1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_MAT_H
#define ANDROID_MAT_H
#include "vec.h"
#include "traits.h"
// -----------------------------------------------------------------------
namespace android {
template <typename TYPE, size_t C, size_t R>
class mat;
namespace helpers {
template <typename TYPE, size_t C, size_t R>
mat<TYPE, C, R>& doAssign(
mat<TYPE, C, R>& lhs,
typename TypeTraits<TYPE>::ParameterType rhs) {
for (size_t i=0 ; i<C ; i++)
for (size_t j=0 ; j<R ; j++)
lhs[i][j] = (i==j) ? rhs : 0;
return lhs;
}
template <typename TYPE, size_t C, size_t R, size_t D>
mat<TYPE, C, R> PURE doMul(
const mat<TYPE, D, R>& lhs,
const mat<TYPE, C, D>& rhs)
{
mat<TYPE, C, R> res;
for (size_t c=0 ; c<C ; c++) {
for (size_t r=0 ; r<R ; r++) {
TYPE v(0);
for (size_t k=0 ; k<D ; k++) {
v += lhs[k][r] * rhs[c][k];
}
res[c][r] = v;
}
}
return res;
}
template <typename TYPE, size_t R, size_t D>
vec<TYPE, R> PURE doMul(
const mat<TYPE, D, R>& lhs,
const vec<TYPE, D>& rhs)
{
vec<TYPE, R> res;
for (size_t r=0 ; r<R ; r++) {
TYPE v(0);
for (size_t k=0 ; k<D ; k++) {
v += lhs[k][r] * rhs[k];
}
res[r] = v;
}
return res;
}
template <typename TYPE, size_t C, size_t R>
mat<TYPE, C, R> PURE doMul(
const vec<TYPE, R>& lhs,
const mat<TYPE, C, 1>& rhs)
{
mat<TYPE, C, R> res;
for (size_t c=0 ; c<C ; c++) {
for (size_t r=0 ; r<R ; r++) {
res[c][r] = lhs[r] * rhs[c][0];
}
}
return res;
}
template <typename TYPE, size_t C, size_t R>
mat<TYPE, C, R> PURE doMul(
const mat<TYPE, C, R>& rhs,
typename TypeTraits<TYPE>::ParameterType v)
{
mat<TYPE, C, R> res;
for (size_t c=0 ; c<C ; c++) {
for (size_t r=0 ; r<R ; r++) {
res[c][r] = rhs[c][r] * v;
}
}
return res;
}
template <typename TYPE, size_t C, size_t R>
mat<TYPE, C, R> PURE doMul(
typename TypeTraits<TYPE>::ParameterType v,
const mat<TYPE, C, R>& rhs)
{
mat<TYPE, C, R> res;
for (size_t c=0 ; c<C ; c++) {
for (size_t r=0 ; r<R ; r++) {
res[c][r] = v * rhs[c][r];
}
}
return res;
}
}; // namespace helpers
// -----------------------------------------------------------------------
template <typename TYPE, size_t C, size_t R>
class mat : public vec< vec<TYPE, R>, C > {
typedef typename TypeTraits<TYPE>::ParameterType pTYPE;
typedef vec< vec<TYPE, R>, C > base;
public:
// STL-like interface.
typedef TYPE value_type;
typedef TYPE& reference;
typedef TYPE const& const_reference;
typedef size_t size_type;
size_type size() const { return R*C; }
enum { ROWS = R, COLS = C };
// -----------------------------------------------------------------------
// default constructors
mat() { }
mat(const mat& rhs) : base(rhs) { }
mat(const base& rhs) : base(rhs) { }
// -----------------------------------------------------------------------
// conversion constructors
// sets the diagonal to the value, off-diagonal to zero
mat(pTYPE rhs) {
helpers::doAssign(*this, rhs);
}
// -----------------------------------------------------------------------
// Assignment
mat& operator=(const mat& rhs) {
base::operator=(rhs);
return *this;
}
mat& operator=(const base& rhs) {
base::operator=(rhs);
return *this;
}
mat& operator=(pTYPE rhs) {
return helpers::doAssign(*this, rhs);
}
// -----------------------------------------------------------------------
// non-member function declaration and definition
friend inline mat PURE operator + (const mat& lhs, const mat& rhs) {
return helpers::doAdd(
static_cast<const base&>(lhs),
static_cast<const base&>(rhs));
}
friend inline mat PURE operator - (const mat& lhs, const mat& rhs) {
return helpers::doSub(
static_cast<const base&>(lhs),
static_cast<const base&>(rhs));
}
// matrix*matrix
template <size_t D>
friend mat PURE operator * (
const mat<TYPE, D, R>& lhs,
const mat<TYPE, C, D>& rhs) {
return helpers::doMul(lhs, rhs);
}
// matrix*vector
friend vec<TYPE, R> PURE operator * (
const mat& lhs, const vec<TYPE, C>& rhs) {
return helpers::doMul(lhs, rhs);
}
// vector*matrix
friend mat PURE operator * (
const vec<TYPE, R>& lhs, const mat<TYPE, C, 1>& rhs) {
return helpers::doMul(lhs, rhs);
}
// matrix*scalar
friend inline mat PURE operator * (const mat& lhs, pTYPE v) {
return helpers::doMul(lhs, v);
}
// scalar*matrix
friend inline mat PURE operator * (pTYPE v, const mat& rhs) {
return helpers::doMul(v, rhs);
}
// -----------------------------------------------------------------------
// streaming operator to set the columns of the matrix:
// example:
// mat33_t m;
// m << v0 << v1 << v2;
// column_builder<> stores the matrix and knows which column to set
template<size_t PREV_COLUMN>
struct column_builder {
mat& matrix;
column_builder(mat& matrix) : matrix(matrix) { }
};
// operator << is not a method of column_builder<> so we can
// overload it for unauthorized values (partial specialization
// not allowed in class-scope).
// we just set the column and return the next column_builder<>
template<size_t PREV_COLUMN>
friend column_builder<PREV_COLUMN+1> operator << (
const column_builder<PREV_COLUMN>& lhs,
const vec<TYPE, R>& rhs) {
lhs.matrix[PREV_COLUMN+1] = rhs;
return column_builder<PREV_COLUMN+1>(lhs.matrix);
}
// we return void here so we get a compile-time error if the
// user tries to set too many columns
friend void operator << (
const column_builder<C-2>& lhs,
const vec<TYPE, R>& rhs) {
lhs.matrix[C-1] = rhs;
}
// this is where the process starts. we set the first columns and
// return the next column_builder<>
column_builder<0> operator << (const vec<TYPE, R>& rhs) {
(*this)[0] = rhs;
return column_builder<0>(*this);
}
};
// Specialize column matrix so they're exactly equivalent to a vector
template <typename TYPE, size_t R>
class mat<TYPE, 1, R> : public vec<TYPE, R> {
typedef vec<TYPE, R> base;
public:
// STL-like interface.
typedef TYPE value_type;
typedef TYPE& reference;
typedef TYPE const& const_reference;
typedef size_t size_type;
size_type size() const { return R; }
enum { ROWS = R, COLS = 1 };
mat() { }
mat(const base& rhs) : base(rhs) { }
mat(const mat& rhs) : base(rhs) { }
mat(const TYPE& rhs) { helpers::doAssign(*this, rhs); }
mat& operator=(const mat& rhs) { base::operator=(rhs); return *this; }
mat& operator=(const base& rhs) { base::operator=(rhs); return *this; }
mat& operator=(const TYPE& rhs) { return helpers::doAssign(*this, rhs); }
// we only have one column, so ignore the index
const base& operator[](size_t) const { return *this; }
base& operator[](size_t) { return *this; }
void operator << (const vec<TYPE, R>& rhs) { base::operator[](0) = rhs; }
};
// -----------------------------------------------------------------------
// matrix functions
// transpose. this handles matrices of matrices
inline int PURE transpose(int v) { return v; }
inline float PURE transpose(float v) { return v; }
inline double PURE transpose(double v) { return v; }
// Transpose a matrix
template <typename TYPE, size_t C, size_t R>
mat<TYPE, R, C> PURE transpose(const mat<TYPE, C, R>& m) {
mat<TYPE, R, C> r;
for (size_t i=0 ; i<R ; i++)
for (size_t j=0 ; j<C ; j++)
r[i][j] = transpose(m[j][i]);
return r;
}
// Calculate the trace of a matrix
template <typename TYPE, size_t C> static TYPE trace(const mat<TYPE, C, C>& m) {
TYPE t;
for (size_t i=0 ; i<C ; i++)
t += m[i][i];
return t;
}
// Test positive-semidefiniteness of a matrix
template <typename TYPE, size_t C>
static bool isPositiveSemidefinite(const mat<TYPE, C, C>& m, TYPE tolerance) {
for (size_t i=0 ; i<C ; i++)
if (m[i][i] < 0)
return false;
for (size_t i=0 ; i<C ; i++)
for (size_t j=i+1 ; j<C ; j++)
if (fabs(m[i][j] - m[j][i]) > tolerance)
return false;
return true;
}
// Transpose a vector
template <
template<typename T, size_t S> class VEC,
typename TYPE,
size_t SIZE
>
mat<TYPE, SIZE, 1> PURE transpose(const VEC<TYPE, SIZE>& v) {
mat<TYPE, SIZE, 1> r;
for (size_t i=0 ; i<SIZE ; i++)
r[i][0] = transpose(v[i]);
return r;
}
// -----------------------------------------------------------------------
// "dumb" matrix inversion
template<typename T, size_t N>
mat<T, N, N> PURE invert(const mat<T, N, N>& src) {
T t;
size_t swap;
mat<T, N, N> tmp(src);
mat<T, N, N> inverse(1);
for (size_t i=0 ; i<N ; i++) {
// look for largest element in column
swap = i;
for (size_t j=i+1 ; j<N ; j++) {
if (fabs(tmp[j][i]) > fabs(tmp[i][i])) {
swap = j;
}
}
if (swap != i) {
/* swap rows. */
for (size_t k=0 ; k<N ; k++) {
t = tmp[i][k];
tmp[i][k] = tmp[swap][k];
tmp[swap][k] = t;
t = inverse[i][k];
inverse[i][k] = inverse[swap][k];
inverse[swap][k] = t;
}
}
t = 1 / tmp[i][i];
for (size_t k=0 ; k<N ; k++) {
tmp[i][k] *= t;
inverse[i][k] *= t;
}
for (size_t j=0 ; j<N ; j++) {
if (j != i) {
t = tmp[j][i];
for (size_t k=0 ; k<N ; k++) {
tmp[j][k] -= tmp[i][k] * t;
inverse[j][k] -= inverse[i][k] * t;
}
}
}
}
return inverse;
}
// -----------------------------------------------------------------------
typedef mat<float, 2, 2> mat22_t;
typedef mat<float, 3, 3> mat33_t;
typedef mat<float, 4, 4> mat44_t;
// -----------------------------------------------------------------------
}; // namespace android
#endif /* ANDROID_MAT_H */
|