aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SparcV9/InstrSelection/InstrSelectionSupport.cpp
blob: d06ac172db0c8b676d90202db41f8ecb4902dd88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// $Id$ -*-c++-*-
//***************************************************************************
// File:
//	InstrSelectionSupport.h
// 
// Purpose:
//	Target-independent instruction selection code.
//      See SparcInstrSelection.cpp for usage.
//      
// History:
//	10/10/01	 -  Vikram Adve  -  Created
//**************************************************************************/

#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MachineRegInfo.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/Type.h"
#include "llvm/iMemory.h"
using std::vector;

//*************************** Local Functions ******************************/


static TmpInstruction*
InsertCodeToLoadConstant(Function *F,
                         Value* opValue,
                         Instruction* vmInstr,
                         vector<MachineInstr*>& loadConstVec,
                         TargetMachine& target)
{
  vector<TmpInstruction*> tempVec;
  
  // Create a tmp virtual register to hold the constant.
  TmpInstruction* tmpReg = new TmpInstruction(opValue);
  MachineCodeForInstruction &MCFI = MachineCodeForInstruction::get(vmInstr);
  MCFI.addTemp(tmpReg);
  
  target.getInstrInfo().CreateCodeToLoadConst(F, opValue, tmpReg,
                                              loadConstVec, tempVec);
  
  // Register the new tmp values created for this m/c instruction sequence
  for (unsigned i=0; i < tempVec.size(); i++)
    MCFI.addTemp(tempVec[i]);
  
  // Record the mapping from the tmp VM instruction to machine instruction.
  // Do this for all machine instructions that were not mapped to any
  // other temp values created by 
  // tmpReg->addMachineInstruction(loadConstVec.back());
  
  return tmpReg;
}


//---------------------------------------------------------------------------
// Function GetConstantValueAsSignedInt
// 
// Convenience function to get the value of an integer constant, for an
// appropriate integer or non-integer type that can be held in an integer.
// The type of the argument must be the following:
//      Signed or unsigned integer
//      Boolean
//      Pointer
// 
// isValidConstant is set to true if a valid constant was found.
//---------------------------------------------------------------------------

int64_t
GetConstantValueAsSignedInt(const Value *V,
                            bool &isValidConstant)
{
  if (!isa<Constant>(V))
    {
      isValidConstant = false;
      return 0;
    }
  
  isValidConstant = true;
  
  if (V->getType() == Type::BoolTy)
    return (int64_t) cast<ConstantBool>(V)->getValue();
  
  if (V->getType()->isIntegral())
    {
      if (V->getType()->isSigned())
        return cast<ConstantSInt>(V)->getValue();
      
      assert(V->getType()->isUnsigned());
      uint64_t Val = cast<ConstantUInt>(V)->getValue();
      if (Val < INT64_MAX)     // then safe to cast to signed
        return (int64_t)Val;
    }
  
  isValidConstant = false;
  return 0;
}


//---------------------------------------------------------------------------
// Function: FoldGetElemChain
// 
// Purpose:
//   Fold a chain of GetElementPtr instructions containing only
//   structure offsets into an equivalent (Pointer, IndexVector) pair.
//   Returns the pointer Value, and stores the resulting IndexVector
//   in argument chainIdxVec.
//---------------------------------------------------------------------------

Value*
FoldGetElemChain(const InstructionNode* getElemInstrNode,
		 vector<Value*>& chainIdxVec)
{
  MemAccessInst* getElemInst = (MemAccessInst*)
    getElemInstrNode->getInstruction();
  
  // Return NULL if we don't fold any instructions in.
  Value* ptrVal = NULL;

  // The incoming index vector must be for the user of the chain.
  // Its leading index must be [0] and we insert indices after that.
  assert(chainIdxVec.size() > 0 &&
         isa<ConstantUInt>(chainIdxVec.front()) &&
         cast<ConstantUInt>(chainIdxVec.front())->getValue() == 0);
  
  // Now chase the chain of getElementInstr instructions, if any.
  // Check for any array indices and stop there.
  // 
  const InstrTreeNode* ptrChild = getElemInstrNode;
  while (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
	 ptrChild->getOpLabel() == GetElemPtrIdx)
    {
      // Child is a GetElemPtr instruction
      getElemInst = (MemAccessInst*)
	((InstructionNode*) ptrChild)->getInstruction();
      const vector<Value*>& idxVec = getElemInst->copyIndices();
      bool allStructureOffsets = true;
      
      // If it is a struct* access, the first offset must be array index [0],
      // and all other offsets must be structure (not array) offsets
      if (!isa<ConstantUInt>(idxVec.front()) ||
          cast<ConstantUInt>(idxVec.front())->getValue() != 0)
        allStructureOffsets = false;
      
      if (allStructureOffsets)
        for (unsigned int i=1; i < idxVec.size(); i++)
          if (idxVec[i]->getType() == Type::UIntTy)
            {
              allStructureOffsets = false; 
              break;
            }
      
      if (allStructureOffsets)
        { // Get pointer value out of ptrChild.
          ptrVal = getElemInst->getPointerOperand();

          // Insert its index vector at the start, but after the leading [0]
          chainIdxVec.insert(chainIdxVec.begin()+1,
                             idxVec.begin()+1, idxVec.end());
          
          // Mark the folded node so no code is generated for it.
          ((InstructionNode*) ptrChild)->markFoldedIntoParent();
        }
      else // cannot fold this getElementPtr instr. or any further ones
        break;
      
      ptrChild = ptrChild->leftChild();
    }
  
  return ptrVal;
}


//------------------------------------------------------------------------ 
// Function Set2OperandsFromInstr
// Function Set3OperandsFromInstr
// 
// For the common case of 2- and 3-operand arithmetic/logical instructions,
// set the m/c instr. operands directly from the VM instruction's operands.
// Check whether the first or second operand is 0 and can use a dedicated "0"
// register.
// Check whether the second operand should use an immediate field or register.
// (First and third operands are never immediates for such instructions.)
// 
// Arguments:
// canDiscardResult: Specifies that the result operand can be discarded
//		     by using the dedicated "0"
// 
// op1position, op2position and resultPosition: Specify in which position
//		     in the machine instruction the 3 operands (arg1, arg2
//		     and result) should go.
// 
// RETURN VALUE: unsigned int flags, where
//	flags & 0x01	=> operand 1 is constant and needs a register
//	flags & 0x02	=> operand 2 is constant and needs a register
//------------------------------------------------------------------------ 

void
Set2OperandsFromInstr(MachineInstr* minstr,
		      InstructionNode* vmInstrNode,
		      const TargetMachine& target,
		      bool canDiscardResult,
		      int op1Position,
		      int resultPosition)
{
  Set3OperandsFromInstr(minstr, vmInstrNode, target,
			canDiscardResult, op1Position,
			/*op2Position*/ -1, resultPosition);
}


void
Set3OperandsFromInstr(MachineInstr* minstr,
		      InstructionNode* vmInstrNode,
		      const TargetMachine& target,
		      bool canDiscardResult,
		      int op1Position,
		      int op2Position,
		      int resultPosition)
{
  assert(op1Position >= 0);
  assert(resultPosition >= 0);
  
  // operand 1
  minstr->SetMachineOperandVal(op1Position, MachineOperand::MO_VirtualRegister,
			    vmInstrNode->leftChild()->getValue());   
  
  // operand 2 (if any)
  if (op2Position >= 0)
    minstr->SetMachineOperandVal(op2Position, MachineOperand::MO_VirtualRegister,
			      vmInstrNode->rightChild()->getValue());   
  
  // result operand: if it can be discarded, use a dead register if one exists
  if (canDiscardResult && target.getRegInfo().getZeroRegNum() >= 0)
    minstr->SetMachineOperandReg(resultPosition,
			      target.getRegInfo().getZeroRegNum());
  else
    minstr->SetMachineOperandVal(resultPosition,
			      MachineOperand::MO_VirtualRegister, vmInstrNode->getValue());
}


MachineOperand::MachineOperandType
ChooseRegOrImmed(Value* val,
		 MachineOpCode opCode,
		 const TargetMachine& target,
		 bool canUseImmed,
		 unsigned int& getMachineRegNum,
		 int64_t& getImmedValue)
{
  MachineOperand::MachineOperandType opType =
    MachineOperand::MO_VirtualRegister;
  getMachineRegNum = 0;
  getImmedValue = 0;
  
  // Check for the common case first: argument is not constant
  // 
  Constant *CPV = dyn_cast<Constant>(val);
  if (!CPV) return opType;

  if (ConstantBool *CPB = dyn_cast<ConstantBool>(CPV))
    {
      if (!CPB->getValue() && target.getRegInfo().getZeroRegNum() >= 0)
	{
	  getMachineRegNum = target.getRegInfo().getZeroRegNum();
	  return MachineOperand::MO_MachineRegister;
	}

      getImmedValue = 1;
      return MachineOperand::MO_SignExtendedImmed;
    }
  
  // Otherwise it needs to be an integer or a NULL pointer
  if (! CPV->getType()->isIntegral() &&
      ! (CPV->getType()->isPointerType() &&
         CPV->isNullValue()))
    return opType;
  
  // Now get the constant value and check if it fits in the IMMED field.
  // Take advantage of the fact that the max unsigned value will rarely
  // fit into any IMMED field and ignore that case (i.e., cast smaller
  // unsigned constants to signed).
  // 
  int64_t intValue;
  if (CPV->getType()->isPointerType())
    {
      intValue = 0;
    }
  else if (CPV->getType()->isSigned())
    {
      intValue = cast<ConstantSInt>(CPV)->getValue();
    }
  else
    {
      uint64_t V = cast<ConstantUInt>(CPV)->getValue();
      if (V >= INT64_MAX) return opType;
      intValue = (int64_t)V;
    }

  if (intValue == 0 && target.getRegInfo().getZeroRegNum() >= 0)
    {
      opType = MachineOperand::MO_MachineRegister;
      getMachineRegNum = target.getRegInfo().getZeroRegNum();
    }
  else if (canUseImmed &&
	   target.getInstrInfo().constantFitsInImmedField(opCode, intValue))
    {
      opType = MachineOperand::MO_SignExtendedImmed;
      getImmedValue = intValue;
    }
  
  return opType;
}


//---------------------------------------------------------------------------
// Function: FixConstantOperandsForInstr
// 
// Purpose:
// Special handling for constant operands of a machine instruction
// -- if the constant is 0, use the hardwired 0 register, if any;
// -- if the constant fits in the IMMEDIATE field, use that field;
// -- else create instructions to put the constant into a register, either
//    directly or by loading explicitly from the constant pool.
// 
// In the first 2 cases, the operand of `minstr' is modified in place.
// Returns a vector of machine instructions generated for operands that
// fall under case 3; these must be inserted before `minstr'.
//---------------------------------------------------------------------------

vector<MachineInstr*>
FixConstantOperandsForInstr(Instruction* vmInstr,
                            MachineInstr* minstr,
                            TargetMachine& target)
{
  vector<MachineInstr*> loadConstVec;
  
  const MachineInstrDescriptor& instrDesc =
    target.getInstrInfo().getDescriptor(minstr->getOpCode());
  
  Function *F = vmInstr->getParent()->getParent();
  
  for (unsigned op=0; op < minstr->getNumOperands(); op++)
    {
      const MachineOperand& mop = minstr->getOperand(op);
          
      // skip the result position (for efficiency below) and any other
      // positions already marked as not a virtual register
      if (instrDesc.resultPos == (int) op || 
          mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
          mop.getVRegValue() == NULL)
        {
          continue;
        }
          
      Value* opValue = mop.getVRegValue();
      bool constantThatMustBeLoaded = false;
      
      if (Constant *opConst = dyn_cast<Constant>(opValue))
        {
          unsigned int machineRegNum;
          int64_t immedValue;
          MachineOperand::MachineOperandType opType =
            ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
                             (target.getInstrInfo().getImmedConstantPos(minstr->getOpCode()) == (int) op),
                             machineRegNum, immedValue);
          
          if (opType == MachineOperand::MO_MachineRegister)
            minstr->SetMachineOperandReg(op, machineRegNum);
          else if (opType == MachineOperand::MO_VirtualRegister)
            constantThatMustBeLoaded = true; // load is generated below
          else
            minstr->SetMachineOperandConst(op, opType, immedValue);
        }
      
      if (constantThatMustBeLoaded || isa<GlobalValue>(opValue))
        { // opValue is a constant that must be explicitly loaded into a reg.
          TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue, vmInstr,
                                                            loadConstVec,
                                                            target);
          minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister,
                                       tmpReg);
        }
    }
  
  // 
  // Also, check for implicit operands used (not those defined) by the
  // machine instruction.  These include:
  // -- arguments to a Call
  // -- return value of a Return
  // Any such operand that is a constant value needs to be fixed also.
  // The current instructions with implicit refs (viz., Call and Return)
  // have no immediate fields, so the constant always needs to be loaded
  // into a register.
  // 
  for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
    if (isa<Constant>(minstr->getImplicitRef(i)) ||
        isa<GlobalValue>(minstr->getImplicitRef(i)))
      {
        Value* oldVal = minstr->getImplicitRef(i);
        TmpInstruction* tmpReg =
          InsertCodeToLoadConstant(F, oldVal, vmInstr, loadConstVec, target);
        minstr->setImplicitRef(i, tmpReg);
      }
  
  return loadConstVec;
}