aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp
blob: ba48e0a74b0b510acac0f3c28664b7caed2a039f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Rewrite an existing set of gc.statepoints such that they make potential
// relocations performed by the garbage collector explicit in the IR.
//
//===----------------------------------------------------------------------===//

#include "llvm/Pass.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"

#define DEBUG_TYPE "rewrite-statepoints-for-gc"

using namespace llvm;

// Print tracing output
static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
                              cl::init(false));

// Print the liveset found at the insert location
static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
                                  cl::init(false));
static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
                                      cl::init(false));
// Print out the base pointers for debugging
static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
                                       cl::init(false));

#ifdef XDEBUG
static bool ClobberNonLive = true;
#else
static bool ClobberNonLive = false;
#endif
static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
                                                  cl::location(ClobberNonLive),
                                                  cl::Hidden);

namespace {
struct RewriteStatepointsForGC : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid

  RewriteStatepointsForGC() : FunctionPass(ID) {
    initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
  }
  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    // We add and rewrite a bunch of instructions, but don't really do much
    // else.  We could in theory preserve a lot more analyses here.
    AU.addRequired<DominatorTreeWrapperPass>();
  }
};
} // namespace

char RewriteStatepointsForGC::ID = 0;

FunctionPass *llvm::createRewriteStatepointsForGCPass() {
  return new RewriteStatepointsForGC();
}

INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
                      "Make relocations explicit at statepoints", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
                    "Make relocations explicit at statepoints", false, false)

namespace {
struct GCPtrLivenessData {
  /// Values defined in this block.
  DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
  /// Values used in this block (and thus live); does not included values
  /// killed within this block.
  DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;

  /// Values live into this basic block (i.e. used by any
  /// instruction in this basic block or ones reachable from here)
  DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;

  /// Values live out of this basic block (i.e. live into
  /// any successor block)
  DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
};

// The type of the internal cache used inside the findBasePointers family
// of functions.  From the callers perspective, this is an opaque type and
// should not be inspected.
//
// In the actual implementation this caches two relations:
// - The base relation itself (i.e. this pointer is based on that one)
// - The base defining value relation (i.e. before base_phi insertion)
// Generally, after the execution of a full findBasePointer call, only the
// base relation will remain.  Internally, we add a mixture of the two
// types, then update all the second type to the first type
typedef DenseMap<Value *, Value *> DefiningValueMapTy;
typedef DenseSet<llvm::Value *> StatepointLiveSetTy;

struct PartiallyConstructedSafepointRecord {
  /// The set of values known to be live accross this safepoint
  StatepointLiveSetTy liveset;

  /// Mapping from live pointers to a base-defining-value
  DenseMap<llvm::Value *, llvm::Value *> PointerToBase;

  /// The *new* gc.statepoint instruction itself.  This produces the token
  /// that normal path gc.relocates and the gc.result are tied to.
  Instruction *StatepointToken;

  /// Instruction to which exceptional gc relocates are attached
  /// Makes it easier to iterate through them during relocationViaAlloca.
  Instruction *UnwindToken;
};
}

/// Compute the live-in set for every basic block in the function
static void computeLiveInValues(DominatorTree &DT, Function &F,
                                GCPtrLivenessData &Data);

/// Given results from the dataflow liveness computation, find the set of live
/// Values at a particular instruction.
static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
                              StatepointLiveSetTy &out);

// TODO: Once we can get to the GCStrategy, this becomes
// Optional<bool> isGCManagedPointer(const Value *V) const override {

static bool isGCPointerType(const Type *T) {
  if (const PointerType *PT = dyn_cast<PointerType>(T))
    // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
    // GC managed heap.  We know that a pointer into this heap needs to be
    // updated and that no other pointer does.
    return (1 == PT->getAddressSpace());
  return false;
}

// Return true if this type is one which a) is a gc pointer or contains a GC
// pointer and b) is of a type this code expects to encounter as a live value.
// (The insertion code will assert that a type which matches (a) and not (b)
// is not encountered.)
static bool isHandledGCPointerType(Type *T) {
  // We fully support gc pointers
  if (isGCPointerType(T))
    return true;
  // We partially support vectors of gc pointers. The code will assert if it
  // can't handle something.
  if (auto VT = dyn_cast<VectorType>(T))
    if (isGCPointerType(VT->getElementType()))
      return true;
  return false;
}

#ifndef NDEBUG
/// Returns true if this type contains a gc pointer whether we know how to
/// handle that type or not.
static bool containsGCPtrType(Type *Ty) {
  if (isGCPointerType(Ty))
    return true;
  if (VectorType *VT = dyn_cast<VectorType>(Ty))
    return isGCPointerType(VT->getScalarType());
  if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
    return containsGCPtrType(AT->getElementType());
  if (StructType *ST = dyn_cast<StructType>(Ty))
    return std::any_of(
        ST->subtypes().begin(), ST->subtypes().end(),
        [](Type *SubType) { return containsGCPtrType(SubType); });
  return false;
}

// Returns true if this is a type which a) is a gc pointer or contains a GC
// pointer and b) is of a type which the code doesn't expect (i.e. first class
// aggregates).  Used to trip assertions.
static bool isUnhandledGCPointerType(Type *Ty) {
  return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
}
#endif

static bool order_by_name(llvm::Value *a, llvm::Value *b) {
  if (a->hasName() && b->hasName()) {
    return -1 == a->getName().compare(b->getName());
  } else if (a->hasName() && !b->hasName()) {
    return true;
  } else if (!a->hasName() && b->hasName()) {
    return false;
  } else {
    // Better than nothing, but not stable
    return a < b;
  }
}

// Conservatively identifies any definitions which might be live at the
// given instruction. The  analysis is performed immediately before the
// given instruction. Values defined by that instruction are not considered
// live.  Values used by that instruction are considered live.
static void analyzeParsePointLiveness(
    DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
    const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
  Instruction *inst = CS.getInstruction();

  StatepointLiveSetTy liveset;
  findLiveSetAtInst(inst, OriginalLivenessData, liveset);

  if (PrintLiveSet) {
    // Note: This output is used by several of the test cases
    // The order of elemtns in a set is not stable, put them in a vec and sort
    // by name
    SmallVector<Value *, 64> temp;
    temp.insert(temp.end(), liveset.begin(), liveset.end());
    std::sort(temp.begin(), temp.end(), order_by_name);
    errs() << "Live Variables:\n";
    for (Value *V : temp) {
      errs() << " " << V->getName(); // no newline
      V->dump();
    }
  }
  if (PrintLiveSetSize) {
    errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
    errs() << "Number live values: " << liveset.size() << "\n";
  }
  result.liveset = liveset;
}

/// If we can trivially determine that this vector contains only base pointers,
/// return the base instruction.
static Value *findBaseOfVector(Value *I) {
  assert(I->getType()->isVectorTy() &&
         cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
         "Illegal to ask for the base pointer of a non-pointer type");

  // Each case parallels findBaseDefiningValue below, see that code for
  // detailed motivation.

  if (isa<Argument>(I))
    // An incoming argument to the function is a base pointer
    return I;

  // We shouldn't see the address of a global as a vector value?
  assert(!isa<GlobalVariable>(I) &&
         "unexpected global variable found in base of vector");

  // inlining could possibly introduce phi node that contains
  // undef if callee has multiple returns
  if (isa<UndefValue>(I))
    // utterly meaningless, but useful for dealing with partially optimized
    // code.
    return I;

  // Due to inheritance, this must be _after_ the global variable and undef
  // checks
  if (Constant *Con = dyn_cast<Constant>(I)) {
    assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
           "order of checks wrong!");
    assert(Con->isNullValue() && "null is the only case which makes sense");
    return Con;
  }

  if (isa<LoadInst>(I))
    return I;

  // Note: This code is currently rather incomplete.  We are essentially only
  // handling cases where the vector element is trivially a base pointer.  We
  // need to update the entire base pointer construction algorithm to know how
  // to track vector elements and potentially scalarize, but the case which
  // would motivate the work hasn't shown up in real workloads yet.
  llvm_unreachable("no base found for vector element");
}

/// Helper function for findBasePointer - Will return a value which either a)
/// defines the base pointer for the input or b) blocks the simple search
/// (i.e. a PHI or Select of two derived pointers)
static Value *findBaseDefiningValue(Value *I) {
  assert(I->getType()->isPointerTy() &&
         "Illegal to ask for the base pointer of a non-pointer type");

  // This case is a bit of a hack - it only handles extracts from vectors which
  // trivially contain only base pointers.  See note inside the function for
  // how to improve this.
  if (auto *EEI = dyn_cast<ExtractElementInst>(I)) {
    Value *VectorOperand = EEI->getVectorOperand();
    Value *VectorBase = findBaseOfVector(VectorOperand);
    (void)VectorBase;
    assert(VectorBase && "extract element not known to be a trivial base");
    return EEI;
  }

  if (isa<Argument>(I))
    // An incoming argument to the function is a base pointer
    // We should have never reached here if this argument isn't an gc value
    return I;

  if (isa<GlobalVariable>(I))
    // base case
    return I;

  // inlining could possibly introduce phi node that contains
  // undef if callee has multiple returns
  if (isa<UndefValue>(I))
    // utterly meaningless, but useful for dealing with
    // partially optimized code.
    return I;

  // Due to inheritance, this must be _after_ the global variable and undef
  // checks
  if (Constant *Con = dyn_cast<Constant>(I)) {
    assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
           "order of checks wrong!");
    // Note: Finding a constant base for something marked for relocation
    // doesn't really make sense.  The most likely case is either a) some
    // screwed up the address space usage or b) your validating against
    // compiled C++ code w/o the proper separation.  The only real exception
    // is a null pointer.  You could have generic code written to index of
    // off a potentially null value and have proven it null.  We also use
    // null pointers in dead paths of relocation phis (which we might later
    // want to find a base pointer for).
    assert(isa<ConstantPointerNull>(Con) &&
           "null is the only case which makes sense");
    return Con;
  }

  if (CastInst *CI = dyn_cast<CastInst>(I)) {
    Value *Def = CI->stripPointerCasts();
    // If we find a cast instruction here, it means we've found a cast which is
    // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
    // handle int->ptr conversion.
    assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
    return findBaseDefiningValue(Def);
  }

  if (isa<LoadInst>(I))
    return I; // The value loaded is an gc base itself

  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
    // The base of this GEP is the base
    return findBaseDefiningValue(GEP->getPointerOperand());

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::experimental_gc_result_ptr:
    default:
      // fall through to general call handling
      break;
    case Intrinsic::experimental_gc_statepoint:
    case Intrinsic::experimental_gc_result_float:
    case Intrinsic::experimental_gc_result_int:
      llvm_unreachable("these don't produce pointers");
    case Intrinsic::experimental_gc_relocate: {
      // Rerunning safepoint insertion after safepoints are already
      // inserted is not supported.  It could probably be made to work,
      // but why are you doing this?  There's no good reason.
      llvm_unreachable("repeat safepoint insertion is not supported");
    }
    case Intrinsic::gcroot:
      // Currently, this mechanism hasn't been extended to work with gcroot.
      // There's no reason it couldn't be, but I haven't thought about the
      // implications much.
      llvm_unreachable(
          "interaction with the gcroot mechanism is not supported");
    }
  }
  // We assume that functions in the source language only return base
  // pointers.  This should probably be generalized via attributes to support
  // both source language and internal functions.
  if (isa<CallInst>(I) || isa<InvokeInst>(I))
    return I;

  // I have absolutely no idea how to implement this part yet.  It's not
  // neccessarily hard, I just haven't really looked at it yet.
  assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");

  if (isa<AtomicCmpXchgInst>(I))
    // A CAS is effectively a atomic store and load combined under a
    // predicate.  From the perspective of base pointers, we just treat it
    // like a load.
    return I;

  assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
                                   "binary ops which don't apply to pointers");

  // The aggregate ops.  Aggregates can either be in the heap or on the
  // stack, but in either case, this is simply a field load.  As a result,
  // this is a defining definition of the base just like a load is.
  if (isa<ExtractValueInst>(I))
    return I;

  // We should never see an insert vector since that would require we be
  // tracing back a struct value not a pointer value.
  assert(!isa<InsertValueInst>(I) &&
         "Base pointer for a struct is meaningless");

  // The last two cases here don't return a base pointer.  Instead, they
  // return a value which dynamically selects from amoung several base
  // derived pointers (each with it's own base potentially).  It's the job of
  // the caller to resolve these.
  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
         "missing instruction case in findBaseDefiningValing");
  return I;
}

/// Returns the base defining value for this value.
static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
  Value *&Cached = Cache[I];
  if (!Cached) {
    Cached = findBaseDefiningValue(I);
  }
  assert(Cache[I] != nullptr);

  if (TraceLSP) {
    dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName()
           << "\n";
  }
  return Cached;
}

/// Return a base pointer for this value if known.  Otherwise, return it's
/// base defining value.
static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
  Value *Def = findBaseDefiningValueCached(I, Cache);
  auto Found = Cache.find(Def);
  if (Found != Cache.end()) {
    // Either a base-of relation, or a self reference.  Caller must check.
    return Found->second;
  }
  // Only a BDV available
  return Def;
}

/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
/// is it known to be a base pointer?  Or do we need to continue searching.
static bool isKnownBaseResult(Value *V) {
  if (!isa<PHINode>(V) && !isa<SelectInst>(V)) {
    // no recursion possible
    return true;
  }
  if (isa<Instruction>(V) &&
      cast<Instruction>(V)->getMetadata("is_base_value")) {
    // This is a previously inserted base phi or select.  We know
    // that this is a base value.
    return true;
  }

  // We need to keep searching
  return false;
}

// TODO: find a better name for this
namespace {
class PhiState {
public:
  enum Status { Unknown, Base, Conflict };

  PhiState(Status s, Value *b = nullptr) : status(s), base(b) {
    assert(status != Base || b);
  }
  PhiState(Value *b) : status(Base), base(b) {}
  PhiState() : status(Unknown), base(nullptr) {}

  Status getStatus() const { return status; }
  Value *getBase() const { return base; }

  bool isBase() const { return getStatus() == Base; }
  bool isUnknown() const { return getStatus() == Unknown; }
  bool isConflict() const { return getStatus() == Conflict; }

  bool operator==(const PhiState &other) const {
    return base == other.base && status == other.status;
  }

  bool operator!=(const PhiState &other) const { return !(*this == other); }

  void dump() {
    errs() << status << " (" << base << " - "
           << (base ? base->getName() : "nullptr") << "): ";
  }

private:
  Status status;
  Value *base; // non null only if status == base
};

typedef DenseMap<Value *, PhiState> ConflictStateMapTy;
// Values of type PhiState form a lattice, and this is a helper
// class that implementes the meet operation.  The meat of the meet
// operation is implemented in MeetPhiStates::pureMeet
class MeetPhiStates {
public:
  // phiStates is a mapping from PHINodes and SelectInst's to PhiStates.
  explicit MeetPhiStates(const ConflictStateMapTy &phiStates)
      : phiStates(phiStates) {}

  // Destructively meet the current result with the base V.  V can
  // either be a merge instruction (SelectInst / PHINode), in which
  // case its status is looked up in the phiStates map; or a regular
  // SSA value, in which case it is assumed to be a base.
  void meetWith(Value *V) {
    PhiState otherState = getStateForBDV(V);
    assert((MeetPhiStates::pureMeet(otherState, currentResult) ==
            MeetPhiStates::pureMeet(currentResult, otherState)) &&
           "math is wrong: meet does not commute!");
    currentResult = MeetPhiStates::pureMeet(otherState, currentResult);
  }

  PhiState getResult() const { return currentResult; }

private:
  const ConflictStateMapTy &phiStates;
  PhiState currentResult;

  /// Return a phi state for a base defining value.  We'll generate a new
  /// base state for known bases and expect to find a cached state otherwise
  PhiState getStateForBDV(Value *baseValue) {
    if (isKnownBaseResult(baseValue)) {
      return PhiState(baseValue);
    } else {
      return lookupFromMap(baseValue);
    }
  }

  PhiState lookupFromMap(Value *V) {
    auto I = phiStates.find(V);
    assert(I != phiStates.end() && "lookup failed!");
    return I->second;
  }

  static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) {
    switch (stateA.getStatus()) {
    case PhiState::Unknown:
      return stateB;

    case PhiState::Base:
      assert(stateA.getBase() && "can't be null");
      if (stateB.isUnknown())
        return stateA;

      if (stateB.isBase()) {
        if (stateA.getBase() == stateB.getBase()) {
          assert(stateA == stateB && "equality broken!");
          return stateA;
        }
        return PhiState(PhiState::Conflict);
      }
      assert(stateB.isConflict() && "only three states!");
      return PhiState(PhiState::Conflict);

    case PhiState::Conflict:
      return stateA;
    }
    llvm_unreachable("only three states!");
  }
};
}
/// For a given value or instruction, figure out what base ptr it's derived
/// from.  For gc objects, this is simply itself.  On success, returns a value
/// which is the base pointer.  (This is reliable and can be used for
/// relocation.)  On failure, returns nullptr.
static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
  Value *def = findBaseOrBDV(I, cache);

  if (isKnownBaseResult(def)) {
    return def;
  }

  // Here's the rough algorithm:
  // - For every SSA value, construct a mapping to either an actual base
  //   pointer or a PHI which obscures the base pointer.
  // - Construct a mapping from PHI to unknown TOP state.  Use an
  //   optimistic algorithm to propagate base pointer information.  Lattice
  //   looks like:
  //   UNKNOWN
  //   b1 b2 b3 b4
  //   CONFLICT
  //   When algorithm terminates, all PHIs will either have a single concrete
  //   base or be in a conflict state.
  // - For every conflict, insert a dummy PHI node without arguments.  Add
  //   these to the base[Instruction] = BasePtr mapping.  For every
  //   non-conflict, add the actual base.
  //  - For every conflict, add arguments for the base[a] of each input
  //   arguments.
  //
  // Note: A simpler form of this would be to add the conflict form of all
  // PHIs without running the optimistic algorithm.  This would be
  // analougous to pessimistic data flow and would likely lead to an
  // overall worse solution.

  ConflictStateMapTy states;
  states[def] = PhiState();
  // Recursively fill in all phis & selects reachable from the initial one
  // for which we don't already know a definite base value for
  // TODO: This should be rewritten with a worklist
  bool done = false;
  while (!done) {
    done = true;
    // Since we're adding elements to 'states' as we run, we can't keep
    // iterators into the set.
    SmallVector<Value *, 16> Keys;
    Keys.reserve(states.size());
    for (auto Pair : states) {
      Value *V = Pair.first;
      Keys.push_back(V);
    }
    for (Value *v : Keys) {
      assert(!isKnownBaseResult(v) && "why did it get added?");
      if (PHINode *phi = dyn_cast<PHINode>(v)) {
        assert(phi->getNumIncomingValues() > 0 &&
               "zero input phis are illegal");
        for (Value *InVal : phi->incoming_values()) {
          Value *local = findBaseOrBDV(InVal, cache);
          if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
            states[local] = PhiState();
            done = false;
          }
        }
      } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
        Value *local = findBaseOrBDV(sel->getTrueValue(), cache);
        if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
          states[local] = PhiState();
          done = false;
        }
        local = findBaseOrBDV(sel->getFalseValue(), cache);
        if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
          states[local] = PhiState();
          done = false;
        }
      }
    }
  }

  if (TraceLSP) {
    errs() << "States after initialization:\n";
    for (auto Pair : states) {
      Instruction *v = cast<Instruction>(Pair.first);
      PhiState state = Pair.second;
      state.dump();
      v->dump();
    }
  }

  // TODO: come back and revisit the state transitions around inputs which
  // have reached conflict state.  The current version seems too conservative.

  bool progress = true;
  while (progress) {
#ifndef NDEBUG
    size_t oldSize = states.size();
#endif
    progress = false;
    // We're only changing keys in this loop, thus safe to keep iterators
    for (auto Pair : states) {
      MeetPhiStates calculateMeet(states);
      Value *v = Pair.first;
      assert(!isKnownBaseResult(v) && "why did it get added?");
      if (SelectInst *select = dyn_cast<SelectInst>(v)) {
        calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache));
        calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache));
      } else
        for (Value *Val : cast<PHINode>(v)->incoming_values())
          calculateMeet.meetWith(findBaseOrBDV(Val, cache));

      PhiState oldState = states[v];
      PhiState newState = calculateMeet.getResult();
      if (oldState != newState) {
        progress = true;
        states[v] = newState;
      }
    }

    assert(oldSize <= states.size());
    assert(oldSize == states.size() || progress);
  }

  if (TraceLSP) {
    errs() << "States after meet iteration:\n";
    for (auto Pair : states) {
      Instruction *v = cast<Instruction>(Pair.first);
      PhiState state = Pair.second;
      state.dump();
      v->dump();
    }
  }

  // Insert Phis for all conflicts
  // We want to keep naming deterministic in the loop that follows, so
  // sort the keys before iteration.  This is useful in allowing us to
  // write stable tests. Note that there is no invalidation issue here.
  SmallVector<Value *, 16> Keys;
  Keys.reserve(states.size());
  for (auto Pair : states) {
    Value *V = Pair.first;
    Keys.push_back(V);
  }
  std::sort(Keys.begin(), Keys.end(), order_by_name);
  // TODO: adjust naming patterns to avoid this order of iteration dependency
  for (Value *V : Keys) {
    Instruction *v = cast<Instruction>(V);
    PhiState state = states[V];
    assert(!isKnownBaseResult(v) && "why did it get added?");
    assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
    if (!state.isConflict())
      continue;

    if (isa<PHINode>(v)) {
      int num_preds =
          std::distance(pred_begin(v->getParent()), pred_end(v->getParent()));
      assert(num_preds > 0 && "how did we reach here");
      PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v);
      // Add metadata marking this as a base value
      auto *const_1 = ConstantInt::get(
          Type::getInt32Ty(
              v->getParent()->getParent()->getParent()->getContext()),
          1);
      auto MDConst = ConstantAsMetadata::get(const_1);
      MDNode *md = MDNode::get(
          v->getParent()->getParent()->getParent()->getContext(), MDConst);
      phi->setMetadata("is_base_value", md);
      states[v] = PhiState(PhiState::Conflict, phi);
    } else {
      SelectInst *sel = cast<SelectInst>(v);
      // The undef will be replaced later
      UndefValue *undef = UndefValue::get(sel->getType());
      SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef,
                                               undef, "base_select", sel);
      // Add metadata marking this as a base value
      auto *const_1 = ConstantInt::get(
          Type::getInt32Ty(
              v->getParent()->getParent()->getParent()->getContext()),
          1);
      auto MDConst = ConstantAsMetadata::get(const_1);
      MDNode *md = MDNode::get(
          v->getParent()->getParent()->getParent()->getContext(), MDConst);
      basesel->setMetadata("is_base_value", md);
      states[v] = PhiState(PhiState::Conflict, basesel);
    }
  }

  // Fixup all the inputs of the new PHIs
  for (auto Pair : states) {
    Instruction *v = cast<Instruction>(Pair.first);
    PhiState state = Pair.second;

    assert(!isKnownBaseResult(v) && "why did it get added?");
    assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
    if (!state.isConflict())
      continue;

    if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
      PHINode *phi = cast<PHINode>(v);
      unsigned NumPHIValues = phi->getNumIncomingValues();
      for (unsigned i = 0; i < NumPHIValues; i++) {
        Value *InVal = phi->getIncomingValue(i);
        BasicBlock *InBB = phi->getIncomingBlock(i);

        // If we've already seen InBB, add the same incoming value
        // we added for it earlier.  The IR verifier requires phi
        // nodes with multiple entries from the same basic block
        // to have the same incoming value for each of those
        // entries.  If we don't do this check here and basephi
        // has a different type than base, we'll end up adding two
        // bitcasts (and hence two distinct values) as incoming
        // values for the same basic block.

        int blockIndex = basephi->getBasicBlockIndex(InBB);
        if (blockIndex != -1) {
          Value *oldBase = basephi->getIncomingValue(blockIndex);
          basephi->addIncoming(oldBase, InBB);
#ifndef NDEBUG
          Value *base = findBaseOrBDV(InVal, cache);
          if (!isKnownBaseResult(base)) {
            // Either conflict or base.
            assert(states.count(base));
            base = states[base].getBase();
            assert(base != nullptr && "unknown PhiState!");
          }

          // In essense this assert states: the only way two
          // values incoming from the same basic block may be
          // different is by being different bitcasts of the same
          // value.  A cleanup that remains TODO is changing
          // findBaseOrBDV to return an llvm::Value of the correct
          // type (and still remain pure).  This will remove the
          // need to add bitcasts.
          assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
                 "sanity -- findBaseOrBDV should be pure!");
#endif
          continue;
        }

        // Find either the defining value for the PHI or the normal base for
        // a non-phi node
        Value *base = findBaseOrBDV(InVal, cache);
        if (!isKnownBaseResult(base)) {
          // Either conflict or base.
          assert(states.count(base));
          base = states[base].getBase();
          assert(base != nullptr && "unknown PhiState!");
        }
        assert(base && "can't be null");
        // Must use original input BB since base may not be Instruction
        // The cast is needed since base traversal may strip away bitcasts
        if (base->getType() != basephi->getType()) {
          base = new BitCastInst(base, basephi->getType(), "cast",
                                 InBB->getTerminator());
        }
        basephi->addIncoming(base, InBB);
      }
      assert(basephi->getNumIncomingValues() == NumPHIValues);
    } else {
      SelectInst *basesel = cast<SelectInst>(state.getBase());
      SelectInst *sel = cast<SelectInst>(v);
      // Operand 1 & 2 are true, false path respectively. TODO: refactor to
      // something more safe and less hacky.
      for (int i = 1; i <= 2; i++) {
        Value *InVal = sel->getOperand(i);
        // Find either the defining value for the PHI or the normal base for
        // a non-phi node
        Value *base = findBaseOrBDV(InVal, cache);
        if (!isKnownBaseResult(base)) {
          // Either conflict or base.
          assert(states.count(base));
          base = states[base].getBase();
          assert(base != nullptr && "unknown PhiState!");
        }
        assert(base && "can't be null");
        // Must use original input BB since base may not be Instruction
        // The cast is needed since base traversal may strip away bitcasts
        if (base->getType() != basesel->getType()) {
          base = new BitCastInst(base, basesel->getType(), "cast", basesel);
        }
        basesel->setOperand(i, base);
      }
    }
  }

  // Cache all of our results so we can cheaply reuse them
  // NOTE: This is actually two caches: one of the base defining value
  // relation and one of the base pointer relation!  FIXME
  for (auto item : states) {
    Value *v = item.first;
    Value *base = item.second.getBase();
    assert(v && base);
    assert(!isKnownBaseResult(v) && "why did it get added?");

    if (TraceLSP) {
      std::string fromstr =
          cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
                         : "none";
      errs() << "Updating base value cache"
             << " for: " << (v->hasName() ? v->getName() : "")
             << " from: " << fromstr
             << " to: " << (base->hasName() ? base->getName() : "") << "\n";
    }

    assert(isKnownBaseResult(base) &&
           "must be something we 'know' is a base pointer");
    if (cache.count(v)) {
      // Once we transition from the BDV relation being store in the cache to
      // the base relation being stored, it must be stable
      assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
             "base relation should be stable");
    }
    cache[v] = base;
  }
  assert(cache.find(def) != cache.end());
  return cache[def];
}

// For a set of live pointers (base and/or derived), identify the base
// pointer of the object which they are derived from.  This routine will
// mutate the IR graph as needed to make the 'base' pointer live at the
// definition site of 'derived'.  This ensures that any use of 'derived' can
// also use 'base'.  This may involve the insertion of a number of
// additional PHI nodes.
//
// preconditions: live is a set of pointer type Values
//
// side effects: may insert PHI nodes into the existing CFG, will preserve
// CFG, will not remove or mutate any existing nodes
//
// post condition: PointerToBase contains one (derived, base) pair for every
// pointer in live.  Note that derived can be equal to base if the original
// pointer was a base pointer.
static void
findBasePointers(const StatepointLiveSetTy &live,
                 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
                 DominatorTree *DT, DefiningValueMapTy &DVCache) {
  // For the naming of values inserted to be deterministic - which makes for
  // much cleaner and more stable tests - we need to assign an order to the
  // live values.  DenseSets do not provide a deterministic order across runs.
  SmallVector<Value *, 64> Temp;
  Temp.insert(Temp.end(), live.begin(), live.end());
  std::sort(Temp.begin(), Temp.end(), order_by_name);
  for (Value *ptr : Temp) {
    Value *base = findBasePointer(ptr, DVCache);
    assert(base && "failed to find base pointer");
    PointerToBase[ptr] = base;
    assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
            DT->dominates(cast<Instruction>(base)->getParent(),
                          cast<Instruction>(ptr)->getParent())) &&
           "The base we found better dominate the derived pointer");

    // If you see this trip and like to live really dangerously, the code should
    // be correct, just with idioms the verifier can't handle.  You can try
    // disabling the verifier at your own substaintial risk.
    assert(!isa<ConstantPointerNull>(base) &&
           "the relocation code needs adjustment to handle the relocation of "
           "a null pointer constant without causing false positives in the "
           "safepoint ir verifier.");
  }
}

/// Find the required based pointers (and adjust the live set) for the given
/// parse point.
static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
                             const CallSite &CS,
                             PartiallyConstructedSafepointRecord &result) {
  DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
  findBasePointers(result.liveset, PointerToBase, &DT, DVCache);

  if (PrintBasePointers) {
    // Note: Need to print these in a stable order since this is checked in
    // some tests.
    errs() << "Base Pairs (w/o Relocation):\n";
    SmallVector<Value *, 64> Temp;
    Temp.reserve(PointerToBase.size());
    for (auto Pair : PointerToBase) {
      Temp.push_back(Pair.first);
    }
    std::sort(Temp.begin(), Temp.end(), order_by_name);
    for (Value *Ptr : Temp) {
      Value *Base = PointerToBase[Ptr];
      errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
             << "\n";
    }
  }

  result.PointerToBase = PointerToBase;
}

/// Given an updated version of the dataflow liveness results, update the
/// liveset and base pointer maps for the call site CS.
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
                                  const CallSite &CS,
                                  PartiallyConstructedSafepointRecord &result);

static void recomputeLiveInValues(
    Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
  // TODO-PERF: reuse the original liveness, then simply run the dataflow
  // again.  The old values are still live and will help it stablize quickly.
  GCPtrLivenessData RevisedLivenessData;
  computeLiveInValues(DT, F, RevisedLivenessData);
  for (size_t i = 0; i < records.size(); i++) {
    struct PartiallyConstructedSafepointRecord &info = records[i];
    const CallSite &CS = toUpdate[i];
    recomputeLiveInValues(RevisedLivenessData, CS, info);
  }
}

// When inserting gc.relocate calls, we need to ensure there are no uses
// of the original value between the gc.statepoint and the gc.relocate call.
// One case which can arise is a phi node starting one of the successor blocks.
// We also need to be able to insert the gc.relocates only on the path which
// goes through the statepoint.  We might need to split an edge to make this
// possible.
static BasicBlock *
normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, Pass *P) {
  DominatorTree *DT = nullptr;
  if (auto *DTP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>())
    DT = &DTP->getDomTree();

  BasicBlock *Ret = BB;
  if (!BB->getUniquePredecessor()) {
    Ret = SplitBlockPredecessors(BB, InvokeParent, "", nullptr, DT);
  }

  // Now that 'ret' has unique predecessor we can safely remove all phi nodes
  // from it
  FoldSingleEntryPHINodes(Ret);
  assert(!isa<PHINode>(Ret->begin()));

  // At this point, we can safely insert a gc.relocate as the first instruction
  // in Ret if needed.
  return Ret;
}

static int find_index(ArrayRef<Value *> livevec, Value *val) {
  auto itr = std::find(livevec.begin(), livevec.end(), val);
  assert(livevec.end() != itr);
  size_t index = std::distance(livevec.begin(), itr);
  assert(index < livevec.size());
  return index;
}

// Create new attribute set containing only attributes which can be transfered
// from original call to the safepoint.
static AttributeSet legalizeCallAttributes(AttributeSet AS) {
  AttributeSet ret;

  for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
    unsigned index = AS.getSlotIndex(Slot);

    if (index == AttributeSet::ReturnIndex ||
        index == AttributeSet::FunctionIndex) {

      for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
           ++it) {
        Attribute attr = *it;

        // Do not allow certain attributes - just skip them
        // Safepoint can not be read only or read none.
        if (attr.hasAttribute(Attribute::ReadNone) ||
            attr.hasAttribute(Attribute::ReadOnly))
          continue;

        ret = ret.addAttributes(
            AS.getContext(), index,
            AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
      }
    }

    // Just skip parameter attributes for now
  }

  return ret;
}

/// Helper function to place all gc relocates necessary for the given
/// statepoint.
/// Inputs:
///   liveVariables - list of variables to be relocated.
///   liveStart - index of the first live variable.
///   basePtrs - base pointers.
///   statepointToken - statepoint instruction to which relocates should be
///   bound.
///   Builder - Llvm IR builder to be used to construct new calls.
static void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables,
                              const int liveStart,
                              ArrayRef<llvm::Value *> basePtrs,
                              Instruction *statepointToken,
                              IRBuilder<> Builder) {
  SmallVector<Instruction *, 64> NewDefs;
  NewDefs.reserve(liveVariables.size());

  Module *M = statepointToken->getParent()->getParent()->getParent();

  for (unsigned i = 0; i < liveVariables.size(); i++) {
    // We generate a (potentially) unique declaration for every pointer type
    // combination.  This results is some blow up the function declarations in
    // the IR, but removes the need for argument bitcasts which shrinks the IR
    // greatly and makes it much more readable.
    SmallVector<Type *, 1> types;                 // one per 'any' type
    types.push_back(liveVariables[i]->getType()); // result type
    Value *gc_relocate_decl = Intrinsic::getDeclaration(
        M, Intrinsic::experimental_gc_relocate, types);

    // Generate the gc.relocate call and save the result
    Value *baseIdx =
        ConstantInt::get(Type::getInt32Ty(M->getContext()),
                         liveStart + find_index(liveVariables, basePtrs[i]));
    Value *liveIdx = ConstantInt::get(
        Type::getInt32Ty(M->getContext()),
        liveStart + find_index(liveVariables, liveVariables[i]));

    // only specify a debug name if we can give a useful one
    Value *reloc = Builder.CreateCall3(
        gc_relocate_decl, statepointToken, baseIdx, liveIdx,
        liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated"
                                    : "");
    // Trick CodeGen into thinking there are lots of free registers at this
    // fake call.
    cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold);

    NewDefs.push_back(cast<Instruction>(reloc));
  }
  assert(NewDefs.size() == liveVariables.size() &&
         "missing or extra redefinition at safepoint");
}

static void
makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
                           const SmallVectorImpl<llvm::Value *> &basePtrs,
                           const SmallVectorImpl<llvm::Value *> &liveVariables,
                           Pass *P,
                           PartiallyConstructedSafepointRecord &result) {
  assert(basePtrs.size() == liveVariables.size());
  assert(isStatepoint(CS) &&
         "This method expects to be rewriting a statepoint");

  BasicBlock *BB = CS.getInstruction()->getParent();
  assert(BB);
  Function *F = BB->getParent();
  assert(F && "must be set");
  Module *M = F->getParent();
  (void)M;
  assert(M && "must be set");

  // We're not changing the function signature of the statepoint since the gc
  // arguments go into the var args section.
  Function *gc_statepoint_decl = CS.getCalledFunction();

  // Then go ahead and use the builder do actually do the inserts.  We insert
  // immediately before the previous instruction under the assumption that all
  // arguments will be available here.  We can't insert afterwards since we may
  // be replacing a terminator.
  Instruction *insertBefore = CS.getInstruction();
  IRBuilder<> Builder(insertBefore);
  // Copy all of the arguments from the original statepoint - this includes the
  // target, call args, and deopt args
  SmallVector<llvm::Value *, 64> args;
  args.insert(args.end(), CS.arg_begin(), CS.arg_end());
  // TODO: Clear the 'needs rewrite' flag

  // add all the pointers to be relocated (gc arguments)
  // Capture the start of the live variable list for use in the gc_relocates
  const int live_start = args.size();
  args.insert(args.end(), liveVariables.begin(), liveVariables.end());

  // Create the statepoint given all the arguments
  Instruction *token = nullptr;
  AttributeSet return_attributes;
  if (CS.isCall()) {
    CallInst *toReplace = cast<CallInst>(CS.getInstruction());
    CallInst *call =
        Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
    call->setTailCall(toReplace->isTailCall());
    call->setCallingConv(toReplace->getCallingConv());

    // Currently we will fail on parameter attributes and on certain
    // function attributes.
    AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
    // In case if we can handle this set of sttributes - set up function attrs
    // directly on statepoint and return attrs later for gc_result intrinsic.
    call->setAttributes(new_attrs.getFnAttributes());
    return_attributes = new_attrs.getRetAttributes();

    token = call;

    // Put the following gc_result and gc_relocate calls immediately after the
    // the old call (which we're about to delete)
    BasicBlock::iterator next(toReplace);
    assert(BB->end() != next && "not a terminator, must have next");
    next++;
    Instruction *IP = &*(next);
    Builder.SetInsertPoint(IP);
    Builder.SetCurrentDebugLocation(IP->getDebugLoc());

  } else {
    InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());

    // Insert the new invoke into the old block.  We'll remove the old one in a
    // moment at which point this will become the new terminator for the
    // original block.
    InvokeInst *invoke = InvokeInst::Create(
        gc_statepoint_decl, toReplace->getNormalDest(),
        toReplace->getUnwindDest(), args, "", toReplace->getParent());
    invoke->setCallingConv(toReplace->getCallingConv());

    // Currently we will fail on parameter attributes and on certain
    // function attributes.
    AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
    // In case if we can handle this set of sttributes - set up function attrs
    // directly on statepoint and return attrs later for gc_result intrinsic.
    invoke->setAttributes(new_attrs.getFnAttributes());
    return_attributes = new_attrs.getRetAttributes();

    token = invoke;

    // Generate gc relocates in exceptional path
    BasicBlock *unwindBlock = toReplace->getUnwindDest();
    assert(!isa<PHINode>(unwindBlock->begin()) &&
           unwindBlock->getUniquePredecessor() &&
           "can't safely insert in this block!");

    Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
    Builder.SetInsertPoint(IP);
    Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());

    // Extract second element from landingpad return value. We will attach
    // exceptional gc relocates to it.
    const unsigned idx = 1;
    Instruction *exceptional_token =
        cast<Instruction>(Builder.CreateExtractValue(
            unwindBlock->getLandingPadInst(), idx, "relocate_token"));
    result.UnwindToken = exceptional_token;

    // Just throw away return value. We will use the one we got for normal
    // block.
    (void)CreateGCRelocates(liveVariables, live_start, basePtrs,
                            exceptional_token, Builder);

    // Generate gc relocates and returns for normal block
    BasicBlock *normalDest = toReplace->getNormalDest();
    assert(!isa<PHINode>(normalDest->begin()) &&
           normalDest->getUniquePredecessor() &&
           "can't safely insert in this block!");

    IP = &*(normalDest->getFirstInsertionPt());
    Builder.SetInsertPoint(IP);

    // gc relocates will be generated later as if it were regular call
    // statepoint
  }
  assert(token);

  // Take the name of the original value call if it had one.
  token->takeName(CS.getInstruction());

// The GCResult is already inserted, we just need to find it
#ifndef NDEBUG
  Instruction *toReplace = CS.getInstruction();
  assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
         "only valid use before rewrite is gc.result");
  assert(!toReplace->hasOneUse() ||
         isGCResult(cast<Instruction>(*toReplace->user_begin())));
#endif

  // Update the gc.result of the original statepoint (if any) to use the newly
  // inserted statepoint.  This is safe to do here since the token can't be
  // considered a live reference.
  CS.getInstruction()->replaceAllUsesWith(token);

  result.StatepointToken = token;

  // Second, create a gc.relocate for every live variable
  CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
}

namespace {
struct name_ordering {
  Value *base;
  Value *derived;
  bool operator()(name_ordering const &a, name_ordering const &b) {
    return -1 == a.derived->getName().compare(b.derived->getName());
  }
};
}
static void stablize_order(SmallVectorImpl<Value *> &basevec,
                           SmallVectorImpl<Value *> &livevec) {
  assert(basevec.size() == livevec.size());

  SmallVector<name_ordering, 64> temp;
  for (size_t i = 0; i < basevec.size(); i++) {
    name_ordering v;
    v.base = basevec[i];
    v.derived = livevec[i];
    temp.push_back(v);
  }
  std::sort(temp.begin(), temp.end(), name_ordering());
  for (size_t i = 0; i < basevec.size(); i++) {
    basevec[i] = temp[i].base;
    livevec[i] = temp[i].derived;
  }
}

// Replace an existing gc.statepoint with a new one and a set of gc.relocates
// which make the relocations happening at this safepoint explicit.
//
// WARNING: Does not do any fixup to adjust users of the original live
// values.  That's the callers responsibility.
static void
makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
                       PartiallyConstructedSafepointRecord &result) {
  auto liveset = result.liveset;
  auto PointerToBase = result.PointerToBase;

  // Convert to vector for efficient cross referencing.
  SmallVector<Value *, 64> basevec, livevec;
  livevec.reserve(liveset.size());
  basevec.reserve(liveset.size());
  for (Value *L : liveset) {
    livevec.push_back(L);

    assert(PointerToBase.find(L) != PointerToBase.end());
    Value *base = PointerToBase[L];
    basevec.push_back(base);
  }
  assert(livevec.size() == basevec.size());

  // To make the output IR slightly more stable (for use in diffs), ensure a
  // fixed order of the values in the safepoint (by sorting the value name).
  // The order is otherwise meaningless.
  stablize_order(basevec, livevec);

  // Do the actual rewriting and delete the old statepoint
  makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
  CS.getInstruction()->eraseFromParent();
}

// Helper function for the relocationViaAlloca.
// It receives iterator to the statepoint gc relocates and emits store to the
// assigned
// location (via allocaMap) for the each one of them.
// Add visited values into the visitedLiveValues set we will later use them
// for sanity check.
static void
insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs,
                       DenseMap<Value *, Value *> &allocaMap,
                       DenseSet<Value *> &visitedLiveValues) {

  for (User *U : gcRelocs) {
    if (!isa<IntrinsicInst>(U))
      continue;

    IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U);

    // We only care about relocates
    if (relocatedValue->getIntrinsicID() !=
        Intrinsic::experimental_gc_relocate) {
      continue;
    }

    GCRelocateOperands relocateOperands(relocatedValue);
    Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr());
    assert(allocaMap.count(originalValue));
    Value *alloca = allocaMap[originalValue];

    // Emit store into the related alloca
    StoreInst *store = new StoreInst(relocatedValue, alloca);
    store->insertAfter(relocatedValue);

#ifndef NDEBUG
    visitedLiveValues.insert(originalValue);
#endif
  }
}

/// do all the relocation update via allocas and mem2reg
static void relocationViaAlloca(
    Function &F, DominatorTree &DT, ArrayRef<Value *> live,
    ArrayRef<struct PartiallyConstructedSafepointRecord> records) {
#ifndef NDEBUG
  // record initial number of (static) allocas; we'll check we have the same
  // number when we get done.
  int InitialAllocaNum = 0;
  for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
       I++)
    if (isa<AllocaInst>(*I))
      InitialAllocaNum++;
#endif

  // TODO-PERF: change data structures, reserve
  DenseMap<Value *, Value *> allocaMap;
  SmallVector<AllocaInst *, 200> PromotableAllocas;
  PromotableAllocas.reserve(live.size());

  // emit alloca for each live gc pointer
  for (unsigned i = 0; i < live.size(); i++) {
    Value *liveValue = live[i];
    AllocaInst *alloca = new AllocaInst(liveValue->getType(), "",
                                        F.getEntryBlock().getFirstNonPHI());
    allocaMap[liveValue] = alloca;
    PromotableAllocas.push_back(alloca);
  }

  // The next two loops are part of the same conceptual operation.  We need to
  // insert a store to the alloca after the original def and at each
  // redefinition.  We need to insert a load before each use.  These are split
  // into distinct loops for performance reasons.

  // update gc pointer after each statepoint
  // either store a relocated value or null (if no relocated value found for
  // this gc pointer and it is not a gc_result)
  // this must happen before we update the statepoint with load of alloca
  // otherwise we lose the link between statepoint and old def
  for (size_t i = 0; i < records.size(); i++) {
    const struct PartiallyConstructedSafepointRecord &info = records[i];
    Value *Statepoint = info.StatepointToken;

    // This will be used for consistency check
    DenseSet<Value *> visitedLiveValues;

    // Insert stores for normal statepoint gc relocates
    insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues);

    // In case if it was invoke statepoint
    // we will insert stores for exceptional path gc relocates.
    if (isa<InvokeInst>(Statepoint)) {
      insertRelocationStores(info.UnwindToken->users(), allocaMap,
                             visitedLiveValues);
    }

    if (ClobberNonLive) {
      // As a debuging aid, pretend that an unrelocated pointer becomes null at
      // the gc.statepoint.  This will turn some subtle GC problems into
      // slightly easier to debug SEGVs.  Note that on large IR files with
      // lots of gc.statepoints this is extremely costly both memory and time
      // wise.
      SmallVector<AllocaInst *, 64> ToClobber;
      for (auto Pair : allocaMap) {
        Value *Def = Pair.first;
        AllocaInst *Alloca = cast<AllocaInst>(Pair.second);

        // This value was relocated
        if (visitedLiveValues.count(Def)) {
          continue;
        }
        ToClobber.push_back(Alloca);
      }

      auto InsertClobbersAt = [&](Instruction *IP) {
        for (auto *AI : ToClobber) {
          auto AIType = cast<PointerType>(AI->getType());
          auto PT = cast<PointerType>(AIType->getElementType());
          Constant *CPN = ConstantPointerNull::get(PT);
          StoreInst *store = new StoreInst(CPN, AI);
          store->insertBefore(IP);
        }
      };

      // Insert the clobbering stores.  These may get intermixed with the
      // gc.results and gc.relocates, but that's fine.
      if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
        InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
        InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
      } else {
        BasicBlock::iterator Next(cast<CallInst>(Statepoint));
        Next++;
        InsertClobbersAt(Next);
      }
    }
  }
  // update use with load allocas and add store for gc_relocated
  for (auto Pair : allocaMap) {
    Value *def = Pair.first;
    Value *alloca = Pair.second;

    // we pre-record the uses of allocas so that we dont have to worry about
    // later update
    // that change the user information.
    SmallVector<Instruction *, 20> uses;
    // PERF: trade a linear scan for repeated reallocation
    uses.reserve(std::distance(def->user_begin(), def->user_end()));
    for (User *U : def->users()) {
      if (!isa<ConstantExpr>(U)) {
        // If the def has a ConstantExpr use, then the def is either a
        // ConstantExpr use itself or null.  In either case
        // (recursively in the first, directly in the second), the oop
        // it is ultimately dependent on is null and this particular
        // use does not need to be fixed up.
        uses.push_back(cast<Instruction>(U));
      }
    }

    std::sort(uses.begin(), uses.end());
    auto last = std::unique(uses.begin(), uses.end());
    uses.erase(last, uses.end());

    for (Instruction *use : uses) {
      if (isa<PHINode>(use)) {
        PHINode *phi = cast<PHINode>(use);
        for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) {
          if (def == phi->getIncomingValue(i)) {
            LoadInst *load = new LoadInst(
                alloca, "", phi->getIncomingBlock(i)->getTerminator());
            phi->setIncomingValue(i, load);
          }
        }
      } else {
        LoadInst *load = new LoadInst(alloca, "", use);
        use->replaceUsesOfWith(def, load);
      }
    }

    // emit store for the initial gc value
    // store must be inserted after load, otherwise store will be in alloca's
    // use list and an extra load will be inserted before it
    StoreInst *store = new StoreInst(def, alloca);
    if (Instruction *inst = dyn_cast<Instruction>(def)) {
      if (InvokeInst *invoke = dyn_cast<InvokeInst>(inst)) {
        // InvokeInst is a TerminatorInst so the store need to be inserted
        // into its normal destination block.
        BasicBlock *normalDest = invoke->getNormalDest();
        store->insertBefore(normalDest->getFirstNonPHI());
      } else {
        assert(!inst->isTerminator() &&
               "The only TerminatorInst that can produce a value is "
               "InvokeInst which is handled above.");
        store->insertAfter(inst);
      }
    } else {
      assert((isa<Argument>(def) || isa<GlobalVariable>(def) ||
              isa<ConstantPointerNull>(def)) &&
             "Must be argument or global");
      store->insertAfter(cast<Instruction>(alloca));
    }
  }

  assert(PromotableAllocas.size() == live.size() &&
         "we must have the same allocas with lives");
  if (!PromotableAllocas.empty()) {
    // apply mem2reg to promote alloca to SSA
    PromoteMemToReg(PromotableAllocas, DT);
  }

#ifndef NDEBUG
  for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
       I++)
    if (isa<AllocaInst>(*I))
      InitialAllocaNum--;
  assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
#endif
}

/// Implement a unique function which doesn't require we sort the input
/// vector.  Doing so has the effect of changing the output of a couple of
/// tests in ways which make them less useful in testing fused safepoints.
template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
  DenseSet<T> Seen;
  SmallVector<T, 128> TempVec;
  TempVec.reserve(Vec.size());
  for (auto Element : Vec)
    TempVec.push_back(Element);
  Vec.clear();
  for (auto V : TempVec) {
    if (Seen.insert(V).second) {
      Vec.push_back(V);
    }
  }
}

/// Insert holders so that each Value is obviously live through the entire
/// lifetime of the call.
static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
                                 SmallVectorImpl<CallInst *> &Holders) {
  if (Values.empty())
    // No values to hold live, might as well not insert the empty holder
    return;

  Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
  // Use a dummy vararg function to actually hold the values live
  Function *Func = cast<Function>(M->getOrInsertFunction(
      "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
  if (CS.isCall()) {
    // For call safepoints insert dummy calls right after safepoint
    BasicBlock::iterator Next(CS.getInstruction());
    Next++;
    Holders.push_back(CallInst::Create(Func, Values, "", Next));
    return;
  }
  // For invoke safepooints insert dummy calls both in normal and
  // exceptional destination blocks
  auto *II = cast<InvokeInst>(CS.getInstruction());
  Holders.push_back(CallInst::Create(
      Func, Values, "", II->getNormalDest()->getFirstInsertionPt()));
  Holders.push_back(CallInst::Create(
      Func, Values, "", II->getUnwindDest()->getFirstInsertionPt()));
}

static void findLiveReferences(
    Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
  GCPtrLivenessData OriginalLivenessData;
  computeLiveInValues(DT, F, OriginalLivenessData);
  for (size_t i = 0; i < records.size(); i++) {
    struct PartiallyConstructedSafepointRecord &info = records[i];
    const CallSite &CS = toUpdate[i];
    analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
  }
}

/// Remove any vector of pointers from the liveset by scalarizing them over the
/// statepoint instruction.  Adds the scalarized pieces to the liveset.  It
/// would be preferrable to include the vector in the statepoint itself, but
/// the lowering code currently does not handle that.  Extending it would be
/// slightly non-trivial since it requires a format change.  Given how rare
/// such cases are (for the moment?) scalarizing is an acceptable comprimise.
static void splitVectorValues(Instruction *StatepointInst,
                              StatepointLiveSetTy &LiveSet, DominatorTree &DT) {
  SmallVector<Value *, 16> ToSplit;
  for (Value *V : LiveSet)
    if (isa<VectorType>(V->getType()))
      ToSplit.push_back(V);

  if (ToSplit.empty())
    return;

  Function &F = *(StatepointInst->getParent()->getParent());

  DenseMap<Value *, AllocaInst *> AllocaMap;
  // First is normal return, second is exceptional return (invoke only)
  DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
  for (Value *V : ToSplit) {
    LiveSet.erase(V);

    AllocaInst *Alloca =
        new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
    AllocaMap[V] = Alloca;

    VectorType *VT = cast<VectorType>(V->getType());
    IRBuilder<> Builder(StatepointInst);
    SmallVector<Value *, 16> Elements;
    for (unsigned i = 0; i < VT->getNumElements(); i++)
      Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
    LiveSet.insert(Elements.begin(), Elements.end());

    auto InsertVectorReform = [&](Instruction *IP) {
      Builder.SetInsertPoint(IP);
      Builder.SetCurrentDebugLocation(IP->getDebugLoc());
      Value *ResultVec = UndefValue::get(VT);
      for (unsigned i = 0; i < VT->getNumElements(); i++)
        ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
                                                Builder.getInt32(i));
      return ResultVec;
    };

    if (isa<CallInst>(StatepointInst)) {
      BasicBlock::iterator Next(StatepointInst);
      Next++;
      Instruction *IP = &*(Next);
      Replacements[V].first = InsertVectorReform(IP);
      Replacements[V].second = nullptr;
    } else {
      InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
      // We've already normalized - check that we don't have shared destination
      // blocks
      BasicBlock *NormalDest = Invoke->getNormalDest();
      assert(!isa<PHINode>(NormalDest->begin()));
      BasicBlock *UnwindDest = Invoke->getUnwindDest();
      assert(!isa<PHINode>(UnwindDest->begin()));
      // Insert insert element sequences in both successors
      Instruction *IP = &*(NormalDest->getFirstInsertionPt());
      Replacements[V].first = InsertVectorReform(IP);
      IP = &*(UnwindDest->getFirstInsertionPt());
      Replacements[V].second = InsertVectorReform(IP);
    }
  }
  for (Value *V : ToSplit) {
    AllocaInst *Alloca = AllocaMap[V];

    // Capture all users before we start mutating use lists
    SmallVector<Instruction *, 16> Users;
    for (User *U : V->users())
      Users.push_back(cast<Instruction>(U));

    for (Instruction *I : Users) {
      if (auto Phi = dyn_cast<PHINode>(I)) {
        for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
          if (V == Phi->getIncomingValue(i)) {
            LoadInst *Load = new LoadInst(
                Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
            Phi->setIncomingValue(i, Load);
          }
      } else {
        LoadInst *Load = new LoadInst(Alloca, "", I);
        I->replaceUsesOfWith(V, Load);
      }
    }

    // Store the original value and the replacement value into the alloca
    StoreInst *Store = new StoreInst(V, Alloca);
    if (auto I = dyn_cast<Instruction>(V))
      Store->insertAfter(I);
    else
      Store->insertAfter(Alloca);

    // Normal return for invoke, or call return
    Instruction *Replacement = cast<Instruction>(Replacements[V].first);
    (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
    // Unwind return for invoke only
    Replacement = cast_or_null<Instruction>(Replacements[V].second);
    if (Replacement)
      (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
  }

  // apply mem2reg to promote alloca to SSA
  SmallVector<AllocaInst *, 16> Allocas;
  for (Value *V : ToSplit)
    Allocas.push_back(AllocaMap[V]);
  PromoteMemToReg(Allocas, DT);
}

static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
                              SmallVectorImpl<CallSite> &toUpdate) {
#ifndef NDEBUG
  // sanity check the input
  std::set<CallSite> uniqued;
  uniqued.insert(toUpdate.begin(), toUpdate.end());
  assert(uniqued.size() == toUpdate.size() && "no duplicates please!");

  for (size_t i = 0; i < toUpdate.size(); i++) {
    CallSite &CS = toUpdate[i];
    assert(CS.getInstruction()->getParent()->getParent() == &F);
    assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
  }
#endif

  // When inserting gc.relocates for invokes, we need to be able to insert at
  // the top of the successor blocks.  See the comment on
  // normalForInvokeSafepoint on exactly what is needed.  Note that this step
  // may restructure the CFG.
  for (CallSite CS : toUpdate) {
    if (!CS.isInvoke())
      continue;
    InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
    normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(),
                                P);
    normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(),
                                P);
  }

  // A list of dummy calls added to the IR to keep various values obviously
  // live in the IR.  We'll remove all of these when done.
  SmallVector<CallInst *, 64> holders;

  // Insert a dummy call with all of the arguments to the vm_state we'll need
  // for the actual safepoint insertion.  This ensures reference arguments in
  // the deopt argument list are considered live through the safepoint (and
  // thus makes sure they get relocated.)
  for (size_t i = 0; i < toUpdate.size(); i++) {
    CallSite &CS = toUpdate[i];
    Statepoint StatepointCS(CS);

    SmallVector<Value *, 64> DeoptValues;
    for (Use &U : StatepointCS.vm_state_args()) {
      Value *Arg = cast<Value>(&U);
      assert(!isUnhandledGCPointerType(Arg->getType()) &&
             "support for FCA unimplemented");
      if (isHandledGCPointerType(Arg->getType()))
        DeoptValues.push_back(Arg);
    }
    insertUseHolderAfter(CS, DeoptValues, holders);
  }

  SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
  records.reserve(toUpdate.size());
  for (size_t i = 0; i < toUpdate.size(); i++) {
    struct PartiallyConstructedSafepointRecord info;
    records.push_back(info);
  }
  assert(records.size() == toUpdate.size());

  // A) Identify all gc pointers which are staticly live at the given call
  // site.
  findLiveReferences(F, DT, P, toUpdate, records);

  // Do a limited scalarization of any live at safepoint vector values which
  // contain pointers.  This enables this pass to run after vectorization at
  // the cost of some possible performance loss.  TODO: it would be nice to
  // natively support vectors all the way through the backend so we don't need
  // to scalarize here.
  for (size_t i = 0; i < records.size(); i++) {
    struct PartiallyConstructedSafepointRecord &info = records[i];
    Instruction *statepoint = toUpdate[i].getInstruction();
    splitVectorValues(cast<Instruction>(statepoint), info.liveset, DT);
  }

  // B) Find the base pointers for each live pointer
  /* scope for caching */ {
    // Cache the 'defining value' relation used in the computation and
    // insertion of base phis and selects.  This ensures that we don't insert
    // large numbers of duplicate base_phis.
    DefiningValueMapTy DVCache;

    for (size_t i = 0; i < records.size(); i++) {
      struct PartiallyConstructedSafepointRecord &info = records[i];
      CallSite &CS = toUpdate[i];
      findBasePointers(DT, DVCache, CS, info);
    }
  } // end of cache scope

  // The base phi insertion logic (for any safepoint) may have inserted new
  // instructions which are now live at some safepoint.  The simplest such
  // example is:
  // loop:
  //   phi a  <-- will be a new base_phi here
  //   safepoint 1 <-- that needs to be live here
  //   gep a + 1
  //   safepoint 2
  //   br loop
  // We insert some dummy calls after each safepoint to definitely hold live
  // the base pointers which were identified for that safepoint.  We'll then
  // ask liveness for _every_ base inserted to see what is now live.  Then we
  // remove the dummy calls.
  holders.reserve(holders.size() + records.size());
  for (size_t i = 0; i < records.size(); i++) {
    struct PartiallyConstructedSafepointRecord &info = records[i];
    CallSite &CS = toUpdate[i];

    SmallVector<Value *, 128> Bases;
    for (auto Pair : info.PointerToBase) {
      Bases.push_back(Pair.second);
    }
    insertUseHolderAfter(CS, Bases, holders);
  }

  // By selecting base pointers, we've effectively inserted new uses. Thus, we
  // need to rerun liveness.  We may *also* have inserted new defs, but that's
  // not the key issue.
  recomputeLiveInValues(F, DT, P, toUpdate, records);

  if (PrintBasePointers) {
    for (size_t i = 0; i < records.size(); i++) {
      struct PartiallyConstructedSafepointRecord &info = records[i];
      errs() << "Base Pairs: (w/Relocation)\n";
      for (auto Pair : info.PointerToBase) {
        errs() << " derived %" << Pair.first->getName() << " base %"
               << Pair.second->getName() << "\n";
      }
    }
  }
  for (size_t i = 0; i < holders.size(); i++) {
    holders[i]->eraseFromParent();
    holders[i] = nullptr;
  }
  holders.clear();

  // Now run through and replace the existing statepoints with new ones with
  // the live variables listed.  We do not yet update uses of the values being
  // relocated. We have references to live variables that need to
  // survive to the last iteration of this loop.  (By construction, the
  // previous statepoint can not be a live variable, thus we can and remove
  // the old statepoint calls as we go.)
  for (size_t i = 0; i < records.size(); i++) {
    struct PartiallyConstructedSafepointRecord &info = records[i];
    CallSite &CS = toUpdate[i];
    makeStatepointExplicit(DT, CS, P, info);
  }
  toUpdate.clear(); // prevent accident use of invalid CallSites

  // Do all the fixups of the original live variables to their relocated selves
  SmallVector<Value *, 128> live;
  for (size_t i = 0; i < records.size(); i++) {
    struct PartiallyConstructedSafepointRecord &info = records[i];
    // We can't simply save the live set from the original insertion.  One of
    // the live values might be the result of a call which needs a safepoint.
    // That Value* no longer exists and we need to use the new gc_result.
    // Thankfully, the liveset is embedded in the statepoint (and updated), so
    // we just grab that.
    Statepoint statepoint(info.StatepointToken);
    live.insert(live.end(), statepoint.gc_args_begin(),
                statepoint.gc_args_end());
#ifndef NDEBUG
    // Do some basic sanity checks on our liveness results before performing
    // relocation.  Relocation can and will turn mistakes in liveness results
    // into non-sensical code which is must harder to debug.
    // TODO: It would be nice to test consistency as well
    assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) &&
           "statepoint must be reachable or liveness is meaningless");
    for (Value *V : statepoint.gc_args()) {
      if (!isa<Instruction>(V))
        // Non-instruction values trivial dominate all possible uses
        continue;
      auto LiveInst = cast<Instruction>(V);
      assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
             "unreachable values should never be live");
      assert(DT.dominates(LiveInst, info.StatepointToken) &&
             "basic SSA liveness expectation violated by liveness analysis");
    }
#endif
  }
  unique_unsorted(live);

#ifndef NDEBUG
  // sanity check
  for (auto ptr : live) {
    assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
  }
#endif

  relocationViaAlloca(F, DT, live, records);
  return !records.empty();
}

/// Returns true if this function should be rewritten by this pass.  The main
/// point of this function is as an extension point for custom logic.
static bool shouldRewriteStatepointsIn(Function &F) {
  // TODO: This should check the GCStrategy
  if (F.hasGC()) {
    const std::string StatepointExampleName("statepoint-example");
    return StatepointExampleName == F.getGC();
  } else
    return false;
}

bool RewriteStatepointsForGC::runOnFunction(Function &F) {
  // Nothing to do for declarations.
  if (F.isDeclaration() || F.empty())
    return false;

  // Policy choice says not to rewrite - the most common reason is that we're
  // compiling code without a GCStrategy.
  if (!shouldRewriteStatepointsIn(F))
    return false;

  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();

  // Gather all the statepoints which need rewritten.  Be careful to only
  // consider those in reachable code since we need to ask dominance queries
  // when rewriting.  We'll delete the unreachable ones in a moment.
  SmallVector<CallSite, 64> ParsePointNeeded;
  bool HasUnreachableStatepoint = false;
  for (Instruction &I : inst_range(F)) {
    // TODO: only the ones with the flag set!
    if (isStatepoint(I)) {
      if (DT.isReachableFromEntry(I.getParent()))
        ParsePointNeeded.push_back(CallSite(&I));
      else
        HasUnreachableStatepoint = true;
    }
  }

  bool MadeChange = false;

  // Delete any unreachable statepoints so that we don't have unrewritten
  // statepoints surviving this pass.  This makes testing easier and the
  // resulting IR less confusing to human readers.  Rather than be fancy, we
  // just reuse a utility function which removes the unreachable blocks.
  if (HasUnreachableStatepoint)
    MadeChange |= removeUnreachableBlocks(F);

  // Return early if no work to do.
  if (ParsePointNeeded.empty())
    return MadeChange;

  // As a prepass, go ahead and aggressively destroy single entry phi nodes.
  // These are created by LCSSA.  They have the effect of increasing the size
  // of liveness sets for no good reason.  It may be harder to do this post
  // insertion since relocations and base phis can confuse things.
  for (BasicBlock &BB : F)
    if (BB.getUniquePredecessor()) {
      MadeChange = true;
      FoldSingleEntryPHINodes(&BB);
    }

  MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
  return MadeChange;
}

// liveness computation via standard dataflow
// -------------------------------------------------------------------

// TODO: Consider using bitvectors for liveness, the set of potentially
// interesting values should be small and easy to pre-compute.

/// Is this value a constant consisting of entirely null values?
static bool isConstantNull(Value *V) {
  return isa<Constant>(V) && cast<Constant>(V)->isNullValue();
}

/// Compute the live-in set for the location rbegin starting from
/// the live-out set of the basic block
static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
                                BasicBlock::reverse_iterator rend,
                                DenseSet<Value *> &LiveTmp) {

  for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
    Instruction *I = &*ritr;

    // KILL/Def - Remove this definition from LiveIn
    LiveTmp.erase(I);

    // Don't consider *uses* in PHI nodes, we handle their contribution to
    // predecessor blocks when we seed the LiveOut sets
    if (isa<PHINode>(I))
      continue;

    // USE - Add to the LiveIn set for this instruction
    for (Value *V : I->operands()) {
      assert(!isUnhandledGCPointerType(V->getType()) &&
             "support for FCA unimplemented");
      if (isHandledGCPointerType(V->getType()) && !isConstantNull(V) &&
          !isa<UndefValue>(V)) {
        // The choice to exclude null and undef is arbitrary here.  Reconsider?
        LiveTmp.insert(V);
      }
    }
  }
}

static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {

  for (BasicBlock *Succ : successors(BB)) {
    const BasicBlock::iterator E(Succ->getFirstNonPHI());
    for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
      PHINode *Phi = cast<PHINode>(&*I);
      Value *V = Phi->getIncomingValueForBlock(BB);
      assert(!isUnhandledGCPointerType(V->getType()) &&
             "support for FCA unimplemented");
      if (isHandledGCPointerType(V->getType()) && !isConstantNull(V) &&
          !isa<UndefValue>(V)) {
        // The choice to exclude null and undef is arbitrary here.  Reconsider?
        LiveTmp.insert(V);
      }
    }
  }
}

static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
  DenseSet<Value *> KillSet;
  for (Instruction &I : *BB)
    if (isHandledGCPointerType(I.getType()))
      KillSet.insert(&I);
  return KillSet;
}

#ifndef NDEBUG
/// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
/// sanity check for the liveness computation.
static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
                          TerminatorInst *TI, bool TermOkay = false) {
  for (Value *V : Live) {
    if (auto *I = dyn_cast<Instruction>(V)) {
      // The terminator can be a member of the LiveOut set.  LLVM's definition
      // of instruction dominance states that V does not dominate itself.  As
      // such, we need to special case this to allow it.
      if (TermOkay && TI == I)
        continue;
      assert(DT.dominates(I, TI) &&
             "basic SSA liveness expectation violated by liveness analysis");
    }
  }
}

/// Check that all the liveness sets used during the computation of liveness
/// obey basic SSA properties.  This is useful for finding cases where we miss
/// a def.
static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
                          BasicBlock &BB) {
  checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
  checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
  checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
}
#endif

static void computeLiveInValues(DominatorTree &DT, Function &F,
                                GCPtrLivenessData &Data) {

  SmallSetVector<BasicBlock *, 200> Worklist;
  auto AddPredsToWorklist = [&](BasicBlock *BB) {
    // We use a SetVector so that we don't have duplicates in the worklist.
    Worklist.insert(pred_begin(BB), pred_end(BB));
  };
  auto NextItem = [&]() {
    BasicBlock *BB = Worklist.back();
    Worklist.pop_back();
    return BB;
  };

  // Seed the liveness for each individual block
  for (BasicBlock &BB : F) {
    Data.KillSet[&BB] = computeKillSet(&BB);
    Data.LiveSet[&BB].clear();
    computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);

#ifndef NDEBUG
    for (Value *Kill : Data.KillSet[&BB])
      assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
#endif

    Data.LiveOut[&BB] = DenseSet<Value *>();
    computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
    Data.LiveIn[&BB] = Data.LiveSet[&BB];
    set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
    set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
    if (!Data.LiveIn[&BB].empty())
      AddPredsToWorklist(&BB);
  }

  // Propagate that liveness until stable
  while (!Worklist.empty()) {
    BasicBlock *BB = NextItem();

    // Compute our new liveout set, then exit early if it hasn't changed
    // despite the contribution of our successor.
    DenseSet<Value *> LiveOut = Data.LiveOut[BB];
    const auto OldLiveOutSize = LiveOut.size();
    for (BasicBlock *Succ : successors(BB)) {
      assert(Data.LiveIn.count(Succ));
      set_union(LiveOut, Data.LiveIn[Succ]);
    }
    // assert OutLiveOut is a subset of LiveOut
    if (OldLiveOutSize == LiveOut.size()) {
      // If the sets are the same size, then we didn't actually add anything
      // when unioning our successors LiveIn  Thus, the LiveIn of this block
      // hasn't changed.
      continue;
    }
    Data.LiveOut[BB] = LiveOut;

    // Apply the effects of this basic block
    DenseSet<Value *> LiveTmp = LiveOut;
    set_union(LiveTmp, Data.LiveSet[BB]);
    set_subtract(LiveTmp, Data.KillSet[BB]);

    assert(Data.LiveIn.count(BB));
    const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
    // assert: OldLiveIn is a subset of LiveTmp
    if (OldLiveIn.size() != LiveTmp.size()) {
      Data.LiveIn[BB] = LiveTmp;
      AddPredsToWorklist(BB);
    }
  } // while( !worklist.empty() )

#ifndef NDEBUG
  // Sanity check our ouput against SSA properties.  This helps catch any
  // missing kills during the above iteration.
  for (BasicBlock &BB : F) {
    checkBasicSSA(DT, Data, BB);
  }
#endif
}

static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
                              StatepointLiveSetTy &Out) {

  BasicBlock *BB = Inst->getParent();

  // Note: The copy is intentional and required
  assert(Data.LiveOut.count(BB));
  DenseSet<Value *> LiveOut = Data.LiveOut[BB];

  // We want to handle the statepoint itself oddly.  It's
  // call result is not live (normal), nor are it's arguments
  // (unless they're used again later).  This adjustment is
  // specifically what we need to relocate
  BasicBlock::reverse_iterator rend(Inst);
  computeLiveInValues(BB->rbegin(), rend, LiveOut);
  LiveOut.erase(Inst);
  Out.insert(LiveOut.begin(), LiveOut.end());
}

static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
                                  const CallSite &CS,
                                  PartiallyConstructedSafepointRecord &Info) {
  Instruction *Inst = CS.getInstruction();
  StatepointLiveSetTy Updated;
  findLiveSetAtInst(Inst, RevisedLivenessData, Updated);

#ifndef NDEBUG
  DenseSet<Value *> Bases;
  for (auto KVPair : Info.PointerToBase) {
    Bases.insert(KVPair.second);
  }
#endif
  // We may have base pointers which are now live that weren't before.  We need
  // to update the PointerToBase structure to reflect this.
  for (auto V : Updated)
    if (!Info.PointerToBase.count(V)) {
      assert(Bases.count(V) && "can't find base for unexpected live value");
      Info.PointerToBase[V] = V;
      continue;
    }

#ifndef NDEBUG
  for (auto V : Updated) {
    assert(Info.PointerToBase.count(V) &&
           "must be able to find base for live value");
  }
#endif

  // Remove any stale base mappings - this can happen since our liveness is
  // more precise then the one inherent in the base pointer analysis
  DenseSet<Value *> ToErase;
  for (auto KVPair : Info.PointerToBase)
    if (!Updated.count(KVPair.first))
      ToErase.insert(KVPair.first);
  for (auto V : ToErase)
    Info.PointerToBase.erase(V);

#ifndef NDEBUG
  for (auto KVPair : Info.PointerToBase)
    assert(Updated.count(KVPair.first) && "record for non-live value");
#endif

  Info.liveset = Updated;
}