aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/PostRASchedulerList.cpp
blob: f37fc82b2a9c941d19fe312c46de6760133799bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a top-down list scheduler, using standard algorithms.
// The basic approach uses a priority queue of available nodes to schedule.
// One at a time, nodes are taken from the priority queue (thus in priority
// order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
// not completed execution.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "post-RA-sched"
#include "AntiDepBreaker.h"
#include "AggressiveAntiDepBreaker.h"
#include "CriticalAntiDepBreaker.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

STATISTIC(NumNoops, "Number of noops inserted");
STATISTIC(NumStalls, "Number of pipeline stalls");
STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");

// Post-RA scheduling is enabled with
// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
// override the target.
static cl::opt<bool>
EnablePostRAScheduler("post-RA-scheduler",
                       cl::desc("Enable scheduling after register allocation"),
                       cl::init(false), cl::Hidden);
static cl::opt<std::string>
EnableAntiDepBreaking("break-anti-dependencies",
                      cl::desc("Break post-RA scheduling anti-dependencies: "
                               "\"critical\", \"all\", or \"none\""),
                      cl::init("none"), cl::Hidden);

// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
static cl::opt<int>
DebugDiv("postra-sched-debugdiv",
                      cl::desc("Debug control MBBs that are scheduled"),
                      cl::init(0), cl::Hidden);
static cl::opt<int>
DebugMod("postra-sched-debugmod",
                      cl::desc("Debug control MBBs that are scheduled"),
                      cl::init(0), cl::Hidden);

AntiDepBreaker::~AntiDepBreaker() { }

namespace {
  class PostRAScheduler : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    RegisterClassInfo RegClassInfo;

  public:
    static char ID;
    PostRAScheduler() : MachineFunctionPass(ID) {}

    void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequired<AliasAnalysis>();
      AU.addRequired<TargetPassConfig>();
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      AU.addPreserved<MachineLoopInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &Fn);
  };
  char PostRAScheduler::ID = 0;

  class SchedulePostRATDList : public ScheduleDAGInstrs {
    /// AvailableQueue - The priority queue to use for the available SUnits.
    ///
    LatencyPriorityQueue AvailableQueue;

    /// PendingQueue - This contains all of the instructions whose operands have
    /// been issued, but their results are not ready yet (due to the latency of
    /// the operation).  Once the operands becomes available, the instruction is
    /// added to the AvailableQueue.
    std::vector<SUnit*> PendingQueue;

    /// HazardRec - The hazard recognizer to use.
    ScheduleHazardRecognizer *HazardRec;

    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
    AntiDepBreaker *AntiDepBreak;

    /// AA - AliasAnalysis for making memory reference queries.
    AliasAnalysis *AA;

    /// LiveRegs - true if the register is live.
    BitVector LiveRegs;

    /// The schedule. Null SUnit*'s represent noop instructions.
    std::vector<SUnit*> Sequence;

  public:
    SchedulePostRATDList(
      MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
      AliasAnalysis *AA, const RegisterClassInfo&,
      TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
      SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);

    ~SchedulePostRATDList();

    /// startBlock - Initialize register live-range state for scheduling in
    /// this block.
    ///
    void startBlock(MachineBasicBlock *BB);

    /// Initialize the scheduler state for the next scheduling region.
    virtual void enterRegion(MachineBasicBlock *bb,
                             MachineBasicBlock::iterator begin,
                             MachineBasicBlock::iterator end,
                             unsigned endcount);

    /// Notify that the scheduler has finished scheduling the current region.
    virtual void exitRegion();

    /// Schedule - Schedule the instruction range using list scheduling.
    ///
    void schedule();

    void EmitSchedule();

    /// Observe - Update liveness information to account for the current
    /// instruction, which will not be scheduled.
    ///
    void Observe(MachineInstr *MI, unsigned Count);

    /// finishBlock - Clean up register live-range state.
    ///
    void finishBlock();

    /// FixupKills - Fix register kill flags that have been made
    /// invalid due to scheduling
    ///
    void FixupKills(MachineBasicBlock *MBB);

  private:
    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
    void ReleaseSuccessors(SUnit *SU);
    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
    void ListScheduleTopDown();
    void StartBlockForKills(MachineBasicBlock *BB);

    // ToggleKillFlag - Toggle a register operand kill flag. Other
    // adjustments may be made to the instruction if necessary. Return
    // true if the operand has been deleted, false if not.
    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);

    void dumpSchedule() const;
  };
}

char &llvm::PostRASchedulerID = PostRAScheduler::ID;

INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
                "Post RA top-down list latency scheduler", false, false)

SchedulePostRATDList::SchedulePostRATDList(
  MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
  AliasAnalysis *AA, const RegisterClassInfo &RCI,
  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
  SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
  : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), AA(AA),
    LiveRegs(TRI->getNumRegs())
{
  const TargetMachine &TM = MF.getTarget();
  const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
  HazardRec =
    TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);

  assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
          MRI.tracksLiveness()) &&
         "Live-ins must be accurate for anti-dependency breaking");
  AntiDepBreak =
    ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
     (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
      (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
}

SchedulePostRATDList::~SchedulePostRATDList() {
  delete HazardRec;
  delete AntiDepBreak;
}

/// Initialize state associated with the next scheduling region.
void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
                 MachineBasicBlock::iterator begin,
                 MachineBasicBlock::iterator end,
                 unsigned endcount) {
  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
  Sequence.clear();
}

/// Print the schedule before exiting the region.
void SchedulePostRATDList::exitRegion() {
  DEBUG({
      dbgs() << "*** Final schedule ***\n";
      dumpSchedule();
      dbgs() << '\n';
    });
  ScheduleDAGInstrs::exitRegion();
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// dumpSchedule - dump the scheduled Sequence.
void SchedulePostRATDList::dumpSchedule() const {
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    if (SUnit *SU = Sequence[i])
      SU->dump(this);
    else
      dbgs() << "**** NOOP ****\n";
  }
}
#endif

bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
  TII = Fn.getTarget().getInstrInfo();
  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
  AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();

  RegClassInfo.runOnMachineFunction(Fn);

  // Check for explicit enable/disable of post-ra scheduling.
  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
    TargetSubtargetInfo::ANTIDEP_NONE;
  SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
  if (EnablePostRAScheduler.getPosition() > 0) {
    if (!EnablePostRAScheduler)
      return false;
  } else {
    // Check that post-RA scheduling is enabled for this target.
    // This may upgrade the AntiDepMode.
    const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
    if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
                                  CriticalPathRCs))
      return false;
  }

  // Check for antidep breaking override...
  if (EnableAntiDepBreaking.getPosition() > 0) {
    AntiDepMode = (EnableAntiDepBreaking == "all")
      ? TargetSubtargetInfo::ANTIDEP_ALL
      : ((EnableAntiDepBreaking == "critical")
         ? TargetSubtargetInfo::ANTIDEP_CRITICAL
         : TargetSubtargetInfo::ANTIDEP_NONE);
  }

  DEBUG(dbgs() << "PostRAScheduler\n");

  SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
                                 CriticalPathRCs);

  // Loop over all of the basic blocks
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
       MBB != MBBe; ++MBB) {
#ifndef NDEBUG
    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
    if (DebugDiv > 0) {
      static int bbcnt = 0;
      if (bbcnt++ % DebugDiv != DebugMod)
        continue;
      dbgs() << "*** DEBUG scheduling " << Fn.getName()
             << ":BB#" << MBB->getNumber() << " ***\n";
    }
#endif

    // Initialize register live-range state for scheduling in this block.
    Scheduler.startBlock(MBB);

    // Schedule each sequence of instructions not interrupted by a label
    // or anything else that effectively needs to shut down scheduling.
    MachineBasicBlock::iterator Current = MBB->end();
    unsigned Count = MBB->size(), CurrentCount = Count;
    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
      MachineInstr *MI = llvm::prior(I);
      // Calls are not scheduling boundaries before register allocation, but
      // post-ra we don't gain anything by scheduling across calls since we
      // don't need to worry about register pressure.
      if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
        Scheduler.enterRegion(MBB, I, Current, CurrentCount);
        Scheduler.schedule();
        Scheduler.exitRegion();
        Scheduler.EmitSchedule();
        Current = MI;
        CurrentCount = Count - 1;
        Scheduler.Observe(MI, CurrentCount);
      }
      I = MI;
      --Count;
      if (MI->isBundle())
        Count -= MI->getBundleSize();
    }
    assert(Count == 0 && "Instruction count mismatch!");
    assert((MBB->begin() == Current || CurrentCount != 0) &&
           "Instruction count mismatch!");
    Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
    Scheduler.schedule();
    Scheduler.exitRegion();
    Scheduler.EmitSchedule();

    // Clean up register live-range state.
    Scheduler.finishBlock();

    // Update register kills
    Scheduler.FixupKills(MBB);
  }

  return true;
}

/// StartBlock - Initialize register live-range state for scheduling in
/// this block.
///
void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
  // Call the superclass.
  ScheduleDAGInstrs::startBlock(BB);

  // Reset the hazard recognizer and anti-dep breaker.
  HazardRec->Reset();
  if (AntiDepBreak != NULL)
    AntiDepBreak->StartBlock(BB);
}

/// Schedule - Schedule the instruction range using list scheduling.
///
void SchedulePostRATDList::schedule() {
  // Build the scheduling graph.
  buildSchedGraph(AA);

  if (AntiDepBreak != NULL) {
    unsigned Broken =
      AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
                                          EndIndex, DbgValues);

    if (Broken != 0) {
      // We made changes. Update the dependency graph.
      // Theoretically we could update the graph in place:
      // When a live range is changed to use a different register, remove
      // the def's anti-dependence *and* output-dependence edges due to
      // that register, and add new anti-dependence and output-dependence
      // edges based on the next live range of the register.
      ScheduleDAG::clearDAG();
      buildSchedGraph(AA);

      NumFixedAnti += Broken;
    }
  }

  DEBUG(dbgs() << "********** List Scheduling **********\n");
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          SUnits[su].dumpAll(this));

  AvailableQueue.initNodes(SUnits);
  ListScheduleTopDown();
  AvailableQueue.releaseState();
}

/// Observe - Update liveness information to account for the current
/// instruction, which will not be scheduled.
///
void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
  if (AntiDepBreak != NULL)
    AntiDepBreak->Observe(MI, Count, EndIndex);
}

/// FinishBlock - Clean up register live-range state.
///
void SchedulePostRATDList::finishBlock() {
  if (AntiDepBreak != NULL)
    AntiDepBreak->FinishBlock();

  // Call the superclass.
  ScheduleDAGInstrs::finishBlock();
}

/// StartBlockForKills - Initialize register live-range state for updating kills
///
void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
  // Start with no live registers.
  LiveRegs.reset();

  // Determine the live-out physregs for this block.
  if (!BB->empty() && BB->back().isReturn()) {
    // In a return block, examine the function live-out regs.
    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
           E = MRI.liveout_end(); I != E; ++I) {
      unsigned Reg = *I;
      LiveRegs.set(Reg);
      // Repeat, for all subregs.
      for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
        LiveRegs.set(*SubRegs);
    }
  }
  else {
    // In a non-return block, examine the live-in regs of all successors.
    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
           SE = BB->succ_end(); SI != SE; ++SI) {
      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
             E = (*SI)->livein_end(); I != E; ++I) {
        unsigned Reg = *I;
        LiveRegs.set(Reg);
        // Repeat, for all subregs.
        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
          LiveRegs.set(*SubRegs);
      }
    }
  }
}

bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
                                          MachineOperand &MO) {
  // Setting kill flag...
  if (!MO.isKill()) {
    MO.setIsKill(true);
    return false;
  }

  // If MO itself is live, clear the kill flag...
  if (LiveRegs.test(MO.getReg())) {
    MO.setIsKill(false);
    return false;
  }

  // If any subreg of MO is live, then create an imp-def for that
  // subreg and keep MO marked as killed.
  MO.setIsKill(false);
  bool AllDead = true;
  const unsigned SuperReg = MO.getReg();
  for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
    if (LiveRegs.test(*SubRegs)) {
      MI->addOperand(MachineOperand::CreateReg(*SubRegs,
                                               true  /*IsDef*/,
                                               true  /*IsImp*/,
                                               false /*IsKill*/,
                                               false /*IsDead*/));
      AllDead = false;
    }
  }

  if(AllDead)
    MO.setIsKill(true);
  return false;
}

/// FixupKills - Fix the register kill flags, they may have been made
/// incorrect by instruction reordering.
///
void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');

  BitVector killedRegs(TRI->getNumRegs());

  StartBlockForKills(MBB);

  // Examine block from end to start...
  unsigned Count = MBB->size();
  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
       I != E; --Count) {
    MachineInstr *MI = --I;
    if (MI->isDebugValue())
      continue;

    // Update liveness.  Registers that are defed but not used in this
    // instruction are now dead. Mark register and all subregs as they
    // are completely defined.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isRegMask())
        LiveRegs.clearBitsNotInMask(MO.getRegMask());
      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;
      if (!MO.isDef()) continue;
      // Ignore two-addr defs.
      if (MI->isRegTiedToUseOperand(i)) continue;

      LiveRegs.reset(Reg);

      // Repeat for all subregs.
      for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
        LiveRegs.reset(*SubRegs);
    }

    // Examine all used registers and set/clear kill flag. When a
    // register is used multiple times we only set the kill flag on
    // the first use.
    killedRegs.reset();
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isUse()) continue;
      unsigned Reg = MO.getReg();
      if ((Reg == 0) || MRI.isReserved(Reg)) continue;

      bool kill = false;
      if (!killedRegs.test(Reg)) {
        kill = true;
        // A register is not killed if any subregs are live...
        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
          if (LiveRegs.test(*SubRegs)) {
            kill = false;
            break;
          }
        }

        // If subreg is not live, then register is killed if it became
        // live in this instruction
        if (kill)
          kill = !LiveRegs.test(Reg);
      }

      if (MO.isKill() != kill) {
        DEBUG(dbgs() << "Fixing " << MO << " in ");
        // Warning: ToggleKillFlag may invalidate MO.
        ToggleKillFlag(MI, MO);
        DEBUG(MI->dump());
      }

      killedRegs.set(Reg);
    }

    // Mark any used register (that is not using undef) and subregs as
    // now live...
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
      unsigned Reg = MO.getReg();
      if ((Reg == 0) || MRI.isReserved(Reg)) continue;

      LiveRegs.set(Reg);

      for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
        LiveRegs.set(*SubRegs);
    }
  }
}

//===----------------------------------------------------------------------===//
//  Top-Down Scheduling
//===----------------------------------------------------------------------===//

/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the PendingQueue if the count reaches zero.
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
  SUnit *SuccSU = SuccEdge->getSUnit();

  if (SuccEdge->isWeak()) {
    --SuccSU->WeakPredsLeft;
    return;
  }
#ifndef NDEBUG
  if (SuccSU->NumPredsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    SuccSU->dump(this);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(0);
  }
#endif
  --SuccSU->NumPredsLeft;

  // Standard scheduler algorithms will recompute the depth of the successor
  // here as such:
  //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
  //
  // However, we lazily compute node depth instead. Note that
  // ScheduleNodeTopDown has already updated the depth of this node which causes
  // all descendents to be marked dirty. Setting the successor depth explicitly
  // here would cause depth to be recomputed for all its ancestors. If the
  // successor is not yet ready (because of a transitively redundant edge) then
  // this causes depth computation to be quadratic in the size of the DAG.

  // If all the node's predecessors are scheduled, this node is ready
  // to be scheduled. Ignore the special ExitSU node.
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    PendingQueue.push_back(SuccSU);
}

/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    ReleaseSucc(SU, &*I);
  }
}

/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
  DEBUG(SU->dump(this));

  Sequence.push_back(SU);
  assert(CurCycle >= SU->getDepth() &&
         "Node scheduled above its depth!");
  SU->setDepthToAtLeast(CurCycle);

  ReleaseSuccessors(SU);
  SU->isScheduled = true;
  AvailableQueue.scheduledNode(SU);
}

/// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void SchedulePostRATDList::ListScheduleTopDown() {
  unsigned CurCycle = 0;

  // We're scheduling top-down but we're visiting the regions in
  // bottom-up order, so we don't know the hazards at the start of a
  // region. So assume no hazards (this should usually be ok as most
  // blocks are a single region).
  HazardRec->Reset();

  // Release any successors of the special Entry node.
  ReleaseSuccessors(&EntrySU);

  // Add all leaves to Available queue.
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    // It is available if it has no predecessors.
    if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
      AvailableQueue.push(&SUnits[i]);
      SUnits[i].isAvailable = true;
    }
  }

  // In any cycle where we can't schedule any instructions, we must
  // stall or emit a noop, depending on the target.
  bool CycleHasInsts = false;

  // While Available queue is not empty, grab the node with the highest
  // priority. If it is not ready put it back.  Schedule the node.
  std::vector<SUnit*> NotReady;
  Sequence.reserve(SUnits.size());
  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
    // Check to see if any of the pending instructions are ready to issue.  If
    // so, add them to the available queue.
    unsigned MinDepth = ~0u;
    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
      if (PendingQueue[i]->getDepth() <= CurCycle) {
        AvailableQueue.push(PendingQueue[i]);
        PendingQueue[i]->isAvailable = true;
        PendingQueue[i] = PendingQueue.back();
        PendingQueue.pop_back();
        --i; --e;
      } else if (PendingQueue[i]->getDepth() < MinDepth)
        MinDepth = PendingQueue[i]->getDepth();
    }

    DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));

    SUnit *FoundSUnit = 0;
    bool HasNoopHazards = false;
    while (!AvailableQueue.empty()) {
      SUnit *CurSUnit = AvailableQueue.pop();

      ScheduleHazardRecognizer::HazardType HT =
        HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
      if (HT == ScheduleHazardRecognizer::NoHazard) {
        FoundSUnit = CurSUnit;
        break;
      }

      // Remember if this is a noop hazard.
      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;

      NotReady.push_back(CurSUnit);
    }

    // Add the nodes that aren't ready back onto the available list.
    if (!NotReady.empty()) {
      AvailableQueue.push_all(NotReady);
      NotReady.clear();
    }

    // If we found a node to schedule...
    if (FoundSUnit) {
      // ... schedule the node...
      ScheduleNodeTopDown(FoundSUnit, CurCycle);
      HazardRec->EmitInstruction(FoundSUnit);
      CycleHasInsts = true;
      if (HazardRec->atIssueLimit()) {
        DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
        HazardRec->AdvanceCycle();
        ++CurCycle;
        CycleHasInsts = false;
      }
    } else {
      if (CycleHasInsts) {
        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
        HazardRec->AdvanceCycle();
      } else if (!HasNoopHazards) {
        // Otherwise, we have a pipeline stall, but no other problem,
        // just advance the current cycle and try again.
        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
        HazardRec->AdvanceCycle();
        ++NumStalls;
      } else {
        // Otherwise, we have no instructions to issue and we have instructions
        // that will fault if we don't do this right.  This is the case for
        // processors without pipeline interlocks and other cases.
        DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
        HazardRec->EmitNoop();
        Sequence.push_back(0);   // NULL here means noop
        ++NumNoops;
      }

      ++CurCycle;
      CycleHasInsts = false;
    }
  }

#ifndef NDEBUG
  unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
  unsigned Noops = 0;
  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
    if (!Sequence[i])
      ++Noops;
  assert(Sequence.size() - Noops == ScheduledNodes &&
         "The number of nodes scheduled doesn't match the expected number!");
#endif // NDEBUG
}

// EmitSchedule - Emit the machine code in scheduled order.
void SchedulePostRATDList::EmitSchedule() {
  RegionBegin = RegionEnd;

  // If first instruction was a DBG_VALUE then put it back.
  if (FirstDbgValue)
    BB->splice(RegionEnd, BB, FirstDbgValue);

  // Then re-insert them according to the given schedule.
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    if (SUnit *SU = Sequence[i])
      BB->splice(RegionEnd, BB, SU->getInstr());
    else
      // Null SUnit* is a noop.
      TII->insertNoop(*BB, RegionEnd);

    // Update the Begin iterator, as the first instruction in the block
    // may have been scheduled later.
    if (i == 0)
      RegionBegin = prior(RegionEnd);
  }

  // Reinsert any remaining debug_values.
  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
    MachineInstr *DbgValue = P.first;
    MachineBasicBlock::iterator OrigPrivMI = P.second;
    BB->splice(++OrigPrivMI, BB, DbgValue);
  }
  DbgValues.clear();
  FirstDbgValue = NULL;
}