summaryrefslogtreecommitdiffstats
path: root/docs/html/guide/topics/renderscript
diff options
context:
space:
mode:
Diffstat (limited to 'docs/html/guide/topics/renderscript')
-rw-r--r--docs/html/guide/topics/renderscript/advanced.jd730
-rw-r--r--docs/html/guide/topics/renderscript/compute.jd340
-rw-r--r--docs/html/guide/topics/renderscript/index.jd31
-rw-r--r--docs/html/guide/topics/renderscript/reference.jd21
4 files changed, 1122 insertions, 0 deletions
diff --git a/docs/html/guide/topics/renderscript/advanced.jd b/docs/html/guide/topics/renderscript/advanced.jd
new file mode 100644
index 0000000..58f5e1f
--- /dev/null
+++ b/docs/html/guide/topics/renderscript/advanced.jd
@@ -0,0 +1,730 @@
+page.title=Advanced Renderscript
+parent.title=Computation
+parent.link=index.html
+
+@jd:body
+
+ <div id="qv-wrapper">
+ <div id="qv">
+ <h2>In this document</h2>
+
+ <ol>
+ <li><a href="#native">Renderscript Runtime Layer</a></li>
+ <li><a href="#reflected">Reflected Layer</a>
+ <ol>
+ <li><a href="#func">Functions</a></li>
+ <li><a href="#var">Variables</a></li>
+ <li><a href="#pointer">Pointers</a></li>
+ <li><a href="#struct">Structs</a></li>
+ </ol>
+ </li>
+
+ <li>
+ <a href="#mem-allocation">Memory Allocation APIs</a>
+ </li>
+ <li>
+ <a href="#memory">Working with Memory</a>
+ <ol>
+ <li><a href="#allocating-mem">Allocating and binding memory to the Renderscript</a></li>
+
+ <li><a href="#read-write">Reading and writing to memory</a></li>
+
+ </ol>
+ </li>
+ </ol>
+ </div>
+ </div>
+
+ <p></p>
+
+ <p>Because applications that utilize Renderscript still run inside of the Android VM,
+ you have access to all of the framework APIs that you are familiar with, but can
+ utilize Renderscript when appropriate. To facilitate this interaction between
+ the framework and the Renderscript runtime, an intermediate layer of code is also
+ present to facilitate communication and memory management between the two levels of code.
+ This document goes into more detail about these
+ different layers of code as well as how memory is shared between the Android VM and
+ Renderscript runtime.</p>
+
+ <h2 id="native">Renderscript Runtime Layer</h2>
+
+ <p>Your Renderscript code is compiled and
+ executed in a compact and well-defined runtime layer. The Renderscript runtime APIs offer support for
+intensive computation that is portable and automatically scalable to the
+amount of cores available on a processor.
+</p>
+<p class="note"><strong>Note:</strong> The standard C functions in the NDK must be
+ guaranteed to run on a CPU, so Renderscript cannot access these libraries,
+ because Renderscript is designed to run on different types of processors.</p>
+
+<p>You define your Renderscript code in <code>.rs</code>
+ and <code>.rsh</code> files in the <code>src/</code> directory of your Android project. The code
+ is compiled to intermediate bytecode by the
+ <code>llvm</code> compiler that runs as part of an Android build. When your application
+ runs on a device, the bytecode is then compiled (just-in-time) to machine code by another
+ <code>llvm</code> compiler that resides on the device. The machine code is optimized for the
+ device and also cached, so subsequent uses of the Renderscript enabled application does not
+ recompile the bytecode.</p>
+
+ <p>Some key features of the Renderscript runtime libraries include:</p>
+
+ <ul>
+
+ <li>Memory allocation request features</li>
+
+ <li>A large collection of math functions with both scalar and vector typed overloaded versions
+ of many common routines. Operations such as adding, multiplying, dot product, and cross product
+ are available as well as atomic arithmetic and comparison functions.</li>
+
+ <li>Conversion routines for primitive data types and vectors, matrix routines, and date and time
+ routines</li>
+
+ <li>Data types and structures to support the Renderscript system such as Vector types for
+ defining two-, three-, or four-vectors.</li>
+
+ <li>Logging functions</li>
+ </ul>
+
+ <p>See the Renderscript runtime API reference for more information on the available functions.
+
+ <h2 id="reflected">Reflected Layer</h2>
+
+ <p>The reflected layer is a set of classes that the Android build tools generate to allow access
+ to the Renderscript runtime from the Android framework. This layer also provides methods
+and constructors that allow you to allocate and work with memory for pointers that are defined in
+your Renderscript code. The following list describes the major
+ components that are reflected:</p>
+
+ <ul>
+ <li>Every <code>.rs</code> file that you create is generated into a class named
+ <code>project_root/gen/package/name/ScriptC_<em>renderscript_filename</em></code> of
+type {@link android.renderscript.ScriptC}. This file is the <code>.java</code> version of your
+<code>.rs</code> file, which you can call from the Android framework. This class contains the
+following items reflected from the <code>.rs</code> file:
+
+ <ul>
+ <li>Non-static functions</li>
+
+ <li>Non-static, global Renderscript variables. Accessor methods are generated for each
+ variable, so you can read and write the Renderscript variables from the Android
+ framework. If a global variable is initialized at the Renderscript runtime layer, those
+values are used to initialize the corresponding values in the Android framework layer. If global
+variables are marked as <code>const</code>, then a <code>set</code> method is not
+generated.</p></li>
+
+ <li>Global pointers</li>
+ </ul>
+ </li>
+
+ <li>A <code>struct</code> is reflected into its own class named
+
+ <code>project_root/gen/package/name/ScriptField_struct_name</em></code>, which extends {@link
+ android.renderscript.Script.FieldBase}. This class represents an array of the
+ <code>struct</code>, which allows you to allocate memory for one or more instances of this
+ <code>struct</code>.</li>
+ </ul>
+
+
+<h3 id="func">Functions</h3>
+<p>Functions are reflected into the script class itself, located in
+<code>project_root/gen/package/name/ScriptC_renderscript_filename</code>. For
+example, if you declare the following function in your Renderscript code:</p>
+
+<pre>
+void touch(float x, float y, float pressure, int id) {
+ if (id >= 10) {
+ return;
+ }
+
+ touchPos[id].x = x;
+ touchPos[id].y = y;
+ touchPressure[id] = pressure;
+}
+</pre>
+
+<p>then the following code is generated:</p>
+
+<pre>
+public void invoke_touch(float x, float y, float pressure, int id) {
+ FieldPacker touch_fp = new FieldPacker(16);
+ touch_fp.addF32(x);
+ touch_fp.addF32(y);
+ touch_fp.addF32(pressure);
+ touch_fp.addI32(id);
+ invoke(mExportFuncIdx_touch, touch_fp);
+}
+</pre>
+<p>
+Functions cannot have a return value, because the Renderscript system is designed to be
+asynchronous. When your Android framework code calls into Renderscript, the call is queued and is
+executed when possible. This restriction allows the Renderscript system to function without constant
+interruption and increases efficiency. If functions were allowed to have return values, the call
+would block until the value was returned.</p>
+
+<p>
+If you want the Renderscript code to send a value back to the Android framework, use the
+<a href="{@docRoot}reference/renderscript/rs__core_8rsh.html"><code>rsSendToClient()</code></a>
+function.
+</p>
+
+<h3 id="var">Variables</h3>
+
+ <p>Variables of supported types are reflected into the script class itself, located in
+<code>project_root/gen/package/name/ScriptC_renderscript_filename</code>. A set of accessor
+methods are generated for each variable. For example, if you declare the following variable in
+your Renderscript code:</p>
+ <pre>uint32_t unsignedInteger = 1;</pre>
+
+ <p>then the following code is generated:</p>
+
+<pre>
+private long mExportVar_unsignedInteger;
+public void set_unsignedInteger(long v){
+ mExportVar_unsignedInteger = v;
+ setVar(mExportVarIdx_unsignedInteger, v);
+}
+
+public long get_unsignedInteger(){
+ return mExportVar_unsignedInteger;
+}
+ </pre>
+
+
+ <h3 id="struct">Structs</h3>
+ <p>Structs are reflected into their own classes, located in
+ <code>&lt;project_root&gt;/gen/com/example/renderscript/ScriptField_struct_name</code>. This
+ class represents an array of the <code>struct</code> and allows you to allocate memory for a
+ specified number of <code>struct</code>s. For example, if you declare the following struct:</p>
+<pre>
+typedef struct Point {
+ float2 position;
+ float size;
+} Point_t;
+</pre>
+
+<p>then the following code is generated in <code>ScriptField_Point.java</code>:
+<pre>
+package com.example.android.rs.hellocompute;
+
+import android.renderscript.*;
+import android.content.res.Resources;
+
+ /**
+ * @hide
+ */
+public class ScriptField_Point extends android.renderscript.Script.FieldBase {
+
+ static public class Item {
+ public static final int sizeof = 12;
+
+ Float2 position;
+ float size;
+
+ Item() {
+ position = new Float2();
+ }
+ }
+
+ private Item mItemArray[];
+ private FieldPacker mIOBuffer;
+ public static Element createElement(RenderScript rs) {
+ Element.Builder eb = new Element.Builder(rs);
+ eb.add(Element.F32_2(rs), "position");
+ eb.add(Element.F32(rs), "size");
+ return eb.create();
+ }
+
+ public ScriptField_Point(RenderScript rs, int count) {
+ mItemArray = null;
+ mIOBuffer = null;
+ mElement = createElement(rs);
+ init(rs, count);
+ }
+
+ public ScriptField_Point(RenderScript rs, int count, int usages) {
+ mItemArray = null;
+ mIOBuffer = null;
+ mElement = createElement(rs);
+ init(rs, count, usages);
+ }
+
+ private void copyToArray(Item i, int index) {
+ if (mIOBuffer == null) mIOBuffer = new FieldPacker(Item.sizeof * getType().getX()/* count
+ */);
+ mIOBuffer.reset(index * Item.sizeof);
+ mIOBuffer.addF32(i.position);
+ mIOBuffer.addF32(i.size);
+ }
+
+ public void set(Item i, int index, boolean copyNow) {
+ if (mItemArray == null) mItemArray = new Item[getType().getX() /* count */];
+ mItemArray[index] = i;
+ if (copyNow) {
+ copyToArray(i, index);
+ mAllocation.setFromFieldPacker(index, mIOBuffer);
+ }
+ }
+
+ public Item get(int index) {
+ if (mItemArray == null) return null;
+ return mItemArray[index];
+ }
+
+ public void set_position(int index, Float2 v, boolean copyNow) {
+ if (mIOBuffer == null) mIOBuffer = new FieldPacker(Item.sizeof * getType().getX()/* count */);
+ if (mItemArray == null) mItemArray = new Item[getType().getX() /* count */];
+ if (mItemArray[index] == null) mItemArray[index] = new Item();
+ mItemArray[index].position = v;
+ if (copyNow) {
+ mIOBuffer.reset(index * Item.sizeof);
+ mIOBuffer.addF32(v);
+ FieldPacker fp = new FieldPacker(8);
+ fp.addF32(v);
+ mAllocation.setFromFieldPacker(index, 0, fp);
+ }
+ }
+
+ public void set_size(int index, float v, boolean copyNow) {
+ if (mIOBuffer == null) mIOBuffer = new FieldPacker(Item.sizeof * getType().getX()/* count */);
+ if (mItemArray == null) mItemArray = new Item[getType().getX() /* count */];
+ if (mItemArray[index] == null) mItemArray[index] = new Item();
+ mItemArray[index].size = v;
+ if (copyNow) {
+ mIOBuffer.reset(index * Item.sizeof + 8);
+ mIOBuffer.addF32(v);
+ FieldPacker fp = new FieldPacker(4);
+ fp.addF32(v);
+ mAllocation.setFromFieldPacker(index, 1, fp);
+ }
+ }
+
+ public Float2 get_position(int index) {
+ if (mItemArray == null) return null;
+ return mItemArray[index].position;
+ }
+
+ public float get_size(int index) {
+ if (mItemArray == null) return 0;
+ return mItemArray[index].size;
+ }
+
+ public void copyAll() {
+ for (int ct = 0; ct &lt; mItemArray.length; ct++) copyToArray(mItemArray[ct], ct);
+ mAllocation.setFromFieldPacker(0, mIOBuffer);
+ }
+
+ public void resize(int newSize) {
+ if (mItemArray != null) {
+ int oldSize = mItemArray.length;
+ int copySize = Math.min(oldSize, newSize);
+ if (newSize == oldSize) return;
+ Item ni[] = new Item[newSize];
+ System.arraycopy(mItemArray, 0, ni, 0, copySize);
+ mItemArray = ni;
+ }
+ mAllocation.resize(newSize);
+ if (mIOBuffer != null) mIOBuffer = new FieldPacker(Item.sizeof * getType().getX()/* count */);
+ }
+}
+</pre>
+
+<p>The generated code is provided to you as a convenience to allocate memory for structs requested
+by the Renderscript runtime and to interact with <code>struct</code>s
+in memory. Each <code>struct</code>'s class defines the following methods and constructors:</p>
+
+ <ul>
+ <li>Overloaded constructors that allow you to allocate memory. The
+ <code>ScriptField_<em>struct_name</em>(RenderScript rs, int count)</code> constructor allows
+ you to define the number of structures that you want to allocate memory for with the
+ <code>count</code> parameter. The <code>ScriptField_<em>struct_name</em>(RenderScript rs, int
+ count, int usages)</code> constructor defines an extra parameter, <code>usages</code>, that
+ lets you specify the memory space of this memory allocation. There are four memory space
+ possibilities:
+
+ <ul>
+ <li>{@link android.renderscript.Allocation#USAGE_SCRIPT}: Allocates in the script memory
+ space. This is the default memory space if you do not specify a memory space.</li>
+
+ <li>{@link android.renderscript.Allocation#USAGE_GRAPHICS_TEXTURE}: Allocates in the
+ texture memory space of the GPU.</li>
+
+ <li>{@link android.renderscript.Allocation#USAGE_GRAPHICS_VERTEX}: Allocates in the vertex
+ memory space of the GPU.</li>
+
+ <li>{@link android.renderscript.Allocation#USAGE_GRAPHICS_CONSTANTS}: Allocates in the
+ constants memory space of the GPU that is used by the various program objects.</li>
+ </ul>
+
+ <p>You can specify multiple memory spaces by using the bitwise <code>OR</code> operator. Doing so
+ notifies the Renderscript runtime that you intend on accessing the data in the
+ specified memory spaces. The following example allocates memory for a custom data type
+ in both the script and vertex memory spaces:</p>
+ <pre>
+ ScriptField_Point touchPoints = new ScriptField_Point(myRenderscript, 2,
+ Allocation.USAGE_SCRIPT | Allocation.USAGE_GRAPHICS_VERTEX);
+ </pre>
+ </li>
+
+ <li>A static nested class, <code>Item</code>, allows you to create an instance of the
+ <code>struct</code>, in the form of an object. This nested class is useful if it makes more sense to work
+ with the <code>struct</code> in your Android code. When you are done manipulating the object,
+ you can push the object to the allocated memory by calling <code>set(Item i, int index,
+ boolean copyNow)</code> and setting the <code>Item</code> to the desired position in
+the array. The Renderscript runtime automatically has access to the newly written memory.
+
+ <li>Accessor methods to get and set the values of each field in a struct. Each of these
+ accessor methods have an <code>index</code> parameter to specify the <code>struct</code> in
+ the array that you want to read or write to. Each setter method also has a
+<code>copyNow</code> parameter that specifies whether or not to immediately sync this memory
+to the Renderscript runtime. To sync any memory that has not been synced, call
+ <code>copyAll()</code>.</li>
+
+ <li>The <code>createElement()</code> method creates a description of the struct in memory. This
+ description is used to allocate memory consisting of one or many elements.</li>
+
+ <li><code>resize()</code> works much like a <code>realloc()</code> in C, allowing you to
+expand previously allocated memory, maintaining the current values that were previously
+created.</li>
+
+ <li><code>copyAll()</code> synchronizes memory that was set on the framework level to the
+Renderscript runtime. When you call a set accessor method on a member, there is an optional
+<code>copyNow</code> boolean parameter that you can specify. Specifying
+ <code>true</code> synchronizes the memory when you call the method. If you specify false,
+ you can call <code>copyAll()</code> once, and it synchronizes memory for all the
+properties that are not yet synchronized.</li>
+ </ul>
+
+ <h3 id="pointer">Pointers</h3>
+ <p>Pointers are reflected into the script class itself, located in
+<code>project_root/gen/package/name/ScriptC_renderscript_filename</code>. You
+can declare pointers to a <code>struct</code> or any of the supported Renderscript types, but a
+<code>struct</code> cannot contain pointers or nested arrays. For example, if you declare the
+following pointers to a <code>struct</code> and <code>int32_t</code></p>
+
+<pre>
+typedef struct Point {
+ float2 position;
+ float size;
+} Point_t;
+
+Point_t *touchPoints;
+int32_t *intPointer;
+</pre>
+ <p>then the following code is generated in:</p>
+
+<pre>
+private ScriptField_Point mExportVar_touchPoints;
+public void bind_touchPoints(ScriptField_Point v) {
+ mExportVar_touchPoints = v;
+ if (v == null) bindAllocation(null, mExportVarIdx_touchPoints);
+ else bindAllocation(v.getAllocation(), mExportVarIdx_touchPoints);
+}
+
+public ScriptField_Point get_touchPoints() {
+ return mExportVar_touchPoints;
+}
+
+private Allocation mExportVar_intPointer;
+public void bind_intPointer(Allocation v) {
+ mExportVar_intPointer = v;
+ if (v == null) bindAllocation(null, mExportVarIdx_intPointer);
+ else bindAllocation(v, mExportVarIdx_intPointer);
+}
+
+public Allocation get_intPointer() {
+ return mExportVar_intPointer;
+}
+ </pre>
+
+<p>A <code>get</code> method and a special method named <code>bind_<em>pointer_name</em></code>
+(instead of a <code>set()</code> method) is generated. This method allows you to bind the memory
+that is allocated in the Android VM to the Renderscript runtime (you cannot allocate
+memory in your <code>.rs</code> file). For more information, see <a href="#memory">Working
+with Allocated Memory</a>.
+</p>
+
+
+ <h2 id="mem-allocation">Memory Allocation APIs</h2>
+
+ <p>Applications that use Renderscript still run in the Android VM. The actual Renderscript code, however, runs natively and
+ needs access to the memory allocated in the Android VM. To accomplish this, you must
+ attach the memory that is allocated in the VM to the Renderscript runtime. This
+process, called binding, allows the Renderscript runtime to seamlessly work with memory that it
+requests but cannot explicitly allocate. The end result is essentially the same as if you had
+called <code>malloc</code> in C. The added benefit is that the Android VM can carry out garbage collection as well as
+share memory with the Renderscript runtime layer. Binding is only necessary for dynamically allocated memory. Statically
+allocated memory is automatically created for your Renderscript code at compile time. See <a href="#figure1">Figure 1</a>
+for more information on how memory allocation occurs.
+</p>
+
+ <p>To support this memory allocation system, there are a set of APIs that allow the Android VM to
+allocate memory and offer similar functionality to a <code>malloc</code> call. These classes
+essentially describe how memory should be allocated and also carry out the allocation. To better
+understand how these classes work, it is useful to think of them in relation to a simple
+<code>malloc</code> call that can look like this: </p>
+
+ <pre>array = (int *)malloc(sizeof(int)*10);</pre>
+
+ <p>The <code>malloc</code> call can be broken up into two parts: the size of the memory being allocated (<code>sizeof(int)</code>),
+ along with how many units of that memory should be allocated (10). The Android framework provides classes for these two parts as
+ well as a class to represent <code>malloc</code> itself.</p>
+
+ <p>The {@link android.renderscript.Element} class represents the (<code>sizeof(int)</code>) portion
+ of the <code>malloc</code> call and encapsulates one cell of a memory allocation, such as a single
+ float value or a struct. The {@link android.renderscript.Type} class encapsulates the {@link android.renderscript.Element}
+ and the amount of elements to allocate (10 in our example). You can think of a {@link android.renderscript.Type} as
+ an array of {@link android.renderscript.Element}s. The {@link android.renderscript.Allocation} class does the actual
+ memory allocation based on a given {@link android.renderscript.Type} and represents the actual allocated memory.</p>
+
+ <p>In most situations, you do not need to call these memory allocation APIs directly. The reflected layer
+ classes generate code to use these APIs automatically and all you need to do to allocate memory is call a
+ constructor that is declared in one of the reflected layer classes and then bind
+ the resulting memory {@link android.renderscript.Allocation} to the Renderscript.
+ There are some situations where you would want to use these classes directly to allocate memory on your
+ own, such as loading a bitmap from a resource or when you want to allocate memory for pointers to
+ primitive types. You can see how to do this in the
+ <a href="#allocating-mem">Allocating and binding memory to the Renderscript</a> section.
+ The following table describes the three memory management classes in more detail:</p>
+
+ <table id="mem-mgmt-table">
+ <tr>
+ <th>Android Object Type</th>
+
+ <th>Description</th>
+ </tr>
+
+ <tr>
+ <td>{@link android.renderscript.Element}</td>
+
+ <td>
+ <p>An element describes one cell of a memory allocation and can have two forms: basic or
+ complex.</p>
+
+ <p>A basic element contains a single component of data of any valid Renderscript data type.
+ Examples of basic element data types include a single <code>float</code> value, a <code>float4</code> vector, or a
+ single RGB-565 color.</p>
+
+ <p>Complex elements contain a list of basic elements and are created from
+ <code>struct</code>s that you declare in your Renderscript code. For instance an allocation
+ can contain multiple <code>struct</code>s arranged in order in memory. Each struct is considered as its
+ own element, rather than each data type within that struct.</p>
+ </td>
+ </tr>
+
+ <tr>
+ <td>{@link android.renderscript.Type}</td>
+
+ <td>
+ <p>A type is a memory allocation template and consists of an element and one or more
+ dimensions. It describes the layout of the memory (basically an array of {@link
+ android.renderscript.Element}s) but does not allocate the memory for the data that it
+ describes.</p>
+
+ <p>A type consists of five dimensions: X, Y, Z, LOD (level of detail), and Faces (of a cube
+ map). You can assign the X,Y,Z dimensions to any positive integer value within the
+ constraints of available memory. A single dimension allocation has an X dimension of
+ greater than zero while the Y and Z dimensions are zero to indicate not present. For
+ example, an allocation of x=10, y=1 is considered two dimensional and x=10, y=0 is
+ considered one dimensional. The LOD and Faces dimensions are booleans to indicate present
+ or not present.</p>
+ </td>
+ </tr>
+
+ <tr>
+ <td>{@link android.renderscript.Allocation}</td>
+
+ <td>
+ <p>An allocation provides the memory for applications based on a description of the memory
+ that is represented by a {@link android.renderscript.Type}. Allocated memory can exist in
+ many memory spaces concurrently. If memory is modified in one space, you must explicitly
+ synchronize the memory, so that it is updated in all the other spaces in which it exists.
+ </p>
+
+ <p>Allocation data is uploaded in one of two primary ways: type checked and type unchecked.
+ For simple arrays there are <code>copyFrom()</code> functions that take an array from the
+ Android system and copy it to the native layer memory store. The unchecked variants allow
+ the Android system to copy over arrays of structures because it does not support
+ structures. For example, if there is an allocation that is an array of n floats, the data
+ contained in a float[n] array or a <code>byte[n*4]</code> array can be copied.</p>
+ </td>
+ </tr>
+ </table>
+
+ <h2 id="memory">Working with Memory</h2>
+
+<p>Non-static, global variables that you declare in your Renderscript are allocated memory at compile time.
+You can work with these variables directly in your Renderscript code without having to allocate
+memory for them at the Android framework level. The Android framework layer also has access to these variables
+with the provided accessor methods that are generated in the reflected layer classes. If these variables are
+initialized at the Renderscript runtime layer, those values are used to initialize the corresponding
+values in the Android framework layer. If global variables are marked as const, then a <code>set</code> method is
+not generated.</p>
+
+
+<p class="note"><strong>Note:</strong> If you are using certain Renderscript structures that contain pointers, such as
+<code>rs_program_fragment</code> and <code>rs_allocation</code>, you have to obtain an object of the
+corresponding Android framework class first and then call the <code>set</code> method for that
+structure to bind the memory to the Renderscript runtime. You cannot directly manipulate these structures
+at the Renderscript runtime layer. This restriction is not applicable to user-defined structures
+that contain pointers, because they cannot be exported to a reflected layer class
+in the first place. A compiler error is generated if you try to declare a non-static, global
+struct that contains a pointer.
+</p>
+
+<p>Renderscript also has support for pointers, but you must explicitly allocate the memory in your
+Android framework code. When you declare a global pointer in your <code>.rs</code> file, you
+allocate memory through the appropriate reflected layer class and bind that memory to the native
+Renderscript layer. You can interact with this memory from the Android framework layer as well as
+the Renderscript layer, which offers you the flexibility to modify variables in the most
+appropriate layer.</p>
+
+
+
+ <h3 id="allocating-mem">Allocating and binding dynamic memory to the Renderscript</h3>
+
+ <p>To allocate dynamic memory, you need to call the constructor of a
+ {@link android.renderscript.Script.FieldBase} class, which is the most common way. An alternative is to create an
+ {@link android.renderscript.Allocation} manually, which is required for things such as primitive type pointers. You should
+ use a {@link android.renderscript.Script.FieldBase} class constructor whenever available for simplicity.
+ After obtaining a memory allocation, call the reflected <code>bind</code> method of the pointer to bind the allocated memory to the
+ Renderscript runtime.</p>
+ <p>The example below allocates memory for both a primitive type pointer,
+ <code>intPointer</code>, and a pointer to a struct, <code>touchPoints</code>. It also binds the memory to the
+ Renderscript:</p>
+ <pre>
+private RenderScript myRenderscript;
+private ScriptC_example script;
+private Resources resources;
+
+public void init(RenderScript rs, Resources res) {
+ myRenderscript = rs;
+ resources = res;
+
+ //allocate memory for the struct pointer, calling the constructor
+ ScriptField_Point touchPoints = new ScriptField_Point(myRenderscript, 2);
+
+ //Create an element manually and allocate memory for the int pointer
+ intPointer = Allocation.createSized(myRenderscript, Element.I32(myRenderscript), 2);
+
+ //create an instance of the Renderscript, pointing it to the bytecode resource
+ mScript = new ScriptC_example(myRenderscript, resources, R.raw.example);
+
+ //bind the struct and int pointers to the Renderscript
+ mScript.bind_touchPoints(touchPoints);
+ script.bind_intPointer(intPointer);
+
+ ...
+}
+</pre>
+
+ <h3>Reading and writing to memory</h3>
+ <p>You can read and write to statically and dynamically allocated memory both at the Renderscript runtime
+ and Android framework layer.</p>
+
+<p>Statically allocated memory comes with a one-way communication restriction
+at the Renderscript runtime level. When Renderscript code changes the value of a variable, it is not
+communicated back to the Android framework layer for efficiency purposes. The last value
+that is set from the Android framework is always returned during a call to a <code>get</code>
+method. However, when Android framework code modifies a variable, that change can be communicated to
+the Renderscript runtime automatically or synchronized at a later time. If you need to send data
+from the Renderscript runtime to the Android framework layer, you can use the
+<a href="{@docRoot}reference/renderscript/rs__core_8rsh.html"><code>rsSendToClient()</code></a> function
+to overcome this limitation.
+</p>
+<p>When working with dynamically allocated memory, any changes at the Renderscript runtime layer are propagated
+back to the Android framework layer if you modified the memory allocation using its associated pointer.
+Modifying an object at the Android framework layer immediately propagates that change back to the Renderscript
+runtime layer.</p>
+
+ <h4>Reading and writing to global variables</h4>
+
+ <p>Reading and writing to global variables is a straightforward process. You can use the accessor methods
+ at the Android framework level or set them directly in the Renderscript code. Keep in mind that any
+ changes that you make in your Renderscript code are not propagated back to the Android framework layer.</p>
+
+ <p>For example, given the following struct declared in a file named <code>rsfile.rs</code>:</p>
+<pre>
+typedef struct Point {
+ int x;
+ int y;
+} Point_t;
+
+Point_t point;
+
+</pre>
+<p>You can assign values to the struct like this directly in <code>rsfile.rs</code>. These values are not
+propagated back to the Android framework level:</p>
+<pre>
+point.x = 1;
+point.y = 1;
+</pre>
+
+<p>You can assign values to the struct at the Android framework layer like this. These values are
+propagated back to the Renderscript runtime level:</p>
+<pre>
+ScriptC_rsfile mScript;
+
+...
+
+Item i = new ScriptField_Point.Item();
+i.x = 1;
+i.y = 1;
+mScript.set_point(i);
+</pre>
+
+<p>You can read the values in your Renderscript code like this:</p>
+
+<pre>
+rsDebug("Printing out a Point", point.x, point.y);
+</pre>
+
+<p>You can read the values in the Android framework layer with the following code. Keep in mind that this
+code only returns a value if one was set at the Android framework level. You will get a null pointer
+exception if you only set the value at the Renderscript runtime level:</p>
+
+<pre>
+Log.i("TAGNAME", "Printing out a Point: " + mScript.get_point().x + " " + mScript.get_point().y);
+System.out.println(point.get_x() + " " + point.get_y());
+</pre>
+
+<h4>Reading and writing global pointers</h4>
+
+<p>Assuming that memory has been allocated in the Android framework level and bound to the Renderscript runtime,
+you can read and write memory from the Android framework level by using the <code>get</code> and <code>set</code> methods for that pointer.
+In the Renderscript runtime layer, you can read and write to memory with pointers as normal and the changes are propagated
+back to the Android framework layer, unlike with statically allocated memory.</p>
+
+<p>For example, given the following pointer to a <code>struct</code> in a file named <code>rsfile.rs</code>:</p>
+<pre>
+typedef struct Point {
+ int x;
+ int y;
+} Point_t;
+
+Point_t *point;
+</pre>
+
+<p>Assuming you already allocated memory at the Android framework layer, you can access values in
+the <code>struct</code> as normal. Any changes you make to the struct via its pointer variable
+are automatically available to the Android framework layer:</p>
+
+<pre>
+point[index].x = 1;
+point[index].y = 1;
+</pre>
+
+<p>You can read and write values to the pointer at the Android framework layer as well:
+<pre>
+ScriptField_Point p = new ScriptField_Point(mRS, 1);
+ Item i = new ScriptField_Point.Item();
+ i.x=100;
+ i.y = 100;
+ p.set(i, 0, true);
+ mScript.bind_point(p);
+
+ points.get_x(0); //read x and y from index 0
+ points.get_x(0);
+</pre>
+
+<p>Once memory is already bound, you do not have to rebind the memory to the Renderscript
+runtime every time you make a change to a value.</p>
diff --git a/docs/html/guide/topics/renderscript/compute.jd b/docs/html/guide/topics/renderscript/compute.jd
new file mode 100644
index 0000000..d464c90
--- /dev/null
+++ b/docs/html/guide/topics/renderscript/compute.jd
@@ -0,0 +1,340 @@
+page.title=Renderscript Computation
+parent.title=Computation
+parent.link=index.html
+
+@jd:body
+
+<div id="qv-wrapper">
+ <div id="qv">
+ <h2>In this document</h2>
+
+ <ol>
+ <li><a href="#overview">Renderscript System Overview</a></li>
+ <li>
+ <a href="#creating-renderscript">Creating a Computation Renderscript</a>
+
+ <ol>
+ <li><a href="#creating-rs-file">Creating the Renderscript file</a></li>
+
+ <li><a href="#calling">Calling the Renderscript code</a></li>
+ </ol>
+ </li>
+ </ol>
+
+ <h2>Related Samples</h2>
+
+ <ol>
+ <li><a href="{@docRoot}resources/samples/RenderScript/HelloCompute/index.html">Hello
+ Compute</a></li>
+ </ol>
+ </div>
+</div>
+
+ <p>Renderscript offers a high performance computation API at the native
+level that you write in C (C99 standard). Renderscript gives your apps the ability to run
+operations with automatic parallelization across all available processor cores.
+It also supports different types of processors such as the CPU, GPU or DSP. Renderscript
+is useful for apps that do image processing, mathematical modeling, or any operations
+that require lots of mathematical computation.</p>
+
+<p>In addition, you have access to all of these features without having to write code to
+support different architectures or a different amount of processing cores. You also
+do not need to recompile your application for different processor types, because Renderscript
+code is compiled on the device at runtime.</p>
+
+<p class="note"><strong>Deprecation Notice</strong>: Earlier versions of Renderscript included
+ an experimental graphics engine component. This component
+is now deprecated as of Android 4.1 (most of the APIs in <code>rs_graphics.rsh</code>
+and the corresponding APIs in {@link android.renderscript}).
+If you have apps that render graphics with Renderscript, we highly
+recommend you convert your code to another Android graphics rendering option.</p>
+
+ <h2 id="overview">Renderscript System Overview</h2>
+ <p>The Renderscript runtime operates at the native level and still needs to communicate
+with the Android VM, so the way a Renderscript application is set up is different from a pure VM
+application. An application that uses Renderscript is still a traditional Android application that
+runs in the VM, but you write Renderscript code for the parts of your program that require
+it. No matter what you use it for, Renderscript remains platform
+independent, so you do not have to target multiple architectures (for example,
+ARM v5, ARM v7, x86).</p>
+
+<p>The Renderscript system adopts a control and slave architecture where the low-level Renderscript runtime
+code is controlled by the higher level Android system that runs in a virtual machine (VM). The
+Android VM still retains all control of memory management and binds memory that it allocates to
+the Renderscript runtime, so the Renderscript code can access it. The Android framework makes
+asynchronous calls to Renderscript, and the calls are placed in a message queue and processed
+as soon as possible. Figure 1 shows how the Renderscript system is structured.</p>
+
+ <img id="figure1" src="{@docRoot}images/rs_overview.png" />
+ <p class="img-caption"><strong>Figure 1.</strong> Renderscript system overview</p>
+
+ <p>When using Renderscript, there are three layers of APIs that enable communication between the
+ Renderscript runtime and Android framework code:</p>
+
+ <ul>
+ <li>The Renderscript runtime APIs allow you to do the computation
+ that is required by your application.</li>
+
+ <li>The reflected layer APIs are a set of classes that are reflected from your Renderscript
+runtime code. It is basically a wrapper around the Renderscript code that allows the Android
+framework to interact with the Renderscript runtime. The Android build tools automatically generate the
+classes for this layer during the build process. These classes eliminate the need to write JNI glue
+code, like with the NDK.</li>
+
+ <li>The Android framework layer calls the reflected layer to access the Renderscript
+ runtime.</li>
+ </ul>
+
+<p>Because of the way Renderscript is structured, the main advantages are:</p>
+ <ul>
+ <li>Portability: Renderscript is designed to run on many types of devices with different
+ processor (CPU, GPU, and DSP for instance) architectures. It supports all of these architectures without
+ having to target each device, because the code is compiled and cached on the device
+ at runtime.</li>
+
+ <li>Performance: Renderscript provides a high performance computation API with seamless parallelization
+ across the amount of cores on the device.</li>
+
+ <li>Usability: Renderscript simplifies development when possible, such as eliminating JNI glue code.</li>
+ </ul>
+
+ <p>The main disadvantages are:</p>
+
+ <ul>
+ <li>Development complexity: Renderscript introduces a new set of APIs that you have to learn.</li>
+
+ <li>Debugging visibility: Renderscript can potentially execute (planned feature for later releases)
+ on processors other than the main CPU (such as the GPU), so if this occurs, debugging becomes more difficult.
+ </li>
+ </ul>
+
+<p>For a more detailed explanation of how all of these layers work together, see
+ <a href="{@docRoot}guide/topics/renderscript/advanced.html">Advanced Renderscript</a>.<p>
+
+
+<h2 id="creating-renderscript">Creating a Renderscript</h2>
+
+<p>Renderscripts scale to the amount of
+processing cores available on the device. This is enabled through a function named
+<code>rsForEach()</code> (or the <code>forEach_root()</code> method at the Android framework level).
+that automatically partitions work across available processing cores on the device.
+For now, Renderscript can only take advantage of CPU
+cores, but in the future, they can potentially run on other types of processors such as GPUs and
+DSPs.</p>
+
+<p>Implementing a Renderscript involves creating a <code>.rs</code> file that contains
+your Renderscript code and calling it at the Android framework level with the
+<code>forEach_root()</code> or at the Renderscript runtime level with the
+<code>rsForEach()</code> function. The following diagram describes how a typical
+Renderscript is set up:</p><img src="{@docRoot}images/rs_compute.png">
+
+<p class="img-caption"><strong>Figure 1.</strong> Renderscript overview</p>
+
+<p>The following sections describe how to create a simple Renderscript and use it in an
+Android application. This example uses the <a href=
+"{@docRoot}resources/samples/RenderScript/HelloCompute/index.html">HelloCompute Renderscript
+sample</a> that is provided in the SDK as a guide (some code has been modified from its original
+form for simplicity).</p>
+
+<h3 id="creating-rs-file">Creating the Renderscript file</h3>
+
+<p>Your Renderscript code resides in <code>.rs</code> and <code>.rsh</code> files in the
+<code>&lt;project_root&gt;/src/</code> directory. This code contains the computation logic
+and declares all necessary variables and pointers.
+Every <code>.rs</code> file generally contains the following items:</p>
+
+<ul>
+ <li>A pragma declaration (<code>#pragma rs java_package_name(<em>package.name</em>)</code>)
+ that declares the package name of the <code>.java</code> reflection of this Renderscript.</li>
+
+ <li>A pragma declaration (<code>#pragma version(1)</code>) that declares the version of
+ Renderscript that you are using (1 is the only value for now).</li>
+
+ <li><p>A <code>root()</code> function that is the main worker function. The root function is
+ called by the <code>rsForEach</code> function, which allows the Renderscript code to be called and
+ executed on multiple cores if they are available. The <code>root()</code> function must return
+ <code>void</code> and accept the following arguments:</p>
+
+ <ul>
+ <li>Pointers to memory allocations that are used for the input and output of the
+ Renderscript. Both of these pointers are required for Android 3.2 (API level 13) platform
+ versions or older. Android 4.0 (API level 14) and later requires one or both of these
+ allocations.</li>
+ </ul>
+
+ <p>The following arguments are optional, but both must be supplied if you choose to use
+ them:</p>
+
+ <ul>
+ <li>A pointer for user-defined data that the Renderscript might need to carry out
+ computations in addition to the necessary allocations. This can be a pointer to a simple
+ primitive or a more complex struct.</li>
+
+ <li>The size of the user-defined data.</li>
+ </ul>
+ </li>
+
+ <li>An optional <code>init()</code> function. This allows you to do any initialization
+ before the <code>root()</code> function runs, such as initializing variables. This
+ function runs once and is called automatically when the Renderscript starts, before anything
+ else in your Renderscript.</li>
+
+ <li>Any variables, pointers, and structures that you wish to use in your Renderscript code (can
+ be declared in <code>.rsh</code> files if desired)</li>
+</ul>
+
+<p>The following code shows how the <a href=
+"{@docRoot}resources/samples/RenderScript/HelloCompute/src/com/example/android/rs/hellocompute/mono.html">
+mono.rs</a> file is implemented:</p>
+<pre>
+#pragma version(1)
+#pragma rs java_package_name(com.example.android.rs.hellocompute)
+
+//multipliers to convert a RGB colors to black and white
+const static float3 gMonoMult = {0.299f, 0.587f, 0.114f};
+
+void root(const uchar4 *v_in, uchar4 *v_out) {
+ //unpack a color to a float4
+ float4 f4 = rsUnpackColor8888(*v_in);
+ //take the dot product of the color and the multiplier
+ float3 mono = dot(f4.rgb, gMonoMult);
+ //repack the float to a color
+ *v_out = rsPackColorTo8888(mono);
+}
+</pre>
+
+<h3 id="calling">Calling the Renderscript code</h3>
+
+<p>You can call the Renderscript from your Android framework code by
+creating a Renderscript object by instantiating the (<code>ScriptC_<em>script_name</em></code>)
+class. This class contains a method, <code>forEach_root()</code>, that lets you invoke
+<code>rsForEach</code>. You give it the same parameters that you would if you were invoking it
+at the Renderscript runtime level. This technique allows your Android application to offload
+intensive mathematical calculations to Renderscript. See the <a href=
+"{@docRoot}resources/samples/RenderScript/HelloCompute/index.html">HelloCompute</a> sample to see
+how a simple Android application can utilize Renderscript.</p>
+
+<p>To call Renderscript at the Android framework level:</p>
+
+<ol>
+ <li>Allocate memory that is needed by the Renderscript in your Android framework code.
+ You need an input and output {@link android.renderscript.Allocation} for Android 3.2 (API level
+ 13) platform versions and older. The Android 4.0 (API level 14) platform version requires only
+ one or both {@link android.renderscript.Allocation}s.</li>
+
+ <li>Create an instance of the <code>ScriptC_<em>script_name</em></code> class.</li>
+
+ <li>Call <code>forEach_root()</code>, passing in the allocations, the
+ Renderscript, and any optional user-defined data. The output allocation will contain the output
+ of the Renderscript.</li>
+</ol>
+
+<p>The following example, taken from the <a href=
+"{@docRoot}resources/samples/RenderScript/HelloCompute/index.html">HelloCompute</a> sample, processes
+a bitmap and outputs a black and white version of it. The
+<code>createScript()</code> method carries out the steps described previously. This method calls the
+Renderscript, <code>mono.rs</code>, passing in memory allocations that store the bitmap to be processed
+as well as the eventual output bitmap. It then displays the processed bitmap onto the screen:</p>
+<pre>
+package com.example.android.rs.hellocompute;
+
+import android.app.Activity;
+import android.os.Bundle;
+import android.graphics.BitmapFactory;
+import android.graphics.Bitmap;
+import android.renderscript.RenderScript;
+import android.renderscript.Allocation;
+import android.widget.ImageView;
+
+public class HelloCompute extends Activity {
+ private Bitmap mBitmapIn;
+ private Bitmap mBitmapOut;
+
+ private RenderScript mRS;
+ private Allocation mInAllocation;
+ private Allocation mOutAllocation;
+ private ScriptC_mono mScript;
+
+ &#064;Override
+ protected void onCreate(Bundle savedInstanceState) {
+ super.onCreate(savedInstanceState);
+ setContentView(R.layout.main);
+
+ mBitmapIn = loadBitmap(R.drawable.data);
+ mBitmapOut = Bitmap.createBitmap(mBitmapIn.getWidth(), mBitmapIn.getHeight(),
+ mBitmapIn.getConfig());
+
+ ImageView in = (ImageView) findViewById(R.id.displayin);
+ in.setImageBitmap(mBitmapIn);
+
+ ImageView out = (ImageView) findViewById(R.id.displayout);
+ out.setImageBitmap(mBitmapOut);
+
+ createScript();
+ }
+ private void createScript() {
+ mRS = RenderScript.create(this);
+ mInAllocation = Allocation.createFromBitmap(mRS, mBitmapIn,
+ Allocation.MipmapControl.MIPMAP_NONE,
+ Allocation.USAGE_SCRIPT);
+ mOutAllocation = Allocation.createTyped(mRS, mInAllocation.getType());
+ mScript = new ScriptC_mono(mRS, getResources(), R.raw.mono);
+ mScript.forEach_root(mInAllocation, mOutAllocation);
+ mOutAllocation.copyTo(mBitmapOut);
+ }
+
+ private Bitmap loadBitmap(int resource) {
+ final BitmapFactory.Options options = new BitmapFactory.Options();
+ options.inPreferredConfig = Bitmap.Config.ARGB_8888;
+ return BitmapFactory.decodeResource(getResources(), resource, options);
+ }
+}
+</pre>
+
+<p>To call Renderscript from another Renderscript file:</p>
+<ol>
+ <li>Allocate memory that is needed by the Renderscript in your Android framework code.
+ You need an input and output {@link android.renderscript.Allocation} for Android 3.2 (API level
+ 13) platform versions and older. The Android 4.0 (API level 14) platform version requires only
+ one or both {@link android.renderscript.Allocation}s.</li>
+
+ <li>Call <code>rsForEach()</code>, passing in the allocations and any optional user-defined data.
+ The output allocation will contain the output of the Renderscript.</li>
+</ol>
+
+<pre>
+rs_script script;
+rs_allocation in_allocation;
+rs_allocation out_allocation;
+UserData_t data;
+...
+rsForEach(script, in_allocation, out_allocation, &amp;data, sizeof(data));
+</pre>
+</p>
+<p>In this example, assume that the script and memory allocations have already been
+allocated and bound at the Android framework level and that <code>UserData_t</code> is a struct
+declared previously. Passing a pointer to a struct and the size of the struct to <code>rsForEach</code>
+is optional, but useful if your Renderscript requires additional information other than
+the necessary memory allocations.</p>
+
+<h3>Setting floating point precision</h3>
+<p>You can define the floating point precision required by your compute algorithms. This is useful if you
+ require less precision than the IEEE 754-2008 standard (used by default). You can define
+the floating-point precision level of your script with the following pragmas:</p>
+
+<ul>
+ <li><code>#pragma rs_fp_full</code> (default if nothing is specified): For apps that
+ require floating point precision as outlined by the IEEE 754-2008 standard.
+</li>
+ <li><code>#pragma rs_fp_relaxed</code> - For apps that don’t require
+ strict IEEE 754-2008 compliance and can tolerate less precision. This mode enables
+ flush-to-zero for denorms and round-towards-zero.
+</li>
+ <li><code>#pragma rs_fp_imprecise</code> - For apps that don’t have stringent precision requirements. This mode enables
+ everything in <code>rs_fp_relaxed</code> along with the following:
+<ul>
+ <li>Operations resulting in -0.0 can return +0.0 instead.</li>
+ <li>Operations on INF and NAN are undefined.</li>
+</ul>
+</li>
+</ul> \ No newline at end of file
diff --git a/docs/html/guide/topics/renderscript/index.jd b/docs/html/guide/topics/renderscript/index.jd
new file mode 100644
index 0000000..b6758bc
--- /dev/null
+++ b/docs/html/guide/topics/renderscript/index.jd
@@ -0,0 +1,31 @@
+page.title=Computation
+@jd:body
+
+<p>Renderscript provides a platform-independent computation engine that operates at the native level.
+ Use it to accelerate your apps that require extensive computational horsepower.</p>
+<div class="landing-docs">
+
+ <div>
+ <h3>Blog Articles</h3>
+ <a
+href="http://android-developers.blogspot.com/2012/01/levels-in-renderscript.html">
+ <h4>Levels in Renderscript</h4>
+ <p>For ICS, Renderscript (RS) has been updated with several new features to simplify
+ adding compute acceleration to your application. RS is interesting for compute
+ acceleration when you have large buffers of data on which you need to do significant
+ processing. In this example we will look at applying a levels/saturation operation
+ on a bitmap.</p>
+ </a>
+
+ <a
+href="http://android-developers.blogspot.com/2011/03/renderscript.html">
+ <h4>Renderscript Part 2</h4>
+ <p>In Introducing Renderscript I gave a brief overview of this technology.
+ In this post I’ll look at "compute" in more detail. In Renderscript we use
+ "compute" to mean offloading of data processing from Dalvik code to
+ Renderscript code which may run on the same or different processor(s).</p>
+ </a>
+ </div>
+
+ </div>
+</div> \ No newline at end of file
diff --git a/docs/html/guide/topics/renderscript/reference.jd b/docs/html/guide/topics/renderscript/reference.jd
new file mode 100644
index 0000000..a9d780a
--- /dev/null
+++ b/docs/html/guide/topics/renderscript/reference.jd
@@ -0,0 +1,21 @@
+page.title=Runtime API Reference
+parent.title=Computation
+parent.link=index.html
+
+@jd:body
+
+<script language="JavaScript">
+
+function autoResize(element){
+ var newheight;
+ var newwidth;
+
+ newheight = element.contentWindow.document.body.scrollHeight + 20;
+ newwidth = element.contentWindow.document.body.scrollWidth;
+ element.height = (newheight) + "px";
+ element.width = (newwidth) + "px";
+}
+</script>
+
+
+<iframe SRC="{@docRoot}reference/renderscript/index.html" width="100%" id="iframe" marginheight="0" frameborder="0" onLoad="autoResize(this);"></iframe>