->getOperand(0)->getType() ==
+ EIO2->getOperand(0)->getType())
+ continue;
+ // If both are a shuffle with equal operand types and only two
+ // unqiue operands, then they can be replaced with a single
+ // shuffle
+ ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1),
+ *SIO2 = dyn_cast<ShuffleVectorInst>(O2);
+ if (SIO1 && SIO2 &&
+ SIO1->getOperand(0)->getType() ==
+ SIO2->getOperand(0)->getType()) {
+ SmallSet<Value *, 4> SIOps;
+ SIOps.insert(SIO1->getOperand(0));
+ SIOps.insert(SIO1->getOperand(1));
+ SIOps.insert(SIO2->getOperand(0));
+ SIOps.insert(SIO2->getOperand(1));
+ if (SIOps.size() <= 2)
+ continue;
+ }
+ }
+
+ int ESContrib;
+ // This pair has already been formed.
+ if (IncomingPairs.count(VP)) {
+ continue;
+ } else if (IncomingPairs.count(VPR)) {
+ ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
+ VTy, VTy);
+ } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
+ ESContrib = (int) TTI->getVectorInstrCost(
+ Instruction::InsertElement, VTy, 0);
+ ESContrib += (int) TTI->getVectorInstrCost(
+ Instruction::InsertElement, VTy, 1);
+ } else if (!Ty1->isVectorTy()) {
+ // O1 needs to be inserted into a vector of size O2, and then
+ // both need to be shuffled together.
+ ESContrib = (int) TTI->getVectorInstrCost(
+ Instruction::InsertElement, Ty2, 0);
+ ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
+ VTy, Ty2);
+ } else if (!Ty2->isVectorTy()) {
+ // O2 needs to be inserted into a vector of size O1, and then
+ // both need to be shuffled together.
+ ESContrib = (int) TTI->getVectorInstrCost(
+ Instruction::InsertElement, Ty1, 0);
+ ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
+ VTy, Ty1);
+ } else {
+ Type *TyBig = Ty1, *TySmall = Ty2;
+ if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements())
+ std::swap(TyBig, TySmall);
+
+ ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
+ VTy, TyBig);
+ if (TyBig != TySmall)
+ ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
+ TyBig, TySmall);
+ }
+
+ DEBUG(if (DebugPairSelection) dbgs() << "\tcost {"
+ << *O1 << " <-> " << *O2 << "} = " <<
+ ESContrib << "\n");
+ EffSize -= ESContrib;
+ IncomingPairs.insert(VP);
+ }
+ }
+ }
+
+ if (!HasNontrivialInsts) {
+ DEBUG(if (DebugPairSelection) dbgs() <<
+ "\tNo non-trivial instructions in tree;"
+ " override to zero effective size\n");
+ EffSize = 0;
+ }
+ } else {
+ for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
+ E = PrunedTree.end(); S != E; ++S)
+ EffSize += (int) getDepthFactor(S->first);
+ }
DEBUG(if (DebugPairSelection)
dbgs() << "BBV: found pruned Tree for pair {"
<< *J->first << " <-> " << *J->second << "} of depth " <<
MaxDepth << " and size " << PrunedTree.size() <<
" (effective size: " << EffSize << ")\n");
- if (MaxDepth >= Config.ReqChainDepth && EffSize > BestEffSize) {
+ if (((TTI && !UseChainDepthWithTI) ||
+ MaxDepth >= Config.ReqChainDepth) &&
+ EffSize > 0 && EffSize > BestEffSize) {
BestMaxDepth = MaxDepth;
BestEffSize = EffSize;
BestTree = PrunedTree;
@@ -1419,8 +2034,12 @@ namespace {
// that will be fused into vector instructions.
void BBVectorize::choosePairs(
std::multimap<Value *, Value *> &CandidatePairs,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+ std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
DenseSet<ValuePair> &PairableInstUsers,
DenseMap<Value *, Value *>& ChosenPairs) {
bool UseCycleCheck =
@@ -1435,9 +2054,12 @@ namespace {
VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
// The best pair to choose and its tree:
- size_t BestMaxDepth = 0, BestEffSize = 0;
+ size_t BestMaxDepth = 0;
+ int BestEffSize = 0;
DenseSet<ValuePair> BestTree;
- findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
+ findBestTreeFor(CandidatePairs, CandidatePairCostSavings,
+ PairableInsts, FixedOrderPairs, PairConnectionTypes,
+ ConnectedPairs, ConnectedPairDeps,
PairableInstUsers, PairableInstUserMap, ChosenPairs,
BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
UseCycleCheck);
@@ -1490,24 +2112,19 @@ namespace {
// Returns the value that is to be used as the pointer input to the vector
// instruction that fuses I with J.
Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
- Instruction *I, Instruction *J, unsigned o,
- bool FlipMemInputs) {
+ Instruction *I, Instruction *J, unsigned o) {
Value *IPtr, *JPtr;
- unsigned IAlignment, JAlignment;
+ unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
int64_t OffsetInElmts;
- // Note: the analysis might fail here, that is why FlipMemInputs has
+ // Note: the analysis might fail here, that is why the pair order has
// been precomputed (OffsetInElmts must be unused here).
(void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
- OffsetInElmts);
+ IAddressSpace, JAddressSpace,
+ OffsetInElmts, false);
// The pointer value is taken to be the one with the lowest offset.
- Value *VPtr;
- if (!FlipMemInputs) {
- VPtr = IPtr;
- } else {
- VPtr = JPtr;
- }
+ Value *VPtr = IPtr;
Type *ArgTypeI = cast<PointerType>(IPtr->getType())->getElementType();
Type *ArgTypeJ = cast<PointerType>(JPtr->getType())->getElementType();
@@ -1515,7 +2132,7 @@ namespace {
Type *VArgPtrType = PointerType::get(VArgType,
cast<PointerType>(IPtr->getType())->getAddressSpace());
return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
- /* insert before */ FlipMemInputs ? J : I);
+ /* insert before */ I);
}
void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
@@ -1585,23 +2202,12 @@ namespace {
Instruction *J, unsigned o, Value *&LOp,
unsigned numElemL,
Type *ArgTypeL, Type *ArgTypeH,
- unsigned IdxOff) {
+ bool IBeforeJ, unsigned IdxOff) {
bool ExpandedIEChain = false;
if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
// If we have a pure insertelement chain, then this can be rewritten
// into a chain that directly builds the larger type.
- bool PureChain = true;
- InsertElementInst *LIENext = LIE;
- do {
- if (!isa<UndefValue>(LIENext->getOperand(0)) &&
- !isa<InsertElementInst>(LIENext->getOperand(0))) {
- PureChain = false;
- break;
- }
- } while ((LIENext =
- dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
-
- if (PureChain) {
+ if (isPureIEChain(LIE)) {
SmallVector<Value *, 8> VectElemts(numElemL,
UndefValue::get(ArgTypeL->getScalarType()));
InsertElementInst *LIENext = LIE;
@@ -1619,8 +2225,9 @@ namespace {
LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
ConstantInt::get(Type::getInt32Ty(Context),
i + IdxOff),
- getReplacementName(I, true, o, i+1));
- LIENext->insertBefore(J);
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, i+1));
+ LIENext->insertBefore(IBeforeJ ? J : I);
LIEPrev = LIENext;
}
@@ -1635,7 +2242,7 @@ namespace {
// Returns the value to be used as the specified operand of the vector
// instruction that fuses I with J.
Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
- Instruction *J, unsigned o, bool FlipMemInputs) {
+ Instruction *J, unsigned o, bool IBeforeJ) {
Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
@@ -1646,12 +2253,6 @@ namespace {
Instruction *L = I, *H = J;
Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
- if (FlipMemInputs) {
- L = J;
- H = I;
- ArgTypeL = ArgTypeJ;
- ArgTypeH = ArgTypeI;
- }
unsigned numElemL;
if (ArgTypeL->isVectorTy())
@@ -1804,8 +2405,9 @@ namespace {
Instruction *S =
new ShuffleVectorInst(I1, UndefValue::get(I1T),
ConstantVector::get(Mask),
- getReplacementName(I, true, o));
- S->insertBefore(J);
+ getReplacementName(IBeforeJ ? I : J,
+ true, o));
+ S->insertBefore(IBeforeJ ? J : I);
return S;
}
@@ -1826,8 +2428,9 @@ namespace {
Instruction *NewI1 =
new ShuffleVectorInst(I1, UndefValue::get(I1T),
ConstantVector::get(Mask),
- getReplacementName(I, true, o, 1));
- NewI1->insertBefore(J);
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
+ NewI1->insertBefore(IBeforeJ ? J : I);
I1 = NewI1;
I1T = I2T;
I1Elem = I2Elem;
@@ -1842,8 +2445,9 @@ namespace {
Instruction *NewI2 =
new ShuffleVectorInst(I2, UndefValue::get(I2T),
ConstantVector::get(Mask),
- getReplacementName(I, true, o, 1));
- NewI2->insertBefore(J);
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
+ NewI2->insertBefore(IBeforeJ ? J : I);
I2 = NewI2;
I2T = I1T;
I2Elem = I1Elem;
@@ -1863,8 +2467,8 @@ namespace {
Instruction *NewOp =
new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
- getReplacementName(I, true, o));
- NewOp->insertBefore(J);
+ getReplacementName(IBeforeJ ? I : J, true, o));
+ NewOp->insertBefore(IBeforeJ ? J : I);
return NewOp;
}
}
@@ -1872,17 +2476,17 @@ namespace {
Type *ArgType = ArgTypeL;
if (numElemL < numElemH) {
if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
- ArgTypeL, VArgType, 1)) {
+ ArgTypeL, VArgType, IBeforeJ, 1)) {
// This is another short-circuit case: we're combining a scalar into
// a vector that is formed by an IE chain. We've just expanded the IE
// chain, now insert the scalar and we're done.
Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
- getReplacementName(I, true, o));
- S->insertBefore(J);
+ getReplacementName(IBeforeJ ? I : J, true, o));
+ S->insertBefore(IBeforeJ ? J : I);
return S;
} else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
- ArgTypeH)) {
+ ArgTypeH, IBeforeJ)) {
// The two vector inputs to the shuffle must be the same length,
// so extend the smaller vector to be the same length as the larger one.
Instruction *NLOp;
@@ -1897,29 +2501,32 @@ namespace {
NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
ConstantVector::get(Mask),
- getReplacementName(I, true, o, 1));
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
} else {
NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
- getReplacementName(I, true, o, 1));
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
}
- NLOp->insertBefore(J);
+ NLOp->insertBefore(IBeforeJ ? J : I);
LOp = NLOp;
}
ArgType = ArgTypeH;
} else if (numElemL > numElemH) {
if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
- ArgTypeH, VArgType)) {
+ ArgTypeH, VArgType, IBeforeJ)) {
Instruction *S =
InsertElementInst::Create(LOp, HOp,
ConstantInt::get(Type::getInt32Ty(Context),
numElemL),
- getReplacementName(I, true, o));
- S->insertBefore(J);
+ getReplacementName(IBeforeJ ? I : J,
+ true, o));
+ S->insertBefore(IBeforeJ ? J : I);
return S;
} else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
- ArgTypeL)) {
+ ArgTypeL, IBeforeJ)) {
Instruction *NHOp;
if (numElemH > 1) {
std::vector<Constant *> Mask(numElemL);
@@ -1931,13 +2538,15 @@ namespace {
NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
ConstantVector::get(Mask),
- getReplacementName(I, true, o, 1));
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
} else {
NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
- getReplacementName(I, true, o, 1));
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
}
- NHOp->insertBefore(J);
+ NHOp->insertBefore(IBeforeJ ? J : I);
HOp = NHOp;
}
}
@@ -1955,19 +2564,21 @@ namespace {
}
Instruction *BV = new ShuffleVectorInst(LOp, HOp,
- ConstantVector::get(Mask),
- getReplacementName(I, true, o));
- BV->insertBefore(J);
+ ConstantVector::get(Mask),
+ getReplacementName(IBeforeJ ? I : J, true, o));
+ BV->insertBefore(IBeforeJ ? J : I);
return BV;
}
Instruction *BV1 = InsertElementInst::Create(
UndefValue::get(VArgType), LOp, CV0,
- getReplacementName(I, true, o, 1));
- BV1->insertBefore(I);
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
+ BV1->insertBefore(IBeforeJ ? J : I);
Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
- getReplacementName(I, true, o, 2));
- BV2->insertBefore(J);
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 2));
+ BV2->insertBefore(IBeforeJ ? J : I);
return BV2;
}
@@ -1976,7 +2587,7 @@ namespace {
void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
Instruction *I, Instruction *J,
SmallVector<Value *, 3> &ReplacedOperands,
- bool FlipMemInputs) {
+ bool IBeforeJ) {
unsigned NumOperands = I->getNumOperands();
for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
@@ -1985,12 +2596,11 @@ namespace {
if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
// This is the pointer for a load/store instruction.
- ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
- FlipMemInputs);
+ ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o);
continue;
} else if (isa<CallInst>(I)) {
Function *F = cast<CallInst>(I)->getCalledFunction();
- unsigned IID = F->getIntrinsicID();
+ Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
if (o == NumOperands-1) {
BasicBlock &BB = *I->getParent();
@@ -1999,8 +2609,7 @@ namespace {
Type *ArgTypeJ = J->getType();
Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
- ReplacedOperands[o] = Intrinsic::getDeclaration(M,
- (Intrinsic::ID) IID, VArgType);
+ ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType);
continue;
} else if (IID == Intrinsic::powi && o == 1) {
// The second argument of powi is a single integer and we've already
@@ -2014,8 +2623,7 @@ namespace {
continue;
}
- ReplacedOperands[o] =
- getReplacementInput(Context, I, J, o, FlipMemInputs);
+ ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ);
}
}
@@ -2026,8 +2634,7 @@ namespace {
void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
Instruction *J, Instruction *K,
Instruction *&InsertionPt,
- Instruction *&K1, Instruction *&K2,
- bool FlipMemInputs) {
+ Instruction *&K1, Instruction *&K2) {
if (isa<StoreInst>(I)) {
AA->replaceWithNewValue(I, K);
AA->replaceWithNewValue(J, K);
@@ -2057,13 +2664,11 @@ namespace {
}
K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
- ConstantVector::get(
- FlipMemInputs ? Mask2 : Mask1),
+ ConstantVector::get( Mask1),
getReplacementName(K, false, 1));
} else {
Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
- Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
- K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
+ K1 = ExtractElementInst::Create(K, CV0,
getReplacementName(K, false, 1));
}
@@ -2075,13 +2680,11 @@ namespace {
}
K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
- ConstantVector::get(
- FlipMemInputs ? Mask1 : Mask2),
+ ConstantVector::get( Mask2),
getReplacementName(K, false, 2));
} else {
- Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
- K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
+ K2 = ExtractElementInst::Create(K, CV1,
getReplacementName(K, false, 2));
}
@@ -2181,36 +2784,6 @@ namespace {
}
}
- // As with the aliasing information, SCEV can also change because of
- // vectorization. This information is used to compute relative pointer
- // offsets; the necessary information will be cached here prior to
- // fusion.
- void BBVectorize::collectPtrInfo(std::vector<Value *> &PairableInsts,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseSet<Value *> &LowPtrInsts) {
- for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
- PIE = PairableInsts.end(); PI != PIE; ++PI) {
- DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
- if (P == ChosenPairs.end()) continue;
-
- Instruction *I = cast<Instruction>(P->first);
- Instruction *J = cast<Instruction>(P->second);
-
- if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
- continue;
-
- Value *IPtr, *JPtr;
- unsigned IAlignment, JAlignment;
- int64_t OffsetInElmts;
- if (!getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
- OffsetInElmts) || abs64(OffsetInElmts) != 1)
- llvm_unreachable("Pre-fusion pointer analysis failed");
-
- Value *LowPI = (OffsetInElmts > 0) ? I : J;
- LowPtrInsts.insert(LowPI);
- }
- }
-
// When the first instruction in each pair is cloned, it will inherit its
// parent's metadata. This metadata must be combined with that of the other
// instruction in a safe way.
@@ -2244,27 +2817,27 @@ namespace {
// second member).
void BBVectorize::fuseChosenPairs(BasicBlock &BB,
std::vector<Value *> &PairableInsts,
- DenseMap<Value *, Value *> &ChosenPairs) {
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+ std::multimap<ValuePair, ValuePair> &ConnectedPairDeps) {
LLVMContext& Context = BB.getContext();
// During the vectorization process, the order of the pairs to be fused
// could be flipped. So we'll add each pair, flipped, into the ChosenPairs
// list. After a pair is fused, the flipped pair is removed from the list.
- std::vector<ValuePair> FlippedPairs;
- FlippedPairs.reserve(ChosenPairs.size());
+ DenseSet<ValuePair> FlippedPairs;
for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
E = ChosenPairs.end(); P != E; ++P)
- FlippedPairs.push_back(ValuePair(P->second, P->first));
- for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
+ FlippedPairs.insert(ValuePair(P->second, P->first));
+ for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(),
E = FlippedPairs.end(); P != E; ++P)
ChosenPairs.insert(*P);
std::multimap<Value *, Value *> LoadMoveSet;
collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
- DenseSet<Value *> LowPtrInsts;
- collectPtrInfo(PairableInsts, ChosenPairs, LowPtrInsts);
-
DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
@@ -2304,44 +2877,92 @@ namespace {
continue;
}
- bool FlipMemInputs = false;
- if (isa<LoadInst>(I) || isa<StoreInst>(I))
- FlipMemInputs = (LowPtrInsts.find(I) == LowPtrInsts.end());
+ // If the pair must have the other order, then flip it.
+ bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I));
+ if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) {
+ // This pair does not have a fixed order, and so we might want to
+ // flip it if that will yield fewer shuffles. We count the number
+ // of dependencies connected via swaps, and those directly connected,
+ // and flip the order if the number of swaps is greater.
+ bool OrigOrder = true;
+ VPPIteratorPair IP = ConnectedPairDeps.equal_range(ValuePair(I, J));
+ if (IP.first == ConnectedPairDeps.end()) {
+ IP = ConnectedPairDeps.equal_range(ValuePair(J, I));
+ OrigOrder = false;
+ }
+
+ if (IP.first != ConnectedPairDeps.end()) {
+ unsigned NumDepsDirect = 0, NumDepsSwap = 0;
+ for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
+ Q != IP.second; ++Q) {
+ DenseMap<VPPair, unsigned>::iterator R =
+ PairConnectionTypes.find(VPPair(Q->second, Q->first));
+ assert(R != PairConnectionTypes.end() &&
+ "Cannot find pair connection type");
+ if (R->second == PairConnectionDirect)
+ ++NumDepsDirect;
+ else if (R->second == PairConnectionSwap)
+ ++NumDepsSwap;
+ }
+
+ if (!OrigOrder)
+ std::swap(NumDepsDirect, NumDepsSwap);
+
+ if (NumDepsSwap > NumDepsDirect) {
+ FlipPairOrder = true;
+ DEBUG(dbgs() << "BBV: reordering pair: " << *I <<
+ " <-> " << *J << "\n");
+ }
+ }
+ }
+
+ Instruction *L = I, *H = J;
+ if (FlipPairOrder)
+ std::swap(H, L);
+
+ // If the pair being fused uses the opposite order from that in the pair
+ // connection map, then we need to flip the types.
+ VPPIteratorPair IP = ConnectedPairs.equal_range(ValuePair(H, L));
+ for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
+ Q != IP.second; ++Q) {
+ DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(*Q);
+ assert(R != PairConnectionTypes.end() &&
+ "Cannot find pair connection type");
+ if (R->second == PairConnectionDirect)
+ R->second = PairConnectionSwap;
+ else if (R->second == PairConnectionSwap)
+ R->second = PairConnectionDirect;
+ }
+ bool LBeforeH = !FlipPairOrder;
unsigned NumOperands = I->getNumOperands();
SmallVector<Value *, 3> ReplacedOperands(NumOperands);
- getReplacementInputsForPair(Context, I, J, ReplacedOperands,
- FlipMemInputs);
+ getReplacementInputsForPair(Context, L, H, ReplacedOperands,
+ LBeforeH);
// Make a copy of the original operation, change its type to the vector
// type and replace its operands with the vector operands.
- Instruction *K = I->clone();
- if (I->hasName()) K->takeName(I);
+ Instruction *K = L->clone();
+ if (L->hasName())
+ K->takeName(L);
+ else if (H->hasName())
+ K->takeName(H);
if (!isa<StoreInst>(K))
- K->mutateType(getVecTypeForPair(I->getType(), J->getType()));
+ K->mutateType(getVecTypeForPair(L->getType(), H->getType()));
- combineMetadata(K, J);
+ combineMetadata(K, H);
+ K->intersectOptionalDataWith(H);
for (unsigned o = 0; o < NumOperands; ++o)
K->setOperand(o, ReplacedOperands[o]);
- // If we've flipped the memory inputs, make sure that we take the correct
- // alignment.
- if (FlipMemInputs) {
- if (isa<StoreInst>(K))
- cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
- else
- cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
- }
-
K->insertAfter(J);
// Instruction insertion point:
Instruction *InsertionPt = K;
Instruction *K1 = 0, *K2 = 0;
- replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
- FlipMemInputs);
+ replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
// The use tree of the first original instruction must be moved to after
// the location of the second instruction. The entire use tree of the
@@ -2351,10 +2972,10 @@ namespace {
moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
if (!isa<StoreInst>(I)) {
- I->replaceAllUsesWith(K1);
- J->replaceAllUsesWith(K2);
- AA->replaceWithNewValue(I, K1);
- AA->replaceWithNewValue(J, K2);
+ L->replaceAllUsesWith(K1);
+ H->replaceAllUsesWith(K2);
+ AA->replaceWithNewValue(L, K1);
+ AA->replaceWithNewValue(H, K2);
}
// Instructions that may read from memory may be in the load move set.
@@ -2387,6 +3008,9 @@ namespace {
SE->forgetValue(J);
I->eraseFromParent();
J->eraseFromParent();
+
+ DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" <<
+ BB << "\n");
}
DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
@@ -2397,6 +3021,8 @@ char BBVectorize::ID = 0;
static const char bb_vectorize_name[] = "Basic-Block Vectorization";
INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
diff --git a/lib/Transforms/Vectorize/CMakeLists.txt b/lib/Transforms/Vectorize/CMakeLists.txt
index 06cf1e4..e64034a 100644
--- a/lib/Transforms/Vectorize/CMakeLists.txt
+++ b/lib/Transforms/Vectorize/CMakeLists.txt
@@ -1,6 +1,7 @@
add_llvm_library(LLVMVectorize
BBVectorize.cpp
Vectorize.cpp
+ LoopVectorize.cpp
)
add_dependencies(LLVMVectorize intrinsics_gen)
diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp
new file mode 100644
index 0000000..9c82cb8
--- /dev/null
+++ b/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -0,0 +1,3080 @@
+//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
+// and generates target-independent LLVM-IR. Legalization of the IR is done
+// in the codegen. However, the vectorizes uses (will use) the codegen
+// interfaces to generate IR that is likely to result in an optimal binary.
+//
+// The loop vectorizer combines consecutive loop iteration into a single
+// 'wide' iteration. After this transformation the index is incremented
+// by the SIMD vector width, and not by one.
+//
+// This pass has three parts:
+// 1. The main loop pass that drives the different parts.
+// 2. LoopVectorizationLegality - A unit that checks for the legality
+// of the vectorization.
+// 3. InnerLoopVectorizer - A unit that performs the actual
+// widening of instructions.
+// 4. LoopVectorizationCostModel - A unit that checks for the profitability
+// of vectorization. It decides on the optimal vector width, which
+// can be one, if vectorization is not profitable.
+//
+//===----------------------------------------------------------------------===//
+//
+// The reduction-variable vectorization is based on the paper:
+// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
+//
+// Variable uniformity checks are inspired by:
+// Karrenberg, R. and Hack, S. Whole Function Vectorization.
+//
+// Other ideas/concepts are from:
+// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
+//
+// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
+// Vectorizing Compilers.
+//
+//===----------------------------------------------------------------------===//
+
+#define LV_NAME "loop-vectorize"
+#define DEBUG_TYPE LV_NAME
+
+#include "llvm/Transforms/Vectorize.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <algorithm>
+#include <map>
+
+using namespace llvm;
+
+static cl::opt<unsigned>
+VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
+ cl::desc("Sets the SIMD width. Zero is autoselect."));
+
+static cl::opt<unsigned>
+VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
+ cl::desc("Sets the vectorization unroll count. "
+ "Zero is autoselect."));
+
+static cl::opt<bool>
+EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
+ cl::desc("Enable if-conversion during vectorization."));
+
+/// We don't vectorize loops with a known constant trip count below this number.
+static const unsigned TinyTripCountVectorThreshold = 16;
+
+/// We don't unroll loops with a known constant trip count below this number.
+static const unsigned TinyTripCountUnrollThreshold = 128;
+
+/// We don't unroll loops that are larget than this threshold.
+static const unsigned MaxLoopSizeThreshold = 32;
+
+/// When performing a runtime memory check, do not check more than this
+/// number of pointers. Notice that the check is quadratic!
+static const unsigned RuntimeMemoryCheckThreshold = 4;
+
+/// This is the highest vector width that we try to generate.
+static const unsigned MaxVectorSize = 8;
+
+/// This is the highest Unroll Factor.
+static const unsigned MaxUnrollSize = 4;
+
+namespace {
+
+// Forward declarations.
+class LoopVectorizationLegality;
+class LoopVectorizationCostModel;
+
+/// InnerLoopVectorizer vectorizes loops which contain only one basic
+/// block to a specified vectorization factor (VF).
+/// This class performs the widening of scalars into vectors, or multiple
+/// scalars. This class also implements the following features:
+/// * It inserts an epilogue loop for handling loops that don't have iteration
+/// counts that are known to be a multiple of the vectorization factor.
+/// * It handles the code generation for reduction variables.
+/// * Scalarization (implementation using scalars) of un-vectorizable
+/// instructions.
+/// InnerLoopVectorizer does not perform any vectorization-legality
+/// checks, and relies on the caller to check for the different legality
+/// aspects. The InnerLoopVectorizer relies on the
+/// LoopVectorizationLegality class to provide information about the induction
+/// and reduction variables that were found to a given vectorization factor.
+class InnerLoopVectorizer {
+public:
+ InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
+ DominatorTree *DT, DataLayout *DL, unsigned VecWidth,
+ unsigned UnrollFactor)
+ : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), VF(VecWidth),
+ UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
+ OldInduction(0), WidenMap(UnrollFactor) {}
+
+ // Perform the actual loop widening (vectorization).
+ void vectorize(LoopVectorizationLegality *Legal) {
+ // Create a new empty loop. Unlink the old loop and connect the new one.
+ createEmptyLoop(Legal);
+ // Widen each instruction in the old loop to a new one in the new loop.
+ // Use the Legality module to find the induction and reduction variables.
+ vectorizeLoop(Legal);
+ // Register the new loop and update the analysis passes.
+ updateAnalysis();
+ }
+
+private:
+ /// A small list of PHINodes.
+ typedef SmallVector<PHINode*, 4> PhiVector;
+ /// When we unroll loops we have multiple vector values for each scalar.
+ /// This data structure holds the unrolled and vectorized values that
+ /// originated from one scalar instruction.
+ typedef SmallVector<Value*, 2> VectorParts;
+
+ /// Add code that checks at runtime if the accessed arrays overlap.
+ /// Returns the comparator value or NULL if no check is needed.
+ Value *addRuntimeCheck(LoopVectorizationLegality *Legal,
+ Instruction *Loc);
+ /// Create an empty loop, based on the loop ranges of the old loop.
+ void createEmptyLoop(LoopVectorizationLegality *Legal);
+ /// Copy and widen the instructions from the old loop.
+ void vectorizeLoop(LoopVectorizationLegality *Legal);
+
+ /// A helper function that computes the predicate of the block BB, assuming
+ /// that the header block of the loop is set to True. It returns the *entry*
+ /// mask for the block BB.
+ VectorParts createBlockInMask(BasicBlock *BB);
+ /// A helper function that computes the predicate of the edge between SRC
+ /// and DST.
+ VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
+
+ /// A helper function to vectorize a single BB within the innermost loop.
+ void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
+ PhiVector *PV);
+
+ /// Insert the new loop to the loop hierarchy and pass manager
+ /// and update the analysis passes.
+ void updateAnalysis();
+
+ /// This instruction is un-vectorizable. Implement it as a sequence
+ /// of scalars.
+ void scalarizeInstruction(Instruction *Instr);
+
+ /// Create a broadcast instruction. This method generates a broadcast
+ /// instruction (shuffle) for loop invariant values and for the induction
+ /// value. If this is the induction variable then we extend it to N, N+1, ...
+ /// this is needed because each iteration in the loop corresponds to a SIMD
+ /// element.
+ Value *getBroadcastInstrs(Value *V);
+
+ /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
+ /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
+ /// The sequence starts at StartIndex.
+ Value *getConsecutiveVector(Value* Val, unsigned StartIdx, bool Negate);
+
+ /// When we go over instructions in the basic block we rely on previous
+ /// values within the current basic block or on loop invariant values.
+ /// When we widen (vectorize) values we place them in the map. If the values
+ /// are not within the map, they have to be loop invariant, so we simply
+ /// broadcast them into a vector.
+ VectorParts &getVectorValue(Value *V);
+
+ /// Generate a shuffle sequence that will reverse the vector Vec.
+ Value *reverseVector(Value *Vec);
+
+ /// This is a helper class that holds the vectorizer state. It maps scalar
+ /// instructions to vector instructions. When the code is 'unrolled' then
+ /// then a single scalar value is mapped to multiple vector parts. The parts
+ /// are stored in the VectorPart type.
+ struct ValueMap {
+ /// C'tor. UnrollFactor controls the number of vectors ('parts') that
+ /// are mapped.
+ ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
+
+ /// \return True if 'Key' is saved in the Value Map.
+ bool has(Value *Key) { return MapStoreage.count(Key); }
+
+ /// Initializes a new entry in the map. Sets all of the vector parts to the
+ /// save value in 'Val'.
+ /// \return A reference to a vector with splat values.
+ VectorParts &splat(Value *Key, Value *Val) {
+ MapStoreage[Key].clear();
+ MapStoreage[Key].append(UF, Val);
+ return MapStoreage[Key];
+ }
+
+ ///\return A reference to the value that is stored at 'Key'.
+ VectorParts &get(Value *Key) {
+ if (!has(Key))
+ MapStoreage[Key].resize(UF);
+ return MapStoreage[Key];
+ }
+
+ /// The unroll factor. Each entry in the map stores this number of vector
+ /// elements.
+ unsigned UF;
+
+ /// Map storage. We use std::map and not DenseMap because insertions to a
+ /// dense map invalidates its iterators.
+ std::map<Value*, VectorParts> MapStoreage;
+ };
+
+ /// The original loop.
+ Loop *OrigLoop;
+ /// Scev analysis to use.
+ ScalarEvolution *SE;
+ /// Loop Info.
+ LoopInfo *LI;
+ /// Dominator Tree.
+ DominatorTree *DT;
+ /// Data Layout.
+ DataLayout *DL;
+ /// The vectorization SIMD factor to use. Each vector will have this many
+ /// vector elements.
+ unsigned VF;
+ /// The vectorization unroll factor to use. Each scalar is vectorized to this
+ /// many different vector instructions.
+ unsigned UF;
+
+ /// The builder that we use
+ IRBuilder<> Builder;
+
+ // --- Vectorization state ---
+
+ /// The vector-loop preheader.
+ BasicBlock *LoopVectorPreHeader;
+ /// The scalar-loop preheader.
+ BasicBlock *LoopScalarPreHeader;
+ /// Middle Block between the vector and the scalar.
+ BasicBlock *LoopMiddleBlock;
+ ///The ExitBlock of the scalar loop.
+ BasicBlock *LoopExitBlock;
+ ///The vector loop body.
+ BasicBlock *LoopVectorBody;
+ ///The scalar loop body.
+ BasicBlock *LoopScalarBody;
+ ///The first bypass block.
+ BasicBlock *LoopBypassBlock;
+
+ /// The new Induction variable which was added to the new block.
+ PHINode *Induction;
+ /// The induction variable of the old basic block.
+ PHINode *OldInduction;
+ /// Maps scalars to widened vectors.
+ ValueMap WidenMap;
+};
+
+/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
+/// to what vectorization factor.
+/// This class does not look at the profitability of vectorization, only the
+/// legality. This class has two main kinds of checks:
+/// * Memory checks - The code in canVectorizeMemory checks if vectorization
+/// will change the order of memory accesses in a way that will change the
+/// correctness of the program.
+/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
+/// checks for a number of different conditions, such as the availability of a
+/// single induction variable, that all types are supported and vectorize-able,
+/// etc. This code reflects the capabilities of InnerLoopVectorizer.
+/// This class is also used by InnerLoopVectorizer for identifying
+/// induction variable and the different reduction variables.
+class LoopVectorizationLegality {
+public:
+ LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
+ DominatorTree *DT)
+ : TheLoop(L), SE(SE), DL(DL), DT(DT), Induction(0) {}
+
+ /// This enum represents the kinds of reductions that we support.
+ enum ReductionKind {
+ RK_NoReduction, ///< Not a reduction.
+ RK_IntegerAdd, ///< Sum of integers.
+ RK_IntegerMult, ///< Product of integers.
+ RK_IntegerOr, ///< Bitwise or logical OR of numbers.
+ RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
+ RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
+ RK_FloatAdd, ///< Sum of floats.
+ RK_FloatMult ///< Product of floats.
+ };
+
+ /// This enum represents the kinds of inductions that we support.
+ enum InductionKind {
+ IK_NoInduction, ///< Not an induction variable.
+ IK_IntInduction, ///< Integer induction variable. Step = 1.
+ IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
+ IK_PtrInduction ///< Pointer induction variable. Step = sizeof(elem).
+ };
+
+ /// This POD struct holds information about reduction variables.
+ struct ReductionDescriptor {
+ ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
+ Kind(RK_NoReduction) {}
+
+ ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K)
+ : StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
+
+ // The starting value of the reduction.
+ // It does not have to be zero!
+ Value *StartValue;
+ // The instruction who's value is used outside the loop.
+ Instruction *LoopExitInstr;
+ // The kind of the reduction.
+ ReductionKind Kind;
+ };
+
+ // This POD struct holds information about the memory runtime legality
+ // check that a group of pointers do not overlap.
+ struct RuntimePointerCheck {
+ RuntimePointerCheck() : Need(false) {}
+
+ /// Reset the state of the pointer runtime information.
+ void reset() {
+ Need = false;
+ Pointers.clear();
+ Starts.clear();
+ Ends.clear();
+ }
+
+ /// Insert a pointer and calculate the start and end SCEVs.
+ void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr);
+
+ /// This flag indicates if we need to add the runtime check.
+ bool Need;
+ /// Holds the pointers that we need to check.
+ SmallVector<Value*, 2> Pointers;
+ /// Holds the pointer value at the beginning of the loop.
+ SmallVector<const SCEV*, 2> Starts;
+ /// Holds the pointer value at the end of the loop.
+ SmallVector<const SCEV*, 2> Ends;
+ };
+
+ /// A POD for saving information about induction variables.
+ struct InductionInfo {
+ InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
+ InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
+ /// Start value.
+ Value *StartValue;
+ /// Induction kind.
+ InductionKind IK;
+ };
+
+ /// ReductionList contains the reduction descriptors for all
+ /// of the reductions that were found in the loop.
+ typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
+
+ /// InductionList saves induction variables and maps them to the
+ /// induction descriptor.
+ typedef MapVector<PHINode*, InductionInfo> InductionList;
+
+ /// Returns true if it is legal to vectorize this loop.
+ /// This does not mean that it is profitable to vectorize this
+ /// loop, only that it is legal to do so.
+ bool canVectorize();
+
+ /// Returns the Induction variable.
+ PHINode *getInduction() { return Induction; }
+
+ /// Returns the reduction variables found in the loop.
+ ReductionList *getReductionVars() { return &Reductions; }
+
+ /// Returns the induction variables found in the loop.
+ InductionList *getInductionVars() { return &Inductions; }
+
+ /// Returns True if V is an induction variable in this loop.
+ bool isInductionVariable(const Value *V);
+
+ /// Return true if the block BB needs to be predicated in order for the loop
+ /// to be vectorized.
+ bool blockNeedsPredication(BasicBlock *BB);
+
+ /// Check if this pointer is consecutive when vectorizing. This happens
+ /// when the last index of the GEP is the induction variable, or that the
+ /// pointer itself is an induction variable.
+ /// This check allows us to vectorize A[idx] into a wide load/store.
+ /// Returns:
+ /// 0 - Stride is unknown or non consecutive.
+ /// 1 - Address is consecutive.
+ /// -1 - Address is consecutive, and decreasing.
+ int isConsecutivePtr(Value *Ptr);
+
+ /// Returns true if the value V is uniform within the loop.
+ bool isUniform(Value *V);
+
+ /// Returns true if this instruction will remain scalar after vectorization.
+ bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
+
+ /// Returns the information that we collected about runtime memory check.
+ RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
+private:
+ /// Check if a single basic block loop is vectorizable.
+ /// At this point we know that this is a loop with a constant trip count
+ /// and we only need to check individual instructions.
+ bool canVectorizeInstrs();
+
+ /// When we vectorize loops we may change the order in which
+ /// we read and write from memory. This method checks if it is
+ /// legal to vectorize the code, considering only memory constrains.
+ /// Returns true if the loop is vectorizable
+ bool canVectorizeMemory();
+
+ /// Return true if we can vectorize this loop using the IF-conversion
+ /// transformation.
+ bool canVectorizeWithIfConvert();
+
+ /// Collect the variables that need to stay uniform after vectorization.
+ void collectLoopUniforms();
+
+ /// Return true if all of the instructions in the block can be speculatively
+ /// executed.
+ bool blockCanBePredicated(BasicBlock *BB);
+
+ /// Returns True, if 'Phi' is the kind of reduction variable for type
+ /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
+ bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
+ /// Returns true if the instruction I can be a reduction variable of type
+ /// 'Kind'.
+ bool isReductionInstr(Instruction *I, ReductionKind Kind);
+ /// Returns the induction kind of Phi. This function may return NoInduction
+ /// if the PHI is not an induction variable.
+ InductionKind isInductionVariable(PHINode *Phi);
+ /// Return true if can compute the address bounds of Ptr within the loop.
+ bool hasComputableBounds(Value *Ptr);
+
+ /// The loop that we evaluate.
+ Loop *TheLoop;
+ /// Scev analysis.
+ ScalarEvolution *SE;
+ /// DataLayout analysis.
+ DataLayout *DL;
+ // Dominators.
+ DominatorTree *DT;
+
+ // --- vectorization state --- //
+
+ /// Holds the integer induction variable. This is the counter of the
+ /// loop.
+ PHINode *Induction;
+ /// Holds the reduction variables.
+ ReductionList Reductions;
+ /// Holds all of the induction variables that we found in the loop.
+ /// Notice that inductions don't need to start at zero and that induction
+ /// variables can be pointers.
+ InductionList Inductions;
+
+ /// Allowed outside users. This holds the reduction
+ /// vars which can be accessed from outside the loop.
+ SmallPtrSet<Value*, 4> AllowedExit;
+ /// This set holds the variables which are known to be uniform after
+ /// vectorization.
+ SmallPtrSet<Instruction*, 4> Uniforms;
+ /// We need to check that all of the pointers in this list are disjoint
+ /// at runtime.
+ RuntimePointerCheck PtrRtCheck;
+};
+
+/// LoopVectorizationCostModel - estimates the expected speedups due to
+/// vectorization.
+/// In many cases vectorization is not profitable. This can happen because of
+/// a number of reasons. In this class we mainly attempt to predict the
+/// expected speedup/slowdowns due to the supported instruction set. We use the
+/// TargetTransformInfo to query the different backends for the cost of
+/// different operations.
+class LoopVectorizationCostModel {
+public:
+ LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
+ LoopVectorizationLegality *Legal,
+ const TargetTransformInfo &TTI)
+ : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI) {}
+
+ /// \return The most profitable vectorization factor.
+ /// This method checks every power of two up to VF. If UserVF is not ZERO
+ /// then this vectorization factor will be selected if vectorization is
+ /// possible.
+ unsigned selectVectorizationFactor(bool OptForSize, unsigned UserVF);
+
+
+ /// \return The most profitable unroll factor.
+ /// If UserUF is non-zero then this method finds the best unroll-factor
+ /// based on register pressure and other parameters.
+ unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF);
+
+ /// \brief A struct that represents some properties of the register usage
+ /// of a loop.
+ struct RegisterUsage {
+ /// Holds the number of loop invariant values that are used in the loop.
+ unsigned LoopInvariantRegs;
+ /// Holds the maximum number of concurrent live intervals in the loop.
+ unsigned MaxLocalUsers;
+ /// Holds the number of instructions in the loop.
+ unsigned NumInstructions;
+ };
+
+ /// \return information about the register usage of the loop.
+ RegisterUsage calculateRegisterUsage();
+
+private:
+ /// Returns the expected execution cost. The unit of the cost does
+ /// not matter because we use the 'cost' units to compare different
+ /// vector widths. The cost that is returned is *not* normalized by
+ /// the factor width.
+ unsigned expectedCost(unsigned VF);
+
+ /// Returns the execution time cost of an instruction for a given vector
+ /// width. Vector width of one means scalar.
+ unsigned getInstructionCost(Instruction *I, unsigned VF);
+
+ /// A helper function for converting Scalar types to vector types.
+ /// If the incoming type is void, we return void. If the VF is 1, we return
+ /// the scalar type.
+ static Type* ToVectorTy(Type *Scalar, unsigned VF);
+
+ /// The loop that we evaluate.
+ Loop *TheLoop;
+ /// Scev analysis.
+ ScalarEvolution *SE;
+ /// Loop Info analysis.
+ LoopInfo *LI;
+ /// Vectorization legality.
+ LoopVectorizationLegality *Legal;
+ /// Vector target information.
+ const TargetTransformInfo &TTI;
+};
+
+/// The LoopVectorize Pass.
+struct LoopVectorize : public LoopPass {
+ /// Pass identification, replacement for typeid
+ static char ID;
+
+ explicit LoopVectorize() : LoopPass(ID) {
+ initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
+ }
+
+ ScalarEvolution *SE;
+ DataLayout *DL;
+ LoopInfo *LI;
+ TargetTransformInfo *TTI;
+ DominatorTree *DT;
+
+ virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
+ // We only vectorize innermost loops.
+ if (!L->empty())
+ return false;
+
+ SE = &getAnalysis<ScalarEvolution>();
+ DL = getAnalysisIfAvailable<DataLayout>();
+ LI = &getAnalysis<LoopInfo>();
+ TTI = &getAnalysis<TargetTransformInfo>();
+ DT = &getAnalysis<DominatorTree>();
+
+ DEBUG(dbgs() << "LV: Checking a loop in \"" <<
+ L->getHeader()->getParent()->getName() << "\"\n");
+
+ // Check if it is legal to vectorize the loop.
+ LoopVectorizationLegality LVL(L, SE, DL, DT);
+ if (!LVL.canVectorize()) {
+ DEBUG(dbgs() << "LV: Not vectorizing.\n");
+ return false;
+ }
+
+ // Use the cost model.
+ LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI);
+
+ // Check the function attribues to find out if this function should be
+ // optimized for size.
+ Function *F = L->getHeader()->getParent();
+ Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
+ Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
+ unsigned FnIndex = AttributeSet::FunctionIndex;
+ bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
+ bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
+
+ if (NoFloat) {
+ DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
+ "attribute is used.\n");
+ return false;
+ }
+
+ unsigned VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
+ unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll);
+
+ if (VF == 1) {
+ DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
+ return false;
+ }
+
+ DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<<
+ F->getParent()->getModuleIdentifier()<<"\n");
+ DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
+
+ // If we decided that it is *legal* to vectorizer the loop then do it.
+ InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF, UF);
+ LB.vectorize(&LVL);
+
+ DEBUG(verifyFunction(*L->getHeader()->getParent()));
+ return true;
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ LoopPass::getAnalysisUsage(AU);
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<LoopInfo>();
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
+ AU.addPreserved<LoopInfo>();
+ AU.addPreserved<DominatorTree>();
+ }
+
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
+// LoopVectorizationCostModel.
+//===----------------------------------------------------------------------===//
+
+void
+LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
+ Loop *Lp, Value *Ptr) {
+ const SCEV *Sc = SE->getSCEV(Ptr);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
+ assert(AR && "Invalid addrec expression");
+ const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch());
+ const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
+ Pointers.push_back(Ptr);
+ Starts.push_back(AR->getStart());
+ Ends.push_back(ScEnd);
+}
+
+Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
+ // Save the current insertion location.
+ Instruction *Loc = Builder.GetInsertPoint();
+
+ // We need to place the broadcast of invariant variables outside the loop.
+ Instruction *Instr = dyn_cast<Instruction>(V);
+ bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
+ bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
+
+ // Place the code for broadcasting invariant variables in the new preheader.
+ if (Invariant)
+ Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
+
+ // Broadcast the scalar into all locations in the vector.
+ Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
+
+ // Restore the builder insertion point.
+ if (Invariant)
+ Builder.SetInsertPoint(Loc);
+
+ return Shuf;
+}
+
+Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, unsigned StartIdx,
+ bool Negate) {
+ assert(Val->getType()->isVectorTy() && "Must be a vector");
+ assert(Val->getType()->getScalarType()->isIntegerTy() &&
+ "Elem must be an integer");
+ // Create the types.
+ Type *ITy = Val->getType()->getScalarType();
+ VectorType *Ty = cast<VectorType>(Val->getType());
+ int VLen = Ty->getNumElements();
+ SmallVector<Constant*, 8> Indices;
+
+ // Create a vector of consecutive numbers from zero to VF.
+ for (int i = 0; i < VLen; ++i) {
+ int Idx = Negate ? (-i): i;
+ Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx));
+ }
+
+ // Add the consecutive indices to the vector value.
+ Constant *Cv = ConstantVector::get(Indices);
+ assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
+ return Builder.CreateAdd(Val, Cv, "induction");
+}
+
+int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
+ assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
+
+ // If this value is a pointer induction variable we know it is consecutive.
+ PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
+ if (Phi && Inductions.count(Phi)) {
+ InductionInfo II = Inductions[Phi];
+ if (IK_PtrInduction == II.IK)
+ return 1;
+ }
+
+ GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
+ if (!Gep)
+ return 0;
+
+ unsigned NumOperands = Gep->getNumOperands();
+ Value *LastIndex = Gep->getOperand(NumOperands - 1);
+
+ // Check that all of the gep indices are uniform except for the last.
+ for (unsigned i = 0; i < NumOperands - 1; ++i)
+ if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
+ return 0;
+
+ // We can emit wide load/stores only if the last index is the induction
+ // variable.
+ const SCEV *Last = SE->getSCEV(LastIndex);
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+
+ // The memory is consecutive because the last index is consecutive
+ // and all other indices are loop invariant.
+ if (Step->isOne())
+ return 1;
+ if (Step->isAllOnesValue())
+ return -1;
+ }
+
+ return 0;
+}
+
+bool LoopVectorizationLegality::isUniform(Value *V) {
+ return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
+}
+
+InnerLoopVectorizer::VectorParts&
+InnerLoopVectorizer::getVectorValue(Value *V) {
+ assert(V != Induction && "The new induction variable should not be used.");
+ assert(!V->getType()->isVectorTy() && "Can't widen a vector");
+
+ // If we have this scalar in the map, return it.
+ if (WidenMap.has(V))
+ return WidenMap.get(V);
+
+ // If this scalar is unknown, assume that it is a constant or that it is
+ // loop invariant. Broadcast V and save the value for future uses.
+ Value *B = getBroadcastInstrs(V);
+ WidenMap.splat(V, B);
+ return WidenMap.get(V);
+}
+
+Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
+ assert(Vec->getType()->isVectorTy() && "Invalid type");
+ SmallVector<Constant*, 8> ShuffleMask;
+ for (unsigned i = 0; i < VF; ++i)
+ ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
+
+ return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
+ ConstantVector::get(ShuffleMask),
+ "reverse");
+}
+
+void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
+ assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
+ // Holds vector parameters or scalars, in case of uniform vals.
+ SmallVector<VectorParts, 4> Params;
+
+ // Find all of the vectorized parameters.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *SrcOp = Instr->getOperand(op);
+
+ // If we are accessing the old induction variable, use the new one.
+ if (SrcOp == OldInduction) {
+ Params.push_back(getVectorValue(SrcOp));
+ continue;
+ }
+
+ // Try using previously calculated values.
+ Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
+
+ // If the src is an instruction that appeared earlier in the basic block
+ // then it should already be vectorized.
+ if (SrcInst && OrigLoop->contains(SrcInst)) {
+ assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
+ // The parameter is a vector value from earlier.
+ Params.push_back(WidenMap.get(SrcInst));
+ } else {
+ // The parameter is a scalar from outside the loop. Maybe even a constant.
+ VectorParts Scalars;
+ Scalars.append(UF, SrcOp);
+ Params.push_back(Scalars);
+ }
+ }
+
+ assert(Params.size() == Instr->getNumOperands() &&
+ "Invalid number of operands");
+
+ // Does this instruction return a value ?
+ bool IsVoidRetTy = Instr->getType()->isVoidTy();
+
+ Value *UndefVec = IsVoidRetTy ? 0 :
+ UndefValue::get(VectorType::get(Instr->getType(), VF));
+ // Create a new entry in the WidenMap and initialize it to Undef or Null.
+ VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
+
+ // For each scalar that we create:
+ for (unsigned Width = 0; Width < VF; ++Width) {
+ // For each vector unroll 'part':
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Instruction *Cloned = Instr->clone();
+ if (!IsVoidRetTy)
+ Cloned->setName(Instr->getName() + ".cloned");
+ // Replace the operands of the cloned instrucions with extracted scalars.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *Op = Params[op][Part];
+ // Param is a vector. Need to extract the right lane.
+ if (Op->getType()->isVectorTy())
+ Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
+ Cloned->setOperand(op, Op);
+ }
+
+ // Place the cloned scalar in the new loop.
+ Builder.Insert(Cloned);
+
+ // If the original scalar returns a value we need to place it in a vector
+ // so that future users will be able to use it.
+ if (!IsVoidRetTy)
+ VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
+ Builder.getInt32(Width));
+ }
+ }
+}
+
+Value*
+InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
+ Instruction *Loc) {
+ LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
+ Legal->getRuntimePointerCheck();
+
+ if (!PtrRtCheck->Need)
+ return NULL;
+
+ Value *MemoryRuntimeCheck = 0;
+ unsigned NumPointers = PtrRtCheck->Pointers.size();
+ SmallVector<Value* , 2> Starts;
+ SmallVector<Value* , 2> Ends;
+
+ SCEVExpander Exp(*SE, "induction");
+
+ // Use this type for pointer arithmetic.
+ Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
+
+ for (unsigned i = 0; i < NumPointers; ++i) {
+ Value *Ptr = PtrRtCheck->Pointers[i];
+ const SCEV *Sc = SE->getSCEV(Ptr);
+
+ if (SE->isLoopInvariant(Sc, OrigLoop)) {
+ DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
+ *Ptr <<"\n");
+ Starts.push_back(Ptr);
+ Ends.push_back(Ptr);
+ } else {
+ DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
+
+ Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
+ Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
+ Starts.push_back(Start);
+ Ends.push_back(End);
+ }
+ }
+
+ for (unsigned i = 0; i < NumPointers; ++i) {
+ for (unsigned j = i+1; j < NumPointers; ++j) {
+ Instruction::CastOps Op = Instruction::BitCast;
+ Value *Start0 = CastInst::Create(Op, Starts[i], PtrArithTy, "bc", Loc);
+ Value *Start1 = CastInst::Create(Op, Starts[j], PtrArithTy, "bc", Loc);
+ Value *End0 = CastInst::Create(Op, Ends[i], PtrArithTy, "bc", Loc);
+ Value *End1 = CastInst::Create(Op, Ends[j], PtrArithTy, "bc", Loc);
+
+ Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
+ Start0, End1, "bound0", Loc);
+ Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
+ Start1, End0, "bound1", Loc);
+ Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1,
+ "found.conflict", Loc);
+ if (MemoryRuntimeCheck)
+ MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or,
+ MemoryRuntimeCheck,
+ IsConflict,
+ "conflict.rdx", Loc);
+ else
+ MemoryRuntimeCheck = IsConflict;
+
+ }
+ }
+
+ return MemoryRuntimeCheck;
+}
+
+void
+InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
+ /*
+ In this function we generate a new loop. The new loop will contain
+ the vectorized instructions while the old loop will continue to run the
+ scalar remainder.
+
+ [ ] <-- vector loop bypass.
+ / |
+ / v
+ | [ ] <-- vector pre header.
+ | |
+ | v
+ | [ ] \
+ | [ ]_| <-- vector loop.
+ | |
+ \ v
+ >[ ] <--- middle-block.
+ / |
+ / v
+ | [ ] <--- new preheader.
+ | |
+ | v
+ | [ ] \
+ | [ ]_| <-- old scalar loop to handle remainder.
+ \ |
+ \ v
+ >[ ] <-- exit block.
+ ...
+ */
+
+ BasicBlock *OldBasicBlock = OrigLoop->getHeader();
+ BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
+ BasicBlock *ExitBlock = OrigLoop->getExitBlock();
+ assert(ExitBlock && "Must have an exit block");
+
+ // Some loops have a single integer induction variable, while other loops
+ // don't. One example is c++ iterators that often have multiple pointer
+ // induction variables. In the code below we also support a case where we
+ // don't have a single induction variable.
+ OldInduction = Legal->getInduction();
+ Type *IdxTy = OldInduction ? OldInduction->getType() :
+ DL->getIntPtrType(SE->getContext());
+
+ // Find the loop boundaries.
+ const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch());
+ assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
+
+ // Get the total trip count from the count by adding 1.
+ ExitCount = SE->getAddExpr(ExitCount,
+ SE->getConstant(ExitCount->getType(), 1));
+
+ // Expand the trip count and place the new instructions in the preheader.
+ // Notice that the pre-header does not change, only the loop body.
+ SCEVExpander Exp(*SE, "induction");
+
+ // Count holds the overall loop count (N).
+ Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
+ BypassBlock->getTerminator());
+
+ // The loop index does not have to start at Zero. Find the original start
+ // value from the induction PHI node. If we don't have an induction variable
+ // then we know that it starts at zero.
+ Value *StartIdx = OldInduction ?
+ OldInduction->getIncomingValueForBlock(BypassBlock):
+ ConstantInt::get(IdxTy, 0);
+
+ assert(BypassBlock && "Invalid loop structure");
+
+ // Generate the code that checks in runtime if arrays overlap.
+ Value *MemoryRuntimeCheck = addRuntimeCheck(Legal,
+ BypassBlock->getTerminator());
+
+ // Split the single block loop into the two loop structure described above.
+ BasicBlock *VectorPH =
+ BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
+ BasicBlock *VecBody =
+ VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
+ BasicBlock *MiddleBlock =
+ VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
+ BasicBlock *ScalarPH =
+ MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
+
+ // This is the location in which we add all of the logic for bypassing
+ // the new vector loop.
+ Instruction *Loc = BypassBlock->getTerminator();
+
+ // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
+ // inside the loop.
+ Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
+
+ // Generate the induction variable.
+ Induction = Builder.CreatePHI(IdxTy, 2, "index");
+ // The loop step is equal to the vectorization factor (num of SIMD elements)
+ // times the unroll factor (num of SIMD instructions).
+ Constant *Step = ConstantInt::get(IdxTy, VF * UF);
+
+ // We may need to extend the index in case there is a type mismatch.
+ // We know that the count starts at zero and does not overflow.
+ if (Count->getType() != IdxTy) {
+ // The exit count can be of pointer type. Convert it to the correct
+ // integer type.
+ if (ExitCount->getType()->isPointerTy())
+ Count = CastInst::CreatePointerCast(Count, IdxTy, "ptrcnt.to.int", Loc);
+ else
+ Count = CastInst::CreateZExtOrBitCast(Count, IdxTy, "zext.cnt", Loc);
+ }
+
+ // Add the start index to the loop count to get the new end index.
+ Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc);
+
+ // Now we need to generate the expression for N - (N % VF), which is
+ // the part that the vectorized body will execute.
+ Value *R = BinaryOperator::CreateURem(Count, Step, "n.mod.vf", Loc);
+ Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
+ Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
+ "end.idx.rnd.down", Loc);
+
+ // Now, compare the new count to zero. If it is zero skip the vector loop and
+ // jump to the scalar loop.
+ Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
+ IdxEndRoundDown,
+ StartIdx,
+ "cmp.zero", Loc);
+
+ // If we are using memory runtime checks, include them in.
+ if (MemoryRuntimeCheck)
+ Cmp = BinaryOperator::Create(Instruction::Or, Cmp, MemoryRuntimeCheck,
+ "CntOrMem", Loc);
+
+ BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
+ // Remove the old terminator.
+ Loc->eraseFromParent();
+
+ // We are going to resume the execution of the scalar loop.
+ // Go over all of the induction variables that we found and fix the
+ // PHIs that are left in the scalar version of the loop.
+ // The starting values of PHI nodes depend on the counter of the last
+ // iteration in the vectorized loop.
+ // If we come from a bypass edge then we need to start from the original
+ // start value.
+
+ // This variable saves the new starting index for the scalar loop.
+ PHINode *ResumeIndex = 0;
+ LoopVectorizationLegality::InductionList::iterator I, E;
+ LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
+ for (I = List->begin(), E = List->end(); I != E; ++I) {
+ PHINode *OrigPhi = I->first;
+ LoopVectorizationLegality::InductionInfo II = I->second;
+ PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
+ MiddleBlock->getTerminator());
+ Value *EndValue = 0;
+ switch (II.IK) {
+ case LoopVectorizationLegality::IK_NoInduction:
+ llvm_unreachable("Unknown induction");
+ case LoopVectorizationLegality::IK_IntInduction: {
+ // Handle the integer induction counter:
+ assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
+ assert(OrigPhi == OldInduction && "Unknown integer PHI");
+ // We know what the end value is.
+ EndValue = IdxEndRoundDown;
+ // We also know which PHI node holds it.
+ ResumeIndex = ResumeVal;
+ break;
+ }
+ case LoopVectorizationLegality::IK_ReverseIntInduction: {
+ // Convert the CountRoundDown variable to the PHI size.
+ unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
+ unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
+ Value *CRD = CountRoundDown;
+ if (CRDSize > IISize)
+ CRD = CastInst::Create(Instruction::Trunc, CountRoundDown,
+ II.StartValue->getType(),
+ "tr.crd", BypassBlock->getTerminator());
+ else if (CRDSize < IISize)
+ CRD = CastInst::Create(Instruction::SExt, CountRoundDown,
+ II.StartValue->getType(),
+ "sext.crd", BypassBlock->getTerminator());
+ // Handle reverse integer induction counter:
+ EndValue = BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
+ BypassBlock->getTerminator());
+ break;
+ }
+ case LoopVectorizationLegality::IK_PtrInduction: {
+ // For pointer induction variables, calculate the offset using
+ // the end index.
+ EndValue = GetElementPtrInst::Create(II.StartValue, CountRoundDown,
+ "ptr.ind.end",
+ BypassBlock->getTerminator());
+ break;
+ }
+ }// end of case
+
+ // The new PHI merges the original incoming value, in case of a bypass,
+ // or the value at the end of the vectorized loop.
+ ResumeVal->addIncoming(II.StartValue, BypassBlock);
+ ResumeVal->addIncoming(EndValue, VecBody);
+
+ // Fix the scalar body counter (PHI node).
+ unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
+ OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
+ }
+
+ // If we are generating a new induction variable then we also need to
+ // generate the code that calculates the exit value. This value is not
+ // simply the end of the counter because we may skip the vectorized body
+ // in case of a runtime check.
+ if (!OldInduction){
+ assert(!ResumeIndex && "Unexpected resume value found");
+ ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
+ MiddleBlock->getTerminator());
+ ResumeIndex->addIncoming(StartIdx, BypassBlock);
+ ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
+ }
+
+ // Make sure that we found the index where scalar loop needs to continue.
+ assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
+ "Invalid resume Index");
+
+ // Add a check in the middle block to see if we have completed
+ // all of the iterations in the first vector loop.
+ // If (N - N%VF) == N, then we *don't* need to run the remainder.
+ Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
+ ResumeIndex, "cmp.n",
+ MiddleBlock->getTerminator());
+
+ BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
+ // Remove the old terminator.
+ MiddleBlock->getTerminator()->eraseFromParent();
+
+ // Create i+1 and fill the PHINode.
+ Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
+ Induction->addIncoming(StartIdx, VectorPH);
+ Induction->addIncoming(NextIdx, VecBody);
+ // Create the compare.
+ Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
+ Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
+
+ // Now we have two terminators. Remove the old one from the block.
+ VecBody->getTerminator()->eraseFromParent();
+
+ // Get ready to start creating new instructions into the vectorized body.
+ Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
+
+ // Create and register the new vector loop.
+ Loop* Lp = new Loop();
+ Loop *ParentLoop = OrigLoop->getParentLoop();
+
+ // Insert the new loop into the loop nest and register the new basic blocks.
+ if (ParentLoop) {
+ ParentLoop->addChildLoop(Lp);
+ ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
+ ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
+ ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
+ } else {
+ LI->addTopLevelLoop(Lp);
+ }
+
+ Lp->addBasicBlockToLoop(VecBody, LI->getBase());
+
+ // Save the state.
+ LoopVectorPreHeader = VectorPH;
+ LoopScalarPreHeader = ScalarPH;
+ LoopMiddleBlock = MiddleBlock;
+ LoopExitBlock = ExitBlock;
+ LoopVectorBody = VecBody;
+ LoopScalarBody = OldBasicBlock;
+ LoopBypassBlock = BypassBlock;
+}
+
+/// This function returns the identity element (or neutral element) for
+/// the operation K.
+static Constant*
+getReductionIdentity(LoopVectorizationLegality::ReductionKind K, Type *Tp) {
+ switch (K) {
+ case LoopVectorizationLegality:: RK_IntegerXor:
+ case LoopVectorizationLegality:: RK_IntegerAdd:
+ case LoopVectorizationLegality:: RK_IntegerOr:
+ // Adding, Xoring, Oring zero to a number does not change it.
+ return ConstantInt::get(Tp, 0);
+ case LoopVectorizationLegality:: RK_IntegerMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantInt::get(Tp, 1);
+ case LoopVectorizationLegality:: RK_IntegerAnd:
+ // AND-ing a number with an all-1 value does not change it.
+ return ConstantInt::get(Tp, -1, true);
+ case LoopVectorizationLegality:: RK_FloatMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantFP::get(Tp, 1.0L);
+ case LoopVectorizationLegality:: RK_FloatAdd:
+ // Adding zero to a number does not change it.
+ return ConstantFP::get(Tp, 0.0L);
+ default:
+ llvm_unreachable("Unknown reduction kind");
+ }
+}
+
+static bool
+isTriviallyVectorizableIntrinsic(Instruction *Inst) {
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
+ if (!II)
+ return false;
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::sqrt:
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::log:
+ case Intrinsic::log10:
+ case Intrinsic::log2:
+ case Intrinsic::fabs:
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::trunc:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ case Intrinsic::pow:
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ return true;
+ default:
+ return false;
+ }
+ return false;
+}
+
+/// This function translates the reduction kind to an LLVM binary operator.
+static Instruction::BinaryOps
+getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
+ switch (Kind) {
+ case LoopVectorizationLegality::RK_IntegerAdd:
+ return Instruction::Add;
+ case LoopVectorizationLegality::RK_IntegerMult:
+ return Instruction::Mul;
+ case LoopVectorizationLegality::RK_IntegerOr:
+ return Instruction::Or;
+ case LoopVectorizationLegality::RK_IntegerAnd:
+ return Instruction::And;
+ case LoopVectorizationLegality::RK_IntegerXor:
+ return Instruction::Xor;
+ case LoopVectorizationLegality::RK_FloatMult:
+ return Instruction::FMul;
+ case LoopVectorizationLegality::RK_FloatAdd:
+ return Instruction::FAdd;
+ default:
+ llvm_unreachable("Unknown reduction operation");
+ }
+}
+
+void
+InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
+ //===------------------------------------------------===//
+ //
+ // Notice: any optimization or new instruction that go
+ // into the code below should be also be implemented in
+ // the cost-model.
+ //
+ //===------------------------------------------------===//
+ BasicBlock &BB = *OrigLoop->getHeader();
+ Constant *Zero =
+ ConstantInt::get(IntegerType::getInt32Ty(BB.getContext()), 0);
+
+ // In order to support reduction variables we need to be able to vectorize
+ // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
+ // stages. First, we create a new vector PHI node with no incoming edges.
+ // We use this value when we vectorize all of the instructions that use the
+ // PHI. Next, after all of the instructions in the block are complete we
+ // add the new incoming edges to the PHI. At this point all of the
+ // instructions in the basic block are vectorized, so we can use them to
+ // construct the PHI.
+ PhiVector RdxPHIsToFix;
+
+ // Scan the loop in a topological order to ensure that defs are vectorized
+ // before users.
+ LoopBlocksDFS DFS(OrigLoop);
+ DFS.perform(LI);
+
+ // Vectorize all of the blocks in the original loop.
+ for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
+ be = DFS.endRPO(); bb != be; ++bb)
+ vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
+
+ // At this point every instruction in the original loop is widened to
+ // a vector form. We are almost done. Now, we need to fix the PHI nodes
+ // that we vectorized. The PHI nodes are currently empty because we did
+ // not want to introduce cycles. Notice that the remaining PHI nodes
+ // that we need to fix are reduction variables.
+
+ // Create the 'reduced' values for each of the induction vars.
+ // The reduced values are the vector values that we scalarize and combine
+ // after the loop is finished.
+ for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
+ it != e; ++it) {
+ PHINode *RdxPhi = *it;
+ assert(RdxPhi && "Unable to recover vectorized PHI");
+
+ // Find the reduction variable descriptor.
+ assert(Legal->getReductionVars()->count(RdxPhi) &&
+ "Unable to find the reduction variable");
+ LoopVectorizationLegality::ReductionDescriptor RdxDesc =
+ (*Legal->getReductionVars())[RdxPhi];
+
+ // We need to generate a reduction vector from the incoming scalar.
+ // To do so, we need to generate the 'identity' vector and overide
+ // one of the elements with the incoming scalar reduction. We need
+ // to do it in the vector-loop preheader.
+ Builder.SetInsertPoint(LoopBypassBlock->getTerminator());
+
+ // This is the vector-clone of the value that leaves the loop.
+ VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
+ Type *VecTy = VectorExit[0]->getType();
+
+ // Find the reduction identity variable. Zero for addition, or, xor,
+ // one for multiplication, -1 for And.
+ Constant *Iden = getReductionIdentity(RdxDesc.Kind, VecTy->getScalarType());
+ Constant *Identity = ConstantVector::getSplat(VF, Iden);
+
+ // This vector is the Identity vector where the first element is the
+ // incoming scalar reduction.
+ Value *VectorStart = Builder.CreateInsertElement(Identity,
+ RdxDesc.StartValue, Zero);
+
+ // Fix the vector-loop phi.
+ // We created the induction variable so we know that the
+ // preheader is the first entry.
+ BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
+
+ // Reductions do not have to start at zero. They can start with
+ // any loop invariant values.
+ VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
+ BasicBlock *Latch = OrigLoop->getLoopLatch();
+ Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
+ VectorParts &Val = getVectorValue(LoopVal);
+ for (unsigned part = 0; part < UF; ++part) {
+ // Make sure to add the reduction stat value only to the
+ // first unroll part.
+ Value *StartVal = (part == 0) ? VectorStart : Identity;
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
+ }
+
+ // Before each round, move the insertion point right between
+ // the PHIs and the values we are going to write.
+ // This allows us to write both PHINodes and the extractelement
+ // instructions.
+ Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
+
+ VectorParts RdxParts;
+ for (unsigned part = 0; part < UF; ++part) {
+ // This PHINode contains the vectorized reduction variable, or
+ // the initial value vector, if we bypass the vector loop.
+ VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
+ PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
+ Value *StartVal = (part == 0) ? VectorStart : Identity;
+ NewPhi->addIncoming(StartVal, LoopBypassBlock);
+ NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
+ RdxParts.push_back(NewPhi);
+ }
+
+ // Reduce all of the unrolled parts into a single vector.
+ Value *ReducedPartRdx = RdxParts[0];
+ for (unsigned part = 1; part < UF; ++part) {
+ Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
+ ReducedPartRdx = Builder.CreateBinOp(Op, RdxParts[part], ReducedPartRdx,
+ "bin.rdx");
+ }
+
+ // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
+ // and vector ops, reducing the set of values being computed by half each
+ // round.
+ assert(isPowerOf2_32(VF) &&
+ "Reduction emission only supported for pow2 vectors!");
+ Value *TmpVec = ReducedPartRdx;
+ SmallVector<Constant*, 32> ShuffleMask(VF, 0);
+ for (unsigned i = VF; i != 1; i >>= 1) {
+ // Move the upper half of the vector to the lower half.
+ for (unsigned j = 0; j != i/2; ++j)
+ ShuffleMask[j] = Builder.getInt32(i/2 + j);
+
+ // Fill the rest of the mask with undef.
+ std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
+ UndefValue::get(Builder.getInt32Ty()));
+
+ Value *Shuf =
+ Builder.CreateShuffleVector(TmpVec,
+ UndefValue::get(TmpVec->getType()),
+ ConstantVector::get(ShuffleMask),
+ "rdx.shuf");
+
+ Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
+ TmpVec = Builder.CreateBinOp(Op, TmpVec, Shuf, "bin.rdx");
+ }
+
+ // The result is in the first element of the vector.
+ Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
+
+ // Now, we need to fix the users of the reduction variable
+ // inside and outside of the scalar remainder loop.
+ // We know that the loop is in LCSSA form. We need to update the
+ // PHI nodes in the exit blocks.
+ for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
+ LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
+ PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
+ if (!LCSSAPhi) continue;
+
+ // All PHINodes need to have a single entry edge, or two if
+ // we already fixed them.
+ assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
+
+ // We found our reduction value exit-PHI. Update it with the
+ // incoming bypass edge.
+ if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
+ // Add an edge coming from the bypass.
+ LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
+ break;
+ }
+ }// end of the LCSSA phi scan.
+
+ // Fix the scalar loop reduction variable with the incoming reduction sum
+ // from the vector body and from the backedge value.
+ int IncomingEdgeBlockIdx =
+ (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
+ assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
+ // Pick the other block.
+ int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
+ (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
+ (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
+ }// end of for each redux variable.
+
+ // The Loop exit block may have single value PHI nodes where the incoming
+ // value is 'undef'. While vectorizing we only handled real values that
+ // were defined inside the loop. Here we handle the 'undef case'.
+ // See PR14725.
+ for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
+ LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
+ PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
+ if (!LCSSAPhi) continue;
+ if (LCSSAPhi->getNumIncomingValues() == 1)
+ LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
+ LoopMiddleBlock);
+ }
+}
+
+InnerLoopVectorizer::VectorParts
+InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
+ assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
+ "Invalid edge");
+
+ VectorParts SrcMask = createBlockInMask(Src);
+
+ // The terminator has to be a branch inst!
+ BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
+ assert(BI && "Unexpected terminator found");
+
+ if (BI->isConditional()) {
+ VectorParts EdgeMask = getVectorValue(BI->getCondition());
+
+ if (BI->getSuccessor(0) != Dst)
+ for (unsigned part = 0; part < UF; ++part)
+ EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
+
+ for (unsigned part = 0; part < UF; ++part)
+ EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
+ return EdgeMask;
+ }
+
+ return SrcMask;
+}
+
+InnerLoopVectorizer::VectorParts
+InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
+ assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
+
+ // Loop incoming mask is all-one.
+ if (OrigLoop->getHeader() == BB) {
+ Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
+ return getVectorValue(C);
+ }
+
+ // This is the block mask. We OR all incoming edges, and with zero.
+ Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
+ VectorParts BlockMask = getVectorValue(Zero);
+
+ // For each pred:
+ for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
+ VectorParts EM = createEdgeMask(*it, BB);
+ for (unsigned part = 0; part < UF; ++part)
+ BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
+ }
+
+ return BlockMask;
+}
+
+void
+InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
+ BasicBlock *BB, PhiVector *PV) {
+ Constant *Zero = Builder.getInt32(0);
+
+ // For each instruction in the old loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ VectorParts &Entry = WidenMap.get(it);
+ switch (it->getOpcode()) {
+ case Instruction::Br:
+ // Nothing to do for PHIs and BR, since we already took care of the
+ // loop control flow instructions.
+ continue;
+ case Instruction::PHI:{
+ PHINode* P = cast<PHINode>(it);
+ // Handle reduction variables:
+ if (Legal->getReductionVars()->count(P)) {
+ for (unsigned part = 0; part < UF; ++part) {
+ // This is phase one of vectorizing PHIs.
+ Type *VecTy = VectorType::get(it->getType(), VF);
+ Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
+ LoopVectorBody-> getFirstInsertionPt());
+ }
+ PV->push_back(P);
+ continue;
+ }
+
+ // Check for PHI nodes that are lowered to vector selects.
+ if (P->getParent() != OrigLoop->getHeader()) {
+ // We know that all PHIs in non header blocks are converted into
+ // selects, so we don't have to worry about the insertion order and we
+ // can just use the builder.
+
+ // At this point we generate the predication tree. There may be
+ // duplications since this is a simple recursive scan, but future
+ // optimizations will clean it up.
+ VectorParts Cond = createEdgeMask(P->getIncomingBlock(0),
+ P->getParent());
+
+ for (unsigned part = 0; part < UF; ++part) {
+ VectorParts &In0 = getVectorValue(P->getIncomingValue(0));
+ VectorParts &In1 = getVectorValue(P->getIncomingValue(1));
+ Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In1[part],
+ "predphi");
+ }
+ continue;
+ }
+
+ // This PHINode must be an induction variable.
+ // Make sure that we know about it.
+ assert(Legal->getInductionVars()->count(P) &&
+ "Not an induction variable");
+
+ LoopVectorizationLegality::InductionInfo II =
+ Legal->getInductionVars()->lookup(P);
+
+ switch (II.IK) {
+ case LoopVectorizationLegality::IK_NoInduction:
+ llvm_unreachable("Unknown induction");
+ case LoopVectorizationLegality::IK_IntInduction: {
+ assert(P == OldInduction && "Unexpected PHI");
+ Value *Broadcasted = getBroadcastInstrs(Induction);
+ // After broadcasting the induction variable we need to make the
+ // vector consecutive by adding 0, 1, 2 ...
+ for (unsigned part = 0; part < UF; ++part)
+ Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
+ continue;
+ }
+ case LoopVectorizationLegality::IK_ReverseIntInduction:
+ case LoopVectorizationLegality::IK_PtrInduction:
+ // Handle reverse integer and pointer inductions.
+ Value *StartIdx = 0;
+ // If we have a single integer induction variable then use it.
+ // Otherwise, start counting at zero.
+ if (OldInduction) {
+ LoopVectorizationLegality::InductionInfo OldII =
+ Legal->getInductionVars()->lookup(OldInduction);
+ StartIdx = OldII.StartValue;
+ } else {
+ StartIdx = ConstantInt::get(Induction->getType(), 0);
+ }
+ // This is the normalized GEP that starts counting at zero.
+ Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
+ "normalized.idx");
+
+ // Handle the reverse integer induction variable case.
+ if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
+ IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
+ Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
+ "resize.norm.idx");
+ Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI,
+ "reverse.idx");
+
+ // This is a new value so do not hoist it out.
+ Value *Broadcasted = getBroadcastInstrs(ReverseInd);
+ // After broadcasting the induction variable we need to make the
+ // vector consecutive by adding ... -3, -2, -1, 0.
+ for (unsigned part = 0; part < UF; ++part)
+ Entry[part] = getConsecutiveVector(Broadcasted, -VF * part, true);
+ continue;
+ }
+
+ // Handle the pointer induction variable case.
+ assert(P->getType()->isPointerTy() && "Unexpected type.");
+
+ // This is the vector of results. Notice that we don't generate
+ // vector geps because scalar geps result in better code.
+ for (unsigned part = 0; part < UF; ++part) {
+ Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
+ for (unsigned int i = 0; i < VF; ++i) {
+ Constant *Idx = ConstantInt::get(Induction->getType(),
+ i + part * VF);
+ Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx,
+ "gep.idx");
+ Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
+ "next.gep");
+ VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
+ Builder.getInt32(i),
+ "insert.gep");
+ }
+ Entry[part] = VecVal;
+ }
+ continue;
+ }
+
+ }// End of PHI.
+
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ // Just widen binops.
+ BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ VectorParts &B = getVectorValue(it->getOperand(1));
+
+ // Use this vector value for all users of the original instruction.
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
+
+ // Update the NSW, NUW and Exact flags.
+ BinaryOperator *VecOp = cast<BinaryOperator>(V);
+ if (isa<OverflowingBinaryOperator>(BinOp)) {
+ VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
+ VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
+ }
+ if (isa<PossiblyExactOperator>(VecOp))
+ VecOp->setIsExact(BinOp->isExact());
+
+ Entry[Part] = V;
+ }
+ break;
+ }
+ case Instruction::Select: {
+ // Widen selects.
+ // If the selector is loop invariant we can create a select
+ // instruction with a scalar condition. Otherwise, use vector-select.
+ bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
+ OrigLoop);
+
+ // The condition can be loop invariant but still defined inside the
+ // loop. This means that we can't just use the original 'cond' value.
+ // We have to take the 'vectorized' value and pick the first lane.
+ // Instcombine will make this a no-op.
+ VectorParts &Cond = getVectorValue(it->getOperand(0));
+ VectorParts &Op0 = getVectorValue(it->getOperand(1));
+ VectorParts &Op1 = getVectorValue(it->getOperand(2));
+ Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
+ Builder.getInt32(0));
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Entry[Part] = Builder.CreateSelect(
+ InvariantCond ? ScalarCond : Cond[Part],
+ Op0[Part],
+ Op1[Part]);
+ }
+ break;
+ }
+
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ // Widen compares. Generate vector compares.
+ bool FCmp = (it->getOpcode() == Instruction::FCmp);
+ CmpInst *Cmp = dyn_cast<CmpInst>(it);
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ VectorParts &B = getVectorValue(it->getOperand(1));
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Value *C = 0;
+ if (FCmp)
+ C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
+ else
+ C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
+ Entry[Part] = C;
+ }
+ break;
+ }
+
+ case Instruction::Store: {
+ // Attempt to issue a wide store.
+ StoreInst *SI = dyn_cast<StoreInst>(it);
+ Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
+ Value *Ptr = SI->getPointerOperand();
+ unsigned Alignment = SI->getAlignment();
+
+ assert(!Legal->isUniform(Ptr) &&
+ "We do not allow storing to uniform addresses");
+
+
+ int Stride = Legal->isConsecutivePtr(Ptr);
+ bool Reverse = Stride < 0;
+ if (Stride == 0) {
+ scalarizeInstruction(it);
+ break;
+ }
+
+ // Handle consecutive stores.
+
+ GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
+ if (Gep) {
+ // The last index does not have to be the induction. It can be
+ // consecutive and be a function of the index. For example A[I+1];
+ unsigned NumOperands = Gep->getNumOperands();
+
+ Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
+ VectorParts &GEPParts = getVectorValue(LastGepOperand);
+ Value *LastIndex = GEPParts[0];
+ LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(NumOperands - 1, LastIndex);
+ Ptr = Builder.Insert(Gep2);
+ } else {
+ // Use the induction element ptr.
+ assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
+ VectorParts &PtrVal = getVectorValue(Ptr);
+ Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
+ }
+
+ VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // Calculate the pointer for the specific unroll-part.
+ Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
+
+ if (Reverse) {
+ // If we store to reverse consecutive memory locations then we need
+ // to reverse the order of elements in the stored value.
+ StoredVal[Part] = reverseVector(StoredVal[Part]);
+ // If the address is consecutive but reversed, then the
+ // wide store needs to start at the last vector element.
+ PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
+ PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
+ }
+
+ Value *VecPtr = Builder.CreateBitCast(PartPtr, StTy->getPointerTo());
+ Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
+ }
+ break;
+ }
+ case Instruction::Load: {
+ // Attempt to issue a wide load.
+ LoadInst *LI = dyn_cast<LoadInst>(it);
+ Type *RetTy = VectorType::get(LI->getType(), VF);
+ Value *Ptr = LI->getPointerOperand();
+ unsigned Alignment = LI->getAlignment();
+
+ // If the pointer is loop invariant or if it is non consecutive,
+ // scalarize the load.
+ int Stride = Legal->isConsecutivePtr(Ptr);
+ bool Reverse = Stride < 0;
+ if (Legal->isUniform(Ptr) || Stride == 0) {
+ scalarizeInstruction(it);
+ break;
+ }
+
+ GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
+ if (Gep) {
+ // The last index does not have to be the induction. It can be
+ // consecutive and be a function of the index. For example A[I+1];
+ unsigned NumOperands = Gep->getNumOperands();
+
+ Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
+ VectorParts &GEPParts = getVectorValue(LastGepOperand);
+ Value *LastIndex = GEPParts[0];
+ LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(NumOperands - 1, LastIndex);
+ Ptr = Builder.Insert(Gep2);
+ } else {
+ // Use the induction element ptr.
+ assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
+ VectorParts &PtrVal = getVectorValue(Ptr);
+ Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
+ }
+
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // Calculate the pointer for the specific unroll-part.
+ Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
+
+ if (Reverse) {
+ // If the address is consecutive but reversed, then the
+ // wide store needs to start at the last vector element.
+ PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
+ PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
+ }
+
+ Value *VecPtr = Builder.CreateBitCast(PartPtr, RetTy->getPointerTo());
+ Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
+ cast<LoadInst>(LI)->setAlignment(Alignment);
+ Entry[Part] = Reverse ? reverseVector(LI) : LI;
+ }
+ break;
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ CastInst *CI = dyn_cast<CastInst>(it);
+ /// Optimize the special case where the source is the induction
+ /// variable. Notice that we can only optimize the 'trunc' case
+ /// because: a. FP conversions lose precision, b. sext/zext may wrap,
+ /// c. other casts depend on pointer size.
+ if (CI->getOperand(0) == OldInduction &&
+ it->getOpcode() == Instruction::Trunc) {
+ Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
+ CI->getType());
+ Value *Broadcasted = getBroadcastInstrs(ScalarCast);
+ for (unsigned Part = 0; Part < UF; ++Part)
+ Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
+ break;
+ }
+ /// Vectorize casts.
+ Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
+
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ for (unsigned Part = 0; Part < UF; ++Part)
+ Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
+ break;
+ }
+
+ case Instruction::Call: {
+ assert(isTriviallyVectorizableIntrinsic(it));
+ Module *M = BB->getParent()->getParent();
+ IntrinsicInst *II = cast<IntrinsicInst>(it);
+ Intrinsic::ID ID = II->getIntrinsicID();
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ SmallVector<Value*, 4> Args;
+ for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i) {
+ VectorParts &Arg = getVectorValue(II->getArgOperand(i));
+ Args.push_back(Arg[Part]);
+ }
+ Type *Tys[] = { VectorType::get(II->getType()->getScalarType(), VF) };
+ Function *F = Intrinsic::getDeclaration(M, ID, Tys);
+ Entry[Part] = Builder.CreateCall(F, Args);
+ }
+ break;
+ }
+
+ default:
+ // All other instructions are unsupported. Scalarize them.
+ scalarizeInstruction(it);
+ break;
+ }// end of switch.
+ }// end of for_each instr.
+}
+
+void InnerLoopVectorizer::updateAnalysis() {
+ // Forget the original basic block.
+ SE->forgetLoop(OrigLoop);
+
+ // Update the dominator tree information.
+ assert(DT->properlyDominates(LoopBypassBlock, LoopExitBlock) &&
+ "Entry does not dominate exit.");
+
+ DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlock);
+ DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
+ DT->addNewBlock(LoopMiddleBlock, LoopBypassBlock);
+ DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
+ DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
+ DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
+
+ DEBUG(DT->verifyAnalysis());
+}
+
+bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
+ if (!EnableIfConversion)
+ return false;
+
+ assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
+ std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
+
+ // Collect the blocks that need predication.
+ for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
+ BasicBlock *BB = LoopBlocks[i];
+
+ // We don't support switch statements inside loops.
+ if (!isa<BranchInst>(BB->getTerminator()))
+ return false;
+
+ // We must have at most two predecessors because we need to convert
+ // all PHIs to selects.
+ unsigned Preds = std::distance(pred_begin(BB), pred_end(BB));
+ if (Preds > 2)
+ return false;
+
+ // We must be able to predicate all blocks that need to be predicated.
+ if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
+ return false;
+ }
+
+ // We can if-convert this loop.
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorize() {
+ assert(TheLoop->getLoopPreheader() && "No preheader!!");
+
+ // We can only vectorize innermost loops.
+ if (TheLoop->getSubLoopsVector().size())
+ return false;
+
+ // We must have a single backedge.
+ if (TheLoop->getNumBackEdges() != 1)
+ return false;
+
+ // We must have a single exiting block.
+ if (!TheLoop->getExitingBlock())
+ return false;
+
+ unsigned NumBlocks = TheLoop->getNumBlocks();
+
+ // Check if we can if-convert non single-bb loops.
+ if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
+ DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
+ return false;
+ }
+
+ // We need to have a loop header.
+ BasicBlock *Latch = TheLoop->getLoopLatch();
+ DEBUG(dbgs() << "LV: Found a loop: " <<
+ TheLoop->getHeader()->getName() << "\n");
+
+ // ScalarEvolution needs to be able to find the exit count.
+ const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch);
+ if (ExitCount == SE->getCouldNotCompute()) {
+ DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
+ return false;
+ }
+
+ // Do not loop-vectorize loops with a tiny trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
+ if (TC > 0u && TC < TinyTripCountVectorThreshold) {
+ DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
+ "This loop is not worth vectorizing.\n");
+ return false;
+ }
+
+ // Check if we can vectorize the instructions and CFG in this loop.
+ if (!canVectorizeInstrs()) {
+ DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
+ return false;
+ }
+
+ // Go over each instruction and look at memory deps.
+ if (!canVectorizeMemory()) {
+ DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
+ return false;
+ }
+
+ // Collect all of the variables that remain uniform after vectorization.
+ collectLoopUniforms();
+
+ DEBUG(dbgs() << "LV: We can vectorize this loop" <<
+ (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
+ <<"!\n");
+
+ // Okay! We can vectorize. At this point we don't have any other mem analysis
+ // which may limit our maximum vectorization factor, so just return true with
+ // no restrictions.
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeInstrs() {
+ BasicBlock *PreHeader = TheLoop->getLoopPreheader();
+ BasicBlock *Header = TheLoop->getHeader();
+
+ // For each block in the loop.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+
+ // Scan the instructions in the block and look for hazards.
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+
+ if (PHINode *Phi = dyn_cast<PHINode>(it)) {
+ // This should not happen because the loop should be normalized.
+ if (Phi->getNumIncomingValues() != 2) {
+ DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
+ return false;
+ }
+
+ // Check that this PHI type is allowed.
+ if (!Phi->getType()->isIntegerTy() &&
+ !Phi->getType()->isFloatingPointTy() &&
+ !Phi->getType()->isPointerTy()) {
+ DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
+ return false;
+ }
+
+ // If this PHINode is not in the header block, then we know that we
+ // can convert it to select during if-conversion. No need to check if
+ // the PHIs in this block are induction or reduction variables.
+ if (*bb != Header)
+ continue;
+
+ // This is the value coming from the preheader.
+ Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
+ // Check if this is an induction variable.
+ InductionKind IK = isInductionVariable(Phi);
+
+ if (IK_NoInduction != IK) {
+ // Int inductions are special because we only allow one IV.
+ if (IK == IK_IntInduction) {
+ if (Induction) {
+ DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
+ return false;
+ }
+ Induction = Phi;
+ }
+
+ DEBUG(dbgs() << "LV: Found an induction variable.\n");
+ Inductions[Phi] = InductionInfo(StartValue, IK);
+ continue;
+ }
+
+ if (AddReductionVar(Phi, RK_IntegerAdd)) {
+ DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerMult)) {
+ DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerOr)) {
+ DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerAnd)) {
+ DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerXor)) {
+ DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_FloatMult)) {
+ DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_FloatAdd)) {
+ DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+
+ DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
+ return false;
+ }// end of PHI handling
+
+ // We still don't handle functions.
+ CallInst *CI = dyn_cast<CallInst>(it);
+ if (CI && !isTriviallyVectorizableIntrinsic(it)) {
+ DEBUG(dbgs() << "LV: Found a call site.\n");
+ return false;
+ }
+
+ // Check that the instruction return type is vectorizable.
+ if (!VectorType::isValidElementType(it->getType()) &&
+ !it->getType()->isVoidTy()) {
+ DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
+ return false;
+ }
+
+ // Check that the stored type is vectorizable.
+ if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
+ Type *T = ST->getValueOperand()->getType();
+ if (!VectorType::isValidElementType(T))
+ return false;
+ }
+
+ // Reduction instructions are allowed to have exit users.
+ // All other instructions must not have external users.
+ if (!AllowedExit.count(it))
+ //Check that all of the users of the loop are inside the BB.
+ for (Value::use_iterator I = it->use_begin(), E = it->use_end();
+ I != E; ++I) {
+ Instruction *U = cast<Instruction>(*I);
+ // This user may be a reduction exit value.
+ if (!TheLoop->contains(U)) {
+ DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
+ return false;
+ }
+ }
+ } // next instr.
+
+ }
+
+ if (!Induction) {
+ DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
+ assert(getInductionVars()->size() && "No induction variables");
+ }
+
+ return true;
+}
+
+void LoopVectorizationLegality::collectLoopUniforms() {
+ // We now know that the loop is vectorizable!
+ // Collect variables that will remain uniform after vectorization.
+ std::vector<Value*> Worklist;
+ BasicBlock *Latch = TheLoop->getLoopLatch();
+
+ // Start with the conditional branch and walk up the block.
+ Worklist.push_back(Latch->getTerminator()->getOperand(0));
+
+ while (Worklist.size()) {
+ Instruction *I = dyn_cast<Instruction>(Worklist.back());
+ Worklist.pop_back();
+
+ // Look at instructions inside this loop.
+ // Stop when reaching PHI nodes.
+ // TODO: we need to follow values all over the loop, not only in this block.
+ if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
+ continue;
+
+ // This is a known uniform.
+ Uniforms.insert(I);
+
+ // Insert all operands.
+ for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) {
+ Worklist.push_back(I->getOperand(i));
+ }
+ }
+}
+
+bool LoopVectorizationLegality::canVectorizeMemory() {
+ typedef SmallVector<Value*, 16> ValueVector;
+ typedef SmallPtrSet<Value*, 16> ValueSet;
+ // Holds the Load and Store *instructions*.
+ ValueVector Loads;
+ ValueVector Stores;
+ PtrRtCheck.Pointers.clear();
+ PtrRtCheck.Need = false;
+
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+
+ // Scan the BB and collect legal loads and stores.
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+
+ // If this is a load, save it. If this instruction can read from memory
+ // but is not a load, then we quit. Notice that we don't handle function
+ // calls that read or write.
+ if (it->mayReadFromMemory()) {
+ LoadInst *Ld = dyn_cast<LoadInst>(it);
+ if (!Ld) return false;
+ if (!Ld->isSimple()) {
+ DEBUG(dbgs() << "LV: Found a non-simple load.\n");
+ return false;
+ }
+ Loads.push_back(Ld);
+ continue;
+ }
+
+ // Save 'store' instructions. Abort if other instructions write to memory.
+ if (it->mayWriteToMemory()) {
+ StoreInst *St = dyn_cast<StoreInst>(it);
+ if (!St) return false;
+ if (!St->isSimple()) {
+ DEBUG(dbgs() << "LV: Found a non-simple store.\n");
+ return false;
+ }
+ Stores.push_back(St);
+ }
+ } // next instr.
+ } // next block.
+
+ // Now we have two lists that hold the loads and the stores.
+ // Next, we find the pointers that they use.
+
+ // Check if we see any stores. If there are no stores, then we don't
+ // care if the pointers are *restrict*.
+ if (!Stores.size()) {
+ DEBUG(dbgs() << "LV: Found a read-only loop!\n");
+ return true;
+ }
+
+ // Holds the read and read-write *pointers* that we find.
+ ValueVector Reads;
+ ValueVector ReadWrites;
+
+ // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
+ // multiple times on the same object. If the ptr is accessed twice, once
+ // for read and once for write, it will only appear once (on the write
+ // list). This is okay, since we are going to check for conflicts between
+ // writes and between reads and writes, but not between reads and reads.
+ ValueSet Seen;
+
+ ValueVector::iterator I, IE;
+ for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
+ StoreInst *ST = cast<StoreInst>(*I);
+ Value* Ptr = ST->getPointerOperand();
+
+ if (isUniform(Ptr)) {
+ DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
+ return false;
+ }
+
+ // If we did *not* see this pointer before, insert it to
+ // the read-write list. At this phase it is only a 'write' list.
+ if (Seen.insert(Ptr))
+ ReadWrites.push_back(Ptr);
+ }
+
+ for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
+ LoadInst *LD = cast<LoadInst>(*I);
+ Value* Ptr = LD->getPointerOperand();
+ // If we did *not* see this pointer before, insert it to the
+ // read list. If we *did* see it before, then it is already in
+ // the read-write list. This allows us to vectorize expressions
+ // such as A[i] += x; Because the address of A[i] is a read-write
+ // pointer. This only works if the index of A[i] is consecutive.
+ // If the address of i is unknown (for example A[B[i]]) then we may
+ // read a few words, modify, and write a few words, and some of the
+ // words may be written to the same address.
+ if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
+ Reads.push_back(Ptr);
+ }
+
+ // If we write (or read-write) to a single destination and there are no
+ // other reads in this loop then is it safe to vectorize.
+ if (ReadWrites.size() == 1 && Reads.size() == 0) {
+ DEBUG(dbgs() << "LV: Found a write-only loop!\n");
+ return true;
+ }
+
+ // Find pointers with computable bounds. We are going to use this information
+ // to place a runtime bound check.
+ bool CanDoRT = true;
+ for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
+ if (hasComputableBounds(*I)) {
+ PtrRtCheck.insert(SE, TheLoop, *I);
+ DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
+ } else {
+ CanDoRT = false;
+ break;
+ }
+ for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
+ if (hasComputableBounds(*I)) {
+ PtrRtCheck.insert(SE, TheLoop, *I);
+ DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
+ } else {
+ CanDoRT = false;
+ break;
+ }
+
+ // Check that we did not collect too many pointers or found a
+ // unsizeable pointer.
+ if (!CanDoRT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
+ PtrRtCheck.reset();
+ CanDoRT = false;
+ }
+
+ if (CanDoRT) {
+ DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
+ }
+
+ bool NeedRTCheck = false;
+
+ // Now that the pointers are in two lists (Reads and ReadWrites), we
+ // can check that there are no conflicts between each of the writes and
+ // between the writes to the reads.
+ ValueSet WriteObjects;
+ ValueVector TempObjects;
+
+ // Check that the read-writes do not conflict with other read-write
+ // pointers.
+ bool AllWritesIdentified = true;
+ for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
+ GetUnderlyingObjects(*I, TempObjects, DL);
+ for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
+ it != e; ++it) {
+ if (!isIdentifiedObject(*it)) {
+ DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
+ NeedRTCheck = true;
+ AllWritesIdentified = false;
+ }
+ if (!WriteObjects.insert(*it)) {
+ DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
+ << **it <<"\n");
+ return false;
+ }
+ }
+ TempObjects.clear();
+ }
+
+ /// Check that the reads don't conflict with the read-writes.
+ for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
+ GetUnderlyingObjects(*I, TempObjects, DL);
+ for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
+ it != e; ++it) {
+ // If all of the writes are identified then we don't care if the read
+ // pointer is identified or not.
+ if (!AllWritesIdentified && !isIdentifiedObject(*it)) {
+ DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
+ NeedRTCheck = true;
+ }
+ if (WriteObjects.count(*it)) {
+ DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
+ << **it <<"\n");
+ return false;
+ }
+ }
+ TempObjects.clear();
+ }
+
+ PtrRtCheck.Need = NeedRTCheck;
+ if (NeedRTCheck && !CanDoRT) {
+ DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
+ "the array bounds.\n");
+ PtrRtCheck.reset();
+ return false;
+ }
+
+ DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
+ " need a runtime memory check.\n");
+ return true;
+}
+
+bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
+ ReductionKind Kind) {
+ if (Phi->getNumIncomingValues() != 2)
+ return false;
+
+ // Reduction variables are only found in the loop header block.
+ if (Phi->getParent() != TheLoop->getHeader())
+ return false;
+
+ // Obtain the reduction start value from the value that comes from the loop
+ // preheader.
+ Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
+
+ // ExitInstruction is the single value which is used outside the loop.
+ // We only allow for a single reduction value to be used outside the loop.
+ // This includes users of the reduction, variables (which form a cycle
+ // which ends in the phi node).
+ Instruction *ExitInstruction = 0;
+ // Indicates that we found a binary operation in our scan.
+ bool FoundBinOp = false;
+
+ // Iter is our iterator. We start with the PHI node and scan for all of the
+ // users of this instruction. All users must be instructions that can be
+ // used as reduction variables (such as ADD). We may have a single
+ // out-of-block user. The cycle must end with the original PHI.
+ Instruction *Iter = Phi;
+ while (true) {
+ // If the instruction has no users then this is a broken
+ // chain and can't be a reduction variable.
+ if (Iter->use_empty())
+ return false;
+
+ // Did we find a user inside this loop already ?
+ bool FoundInBlockUser = false;
+ // Did we reach the initial PHI node already ?
+ bool FoundStartPHI = false;
+
+ // Is this a bin op ?
+ FoundBinOp |= !isa<PHINode>(Iter);
+
+ // For each of the *users* of iter.
+ for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
+ it != e; ++it) {
+ Instruction *U = cast<Instruction>(*it);
+ // We already know that the PHI is a user.
+ if (U == Phi) {
+ FoundStartPHI = true;
+ continue;
+ }
+
+ // Check if we found the exit user.
+ BasicBlock *Parent = U->getParent();
+ if (!TheLoop->contains(Parent)) {
+ // Exit if you find multiple outside users.
+ if (ExitInstruction != 0)
+ return false;
+ ExitInstruction = Iter;
+ }
+
+ // We allow in-loop PHINodes which are not the original reduction PHI
+ // node. If this PHI is the only user of Iter (happens in IF w/ no ELSE
+ // structure) then don't skip this PHI.
+ if (isa<PHINode>(Iter) && isa<PHINode>(U) &&
+ U->getParent() != TheLoop->getHeader() &&
+ TheLoop->contains(U) &&
+ Iter->getNumUses() > 1)
+ continue;
+
+ // We can't have multiple inside users.
+ if (FoundInBlockUser)
+ return false;
+ FoundInBlockUser = true;
+
+ // Any reduction instr must be of one of the allowed kinds.
+ if (!isReductionInstr(U, Kind))
+ return false;
+
+ // Reductions of instructions such as Div, and Sub is only
+ // possible if the LHS is the reduction variable.
+ if (!U->isCommutative() && !isa<PHINode>(U) && U->getOperand(0) != Iter)
+ return false;
+
+ Iter = U;
+ }
+
+ // We found a reduction var if we have reached the original
+ // phi node and we only have a single instruction with out-of-loop
+ // users.
+ if (FoundStartPHI) {
+ // This instruction is allowed to have out-of-loop users.
+ AllowedExit.insert(ExitInstruction);
+
+ // Save the description of this reduction variable.
+ ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
+ Reductions[Phi] = RD;
+ // We've ended the cycle. This is a reduction variable if we have an
+ // outside user and it has a binary op.
+ return FoundBinOp && ExitInstruction;
+ }
+ }
+}
+
+bool
+LoopVectorizationLegality::isReductionInstr(Instruction *I,
+ ReductionKind Kind) {
+ bool FP = I->getType()->isFloatingPointTy();
+ bool FastMath = (FP && I->isCommutative() && I->isAssociative());
+
+ switch (I->getOpcode()) {
+ default:
+ return false;
+ case Instruction::PHI:
+ if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd))
+ return false;
+ // possibly.
+ return true;
+ case Instruction::Sub:
+ case Instruction::Add:
+ return Kind == RK_IntegerAdd;
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::Mul:
+ return Kind == RK_IntegerMult;
+ case Instruction::And:
+ return Kind == RK_IntegerAnd;
+ case Instruction::Or:
+ return Kind == RK_IntegerOr;
+ case Instruction::Xor:
+ return Kind == RK_IntegerXor;
+ case Instruction::FMul:
+ return Kind == RK_FloatMult && FastMath;
+ case Instruction::FAdd:
+ return Kind == RK_FloatAdd && FastMath;
+ }
+}
+
+LoopVectorizationLegality::InductionKind
+LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
+ Type *PhiTy = Phi->getType();
+ // We only handle integer and pointer inductions variables.
+ if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
+ return IK_NoInduction;
+
+ // Check that the PHI is consecutive and starts at zero.
+ const SCEV *PhiScev = SE->getSCEV(Phi);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
+ if (!AR) {
+ DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
+ return IK_NoInduction;
+ }
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+
+ // Integer inductions need to have a stride of one.
+ if (PhiTy->isIntegerTy()) {
+ if (Step->isOne())
+ return IK_IntInduction;
+ if (Step->isAllOnesValue())
+ return IK_ReverseIntInduction;
+ return IK_NoInduction;
+ }
+
+ // Calculate the pointer stride and check if it is consecutive.
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
+ if (!C)
+ return IK_NoInduction;
+
+ assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
+ uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
+ if (C->getValue()->equalsInt(Size))
+ return IK_PtrInduction;
+
+ return IK_NoInduction;
+}
+
+bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
+ Value *In0 = const_cast<Value*>(V);
+ PHINode *PN = dyn_cast_or_null<PHINode>(In0);
+ if (!PN)
+ return false;
+
+ return Inductions.count(PN);
+}
+
+bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
+ assert(TheLoop->contains(BB) && "Unknown block used");
+
+ // Blocks that do not dominate the latch need predication.
+ BasicBlock* Latch = TheLoop->getLoopLatch();
+ return !DT->dominates(BB, Latch);
+}
+
+bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ // We don't predicate loads/stores at the moment.
+ if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
+ return false;
+
+ // The instructions below can trap.
+ switch (it->getOpcode()) {
+ default: continue;
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
+ const SCEV *PhiScev = SE->getSCEV(Ptr);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
+ if (!AR)
+ return false;
+
+ return AR->isAffine();
+}
+
+unsigned
+LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
+ unsigned UserVF) {
+ if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
+ DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
+ return 1;
+ }
+
+ // Find the trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
+ DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
+
+ unsigned VF = MaxVectorSize;
+
+ // If we optimize the program for size, avoid creating the tail loop.
+ if (OptForSize) {
+ // If we are unable to calculate the trip count then don't try to vectorize.
+ if (TC < 2) {
+ DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
+ return 1;
+ }
+
+ // Find the maximum SIMD width that can fit within the trip count.
+ VF = TC % MaxVectorSize;
+
+ if (VF == 0)
+ VF = MaxVectorSize;
+
+ // If the trip count that we found modulo the vectorization factor is not
+ // zero then we require a tail.
+ if (VF < 2) {
+ DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
+ return 1;
+ }
+ }
+
+ if (UserVF != 0) {
+ assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
+ DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
+
+ return UserVF;
+ }
+
+ float Cost = expectedCost(1);
+ unsigned Width = 1;
+ DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
+ for (unsigned i=2; i <= VF; i*=2) {
+ // Notice that the vector loop needs to be executed less times, so
+ // we need to divide the cost of the vector loops by the width of
+ // the vector elements.
+ float VectorCost = expectedCost(i) / (float)i;
+ DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
+ (int)VectorCost << ".\n");
+ if (VectorCost < Cost) {
+ Cost = VectorCost;
+ Width = i;
+ }
+ }
+
+ DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
+ return Width;
+}
+
+unsigned
+LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
+ unsigned UserUF) {
+ // Use the user preference, unless 'auto' is selected.
+ if (UserUF != 0)
+ return UserUF;
+
+ // When we optimize for size we don't unroll.
+ if (OptForSize)
+ return 1;
+
+ // Do not unroll loops with a relatively small trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop,
+ TheLoop->getLoopLatch());
+ if (TC > 1 && TC < TinyTripCountUnrollThreshold)
+ return 1;
+
+ unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
+ DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
+ " vector registers\n");
+
+ LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
+ // We divide by these constants so assume that we have at least one
+ // instruction that uses at least one register.
+ R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
+ R.NumInstructions = std::max(R.NumInstructions, 1U);
+
+ // We calculate the unroll factor using the following formula.
+ // Subtract the number of loop invariants from the number of available
+ // registers. These registers are used by all of the unrolled instances.
+ // Next, divide the remaining registers by the number of registers that is
+ // required by the loop, in order to estimate how many parallel instances
+ // fit without causing spills.
+ unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
+
+ // We don't want to unroll the loops to the point where they do not fit into
+ // the decoded cache. Assume that we only allow 32 IR instructions.
+ UF = std::min(UF, (MaxLoopSizeThreshold / R.NumInstructions));
+
+ // Clamp the unroll factor ranges to reasonable factors.
+ if (UF > MaxUnrollSize)
+ UF = MaxUnrollSize;
+ else if (UF < 1)
+ UF = 1;
+
+ return UF;
+}
+
+LoopVectorizationCostModel::RegisterUsage
+LoopVectorizationCostModel::calculateRegisterUsage() {
+ // This function calculates the register usage by measuring the highest number
+ // of values that are alive at a single location. Obviously, this is a very
+ // rough estimation. We scan the loop in a topological order in order and
+ // assign a number to each instruction. We use RPO to ensure that defs are
+ // met before their users. We assume that each instruction that has in-loop
+ // users starts an interval. We record every time that an in-loop value is
+ // used, so we have a list of the first and last occurrences of each
+ // instruction. Next, we transpose this data structure into a multi map that
+ // holds the list of intervals that *end* at a specific location. This multi
+ // map allows us to perform a linear search. We scan the instructions linearly
+ // and record each time that a new interval starts, by placing it in a set.
+ // If we find this value in the multi-map then we remove it from the set.
+ // The max register usage is the maximum size of the set.
+ // We also search for instructions that are defined outside the loop, but are
+ // used inside the loop. We need this number separately from the max-interval
+ // usage number because when we unroll, loop-invariant values do not take
+ // more register.
+ LoopBlocksDFS DFS(TheLoop);
+ DFS.perform(LI);
+
+ RegisterUsage R;
+ R.NumInstructions = 0;
+
+ // Each 'key' in the map opens a new interval. The values
+ // of the map are the index of the 'last seen' usage of the
+ // instruction that is the key.
+ typedef DenseMap<Instruction*, unsigned> IntervalMap;
+ // Maps instruction to its index.
+ DenseMap<unsigned, Instruction*> IdxToInstr;
+ // Marks the end of each interval.
+ IntervalMap EndPoint;
+ // Saves the list of instruction indices that are used in the loop.
+ SmallSet<Instruction*, 8> Ends;
+ // Saves the list of values that are used in the loop but are
+ // defined outside the loop, such as arguments and constants.
+ SmallPtrSet<Value*, 8> LoopInvariants;
+
+ unsigned Index = 0;
+ for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
+ be = DFS.endRPO(); bb != be; ++bb) {
+ R.NumInstructions += (*bb)->size();
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+ Instruction *I = it;
+ IdxToInstr[Index++] = I;
+
+ // Save the end location of each USE.
+ for (unsigned i = 0; i < I->getNumOperands(); ++i) {
+ Value *U = I->getOperand(i);
+ Instruction *Instr = dyn_cast<Instruction>(U);
+
+ // Ignore non-instruction values such as arguments, constants, etc.
+ if (!Instr) continue;
+
+ // If this instruction is outside the loop then record it and continue.
+ if (!TheLoop->contains(Instr)) {
+ LoopInvariants.insert(Instr);
+ continue;
+ }
+
+ // Overwrite previous end points.
+ EndPoint[Instr] = Index;
+ Ends.insert(Instr);
+ }
+ }
+ }
+
+ // Saves the list of intervals that end with the index in 'key'.
+ typedef SmallVector<Instruction*, 2> InstrList;
+ DenseMap<unsigned, InstrList> TransposeEnds;
+
+ // Transpose the EndPoints to a list of values that end at each index.
+ for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
+ it != e; ++it)
+ TransposeEnds[it->second].push_back(it->first);
+
+ SmallSet<Instruction*, 8> OpenIntervals;
+ unsigned MaxUsage = 0;
+
+
+ DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
+ for (unsigned int i = 0; i < Index; ++i) {
+ Instruction *I = IdxToInstr[i];
+ // Ignore instructions that are never used within the loop.
+ if (!Ends.count(I)) continue;
+
+ // Remove all of the instructions that end at this location.
+ InstrList &List = TransposeEnds[i];
+ for (unsigned int j=0, e = List.size(); j < e; ++j)
+ OpenIntervals.erase(List[j]);
+
+ // Count the number of live interals.
+ MaxUsage = std::max(MaxUsage, OpenIntervals.size());
+
+ DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
+ OpenIntervals.size() <<"\n");
+
+ // Add the current instruction to the list of open intervals.
+ OpenIntervals.insert(I);
+ }
+
+ unsigned Invariant = LoopInvariants.size();
+ DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
+ DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
+ DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
+
+ R.LoopInvariantRegs = Invariant;
+ R.MaxLocalUsers = MaxUsage;
+ return R;
+}
+
+unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
+ unsigned Cost = 0;
+
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+ unsigned BlockCost = 0;
+ BasicBlock *BB = *bb;
+
+ // For each instruction in the old loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ unsigned C = getInstructionCost(it, VF);
+ Cost += C;
+ DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
+ VF << " For instruction: "<< *it << "\n");
+ }
+
+ // We assume that if-converted blocks have a 50% chance of being executed.
+ // When the code is scalar then some of the blocks are avoided due to CF.
+ // When the code is vectorized we execute all code paths.
+ if (Legal->blockNeedsPredication(*bb) && VF == 1)
+ BlockCost /= 2;
+
+ Cost += BlockCost;
+ }
+
+ return Cost;
+}
+
+unsigned
+LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
+ // If we know that this instruction will remain uniform, check the cost of
+ // the scalar version.
+ if (Legal->isUniformAfterVectorization(I))
+ VF = 1;
+
+ Type *RetTy = I->getType();
+ Type *VectorTy = ToVectorTy(RetTy, VF);
+
+ // TODO: We need to estimate the cost of intrinsic calls.
+ switch (I->getOpcode()) {
+ case Instruction::GetElementPtr:
+ // We mark this instruction as zero-cost because scalar GEPs are usually
+ // lowered to the intruction addressing mode. At the moment we don't
+ // generate vector geps.
+ return 0;
+ case Instruction::Br: {
+ return TTI.getCFInstrCost(I->getOpcode());
+ }
+ case Instruction::PHI:
+ //TODO: IF-converted IFs become selects.
+ return 0;
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy);
+ case Instruction::Select: {
+ SelectInst *SI = cast<SelectInst>(I);
+ const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
+ bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
+ Type *CondTy = SI->getCondition()->getType();
+ if (ScalarCond)
+ CondTy = VectorType::get(CondTy, VF);
+
+ return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
+ }
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ Type *ValTy = I->getOperand(0)->getType();
+ VectorTy = ToVectorTy(ValTy, VF);
+ return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
+ }
+ case Instruction::Store: {
+ StoreInst *SI = cast<StoreInst>(I);
+ Type *ValTy = SI->getValueOperand()->getType();
+ VectorTy = ToVectorTy(ValTy, VF);
+
+ if (VF == 1)
+ return TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
+ SI->getAlignment(),
+ SI->getPointerAddressSpace());
+
+ // Scalarized stores.
+ int Stride = Legal->isConsecutivePtr(SI->getPointerOperand());
+ bool Reverse = Stride < 0;
+ if (0 == Stride) {
+ unsigned Cost = 0;
+
+ // The cost of extracting from the value vector and pointer vector.
+ Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
+ for (unsigned i = 0; i < VF; ++i) {
+ Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
+ i);
+ Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
+ }
+
+ // The cost of the scalar stores.
+ Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
+ SI->getAlignment(),
+ SI->getPointerAddressSpace());
+ return Cost;
+ }
+
+ // Wide stores.
+ unsigned Cost = TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
+ SI->getAlignment(),
+ SI->getPointerAddressSpace());
+ if (Reverse)
+ Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
+ VectorTy, 0);
+ return Cost;
+ }
+ case Instruction::Load: {
+ LoadInst *LI = cast<LoadInst>(I);
+
+ if (VF == 1)
+ return TTI.getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(),
+ LI->getPointerAddressSpace());
+
+ // Scalarized loads.
+ int Stride = Legal->isConsecutivePtr(LI->getPointerOperand());
+ bool Reverse = Stride < 0;
+ if (0 == Stride) {
+ unsigned Cost = 0;
+ Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
+
+ // The cost of extracting from the pointer vector.
+ for (unsigned i = 0; i < VF; ++i)
+ Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
+
+ // The cost of inserting data to the result vector.
+ for (unsigned i = 0; i < VF; ++i)
+ Cost += TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy, i);
+
+ // The cost of the scalar stores.
+ Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), RetTy->getScalarType(),
+ LI->getAlignment(),
+ LI->getPointerAddressSpace());
+ return Cost;
+ }
+
+ // Wide loads.
+ unsigned Cost = TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
+ LI->getAlignment(),
+ LI->getPointerAddressSpace());
+ if (Reverse)
+ Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
+ return Cost;
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ // We optimize the truncation of induction variable.
+ // The cost of these is the same as the scalar operation.
+ if (I->getOpcode() == Instruction::Trunc &&
+ Legal->isInductionVariable(I->getOperand(0)))
+ return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
+ I->getOperand(0)->getType());
+
+ Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
+ return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
+ }
+ case Instruction::Call: {
+ assert(isTriviallyVectorizableIntrinsic(I));
+ IntrinsicInst *II = cast<IntrinsicInst>(I);
+ Type *RetTy = ToVectorTy(II->getType(), VF);
+ SmallVector<Type*, 4> Tys;
+ for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(ToVectorTy(II->getArgOperand(i)->getType(), VF));
+ return TTI.getIntrinsicInstrCost(II->getIntrinsicID(), RetTy, Tys);
+ }
+ default: {
+ // We are scalarizing the instruction. Return the cost of the scalar
+ // instruction, plus the cost of insert and extract into vector
+ // elements, times the vector width.
+ unsigned Cost = 0;
+
+ if (!RetTy->isVoidTy() && VF != 1) {
+ unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
+ VectorTy);
+ unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
+ VectorTy);
+
+ // The cost of inserting the results plus extracting each one of the
+ // operands.
+ Cost += VF * (InsCost + ExtCost * I->getNumOperands());
+ }
+
+ // The cost of executing VF copies of the scalar instruction. This opcode
+ // is unknown. Assume that it is the same as 'mul'.
+ Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
+ return Cost;
+ }
+ }// end of switch.
+}
+
+Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
+ if (Scalar->isVoidTy() || VF == 1)
+ return Scalar;
+ return VectorType::get(Scalar, VF);
+}
+
+char LoopVectorize::ID = 0;
+static const char lv_name[] = "Loop Vectorization";
+INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
+
+namespace llvm {
+ Pass *createLoopVectorizePass() {
+ return new LoopVectorize();
+ }
+}
+
+
diff --git a/lib/Transforms/Vectorize/Vectorize.cpp b/lib/Transforms/Vectorize/Vectorize.cpp
index 1ef6002..19eefd2 100644
--- a/lib/Transforms/Vectorize/Vectorize.cpp
+++ b/lib/Transforms/Vectorize/Vectorize.cpp
@@ -1,4 +1,4 @@
-//===-- Vectorize.cpp -----------------------------------------------------===//
+ //===-- Vectorize.cpp -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
@@ -7,26 +7,27 @@
//
//===----------------------------------------------------------------------===//
//
-// This file implements common infrastructure for libLLVMVectorizeOpts.a, which
+// This file implements common infrastructure for libLLVMVectorizeOpts.a, which
// implements several vectorization transformations over the LLVM intermediate
// representation, including the C bindings for that library.
//
//===----------------------------------------------------------------------===//
-#include "llvm-c/Transforms/Vectorize.h"
+#include "llvm/Transforms/Vectorize.h"
#include "llvm-c/Initialization.h"
-#include "llvm/InitializePasses.h"
-#include "llvm/PassManager.h"
+#include "llvm-c/Transforms/Vectorize.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Verifier.h"
-#include "llvm/Transforms/Vectorize.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/PassManager.h"
using namespace llvm;
-/// initializeVectorizationPasses - Initialize all passes linked into the
+/// initializeVectorizationPasses - Initialize all passes linked into the
/// Vectorization library.
void llvm::initializeVectorization(PassRegistry &Registry) {
initializeBBVectorizePass(Registry);
+ initializeLoopVectorizePass(Registry);
}
void LLVMInitializeVectorization(LLVMPassRegistryRef R) {
@@ -37,3 +38,6 @@ void LLVMAddBBVectorizePass(LLVMPassManagerRef PM) {
unwrap(PM)->add(createBBVectorizePass());
}
+void LLVMAddLoopVectorizePass(LLVMPassManagerRef PM) {
+ unwrap(PM)->add(createLoopVectorizePass());
+}