summaryrefslogtreecommitdiffstats
path: root/media/libeffects/loudness/dsp/core/dynamic_range_compression.cpp
blob: 7bd068e738a93cfca63bf1a1dc548540f055afda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <cmath>

#include "common/core/math.h"
#include "common/core/types.h"
#include "dsp/core/basic.h"
#include "dsp/core/interpolation.h"
#include "dsp/core/dynamic_range_compression.h"

//#define LOG_NDEBUG 0
#include <cutils/log.h>


namespace le_fx {

// Definitions for static const class members declared in
// dynamic_range_compression.h.
const float AdaptiveDynamicRangeCompression::kMinAbsValue = 0.000001f;
const float AdaptiveDynamicRangeCompression::kMinLogAbsValue =
    0.032766999999999997517097227728299912996590137481689453125f;
const float AdaptiveDynamicRangeCompression::kFixedPointLimit = 32767.0f;
const float AdaptiveDynamicRangeCompression::kInverseFixedPointLimit =
    1.0f / AdaptiveDynamicRangeCompression::kFixedPointLimit;
const float AdaptiveDynamicRangeCompression::kDefaultKneeThresholdInDecibel =
    -8.0f;
const float AdaptiveDynamicRangeCompression::kCompressionRatio = 7.0f;
const float AdaptiveDynamicRangeCompression::kTauAttack = 0.001f;
const float AdaptiveDynamicRangeCompression::kTauRelease = 0.015f;

AdaptiveDynamicRangeCompression::AdaptiveDynamicRangeCompression() {
  static const float kTargetGain[] = {
      1.0f, 2.0f, 3.0f, 4.0f, 5.0f };
  static const float kKneeThreshold[] = {
      -8.0f, -8.0f, -8.5f, -9.0f, -10.0f };
  target_gain_to_knee_threshold_.Initialize(
      &kTargetGain[0], &kKneeThreshold[0],
      sizeof(kTargetGain) / sizeof(kTargetGain[0]));
}

bool AdaptiveDynamicRangeCompression::Initialize(
        float target_gain, float sampling_rate) {
  set_knee_threshold_via_target_gain(target_gain);
  sampling_rate_ = sampling_rate;
  state_ = 0.0f;
  compressor_gain_ = 1.0f;
  if (kTauAttack > 0.0f) {
    const float taufs = kTauAttack * sampling_rate_;
    alpha_attack_ = std::exp(-1.0f / taufs);
  } else {
    alpha_attack_ = 0.0f;
  }
  if (kTauRelease > 0.0f) {
    const float taufs = kTauRelease * sampling_rate_;
    alpha_release_ = std::exp(-1.0f / taufs);
  } else {
    alpha_release_ = 0.0f;
  }
  // Feed-forward topology
  slope_ = 1.0f / kCompressionRatio - 1.0f;
  return true;
}

float AdaptiveDynamicRangeCompression::Compress(float x) {
  const float max_abs_x = std::max(std::fabs(x), kMinLogAbsValue);
  const float max_abs_x_dB = math::fast_log(max_abs_x);
  // Subtract Threshold from log-encoded input to get the amount of overshoot
  const float overshoot = max_abs_x_dB - knee_threshold_;
  // Hard half-wave rectifier
  const float rect = std::max(overshoot, 0.0f);
  // Multiply rectified overshoot with slope
  const float cv = rect * slope_;
  const float prev_state = state_;
  if (cv <= state_) {
    state_ = alpha_attack_ * state_ + (1.0f - alpha_attack_) * cv;
  } else {
    state_ = alpha_release_ * state_ + (1.0f - alpha_release_) * cv;
  }
  compressor_gain_ *=
      math::ExpApproximationViaTaylorExpansionOrder5(state_ - prev_state);
  x *= compressor_gain_;
  if (x > kFixedPointLimit) {
    return kFixedPointLimit;
  }
  if (x < -kFixedPointLimit) {
    return -kFixedPointLimit;
  }
  return x;
}

void AdaptiveDynamicRangeCompression::Compress(float *x1, float *x2) {
  // Taking the maximum amplitude of both channels
  const float max_abs_x = std::max(std::fabs(*x1),
    std::max(std::fabs(*x2), kMinLogAbsValue));
  const float max_abs_x_dB = math::fast_log(max_abs_x);
  // Subtract Threshold from log-encoded input to get the amount of overshoot
  const float overshoot = max_abs_x_dB - knee_threshold_;
  // Hard half-wave rectifier
  const float rect = std::max(overshoot, 0.0f);
  // Multiply rectified overshoot with slope
  const float cv = rect * slope_;
  const float prev_state = state_;
  if (cv <= state_) {
    state_ = alpha_attack_ * state_ + (1.0f - alpha_attack_) * cv;
  } else {
    state_ = alpha_release_ * state_ + (1.0f - alpha_release_) * cv;
  }
  compressor_gain_ *=
      math::ExpApproximationViaTaylorExpansionOrder5(state_ - prev_state);
  *x1 *= compressor_gain_;
  if (*x1 > kFixedPointLimit) {
    *x1 = kFixedPointLimit;
  }
  if (*x1 < -kFixedPointLimit) {
    *x1 = -kFixedPointLimit;
  }
  *x2 *= compressor_gain_;
  if (*x2 > kFixedPointLimit) {
    *x2 = kFixedPointLimit;
  }
  if (*x2 < -kFixedPointLimit) {
    *x2 = -kFixedPointLimit;
  }
}

}  // namespace le_fx