aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/LLVMContextImpl.cpp
blob: 1c5af77c1cb2bfb40414394d56a3a7c30f6a14e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
//===--------------- LLVMContextImpl.cpp - Implementation ------*- C++ -*--===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements LLVMContextImpl, the opaque implementation 
//  of LLVMContext.
//
//===----------------------------------------------------------------------===//

#include "LLVMContextImpl.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/LLVMContext.h"
#include "llvm/MDNode.h"
using namespace llvm;

static char getValType(ConstantAggregateZero *CPZ) { return 0; }

static std::vector<Constant*> getValType(ConstantArray *CA) {
  std::vector<Constant*> Elements;
  Elements.reserve(CA->getNumOperands());
  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
    Elements.push_back(cast<Constant>(CA->getOperand(i)));
  return Elements;
}

namespace llvm {
template<typename T, typename Alloc>
struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
  static unsigned uses(const std::vector<T, Alloc>& v) {
    return v.size();
  }
};

template<class ConstantClass, class TypeClass, class ValType>
struct VISIBILITY_HIDDEN ConstantCreator {
  static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
    return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
  }
};

template<class ConstantClass, class TypeClass>
struct VISIBILITY_HIDDEN ConvertConstantType {
  static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
    llvm_unreachable("This type cannot be converted!");
  }
};

// ConstantAggregateZero does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
  static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
    return new ConstantAggregateZero(Ty);
  }
};

template<>
struct ConvertConstantType<ConstantAggregateZero, Type> {
  static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
    // Make everyone now use a constant of the new type...
    Constant *New = NewTy->getContext().getConstantAggregateZero(NewTy);
    assert(New != OldC && "Didn't replace constant??");
    OldC->uncheckedReplaceAllUsesWith(New);
    OldC->destroyConstant();     // This constant is now dead, destroy it.
  }
};

template<>
struct ConvertConstantType<ConstantArray, ArrayType> {
  static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
    // Make everyone now use a constant of the new type...
    std::vector<Constant*> C;
    for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
      C.push_back(cast<Constant>(OldC->getOperand(i)));
    Constant *New = NewTy->getContext().getConstantArray(NewTy, C);
    assert(New != OldC && "Didn't replace constant??");
    OldC->uncheckedReplaceAllUsesWith(New);
    OldC->destroyConstant();    // This constant is now dead, destroy it.
  }
};
}
  
template<class ValType, class TypeClass, class ConstantClass,
         bool HasLargeKey  /*true for arrays and structs*/ >
class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
public:
  typedef std::pair<const Type*, ValType> MapKey;
  typedef std::map<MapKey, Constant *> MapTy;
  typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
  typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
private:
  /// Map - This is the main map from the element descriptor to the Constants.
  /// This is the primary way we avoid creating two of the same shape
  /// constant.
  MapTy Map;
    
  /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
  /// from the constants to their element in Map.  This is important for
  /// removal of constants from the array, which would otherwise have to scan
  /// through the map with very large keys.
  InverseMapTy InverseMap;

  /// AbstractTypeMap - Map for abstract type constants.
  ///
  AbstractTypeMapTy AbstractTypeMap;
    
  /// ValueMapLock - Mutex for this map.
  sys::SmartMutex<true> ValueMapLock;

public:
  // NOTE: This function is not locked.  It is the caller's responsibility
  // to enforce proper synchronization.
  typename MapTy::iterator map_end() { return Map.end(); }
    
  /// InsertOrGetItem - Return an iterator for the specified element.
  /// If the element exists in the map, the returned iterator points to the
  /// entry and Exists=true.  If not, the iterator points to the newly
  /// inserted entry and returns Exists=false.  Newly inserted entries have
  /// I->second == 0, and should be filled in.
  /// NOTE: This function is not locked.  It is the caller's responsibility
  // to enforce proper synchronization.
  typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
                                 &InsertVal,
                                 bool &Exists) {
    std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
    Exists = !IP.second;
    return IP.first;
  }
    
private:
  typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
    if (HasLargeKey) {
      typename InverseMapTy::iterator IMI = InverseMap.find(CP);
      assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
             IMI->second->second == CP &&
             "InverseMap corrupt!");
      return IMI->second;
    }
      
    typename MapTy::iterator I =
      Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
                      getValType(CP)));
    if (I == Map.end() || I->second != CP) {
      // FIXME: This should not use a linear scan.  If this gets to be a
      // performance problem, someone should look at this.
      for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
        /* empty */;
    }
    return I;
  }
    
  ConstantClass* Create(const TypeClass *Ty, const ValType &V,
                        typename MapTy::iterator I) {
    ConstantClass* Result =
      ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);

    assert(Result->getType() == Ty && "Type specified is not correct!");
    I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));

    if (HasLargeKey)  // Remember the reverse mapping if needed.
      InverseMap.insert(std::make_pair(Result, I));

    // If the type of the constant is abstract, make sure that an entry
    // exists for it in the AbstractTypeMap.
    if (Ty->isAbstract()) {
      typename AbstractTypeMapTy::iterator TI = 
                                               AbstractTypeMap.find(Ty);

      if (TI == AbstractTypeMap.end()) {
        // Add ourselves to the ATU list of the type.
        cast<DerivedType>(Ty)->addAbstractTypeUser(this);

        AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
      }
    }
      
    return Result;
  }
public:
    
  /// getOrCreate - Return the specified constant from the map, creating it if
  /// necessary.
  ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
    sys::SmartScopedLock<true> Lock(ValueMapLock);
    MapKey Lookup(Ty, V);
    ConstantClass* Result = 0;
    
    typename MapTy::iterator I = Map.find(Lookup);
    // Is it in the map?  
    if (I != Map.end())
      Result = static_cast<ConstantClass *>(I->second);
        
    if (!Result) {
      // If no preexisting value, create one now...
      Result = Create(Ty, V, I);
    }
        
    return Result;
  }

  void remove(ConstantClass *CP) {
    sys::SmartScopedLock<true> Lock(ValueMapLock);
    typename MapTy::iterator I = FindExistingElement(CP);
    assert(I != Map.end() && "Constant not found in constant table!");
    assert(I->second == CP && "Didn't find correct element?");

    if (HasLargeKey)  // Remember the reverse mapping if needed.
      InverseMap.erase(CP);
      
    // Now that we found the entry, make sure this isn't the entry that
    // the AbstractTypeMap points to.
    const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
    if (Ty->isAbstract()) {
      assert(AbstractTypeMap.count(Ty) &&
             "Abstract type not in AbstractTypeMap?");
      typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
      if (ATMEntryIt == I) {
        // Yes, we are removing the representative entry for this type.
        // See if there are any other entries of the same type.
        typename MapTy::iterator TmpIt = ATMEntryIt;

        // First check the entry before this one...
        if (TmpIt != Map.begin()) {
          --TmpIt;
          if (TmpIt->first.first != Ty) // Not the same type, move back...
            ++TmpIt;
        }

        // If we didn't find the same type, try to move forward...
        if (TmpIt == ATMEntryIt) {
          ++TmpIt;
          if (TmpIt == Map.end() || TmpIt->first.first != Ty)
            --TmpIt;   // No entry afterwards with the same type
        }

        // If there is another entry in the map of the same abstract type,
        // update the AbstractTypeMap entry now.
        if (TmpIt != ATMEntryIt) {
          ATMEntryIt = TmpIt;
        } else {
          // Otherwise, we are removing the last instance of this type
          // from the table.  Remove from the ATM, and from user list.
          cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
          AbstractTypeMap.erase(Ty);
        }
      }
    }

    Map.erase(I);
  }

    
  /// MoveConstantToNewSlot - If we are about to change C to be the element
  /// specified by I, update our internal data structures to reflect this
  /// fact.
  /// NOTE: This function is not locked. It is the responsibility of the
  /// caller to enforce proper synchronization if using this method.
  void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
    // First, remove the old location of the specified constant in the map.
    typename MapTy::iterator OldI = FindExistingElement(C);
    assert(OldI != Map.end() && "Constant not found in constant table!");
    assert(OldI->second == C && "Didn't find correct element?");
      
    // If this constant is the representative element for its abstract type,
    // update the AbstractTypeMap so that the representative element is I.
    if (C->getType()->isAbstract()) {
      typename AbstractTypeMapTy::iterator ATI =
          AbstractTypeMap.find(C->getType());
      assert(ATI != AbstractTypeMap.end() &&
             "Abstract type not in AbstractTypeMap?");
      if (ATI->second == OldI)
        ATI->second = I;
    }
      
    // Remove the old entry from the map.
    Map.erase(OldI);
    
    // Update the inverse map so that we know that this constant is now
    // located at descriptor I.
    if (HasLargeKey) {
      assert(I->second == C && "Bad inversemap entry!");
      InverseMap[C] = I;
    }
  }
    
  void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
    sys::SmartScopedLock<true> Lock(ValueMapLock);
    typename AbstractTypeMapTy::iterator I =
      AbstractTypeMap.find(cast<Type>(OldTy));

    assert(I != AbstractTypeMap.end() &&
           "Abstract type not in AbstractTypeMap?");

    // Convert a constant at a time until the last one is gone.  The last one
    // leaving will remove() itself, causing the AbstractTypeMapEntry to be
    // eliminated eventually.
    do {
      ConvertConstantType<ConstantClass,
                          TypeClass>::convert(
                              static_cast<ConstantClass *>(I->second->second),
                                              cast<TypeClass>(NewTy));

      I = AbstractTypeMap.find(cast<Type>(OldTy));
    } while (I != AbstractTypeMap.end());
  }

  // If the type became concrete without being refined to any other existing
  // type, we just remove ourselves from the ATU list.
  void typeBecameConcrete(const DerivedType *AbsTy) {
    AbsTy->removeAbstractTypeUser(this);
  }

  void dump() const {
    DOUT << "Constant.cpp: ValueMap\n";
  }
};

LLVMContextImpl::LLVMContextImpl(LLVMContext &C) :
    Context(C), TheTrueVal(0), TheFalseVal(0) {
  AggZeroConstants = new ValueMap<char, Type, ConstantAggregateZero>();
  ArrayConstants = new ArrayConstantsTy();
}

LLVMContextImpl::~LLVMContextImpl() {
  delete AggZeroConstants;
  delete ArrayConstants;
}

// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
// operator== and operator!= to ensure that the DenseMap doesn't attempt to
// compare APInt's of different widths, which would violate an APInt class
// invariant which generates an assertion.
ConstantInt *LLVMContextImpl::getConstantInt(const APInt& V) {
  // Get the corresponding integer type for the bit width of the value.
  const IntegerType *ITy = Context.getIntegerType(V.getBitWidth());
  // get an existing value or the insertion position
  DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
  
  ConstantsLock.reader_acquire();
  ConstantInt *&Slot = IntConstants[Key]; 
  ConstantsLock.reader_release();
    
  if (!Slot) {
    sys::SmartScopedWriter<true> Writer(ConstantsLock);
    ConstantInt *&NewSlot = IntConstants[Key]; 
    if (!Slot) {
      NewSlot = new ConstantInt(ITy, V);
    }
    
    return NewSlot;
  } else {
    return Slot;
  }
}

ConstantFP *LLVMContextImpl::getConstantFP(const APFloat &V) {
  DenseMapAPFloatKeyInfo::KeyTy Key(V);
  
  ConstantsLock.reader_acquire();
  ConstantFP *&Slot = FPConstants[Key];
  ConstantsLock.reader_release();
    
  if (!Slot) {
    sys::SmartScopedWriter<true> Writer(ConstantsLock);
    ConstantFP *&NewSlot = FPConstants[Key];
    if (!NewSlot) {
      const Type *Ty;
      if (&V.getSemantics() == &APFloat::IEEEsingle)
        Ty = Type::FloatTy;
      else if (&V.getSemantics() == &APFloat::IEEEdouble)
        Ty = Type::DoubleTy;
      else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
        Ty = Type::X86_FP80Ty;
      else if (&V.getSemantics() == &APFloat::IEEEquad)
        Ty = Type::FP128Ty;
      else {
        assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
               "Unknown FP format");
        Ty = Type::PPC_FP128Ty;
      }
      NewSlot = new ConstantFP(Ty, V);
    }
    
    return NewSlot;
  }
  
  return Slot;
}

MDString *LLVMContextImpl::getMDString(const char *StrBegin,
                                       unsigned StrLength) {
  sys::SmartScopedWriter<true> Writer(ConstantsLock);
  StringMapEntry<MDString *> &Entry = 
    MDStringCache.GetOrCreateValue(StringRef(StrBegin, StrLength));
  MDString *&S = Entry.getValue();
  if (!S) S = new MDString(Entry.getKeyData(),
                           Entry.getKeyLength());

  return S;
}

MDNode *LLVMContextImpl::getMDNode(Value*const* Vals, unsigned NumVals) {
  FoldingSetNodeID ID;
  for (unsigned i = 0; i != NumVals; ++i)
    ID.AddPointer(Vals[i]);

  ConstantsLock.reader_acquire();
  void *InsertPoint;
  MDNode *N = MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
  ConstantsLock.reader_release();
  
  if (!N) {
    sys::SmartScopedWriter<true> Writer(ConstantsLock);
    N = MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
    if (!N) {
      // InsertPoint will have been set by the FindNodeOrInsertPos call.
      N = new MDNode(Vals, NumVals);
      MDNodeSet.InsertNode(N, InsertPoint);
    }
  }

  return N;
}

ConstantAggregateZero*
LLVMContextImpl::getConstantAggregateZero(const Type *Ty) {
  assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
         "Cannot create an aggregate zero of non-aggregate type!");

  // Implicitly locked.
  return AggZeroConstants->getOrCreate(Ty, 0);
}

Constant *LLVMContextImpl::getConstantArray(const ArrayType *Ty,
                             const std::vector<Constant*> &V) {
  // If this is an all-zero array, return a ConstantAggregateZero object
  if (!V.empty()) {
    Constant *C = V[0];
    if (!C->isNullValue()) {
      // Implicitly locked.
      return ArrayConstants->getOrCreate(Ty, V);
    }
    for (unsigned i = 1, e = V.size(); i != e; ++i)
      if (V[i] != C) {
        // Implicitly locked.
        return ArrayConstants->getOrCreate(Ty, V);
      }
  }
  
  return Context.getConstantAggregateZero(Ty);
}

// *** erase methods ***

void LLVMContextImpl::erase(MDString *M) {
  sys::SmartScopedWriter<true> Writer(ConstantsLock);
  MDStringCache.erase(MDStringCache.find(StringRef(M->StrBegin, 
                                                   M->length())));
}

void LLVMContextImpl::erase(MDNode *M) {
  sys::SmartScopedWriter<true> Writer(ConstantsLock);
  MDNodeSet.RemoveNode(M);
}

void LLVMContextImpl::erase(ConstantAggregateZero *Z) {
  AggZeroConstants->remove(Z);
}

void LLVMContextImpl::erase(ConstantArray *C) {
  ArrayConstants->remove(C);
}

// *** RAUW helpers ***
Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantArray *CA,
                                               Value *From, Value *To, Use *U) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
  Constant *ToC = cast<Constant>(To);

  std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
  Lookup.first.first = CA->getType();
  Lookup.second = CA;

  std::vector<Constant*> &Values = Lookup.first.second;
  Values.reserve(CA->getNumOperands());  // Build replacement array.

  // Fill values with the modified operands of the constant array.  Also, 
  // compute whether this turns into an all-zeros array.
  bool isAllZeros = false;
  unsigned NumUpdated = 0;
  if (!ToC->isNullValue()) {
    for (Use *O = CA->OperandList, *E = CA->OperandList + CA->getNumOperands();
         O != E; ++O) {
      Constant *Val = cast<Constant>(O->get());
      if (Val == From) {
        Val = ToC;
        ++NumUpdated;
      }
      Values.push_back(Val);
    }
  } else {
    isAllZeros = true;
    for (Use *O = CA->OperandList, *E = CA->OperandList + CA->getNumOperands();
         O != E; ++O) {
      Constant *Val = cast<Constant>(O->get());
      if (Val == From) {
        Val = ToC;
        ++NumUpdated;
      }
      Values.push_back(Val);
      if (isAllZeros) isAllZeros = Val->isNullValue();
    }
  }
  
  Constant *Replacement = 0;
  if (isAllZeros) {
    Replacement = Context.getConstantAggregateZero(CA->getType());
  } else {
    // Check to see if we have this array type already.
    sys::SmartScopedWriter<true> Writer(ConstantsLock);
    bool Exists;
    ArrayConstantsTy::MapTy::iterator I =
      ArrayConstants->InsertOrGetItem(Lookup, Exists);
    
    if (Exists) {
      Replacement = I->second;
    } else {
      // Okay, the new shape doesn't exist in the system yet.  Instead of
      // creating a new constant array, inserting it, replaceallusesof'ing the
      // old with the new, then deleting the old... just update the current one
      // in place!
      ArrayConstants->MoveConstantToNewSlot(CA, I);
      
      // Update to the new value.  Optimize for the case when we have a single
      // operand that we're changing, but handle bulk updates efficiently.
      if (NumUpdated == 1) {
        unsigned OperandToUpdate = U - CA->OperandList;
        assert(CA->getOperand(OperandToUpdate) == From &&
               "ReplaceAllUsesWith broken!");
        CA->setOperand(OperandToUpdate, ToC);
      } else {
        for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
          if (CA->getOperand(i) == From)
            CA->setOperand(i, ToC);
      }
      return 0;
    }
  }
  
  return Replacement;
}