diff options
author | Feng Qian <fqian@google.com> | 2009-06-19 10:50:20 -0700 |
---|---|---|
committer | Feng Qian <fqian@google.com> | 2009-06-19 10:50:20 -0700 |
commit | 7f65b2f4c873a32f4d8e3c3ad8d339c57173a7b5 (patch) | |
tree | 4718453a018b456d3fce4a93ac4979097c8ca5e7 /v8/src/mark-compact.cc | |
parent | ec2c0926162c44ad3402cf3ce9262b2c213f66ab (diff) | |
download | external_webkit-7f65b2f4c873a32f4d8e3c3ad8d339c57173a7b5.zip external_webkit-7f65b2f4c873a32f4d8e3c3ad8d339c57173a7b5.tar.gz external_webkit-7f65b2f4c873a32f4d8e3c3ad8d339c57173a7b5.tar.bz2 |
Remove v8 source form webkit
Will drop a newer revision to V8Binding/ directory.
Diffstat (limited to 'v8/src/mark-compact.cc')
-rw-r--r-- | v8/src/mark-compact.cc | 1765 |
1 files changed, 0 insertions, 1765 deletions
diff --git a/v8/src/mark-compact.cc b/v8/src/mark-compact.cc deleted file mode 100644 index c55345d..0000000 --- a/v8/src/mark-compact.cc +++ /dev/null @@ -1,1765 +0,0 @@ -// Copyright 2006-2008 the V8 project authors. All rights reserved. -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following -// disclaimer in the documentation and/or other materials provided -// with the distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived -// from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -#include "v8.h" - -#include "execution.h" -#include "global-handles.h" -#include "ic-inl.h" -#include "mark-compact.h" -#include "stub-cache.h" - -namespace v8 { namespace internal { - -// ------------------------------------------------------------------------- -// MarkCompactCollector - -bool MarkCompactCollector::compacting_collection_ = false; - -int MarkCompactCollector::previous_marked_count_ = 0; -GCTracer* MarkCompactCollector::tracer_ = NULL; - - -#ifdef DEBUG -MarkCompactCollector::CollectorState MarkCompactCollector::state_ = IDLE; - -// Counters used for debugging the marking phase of mark-compact or mark-sweep -// collection. -int MarkCompactCollector::live_bytes_ = 0; -int MarkCompactCollector::live_young_objects_ = 0; -int MarkCompactCollector::live_old_data_objects_ = 0; -int MarkCompactCollector::live_old_pointer_objects_ = 0; -int MarkCompactCollector::live_code_objects_ = 0; -int MarkCompactCollector::live_map_objects_ = 0; -int MarkCompactCollector::live_lo_objects_ = 0; -#endif - -void MarkCompactCollector::CollectGarbage() { - // Make sure that Prepare() has been called. The individual steps below will - // update the state as they proceed. - ASSERT(state_ == PREPARE_GC); - - // Prepare has selected whether to compact the old generation or not. - // Tell the tracer. - if (IsCompacting()) tracer_->set_is_compacting(); - - MarkLiveObjects(); - - if (FLAG_collect_maps) ClearNonLiveTransitions(); - - SweepLargeObjectSpace(); - - if (compacting_collection_) { - EncodeForwardingAddresses(); - - UpdatePointers(); - - RelocateObjects(); - - RebuildRSets(); - - } else { - SweepSpaces(); - } - - Finish(); - - // Save the count of marked objects remaining after the collection and - // null out the GC tracer. - previous_marked_count_ = tracer_->marked_count(); - ASSERT(previous_marked_count_ == 0); - tracer_ = NULL; -} - - -void MarkCompactCollector::Prepare(GCTracer* tracer) { - // Rather than passing the tracer around we stash it in a static member - // variable. - tracer_ = tracer; - - static const int kFragmentationLimit = 50; // Percent. -#ifdef DEBUG - ASSERT(state_ == IDLE); - state_ = PREPARE_GC; -#endif - ASSERT(!FLAG_always_compact || !FLAG_never_compact); - - compacting_collection_ = FLAG_always_compact; - - // We compact the old generation if it gets too fragmented (ie, we could - // recover an expected amount of space by reclaiming the waste and free - // list blocks). We always compact when the flag --gc-global is true - // because objects do not get promoted out of new space on non-compacting - // GCs. - if (!compacting_collection_) { - int old_gen_recoverable = 0; - int old_gen_used = 0; - - OldSpaces spaces; - while (OldSpace* space = spaces.next()) { - old_gen_recoverable += space->Waste() + space->AvailableFree(); - old_gen_used += space->Size(); - } - int old_gen_fragmentation = - static_cast<int>((old_gen_recoverable * 100.0) / old_gen_used); - if (old_gen_fragmentation > kFragmentationLimit) { - compacting_collection_ = true; - } - } - - if (FLAG_never_compact) compacting_collection_ = false; - if (FLAG_collect_maps) CreateBackPointers(); - -#ifdef DEBUG - if (compacting_collection_) { - // We will write bookkeeping information to the remembered set area - // starting now. - Page::set_rset_state(Page::NOT_IN_USE); - } -#endif - - PagedSpaces spaces; - while (PagedSpace* space = spaces.next()) { - space->PrepareForMarkCompact(compacting_collection_); - } - -#ifdef DEBUG - live_bytes_ = 0; - live_young_objects_ = 0; - live_old_pointer_objects_ = 0; - live_old_data_objects_ = 0; - live_code_objects_ = 0; - live_map_objects_ = 0; - live_lo_objects_ = 0; -#endif -} - - -void MarkCompactCollector::Finish() { -#ifdef DEBUG - ASSERT(state_ == SWEEP_SPACES || state_ == REBUILD_RSETS); - state_ = IDLE; -#endif - // The stub cache is not traversed during GC; clear the cache to - // force lazy re-initialization of it. This must be done after the - // GC, because it relies on the new address of certain old space - // objects (empty string, illegal builtin). - StubCache::Clear(); -} - - -// ------------------------------------------------------------------------- -// Phase 1: tracing and marking live objects. -// before: all objects are in normal state. -// after: a live object's map pointer is marked as '00'. - -// Marking all live objects in the heap as part of mark-sweep or mark-compact -// collection. Before marking, all objects are in their normal state. After -// marking, live objects' map pointers are marked indicating that the object -// has been found reachable. -// -// The marking algorithm is a (mostly) depth-first (because of possible stack -// overflow) traversal of the graph of objects reachable from the roots. It -// uses an explicit stack of pointers rather than recursion. The young -// generation's inactive ('from') space is used as a marking stack. The -// objects in the marking stack are the ones that have been reached and marked -// but their children have not yet been visited. -// -// The marking stack can overflow during traversal. In that case, we set an -// overflow flag. When the overflow flag is set, we continue marking objects -// reachable from the objects on the marking stack, but no longer push them on -// the marking stack. Instead, we mark them as both marked and overflowed. -// When the stack is in the overflowed state, objects marked as overflowed -// have been reached and marked but their children have not been visited yet. -// After emptying the marking stack, we clear the overflow flag and traverse -// the heap looking for objects marked as overflowed, push them on the stack, -// and continue with marking. This process repeats until all reachable -// objects have been marked. - -static MarkingStack marking_stack; - - -static inline HeapObject* ShortCircuitConsString(Object** p) { - // Optimization: If the heap object pointed to by p is a non-symbol - // cons string whose right substring is Heap::empty_string, update - // it in place to its left substring. Return the updated value. - // - // Here we assume that if we change *p, we replace it with a heap object - // (ie, the left substring of a cons string is always a heap object). - // - // The check performed is: - // object->IsConsString() && !object->IsSymbol() && - // (ConsString::cast(object)->second() == Heap::empty_string()) - // except the maps for the object and its possible substrings might be - // marked. - HeapObject* object = HeapObject::cast(*p); - MapWord map_word = object->map_word(); - map_word.ClearMark(); - InstanceType type = map_word.ToMap()->instance_type(); - if ((type & kShortcutTypeMask) != kShortcutTypeTag) return object; - - Object* second = reinterpret_cast<ConsString*>(object)->unchecked_second(); - if (reinterpret_cast<String*>(second) != Heap::empty_string()) return object; - - // Since we don't have the object's start, it is impossible to update the - // remembered set. Therefore, we only replace the string with its left - // substring when the remembered set does not change. - Object* first = reinterpret_cast<ConsString*>(object)->unchecked_first(); - if (!Heap::InNewSpace(object) && Heap::InNewSpace(first)) return object; - - *p = first; - return HeapObject::cast(first); -} - - -// Helper class for marking pointers in HeapObjects. -class MarkingVisitor : public ObjectVisitor { - public: - void VisitPointer(Object** p) { - MarkObjectByPointer(p); - } - - void VisitPointers(Object** start, Object** end) { - // Mark all objects pointed to in [start, end). - const int kMinRangeForMarkingRecursion = 64; - if (end - start >= kMinRangeForMarkingRecursion) { - if (VisitUnmarkedObjects(start, end)) return; - // We are close to a stack overflow, so just mark the objects. - } - for (Object** p = start; p < end; p++) MarkObjectByPointer(p); - } - - void BeginCodeIteration(Code* code) { - // When iterating over a code object during marking - // ic targets are derived pointers. - ASSERT(code->ic_flag() == Code::IC_TARGET_IS_ADDRESS); - } - - void EndCodeIteration(Code* code) { - // If this is a compacting collection, set ic targets - // are pointing to object headers. - if (IsCompacting()) code->set_ic_flag(Code::IC_TARGET_IS_OBJECT); - } - - void VisitCodeTarget(RelocInfo* rinfo) { - ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); - Code* code = CodeFromDerivedPointer(rinfo->target_address()); - if (FLAG_cleanup_ics_at_gc && code->is_inline_cache_stub()) { - IC::Clear(rinfo->pc()); - // Please note targets for cleared inline cached do not have to be - // marked since they are contained in Heap::non_monomorphic_cache(). - } else { - MarkCompactCollector::MarkObject(code); - } - if (IsCompacting()) { - // When compacting we convert the target to a real object pointer. - code = CodeFromDerivedPointer(rinfo->target_address()); - rinfo->set_target_object(code); - } - } - - void VisitDebugTarget(RelocInfo* rinfo) { - ASSERT(RelocInfo::IsJSReturn(rinfo->rmode()) && - rinfo->IsCallInstruction()); - HeapObject* code = CodeFromDerivedPointer(rinfo->call_address()); - MarkCompactCollector::MarkObject(code); - // When compacting we convert the call to a real object pointer. - if (IsCompacting()) rinfo->set_call_object(code); - } - - private: - // Mark object pointed to by p. - void MarkObjectByPointer(Object** p) { - if (!(*p)->IsHeapObject()) return; - HeapObject* object = ShortCircuitConsString(p); - MarkCompactCollector::MarkObject(object); - } - - // Tells whether the mark sweep collection will perform compaction. - bool IsCompacting() { return MarkCompactCollector::IsCompacting(); } - - // Retrieves the Code pointer from derived code entry. - Code* CodeFromDerivedPointer(Address addr) { - ASSERT(addr != NULL); - return reinterpret_cast<Code*>( - HeapObject::FromAddress(addr - Code::kHeaderSize)); - } - - // Visit an unmarked object. - void VisitUnmarkedObject(HeapObject* obj) { -#ifdef DEBUG - ASSERT(Heap::Contains(obj)); - ASSERT(!obj->IsMarked()); -#endif - Map* map = obj->map(); - MarkCompactCollector::SetMark(obj); - // Mark the map pointer and the body. - MarkCompactCollector::MarkObject(map); - obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), this); - } - - // Visit all unmarked objects pointed to by [start, end). - // Returns false if the operation fails (lack of stack space). - inline bool VisitUnmarkedObjects(Object** start, Object** end) { - // Return false is we are close to the stack limit. - StackLimitCheck check; - if (check.HasOverflowed()) return false; - - // Visit the unmarked objects. - for (Object** p = start; p < end; p++) { - if (!(*p)->IsHeapObject()) continue; - HeapObject* obj = HeapObject::cast(*p); - if (obj->IsMarked()) continue; - VisitUnmarkedObject(obj); - } - return true; - } -}; - - -// Visitor class for marking heap roots. -class RootMarkingVisitor : public ObjectVisitor { - public: - void VisitPointer(Object** p) { - MarkObjectByPointer(p); - } - - void VisitPointers(Object** start, Object** end) { - for (Object** p = start; p < end; p++) MarkObjectByPointer(p); - } - - MarkingVisitor* stack_visitor() { return &stack_visitor_; } - - private: - MarkingVisitor stack_visitor_; - - void MarkObjectByPointer(Object** p) { - if (!(*p)->IsHeapObject()) return; - - // Replace flat cons strings in place. - HeapObject* object = ShortCircuitConsString(p); - if (object->IsMarked()) return; - - Map* map = object->map(); - // Mark the object. - MarkCompactCollector::SetMark(object); - // Mark the map pointer and body, and push them on the marking stack. - MarkCompactCollector::MarkObject(map); - object->IterateBody(map->instance_type(), object->SizeFromMap(map), - &stack_visitor_); - - // Mark all the objects reachable from the map and body. May leave - // overflowed objects in the heap. - MarkCompactCollector::EmptyMarkingStack(&stack_visitor_); - } -}; - - -// Helper class for pruning the symbol table. -class SymbolTableCleaner : public ObjectVisitor { - public: - SymbolTableCleaner() : pointers_removed_(0) { } - void VisitPointers(Object** start, Object** end) { - // Visit all HeapObject pointers in [start, end). - for (Object** p = start; p < end; p++) { - if ((*p)->IsHeapObject() && !HeapObject::cast(*p)->IsMarked()) { - // Check if the symbol being pruned is an external symbol. We need to - // delete the associated external data as this symbol is going away. - - // Since the object is not marked we can access its map word safely - // without having to worry about marking bits in the object header. - Map* map = HeapObject::cast(*p)->map(); - // Since no objects have yet been moved we can safely access the map of - // the object. - uint32_t type = map->instance_type(); - bool is_external = (type & kStringRepresentationMask) == - kExternalStringTag; - if (is_external) { - bool is_two_byte = (type & kStringEncodingMask) == kTwoByteStringTag; - byte* resource_addr = reinterpret_cast<byte*>(*p) + - ExternalString::kResourceOffset - - kHeapObjectTag; - if (is_two_byte) { - v8::String::ExternalStringResource** resource = - reinterpret_cast<v8::String::ExternalStringResource**> - (resource_addr); - delete *resource; - // Clear the resource pointer in the symbol. - *resource = NULL; - } else { - v8::String::ExternalAsciiStringResource** resource = - reinterpret_cast<v8::String::ExternalAsciiStringResource**> - (resource_addr); - delete *resource; - // Clear the resource pointer in the symbol. - *resource = NULL; - } - } - // Set the entry to null_value (as deleted). - *p = Heap::null_value(); - pointers_removed_++; - } - } - } - - int PointersRemoved() { - return pointers_removed_; - } - private: - int pointers_removed_; -}; - - -void MarkCompactCollector::MarkUnmarkedObject(HeapObject* object) { - ASSERT(!object->IsMarked()); - ASSERT(Heap::Contains(object)); - if (object->IsMap()) { - Map* map = Map::cast(object); - if (FLAG_cleanup_caches_in_maps_at_gc) { - map->ClearCodeCache(); - } - SetMark(map); - if (FLAG_collect_maps && - map->instance_type() >= FIRST_JS_OBJECT_TYPE && - map->instance_type() <= JS_FUNCTION_TYPE) { - MarkMapContents(map); - } else { - marking_stack.Push(map); - } - } else { - SetMark(object); - marking_stack.Push(object); - } -} - - -void MarkCompactCollector::MarkMapContents(Map* map) { - MarkDescriptorArray(reinterpret_cast<DescriptorArray*>( - *HeapObject::RawField(map, Map::kInstanceDescriptorsOffset))); - - // Mark the Object* fields of the Map. - // Since the descriptor array has been marked already, it is fine - // that one of these fields contains a pointer to it. - MarkingVisitor visitor; // Has no state or contents. - visitor.VisitPointers(HeapObject::RawField(map, Map::kPrototypeOffset), - HeapObject::RawField(map, Map::kSize)); -} - - -void MarkCompactCollector::MarkDescriptorArray( - DescriptorArray *descriptors) { - if (descriptors->IsMarked()) return; - // Empty descriptor array is marked as a root before any maps are marked. - ASSERT(descriptors != Heap::empty_descriptor_array()); - SetMark(descriptors); - - FixedArray* contents = reinterpret_cast<FixedArray*>( - descriptors->get(DescriptorArray::kContentArrayIndex)); - ASSERT(contents->IsHeapObject()); - ASSERT(!contents->IsMarked()); - ASSERT(contents->IsFixedArray()); - ASSERT(contents->length() >= 2); - SetMark(contents); - // Contents contains (value, details) pairs. If the details say - // that the type of descriptor is MAP_TRANSITION, CONSTANT_TRANSITION, - // or NULL_DESCRIPTOR, we don't mark the value as live. Only for - // type MAP_TRANSITION is the value a Object* (a Map*). - for (int i = 0; i < contents->length(); i += 2) { - // If the pair (value, details) at index i, i+1 is not - // a transition or null descriptor, mark the value. - PropertyDetails details(Smi::cast(contents->get(i + 1))); - if (details.type() < FIRST_PHANTOM_PROPERTY_TYPE) { - HeapObject* object = reinterpret_cast<HeapObject*>(contents->get(i)); - if (object->IsHeapObject() && !object->IsMarked()) { - SetMark(object); - marking_stack.Push(object); - } - } - } - // The DescriptorArray descriptors contains a pointer to its contents array, - // but the contents array is already marked. - marking_stack.Push(descriptors); -} - - -void MarkCompactCollector::CreateBackPointers() { - HeapObjectIterator iterator(Heap::map_space()); - while (iterator.has_next()) { - Object* next_object = iterator.next(); - if (next_object->IsMap()) { // Could also be ByteArray on free list. - Map* map = Map::cast(next_object); - if (map->instance_type() >= FIRST_JS_OBJECT_TYPE && - map->instance_type() <= JS_FUNCTION_TYPE) { - map->CreateBackPointers(); - } else { - ASSERT(map->instance_descriptors() == Heap::empty_descriptor_array()); - } - } - } -} - - -static int OverflowObjectSize(HeapObject* obj) { - // Recover the normal map pointer, it might be marked as live and - // overflowed. - MapWord map_word = obj->map_word(); - map_word.ClearMark(); - map_word.ClearOverflow(); - return obj->SizeFromMap(map_word.ToMap()); -} - - -// Fill the marking stack with overflowed objects returned by the given -// iterator. Stop when the marking stack is filled or the end of the space -// is reached, whichever comes first. -template<class T> -static void ScanOverflowedObjects(T* it) { - // The caller should ensure that the marking stack is initially not full, - // so that we don't waste effort pointlessly scanning for objects. - ASSERT(!marking_stack.is_full()); - - while (it->has_next()) { - HeapObject* object = it->next(); - if (object->IsOverflowed()) { - object->ClearOverflow(); - ASSERT(object->IsMarked()); - ASSERT(Heap::Contains(object)); - marking_stack.Push(object); - if (marking_stack.is_full()) return; - } - } -} - - -bool MarkCompactCollector::MustBeMarked(Object** p) { - // Check whether *p is a HeapObject pointer. - if (!(*p)->IsHeapObject()) return false; - return !HeapObject::cast(*p)->IsMarked(); -} - - -void MarkCompactCollector::ProcessRoots(RootMarkingVisitor* visitor) { - // Mark the heap roots gray, including global variables, stack variables, - // etc. - Heap::IterateStrongRoots(visitor); - - // Take care of the symbol table specially. - SymbolTable* symbol_table = SymbolTable::cast(Heap::symbol_table()); - // 1. Mark the prefix of the symbol table gray. - symbol_table->IteratePrefix(visitor); - // 2. Mark the symbol table black (ie, do not push it on the marking stack - // or mark it overflowed). - SetMark(symbol_table); - - // There may be overflowed objects in the heap. Visit them now. - while (marking_stack.overflowed()) { - RefillMarkingStack(); - EmptyMarkingStack(visitor->stack_visitor()); - } -} - - -void MarkCompactCollector::MarkObjectGroups() { - List<ObjectGroup*>* object_groups = GlobalHandles::ObjectGroups(); - - for (int i = 0; i < object_groups->length(); i++) { - ObjectGroup* entry = object_groups->at(i); - if (entry == NULL) continue; - - List<Object**>& objects = entry->objects_; - bool group_marked = false; - for (int j = 0; j < objects.length(); j++) { - Object* object = *objects[j]; - if (object->IsHeapObject() && HeapObject::cast(object)->IsMarked()) { - group_marked = true; - break; - } - } - - if (!group_marked) continue; - - // An object in the group is marked, so mark as gray all white heap - // objects in the group. - for (int j = 0; j < objects.length(); ++j) { - if ((*objects[j])->IsHeapObject()) { - MarkObject(HeapObject::cast(*objects[j])); - } - } - // Once the entire group has been colored gray, set the object group - // to NULL so it won't be processed again. - delete object_groups->at(i); - object_groups->at(i) = NULL; - } -} - - -// Mark all objects reachable from the objects on the marking stack. -// Before: the marking stack contains zero or more heap object pointers. -// After: the marking stack is empty, and all objects reachable from the -// marking stack have been marked, or are overflowed in the heap. -void MarkCompactCollector::EmptyMarkingStack(MarkingVisitor* visitor) { - while (!marking_stack.is_empty()) { - HeapObject* object = marking_stack.Pop(); - ASSERT(object->IsHeapObject()); - ASSERT(Heap::Contains(object)); - ASSERT(object->IsMarked()); - ASSERT(!object->IsOverflowed()); - - // Because the object is marked, we have to recover the original map - // pointer and use it to mark the object's body. - MapWord map_word = object->map_word(); - map_word.ClearMark(); - Map* map = map_word.ToMap(); - MarkObject(map); - object->IterateBody(map->instance_type(), object->SizeFromMap(map), - visitor); - } -} - - -// Sweep the heap for overflowed objects, clear their overflow bits, and -// push them on the marking stack. Stop early if the marking stack fills -// before sweeping completes. If sweeping completes, there are no remaining -// overflowed objects in the heap so the overflow flag on the markings stack -// is cleared. -void MarkCompactCollector::RefillMarkingStack() { - ASSERT(marking_stack.overflowed()); - - SemiSpaceIterator new_it(Heap::new_space(), &OverflowObjectSize); - ScanOverflowedObjects(&new_it); - if (marking_stack.is_full()) return; - - HeapObjectIterator old_pointer_it(Heap::old_pointer_space(), - &OverflowObjectSize); - ScanOverflowedObjects(&old_pointer_it); - if (marking_stack.is_full()) return; - - HeapObjectIterator old_data_it(Heap::old_data_space(), &OverflowObjectSize); - ScanOverflowedObjects(&old_data_it); - if (marking_stack.is_full()) return; - - HeapObjectIterator code_it(Heap::code_space(), &OverflowObjectSize); - ScanOverflowedObjects(&code_it); - if (marking_stack.is_full()) return; - - HeapObjectIterator map_it(Heap::map_space(), &OverflowObjectSize); - ScanOverflowedObjects(&map_it); - if (marking_stack.is_full()) return; - - LargeObjectIterator lo_it(Heap::lo_space(), &OverflowObjectSize); - ScanOverflowedObjects(&lo_it); - if (marking_stack.is_full()) return; - - marking_stack.clear_overflowed(); -} - - -// Mark all objects reachable (transitively) from objects on the marking -// stack. Before: the marking stack contains zero or more heap object -// pointers. After: the marking stack is empty and there are no overflowed -// objects in the heap. -void MarkCompactCollector::ProcessMarkingStack(MarkingVisitor* visitor) { - EmptyMarkingStack(visitor); - while (marking_stack.overflowed()) { - RefillMarkingStack(); - EmptyMarkingStack(visitor); - } -} - - -void MarkCompactCollector::ProcessObjectGroups(MarkingVisitor* visitor) { - bool work_to_do = true; - ASSERT(marking_stack.is_empty()); - while (work_to_do) { - MarkObjectGroups(); - work_to_do = !marking_stack.is_empty(); - ProcessMarkingStack(visitor); - } -} - - -void MarkCompactCollector::MarkLiveObjects() { -#ifdef DEBUG - ASSERT(state_ == PREPARE_GC); - state_ = MARK_LIVE_OBJECTS; -#endif - // The to space contains live objects, the from space is used as a marking - // stack. - marking_stack.Initialize(Heap::new_space()->FromSpaceLow(), - Heap::new_space()->FromSpaceHigh()); - - ASSERT(!marking_stack.overflowed()); - - RootMarkingVisitor root_visitor; - ProcessRoots(&root_visitor); - - // The objects reachable from the roots are marked black, unreachable - // objects are white. Mark objects reachable from object groups with at - // least one marked object, and continue until no new objects are - // reachable from the object groups. - ProcessObjectGroups(root_visitor.stack_visitor()); - - // The objects reachable from the roots or object groups are marked black, - // unreachable objects are white. Process objects reachable only from - // weak global handles. - // - // First we mark weak pointers not yet reachable. - GlobalHandles::MarkWeakRoots(&MustBeMarked); - // Then we process weak pointers and process the transitive closure. - GlobalHandles::IterateWeakRoots(&root_visitor); - while (marking_stack.overflowed()) { - RefillMarkingStack(); - EmptyMarkingStack(root_visitor.stack_visitor()); - } - - // Repeat the object groups to mark unmarked groups reachable from the - // weak roots. - ProcessObjectGroups(root_visitor.stack_visitor()); - - // Prune the symbol table removing all symbols only pointed to by the - // symbol table. Cannot use SymbolTable::cast here because the symbol - // table is marked. - SymbolTable* symbol_table = - reinterpret_cast<SymbolTable*>(Heap::symbol_table()); - SymbolTableCleaner v; - symbol_table->IterateElements(&v); - symbol_table->ElementsRemoved(v.PointersRemoved()); - - // Remove object groups after marking phase. - GlobalHandles::RemoveObjectGroups(); -} - - -static int CountMarkedCallback(HeapObject* obj) { - MapWord map_word = obj->map_word(); - map_word.ClearMark(); - return obj->SizeFromMap(map_word.ToMap()); -} - - -#ifdef DEBUG -void MarkCompactCollector::UpdateLiveObjectCount(HeapObject* obj) { - live_bytes_ += obj->Size(); - if (Heap::new_space()->Contains(obj)) { - live_young_objects_++; - } else if (Heap::map_space()->Contains(obj)) { - ASSERT(obj->IsMap()); - live_map_objects_++; - } else if (Heap::old_pointer_space()->Contains(obj)) { - live_old_pointer_objects_++; - } else if (Heap::old_data_space()->Contains(obj)) { - live_old_data_objects_++; - } else if (Heap::code_space()->Contains(obj)) { - live_code_objects_++; - } else if (Heap::lo_space()->Contains(obj)) { - live_lo_objects_++; - } else { - UNREACHABLE(); - } -} -#endif // DEBUG - - -void MarkCompactCollector::SweepLargeObjectSpace() { -#ifdef DEBUG - ASSERT(state_ == MARK_LIVE_OBJECTS); - state_ = - compacting_collection_ ? ENCODE_FORWARDING_ADDRESSES : SWEEP_SPACES; -#endif - // Deallocate unmarked objects and clear marked bits for marked objects. - Heap::lo_space()->FreeUnmarkedObjects(); -} - -// Safe to use during marking phase only. -bool MarkCompactCollector::SafeIsMap(HeapObject* object) { - MapWord metamap = object->map_word(); - metamap.ClearMark(); - return metamap.ToMap()->instance_type() == MAP_TYPE; -} - -void MarkCompactCollector::ClearNonLiveTransitions() { - HeapObjectIterator map_iterator(Heap::map_space(), &CountMarkedCallback); - // Iterate over the map space, setting map transitions that go from - // a marked map to an unmarked map to null transitions. At the same time, - // set all the prototype fields of maps back to their original value, - // dropping the back pointers temporarily stored in the prototype field. - // Setting the prototype field requires following the linked list of - // back pointers, reversing them all at once. This allows us to find - // those maps with map transitions that need to be nulled, and only - // scan the descriptor arrays of those maps, not all maps. - // All of these actions are carried out only on maps of JSObects - // and related subtypes. - while (map_iterator.has_next()) { - Map* map = reinterpret_cast<Map*>(map_iterator.next()); - if (!map->IsMarked() && map->IsByteArray()) continue; - - ASSERT(SafeIsMap(map)); - // Only JSObject and subtypes have map transitions and back pointers. - if (map->instance_type() < FIRST_JS_OBJECT_TYPE) continue; - if (map->instance_type() > JS_FUNCTION_TYPE) continue; - // Follow the chain of back pointers to find the prototype. - Map* current = map; - while (SafeIsMap(current)) { - current = reinterpret_cast<Map*>(current->prototype()); - ASSERT(current->IsHeapObject()); - } - Object* real_prototype = current; - - // Follow back pointers, setting them to prototype, - // clearing map transitions when necessary. - current = map; - bool on_dead_path = !current->IsMarked(); - Object *next; - while (SafeIsMap(current)) { - next = current->prototype(); - // There should never be a dead map above a live map. - ASSERT(on_dead_path || current->IsMarked()); - - // A live map above a dead map indicates a dead transition. - // This test will always be false on the first iteration. - if (on_dead_path && current->IsMarked()) { - on_dead_path = false; - current->ClearNonLiveTransitions(real_prototype); - } - *HeapObject::RawField(current, Map::kPrototypeOffset) = - real_prototype; - current = reinterpret_cast<Map*>(next); - } - } -} - -// ------------------------------------------------------------------------- -// Phase 2: Encode forwarding addresses. -// When compacting, forwarding addresses for objects in old space and map -// space are encoded in their map pointer word (along with an encoding of -// their map pointers). -// -// 31 21 20 10 9 0 -// +-----------------+------------------+-----------------+ -// |forwarding offset|page offset of map|page index of map| -// +-----------------+------------------+-----------------+ -// 11 bits 11 bits 10 bits -// -// An address range [start, end) can have both live and non-live objects. -// Maximal non-live regions are marked so they can be skipped on subsequent -// sweeps of the heap. A distinguished map-pointer encoding is used to mark -// free regions of one-word size (in which case the next word is the start -// of a live object). A second distinguished map-pointer encoding is used -// to mark free regions larger than one word, and the size of the free -// region (including the first word) is written to the second word of the -// region. -// -// Any valid map page offset must lie in the object area of the page, so map -// page offsets less than Page::kObjectStartOffset are invalid. We use a -// pair of distinguished invalid map encodings (for single word and multiple -// words) to indicate free regions in the page found during computation of -// forwarding addresses and skipped over in subsequent sweeps. -static const uint32_t kSingleFreeEncoding = 0; -static const uint32_t kMultiFreeEncoding = 1; - - -// Encode a free region, defined by the given start address and size, in the -// first word or two of the region. -void EncodeFreeRegion(Address free_start, int free_size) { - ASSERT(free_size >= kIntSize); - if (free_size == kIntSize) { - Memory::uint32_at(free_start) = kSingleFreeEncoding; - } else { - ASSERT(free_size >= 2 * kIntSize); - Memory::uint32_at(free_start) = kMultiFreeEncoding; - Memory::int_at(free_start + kIntSize) = free_size; - } - -#ifdef DEBUG - // Zap the body of the free region. - if (FLAG_enable_slow_asserts) { - for (int offset = 2 * kIntSize; - offset < free_size; - offset += kPointerSize) { - Memory::Address_at(free_start + offset) = kZapValue; - } - } -#endif -} - - -// Try to promote all objects in new space. Heap numbers and sequential -// strings are promoted to the code space, all others to the old space. -inline Object* MCAllocateFromNewSpace(HeapObject* object, int object_size) { - OldSpace* target_space = Heap::TargetSpace(object); - ASSERT(target_space == Heap::old_pointer_space() || - target_space == Heap::old_data_space()); - Object* forwarded = target_space->MCAllocateRaw(object_size); - - if (forwarded->IsFailure()) { - forwarded = Heap::new_space()->MCAllocateRaw(object_size); - } - return forwarded; -} - - -// Allocation functions for the paged spaces call the space's MCAllocateRaw. -inline Object* MCAllocateFromOldPointerSpace(HeapObject* object, - int object_size) { - return Heap::old_pointer_space()->MCAllocateRaw(object_size); -} - - -inline Object* MCAllocateFromOldDataSpace(HeapObject* object, int object_size) { - return Heap::old_data_space()->MCAllocateRaw(object_size); -} - - -inline Object* MCAllocateFromCodeSpace(HeapObject* object, int object_size) { - return Heap::code_space()->MCAllocateRaw(object_size); -} - - -inline Object* MCAllocateFromMapSpace(HeapObject* object, int object_size) { - return Heap::map_space()->MCAllocateRaw(object_size); -} - - -// The forwarding address is encoded at the same offset as the current -// to-space object, but in from space. -inline void EncodeForwardingAddressInNewSpace(HeapObject* old_object, - int object_size, - Object* new_object, - int* ignored) { - int offset = - Heap::new_space()->ToSpaceOffsetForAddress(old_object->address()); - Memory::Address_at(Heap::new_space()->FromSpaceLow() + offset) = - HeapObject::cast(new_object)->address(); -} - - -// The forwarding address is encoded in the map pointer of the object as an -// offset (in terms of live bytes) from the address of the first live object -// in the page. -inline void EncodeForwardingAddressInPagedSpace(HeapObject* old_object, - int object_size, - Object* new_object, - int* offset) { - // Record the forwarding address of the first live object if necessary. - if (*offset == 0) { - Page::FromAddress(old_object->address())->mc_first_forwarded = - HeapObject::cast(new_object)->address(); - } - - MapWord encoding = - MapWord::EncodeAddress(old_object->map()->address(), *offset); - old_object->set_map_word(encoding); - *offset += object_size; - ASSERT(*offset <= Page::kObjectAreaSize); -} - - -// Most non-live objects are ignored. -inline void IgnoreNonLiveObject(HeapObject* object) {} - - -// A code deletion event is logged for non-live code objects. -inline void LogNonLiveCodeObject(HeapObject* object) { - if (object->IsCode()) LOG(CodeDeleteEvent(object->address())); -} - - -// Function template that, given a range of addresses (eg, a semispace or a -// paged space page), iterates through the objects in the range to clear -// mark bits and compute and encode forwarding addresses. As a side effect, -// maximal free chunks are marked so that they can be skipped on subsequent -// sweeps. -// -// The template parameters are an allocation function, a forwarding address -// encoding function, and a function to process non-live objects. -template<MarkCompactCollector::AllocationFunction Alloc, - MarkCompactCollector::EncodingFunction Encode, - MarkCompactCollector::ProcessNonLiveFunction ProcessNonLive> -inline void EncodeForwardingAddressesInRange(Address start, - Address end, - int* offset) { - // The start address of the current free region while sweeping the space. - // This address is set when a transition from live to non-live objects is - // encountered. A value (an encoding of the 'next free region' pointer) - // is written to memory at this address when a transition from non-live to - // live objects is encountered. - Address free_start = NULL; - - // A flag giving the state of the previously swept object. Initially true - // to ensure that free_start is initialized to a proper address before - // trying to write to it. - bool is_prev_alive = true; - - int object_size; // Will be set on each iteration of the loop. - for (Address current = start; current < end; current += object_size) { - HeapObject* object = HeapObject::FromAddress(current); - if (object->IsMarked()) { - object->ClearMark(); - MarkCompactCollector::tracer()->decrement_marked_count(); - object_size = object->Size(); - - Object* forwarded = Alloc(object, object_size); - // Allocation cannot fail, because we are compacting the space. - ASSERT(!forwarded->IsFailure()); - Encode(object, object_size, forwarded, offset); - -#ifdef DEBUG - if (FLAG_gc_verbose) { - PrintF("forward %p -> %p.\n", object->address(), - HeapObject::cast(forwarded)->address()); - } -#endif - if (!is_prev_alive) { // Transition from non-live to live. - EncodeFreeRegion(free_start, current - free_start); - is_prev_alive = true; - } - } else { // Non-live object. - object_size = object->Size(); - ProcessNonLive(object); - if (is_prev_alive) { // Transition from live to non-live. - free_start = current; - is_prev_alive = false; - } - } - } - - // If we ended on a free region, mark it. - if (!is_prev_alive) EncodeFreeRegion(free_start, end - free_start); -} - - -// Functions to encode the forwarding pointers in each compactable space. -void MarkCompactCollector::EncodeForwardingAddressesInNewSpace() { - int ignored; - EncodeForwardingAddressesInRange<MCAllocateFromNewSpace, - EncodeForwardingAddressInNewSpace, - IgnoreNonLiveObject>( - Heap::new_space()->bottom(), - Heap::new_space()->top(), - &ignored); -} - - -template<MarkCompactCollector::AllocationFunction Alloc, - MarkCompactCollector::ProcessNonLiveFunction ProcessNonLive> -void MarkCompactCollector::EncodeForwardingAddressesInPagedSpace( - PagedSpace* space) { - PageIterator it(space, PageIterator::PAGES_IN_USE); - while (it.has_next()) { - Page* p = it.next(); - // The offset of each live object in the page from the first live object - // in the page. - int offset = 0; - EncodeForwardingAddressesInRange<Alloc, - EncodeForwardingAddressInPagedSpace, - ProcessNonLive>( - p->ObjectAreaStart(), - p->AllocationTop(), - &offset); - } -} - - -static void SweepSpace(NewSpace* space) { - HeapObject* object; - for (Address current = space->bottom(); - current < space->top(); - current += object->Size()) { - object = HeapObject::FromAddress(current); - if (object->IsMarked()) { - object->ClearMark(); - MarkCompactCollector::tracer()->decrement_marked_count(); - } else { - // We give non-live objects a map that will correctly give their size, - // since their existing map might not be live after the collection. - int size = object->Size(); - if (size >= Array::kHeaderSize) { - object->set_map(Heap::byte_array_map()); - ByteArray::cast(object)->set_length(ByteArray::LengthFor(size)); - } else { - ASSERT(size == kPointerSize); - object->set_map(Heap::one_word_filler_map()); - } - ASSERT(object->Size() == size); - } - // The object is now unmarked for the call to Size() at the top of the - // loop. - } -} - - -static void SweepSpace(PagedSpace* space, DeallocateFunction dealloc) { - PageIterator it(space, PageIterator::PAGES_IN_USE); - while (it.has_next()) { - Page* p = it.next(); - - bool is_previous_alive = true; - Address free_start = NULL; - HeapObject* object; - - for (Address current = p->ObjectAreaStart(); - current < p->AllocationTop(); - current += object->Size()) { - object = HeapObject::FromAddress(current); - if (object->IsMarked()) { - object->ClearMark(); - MarkCompactCollector::tracer()->decrement_marked_count(); - if (MarkCompactCollector::IsCompacting() && object->IsCode()) { - // If this is compacting collection marked code objects have had - // their IC targets converted to objects. - // They need to be converted back to addresses. - Code::cast(object)->ConvertICTargetsFromObjectToAddress(); - } - if (!is_previous_alive) { // Transition from free to live. - dealloc(free_start, current - free_start); - is_previous_alive = true; - } - } else { - if (object->IsCode()) { - // Notify the logger that compiled code has been collected. - LOG(CodeDeleteEvent(Code::cast(object)->address())); - } - if (is_previous_alive) { // Transition from live to free. - free_start = current; - is_previous_alive = false; - } - } - // The object is now unmarked for the call to Size() at the top of the - // loop. - } - - // If the last region was not live we need to from free_start to the - // allocation top in the page. - if (!is_previous_alive) { - int free_size = p->AllocationTop() - free_start; - if (free_size > 0) { - dealloc(free_start, free_size); - } - } - } -} - - -void MarkCompactCollector::DeallocateOldPointerBlock(Address start, - int size_in_bytes) { - Heap::ClearRSetRange(start, size_in_bytes); - Heap::old_pointer_space()->Free(start, size_in_bytes); -} - - -void MarkCompactCollector::DeallocateOldDataBlock(Address start, - int size_in_bytes) { - Heap::old_data_space()->Free(start, size_in_bytes); -} - - -void MarkCompactCollector::DeallocateCodeBlock(Address start, - int size_in_bytes) { - Heap::code_space()->Free(start, size_in_bytes); -} - - -void MarkCompactCollector::DeallocateMapBlock(Address start, - int size_in_bytes) { - // Objects in map space are frequently assumed to have size Map::kSize and a - // valid map in their first word. Thus, we break the free block up into - // chunks and free them separately. - ASSERT(size_in_bytes % Map::kSize == 0); - Heap::ClearRSetRange(start, size_in_bytes); - Address end = start + size_in_bytes; - for (Address a = start; a < end; a += Map::kSize) { - Heap::map_space()->Free(a); - } -} - - -void MarkCompactCollector::EncodeForwardingAddresses() { - ASSERT(state_ == ENCODE_FORWARDING_ADDRESSES); - // Objects in the active semispace of the young generation may be - // relocated to the inactive semispace (if not promoted). Set the - // relocation info to the beginning of the inactive semispace. - Heap::new_space()->MCResetRelocationInfo(); - - // Compute the forwarding pointers in each space. - EncodeForwardingAddressesInPagedSpace<MCAllocateFromOldPointerSpace, - IgnoreNonLiveObject>( - Heap::old_pointer_space()); - - EncodeForwardingAddressesInPagedSpace<MCAllocateFromOldDataSpace, - IgnoreNonLiveObject>( - Heap::old_data_space()); - - EncodeForwardingAddressesInPagedSpace<MCAllocateFromCodeSpace, - LogNonLiveCodeObject>( - Heap::code_space()); - - // Compute new space next to last after the old and code spaces have been - // compacted. Objects in new space can be promoted to old or code space. - EncodeForwardingAddressesInNewSpace(); - - // Compute map space last because computing forwarding addresses - // overwrites non-live objects. Objects in the other spaces rely on - // non-live map pointers to get the sizes of non-live objects. - EncodeForwardingAddressesInPagedSpace<MCAllocateFromMapSpace, - IgnoreNonLiveObject>( - Heap::map_space()); - - // Write relocation info to the top page, so we can use it later. This is - // done after promoting objects from the new space so we get the correct - // allocation top. - Heap::old_pointer_space()->MCWriteRelocationInfoToPage(); - Heap::old_data_space()->MCWriteRelocationInfoToPage(); - Heap::code_space()->MCWriteRelocationInfoToPage(); - Heap::map_space()->MCWriteRelocationInfoToPage(); -} - - -void MarkCompactCollector::SweepSpaces() { - ASSERT(state_ == SWEEP_SPACES); - ASSERT(!IsCompacting()); - // Noncompacting collections simply sweep the spaces to clear the mark - // bits and free the nonlive blocks (for old and map spaces). We sweep - // the map space last because freeing non-live maps overwrites them and - // the other spaces rely on possibly non-live maps to get the sizes for - // non-live objects. - SweepSpace(Heap::old_pointer_space(), &DeallocateOldPointerBlock); - SweepSpace(Heap::old_data_space(), &DeallocateOldDataBlock); - SweepSpace(Heap::code_space(), &DeallocateCodeBlock); - SweepSpace(Heap::new_space()); - SweepSpace(Heap::map_space(), &DeallocateMapBlock); -} - - -// Iterate the live objects in a range of addresses (eg, a page or a -// semispace). The live regions of the range have been linked into a list. -// The first live region is [first_live_start, first_live_end), and the last -// address in the range is top. The callback function is used to get the -// size of each live object. -int MarkCompactCollector::IterateLiveObjectsInRange( - Address start, - Address end, - HeapObjectCallback size_func) { - int live_objects = 0; - Address current = start; - while (current < end) { - uint32_t encoded_map = Memory::uint32_at(current); - if (encoded_map == kSingleFreeEncoding) { - current += kPointerSize; - } else if (encoded_map == kMultiFreeEncoding) { - current += Memory::int_at(current + kIntSize); - } else { - live_objects++; - current += size_func(HeapObject::FromAddress(current)); - } - } - return live_objects; -} - - -int MarkCompactCollector::IterateLiveObjects(NewSpace* space, - HeapObjectCallback size_f) { - ASSERT(MARK_LIVE_OBJECTS < state_ && state_ <= RELOCATE_OBJECTS); - return IterateLiveObjectsInRange(space->bottom(), space->top(), size_f); -} - - -int MarkCompactCollector::IterateLiveObjects(PagedSpace* space, - HeapObjectCallback size_f) { - ASSERT(MARK_LIVE_OBJECTS < state_ && state_ <= RELOCATE_OBJECTS); - int total = 0; - PageIterator it(space, PageIterator::PAGES_IN_USE); - while (it.has_next()) { - Page* p = it.next(); - total += IterateLiveObjectsInRange(p->ObjectAreaStart(), - p->AllocationTop(), - size_f); - } - return total; -} - - -// ------------------------------------------------------------------------- -// Phase 3: Update pointers - -// Helper class for updating pointers in HeapObjects. -class UpdatingVisitor: public ObjectVisitor { - public: - void VisitPointer(Object** p) { - UpdatePointer(p); - } - - void VisitPointers(Object** start, Object** end) { - // Mark all HeapObject pointers in [start, end) - for (Object** p = start; p < end; p++) UpdatePointer(p); - } - - private: - void UpdatePointer(Object** p) { - if (!(*p)->IsHeapObject()) return; - - HeapObject* obj = HeapObject::cast(*p); - Address old_addr = obj->address(); - Address new_addr; - ASSERT(!Heap::InFromSpace(obj)); - - if (Heap::new_space()->Contains(obj)) { - Address f_addr = Heap::new_space()->FromSpaceLow() + - Heap::new_space()->ToSpaceOffsetForAddress(old_addr); - new_addr = Memory::Address_at(f_addr); - -#ifdef DEBUG - ASSERT(Heap::old_pointer_space()->Contains(new_addr) || - Heap::old_data_space()->Contains(new_addr) || - Heap::code_space()->Contains(new_addr) || - Heap::new_space()->FromSpaceContains(new_addr)); - - if (Heap::new_space()->FromSpaceContains(new_addr)) { - ASSERT(Heap::new_space()->FromSpaceOffsetForAddress(new_addr) <= - Heap::new_space()->ToSpaceOffsetForAddress(old_addr)); - } -#endif - - } else if (Heap::lo_space()->Contains(obj)) { - // Don't move objects in the large object space. - return; - - } else { - ASSERT(Heap::old_pointer_space()->Contains(obj) || - Heap::old_data_space()->Contains(obj) || - Heap::code_space()->Contains(obj) || - Heap::map_space()->Contains(obj)); - - new_addr = MarkCompactCollector::GetForwardingAddressInOldSpace(obj); - ASSERT(Heap::old_pointer_space()->Contains(new_addr) || - Heap::old_data_space()->Contains(new_addr) || - Heap::code_space()->Contains(new_addr) || - Heap::map_space()->Contains(new_addr)); - -#ifdef DEBUG - if (Heap::old_pointer_space()->Contains(obj)) { - ASSERT(Heap::old_pointer_space()->MCSpaceOffsetForAddress(new_addr) <= - Heap::old_pointer_space()->MCSpaceOffsetForAddress(old_addr)); - } else if (Heap::old_data_space()->Contains(obj)) { - ASSERT(Heap::old_data_space()->MCSpaceOffsetForAddress(new_addr) <= - Heap::old_data_space()->MCSpaceOffsetForAddress(old_addr)); - } else if (Heap::code_space()->Contains(obj)) { - ASSERT(Heap::code_space()->MCSpaceOffsetForAddress(new_addr) <= - Heap::code_space()->MCSpaceOffsetForAddress(old_addr)); - } else { - ASSERT(Heap::map_space()->MCSpaceOffsetForAddress(new_addr) <= - Heap::map_space()->MCSpaceOffsetForAddress(old_addr)); - } -#endif - } - - *p = HeapObject::FromAddress(new_addr); - -#ifdef DEBUG - if (FLAG_gc_verbose) { - PrintF("update %p : %p -> %p\n", - reinterpret_cast<Address>(p), old_addr, new_addr); - } -#endif - } -}; - - -void MarkCompactCollector::UpdatePointers() { -#ifdef DEBUG - ASSERT(state_ == ENCODE_FORWARDING_ADDRESSES); - state_ = UPDATE_POINTERS; -#endif - UpdatingVisitor updating_visitor; - Heap::IterateRoots(&updating_visitor); - GlobalHandles::IterateWeakRoots(&updating_visitor); - - int live_maps = IterateLiveObjects(Heap::map_space(), - &UpdatePointersInOldObject); - int live_pointer_olds = IterateLiveObjects(Heap::old_pointer_space(), - &UpdatePointersInOldObject); - int live_data_olds = IterateLiveObjects(Heap::old_data_space(), - &UpdatePointersInOldObject); - int live_codes = IterateLiveObjects(Heap::code_space(), - &UpdatePointersInOldObject); - int live_news = IterateLiveObjects(Heap::new_space(), - &UpdatePointersInNewObject); - - // Large objects do not move, the map word can be updated directly. - LargeObjectIterator it(Heap::lo_space()); - while (it.has_next()) UpdatePointersInNewObject(it.next()); - - USE(live_maps); - USE(live_pointer_olds); - USE(live_data_olds); - USE(live_codes); - USE(live_news); - -#ifdef DEBUG - ASSERT(live_maps == live_map_objects_); - ASSERT(live_data_olds == live_old_data_objects_); - ASSERT(live_pointer_olds == live_old_pointer_objects_); - ASSERT(live_codes == live_code_objects_); - ASSERT(live_news == live_young_objects_); -#endif -} - - -int MarkCompactCollector::UpdatePointersInNewObject(HeapObject* obj) { - // Keep old map pointers - Map* old_map = obj->map(); - ASSERT(old_map->IsHeapObject()); - - Address forwarded = GetForwardingAddressInOldSpace(old_map); - - ASSERT(Heap::map_space()->Contains(old_map)); - ASSERT(Heap::map_space()->Contains(forwarded)); -#ifdef DEBUG - if (FLAG_gc_verbose) { - PrintF("update %p : %p -> %p\n", obj->address(), old_map->address(), - forwarded); - } -#endif - // Update the map pointer. - obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(forwarded))); - - // We have to compute the object size relying on the old map because - // map objects are not relocated yet. - int obj_size = obj->SizeFromMap(old_map); - - // Update pointers in the object body. - UpdatingVisitor updating_visitor; - obj->IterateBody(old_map->instance_type(), obj_size, &updating_visitor); - return obj_size; -} - - -int MarkCompactCollector::UpdatePointersInOldObject(HeapObject* obj) { - // Decode the map pointer. - MapWord encoding = obj->map_word(); - Address map_addr = encoding.DecodeMapAddress(Heap::map_space()); - ASSERT(Heap::map_space()->Contains(HeapObject::FromAddress(map_addr))); - - // At this point, the first word of map_addr is also encoded, cannot - // cast it to Map* using Map::cast. - Map* map = reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr)); - int obj_size = obj->SizeFromMap(map); - InstanceType type = map->instance_type(); - - // Update map pointer. - Address new_map_addr = GetForwardingAddressInOldSpace(map); - int offset = encoding.DecodeOffset(); - obj->set_map_word(MapWord::EncodeAddress(new_map_addr, offset)); - -#ifdef DEBUG - if (FLAG_gc_verbose) { - PrintF("update %p : %p -> %p\n", obj->address(), - map_addr, new_map_addr); - } -#endif - - // Update pointers in the object body. - UpdatingVisitor updating_visitor; - obj->IterateBody(type, obj_size, &updating_visitor); - return obj_size; -} - - -Address MarkCompactCollector::GetForwardingAddressInOldSpace(HeapObject* obj) { - // Object should either in old or map space. - MapWord encoding = obj->map_word(); - - // Offset to the first live object's forwarding address. - int offset = encoding.DecodeOffset(); - Address obj_addr = obj->address(); - - // Find the first live object's forwarding address. - Page* p = Page::FromAddress(obj_addr); - Address first_forwarded = p->mc_first_forwarded; - - // Page start address of forwarded address. - Page* forwarded_page = Page::FromAddress(first_forwarded); - int forwarded_offset = forwarded_page->Offset(first_forwarded); - - // Find end of allocation of in the page of first_forwarded. - Address mc_top = forwarded_page->mc_relocation_top; - int mc_top_offset = forwarded_page->Offset(mc_top); - - // Check if current object's forward pointer is in the same page - // as the first live object's forwarding pointer - if (forwarded_offset + offset < mc_top_offset) { - // In the same page. - return first_forwarded + offset; - } - - // Must be in the next page, NOTE: this may cross chunks. - Page* next_page = forwarded_page->next_page(); - ASSERT(next_page->is_valid()); - - offset -= (mc_top_offset - forwarded_offset); - offset += Page::kObjectStartOffset; - - ASSERT_PAGE_OFFSET(offset); - ASSERT(next_page->OffsetToAddress(offset) < next_page->mc_relocation_top); - - return next_page->OffsetToAddress(offset); -} - - -// ------------------------------------------------------------------------- -// Phase 4: Relocate objects - -void MarkCompactCollector::RelocateObjects() { -#ifdef DEBUG - ASSERT(state_ == UPDATE_POINTERS); - state_ = RELOCATE_OBJECTS; -#endif - // Relocates objects, always relocate map objects first. Relocating - // objects in other space relies on map objects to get object size. - int live_maps = IterateLiveObjects(Heap::map_space(), &RelocateMapObject); - int live_pointer_olds = IterateLiveObjects(Heap::old_pointer_space(), - &RelocateOldPointerObject); - int live_data_olds = IterateLiveObjects(Heap::old_data_space(), - &RelocateOldDataObject); - int live_codes = IterateLiveObjects(Heap::code_space(), &RelocateCodeObject); - int live_news = IterateLiveObjects(Heap::new_space(), &RelocateNewObject); - - USE(live_maps); - USE(live_data_olds); - USE(live_pointer_olds); - USE(live_codes); - USE(live_news); -#ifdef DEBUG - ASSERT(live_maps == live_map_objects_); - ASSERT(live_data_olds == live_old_data_objects_); - ASSERT(live_pointer_olds == live_old_pointer_objects_); - ASSERT(live_codes == live_code_objects_); - ASSERT(live_news == live_young_objects_); -#endif - - // Notify code object in LO to convert IC target to address - // This must happen after lo_space_->Compact - LargeObjectIterator it(Heap::lo_space()); - while (it.has_next()) { ConvertCodeICTargetToAddress(it.next()); } - - // Flips from and to spaces - Heap::new_space()->Flip(); - - // Sets age_mark to bottom in to space - Address mark = Heap::new_space()->bottom(); - Heap::new_space()->set_age_mark(mark); - - Heap::new_space()->MCCommitRelocationInfo(); -#ifdef DEBUG - // It is safe to write to the remembered sets as remembered sets on a - // page-by-page basis after committing the m-c forwarding pointer. - Page::set_rset_state(Page::IN_USE); -#endif - PagedSpaces spaces; - while (PagedSpace* space = spaces.next()) space->MCCommitRelocationInfo(); -} - - -int MarkCompactCollector::ConvertCodeICTargetToAddress(HeapObject* obj) { - if (obj->IsCode()) { - Code::cast(obj)->ConvertICTargetsFromObjectToAddress(); - } - return obj->Size(); -} - - -int MarkCompactCollector::RelocateMapObject(HeapObject* obj) { - // decode map pointer (forwarded address) - MapWord encoding = obj->map_word(); - Address map_addr = encoding.DecodeMapAddress(Heap::map_space()); - ASSERT(Heap::map_space()->Contains(HeapObject::FromAddress(map_addr))); - - // Get forwarding address before resetting map pointer - Address new_addr = GetForwardingAddressInOldSpace(obj); - - // recover map pointer - obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr))); - - // The meta map object may not be copied yet. - Address old_addr = obj->address(); - - if (new_addr != old_addr) { - memmove(new_addr, old_addr, Map::kSize); // copy contents - } - -#ifdef DEBUG - if (FLAG_gc_verbose) { - PrintF("relocate %p -> %p\n", old_addr, new_addr); - } -#endif - - return Map::kSize; -} - - -static inline int RelocateOldObject(HeapObject* obj, - OldSpace* space, - Address new_addr, - Address map_addr) { - // recover map pointer - obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr))); - - // This is a non-map object, it relies on the assumption that the Map space - // is compacted before the Old space (see RelocateObjects). - int obj_size = obj->Size(); - ASSERT_OBJECT_SIZE(obj_size); - - ASSERT(space->MCSpaceOffsetForAddress(new_addr) <= - space->MCSpaceOffsetForAddress(obj->address())); - - space->MCAdjustRelocationEnd(new_addr, obj_size); - -#ifdef DEBUG - if (FLAG_gc_verbose) { - PrintF("relocate %p -> %p\n", obj->address(), new_addr); - } -#endif - - return obj_size; -} - - -int MarkCompactCollector::RelocateOldNonCodeObject(HeapObject* obj, - OldSpace* space) { - // decode map pointer (forwarded address) - MapWord encoding = obj->map_word(); - Address map_addr = encoding.DecodeMapAddress(Heap::map_space()); - ASSERT(Heap::map_space()->Contains(map_addr)); - - // Get forwarding address before resetting map pointer - Address new_addr = GetForwardingAddressInOldSpace(obj); - - int obj_size = RelocateOldObject(obj, space, new_addr, map_addr); - - Address old_addr = obj->address(); - - if (new_addr != old_addr) { - memmove(new_addr, old_addr, obj_size); // copy contents - } - - ASSERT(!HeapObject::FromAddress(new_addr)->IsCode()); - - return obj_size; -} - - -int MarkCompactCollector::RelocateOldPointerObject(HeapObject* obj) { - return RelocateOldNonCodeObject(obj, Heap::old_pointer_space()); -} - - -int MarkCompactCollector::RelocateOldDataObject(HeapObject* obj) { - return RelocateOldNonCodeObject(obj, Heap::old_data_space()); -} - - -int MarkCompactCollector::RelocateCodeObject(HeapObject* obj) { - // decode map pointer (forwarded address) - MapWord encoding = obj->map_word(); - Address map_addr = encoding.DecodeMapAddress(Heap::map_space()); - ASSERT(Heap::map_space()->Contains(HeapObject::FromAddress(map_addr))); - - // Get forwarding address before resetting map pointer - Address new_addr = GetForwardingAddressInOldSpace(obj); - - int obj_size = RelocateOldObject(obj, Heap::code_space(), new_addr, map_addr); - - // convert inline cache target to address using old address - if (obj->IsCode()) { - // convert target to address first related to old_address - Code::cast(obj)->ConvertICTargetsFromObjectToAddress(); - } - - Address old_addr = obj->address(); - - if (new_addr != old_addr) { - memmove(new_addr, old_addr, obj_size); // copy contents - } - - HeapObject* copied_to = HeapObject::FromAddress(new_addr); - if (copied_to->IsCode()) { - // may also update inline cache target. - Code::cast(copied_to)->Relocate(new_addr - old_addr); - // Notify the logger that compiled code has moved. - LOG(CodeMoveEvent(old_addr, new_addr)); - } - - return obj_size; -} - - -int MarkCompactCollector::RelocateNewObject(HeapObject* obj) { - int obj_size = obj->Size(); - - // Get forwarding address - Address old_addr = obj->address(); - int offset = Heap::new_space()->ToSpaceOffsetForAddress(old_addr); - - Address new_addr = - Memory::Address_at(Heap::new_space()->FromSpaceLow() + offset); - - if (Heap::new_space()->FromSpaceContains(new_addr)) { - ASSERT(Heap::new_space()->FromSpaceOffsetForAddress(new_addr) <= - Heap::new_space()->ToSpaceOffsetForAddress(old_addr)); - } else { - OldSpace* target_space = Heap::TargetSpace(obj); - ASSERT(target_space == Heap::old_pointer_space() || - target_space == Heap::old_data_space()); - target_space->MCAdjustRelocationEnd(new_addr, obj_size); - } - - // New and old addresses cannot overlap. - memcpy(reinterpret_cast<void*>(new_addr), - reinterpret_cast<void*>(old_addr), - obj_size); - -#ifdef DEBUG - if (FLAG_gc_verbose) { - PrintF("relocate %p -> %p\n", old_addr, new_addr); - } -#endif - - return obj_size; -} - - -// ------------------------------------------------------------------------- -// Phase 5: rebuild remembered sets - -void MarkCompactCollector::RebuildRSets() { -#ifdef DEBUG - ASSERT(state_ == RELOCATE_OBJECTS); - state_ = REBUILD_RSETS; -#endif - Heap::RebuildRSets(); -} - -} } // namespace v8::internal |