| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit b8f2c21db390273c3eaf0e5308faeaeb1e233840 upstream.
Update efi_call_phys_prelog to install an identity mapping of all available
memory. This corrects a bug on very large systems with more then 512 GB in
which bios would not be able to access addresses above not in the mapping.
The result is a crash that looks much like this.
BUG: unable to handle kernel paging request at 000000effd870020
IP: [<0000000078bce331>] 0x78bce330
PGD 0
Oops: 0000 [#1] SMP
Modules linked in:
CPU 0
Pid: 0, comm: swapper/0 Tainted: G W 3.8.0-rc1-next-20121224-medusa_ntz+ #2 Intel Corp. Stoutland Platform
RIP: 0010:[<0000000078bce331>] [<0000000078bce331>] 0x78bce330
RSP: 0000:ffffffff81601d28 EFLAGS: 00010006
RAX: 0000000078b80e18 RBX: 0000000000000004 RCX: 0000000000000004
RDX: 0000000078bcf958 RSI: 0000000000002400 RDI: 8000000000000000
RBP: 0000000078bcf760 R08: 000000effd870000 R09: 0000000000000000
R10: 0000000000000000 R11: 00000000000000c3 R12: 0000000000000030
R13: 000000effd870000 R14: 0000000000000000 R15: ffff88effd870000
FS: 0000000000000000(0000) GS:ffff88effe400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000effd870020 CR3: 000000000160c000 CR4: 00000000000006b0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process swapper/0 (pid: 0, threadinfo ffffffff81600000, task ffffffff81614400)
Stack:
0000000078b80d18 0000000000000004 0000000078bced7b ffff880078b81fff
0000000000000000 0000000000000082 0000000078bce3a8 0000000000002400
0000000060000202 0000000078b80da0 0000000078bce45d ffffffff8107cb5a
Call Trace:
[<ffffffff8107cb5a>] ? on_each_cpu+0x77/0x83
[<ffffffff8102f4eb>] ? change_page_attr_set_clr+0x32f/0x3ed
[<ffffffff81035946>] ? efi_call4+0x46/0x80
[<ffffffff816c5abb>] ? efi_enter_virtual_mode+0x1f5/0x305
[<ffffffff816aeb24>] ? start_kernel+0x34a/0x3d2
[<ffffffff816ae5ed>] ? repair_env_string+0x60/0x60
[<ffffffff816ae2be>] ? x86_64_start_reservations+0xba/0xc1
[<ffffffff816ae120>] ? early_idt_handlers+0x120/0x120
[<ffffffff816ae419>] ? x86_64_start_kernel+0x154/0x163
Code: Bad RIP value.
RIP [<0000000078bce331>] 0x78bce330
RSP <ffffffff81601d28>
CR2: 000000effd870020
---[ end trace ead828934fef5eab ]---
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Robin Holt <holt@sgi.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
UEFI stands for "Unified Extensible Firmware Interface", where "Firmware"
is an ancient African word meaning "Why do something right when you can
do it so wrong that children will weep and brave adults will cower before
you", and "UEI" is Celtic for "We missed DOS so we burned it into your
ROMs". The UEFI specification provides for runtime services (ie, another
way for the operating system to be forced to depend on the firmware) and
we rely on these for certain trivial tasks such as setting up the
bootloader. But some hardware fails to work if we attempt to use these
runtime services from physical mode, and so we have to switch into virtual
mode. So far so dreadful.
The specification makes it clear that the operating system is free to do
whatever it wants with boot services code after ExitBootServices() has been
called. SetVirtualAddressMap() can't be called until ExitBootServices() has
been. So, obviously, a whole bunch of EFI implementations call into boot
services code when we do that. Since we've been charmingly naive and
trusted that the specification may be somehow relevant to the real world,
we've already stuffed a picture of a penguin or something in that address
space. And just to make things more entertaining, we've also marked it
non-executable.
This patch allocates the boot services regions during EFI init and makes
sure that they're executable. Then, after SetVirtualAddressMap(), it
discards them and everyone lives happily ever after. Except for the ones
who have to work on EFI, who live sad lives haunted by the knowledge that
someone's eventually going to write yet another firmware specification.
[ hpa: adding this to urgent with a stable tag since it fixes currently-broken
hardware. However, I do not know what the dependencies are and so I do
not know which -stable versions this may be a candidate for. ]
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Link: http://lkml.kernel.org/r/1306331593-28715-1-git-send-email-mjg@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: <stable@kernel.org>
|
|
|
|
|
|
|
|
|
| |
It's possible for init_memory_mapping() to fail to map the entire region
if it crosses a boundary, so ensure that we complete the mapping.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Link: http://lkml.kernel.org/r/1304623186-18261-5-git-send-email-mjg@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
| |
The core EFI code and 64-bit EFI code currently have independent
implementations of code for setting memory regions as executable or not.
Let's consolidate them.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Link: http://lkml.kernel.org/r/1304623186-18261-2-git-send-email-mjg@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Huang Ying <ying.huang@intel.com>
|