aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/PBQP
diff options
context:
space:
mode:
authorStephen Hines <srhines@google.com>2014-04-23 16:57:46 -0700
committerStephen Hines <srhines@google.com>2014-04-24 15:53:16 -0700
commit36b56886974eae4f9c5ebc96befd3e7bfe5de338 (patch)
treee6cfb69fbbd937f450eeb83bfb83b9da3b01275a /include/llvm/CodeGen/PBQP
parent69a8640022b04415ae9fac62f8ab090601d8f889 (diff)
downloadexternal_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.zip
external_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.tar.gz
external_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.tar.bz2
Update to LLVM 3.5a.
Change-Id: Ifadecab779f128e62e430c2b4f6ddd84953ed617
Diffstat (limited to 'include/llvm/CodeGen/PBQP')
-rw-r--r--include/llvm/CodeGen/PBQP/CostAllocator.h147
-rw-r--r--include/llvm/CodeGen/PBQP/Graph.h764
-rw-r--r--include/llvm/CodeGen/PBQP/HeuristicBase.h247
-rw-r--r--include/llvm/CodeGen/PBQP/HeuristicSolver.h618
-rw-r--r--include/llvm/CodeGen/PBQP/Heuristics/Briggs.h468
-rw-r--r--include/llvm/CodeGen/PBQP/Math.h638
-rw-r--r--include/llvm/CodeGen/PBQP/ReductionRules.h191
-rw-r--r--include/llvm/CodeGen/PBQP/RegAllocSolver.h359
-rw-r--r--include/llvm/CodeGen/PBQP/Solution.h6
9 files changed, 1558 insertions, 1880 deletions
diff --git a/include/llvm/CodeGen/PBQP/CostAllocator.h b/include/llvm/CodeGen/PBQP/CostAllocator.h
new file mode 100644
index 0000000..1646334
--- /dev/null
+++ b/include/llvm/CodeGen/PBQP/CostAllocator.h
@@ -0,0 +1,147 @@
+//===---------- CostAllocator.h - PBQP Cost Allocator -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Defines classes conforming to the PBQP cost value manager concept.
+//
+// Cost value managers are memory managers for PBQP cost values (vectors and
+// matrices). Since PBQP graphs can grow very large (E.g. hundreds of thousands
+// of edges on the largest function in SPEC2006).
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_COSTALLOCATOR_H
+#define LLVM_COSTALLOCATOR_H
+
+#include <set>
+#include <type_traits>
+
+namespace PBQP {
+
+template <typename CostT,
+ typename CostKeyTComparator>
+class CostPool {
+public:
+
+ class PoolEntry {
+ public:
+ template <typename CostKeyT>
+ PoolEntry(CostPool &pool, CostKeyT cost)
+ : pool(pool), cost(std::move(cost)), refCount(0) {}
+ ~PoolEntry() { pool.removeEntry(this); }
+ void incRef() { ++refCount; }
+ bool decRef() { --refCount; return (refCount == 0); }
+ CostT& getCost() { return cost; }
+ const CostT& getCost() const { return cost; }
+ private:
+ CostPool &pool;
+ CostT cost;
+ std::size_t refCount;
+ };
+
+ class PoolRef {
+ public:
+ PoolRef(PoolEntry *entry) : entry(entry) {
+ this->entry->incRef();
+ }
+ PoolRef(const PoolRef &r) {
+ entry = r.entry;
+ entry->incRef();
+ }
+ PoolRef& operator=(const PoolRef &r) {
+ assert(entry != 0 && "entry should not be null.");
+ PoolEntry *temp = r.entry;
+ temp->incRef();
+ entry->decRef();
+ entry = temp;
+ return *this;
+ }
+
+ ~PoolRef() {
+ if (entry->decRef())
+ delete entry;
+ }
+ void reset(PoolEntry *entry) {
+ entry->incRef();
+ this->entry->decRef();
+ this->entry = entry;
+ }
+ CostT& operator*() { return entry->getCost(); }
+ const CostT& operator*() const { return entry->getCost(); }
+ CostT* operator->() { return &entry->getCost(); }
+ const CostT* operator->() const { return &entry->getCost(); }
+ private:
+ PoolEntry *entry;
+ };
+
+private:
+ class EntryComparator {
+ public:
+ template <typename CostKeyT>
+ typename std::enable_if<
+ !std::is_same<PoolEntry*,
+ typename std::remove_const<CostKeyT>::type>::value,
+ bool>::type
+ operator()(const PoolEntry* a, const CostKeyT &b) {
+ return compare(a->getCost(), b);
+ }
+ bool operator()(const PoolEntry* a, const PoolEntry* b) {
+ return compare(a->getCost(), b->getCost());
+ }
+ private:
+ CostKeyTComparator compare;
+ };
+
+ typedef std::set<PoolEntry*, EntryComparator> EntrySet;
+
+ EntrySet entrySet;
+
+ void removeEntry(PoolEntry *p) { entrySet.erase(p); }
+
+public:
+
+ template <typename CostKeyT>
+ PoolRef getCost(CostKeyT costKey) {
+ typename EntrySet::iterator itr =
+ std::lower_bound(entrySet.begin(), entrySet.end(), costKey,
+ EntryComparator());
+
+ if (itr != entrySet.end() && costKey == (*itr)->getCost())
+ return PoolRef(*itr);
+
+ PoolEntry *p = new PoolEntry(*this, std::move(costKey));
+ entrySet.insert(itr, p);
+ return PoolRef(p);
+ }
+};
+
+template <typename VectorT, typename VectorTComparator,
+ typename MatrixT, typename MatrixTComparator>
+class PoolCostAllocator {
+private:
+ typedef CostPool<VectorT, VectorTComparator> VectorCostPool;
+ typedef CostPool<MatrixT, MatrixTComparator> MatrixCostPool;
+public:
+ typedef VectorT Vector;
+ typedef MatrixT Matrix;
+ typedef typename VectorCostPool::PoolRef VectorPtr;
+ typedef typename MatrixCostPool::PoolRef MatrixPtr;
+
+ template <typename VectorKeyT>
+ VectorPtr getVector(VectorKeyT v) { return vectorPool.getCost(std::move(v)); }
+
+ template <typename MatrixKeyT>
+ MatrixPtr getMatrix(MatrixKeyT m) { return matrixPool.getCost(std::move(m)); }
+private:
+ VectorCostPool vectorPool;
+ MatrixCostPool matrixPool;
+};
+
+}
+
+#endif // LLVM_COSTALLOCATOR_H
diff --git a/include/llvm/CodeGen/PBQP/Graph.h b/include/llvm/CodeGen/PBQP/Graph.h
index aca0a91..07c3337 100644
--- a/include/llvm/CodeGen/PBQP/Graph.h
+++ b/include/llvm/CodeGen/PBQP/Graph.h
@@ -15,464 +15,628 @@
#ifndef LLVM_CODEGEN_PBQP_GRAPH_H
#define LLVM_CODEGEN_PBQP_GRAPH_H
-#include "Math.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
+#include "llvm/Support/Compiler.h"
#include <list>
#include <map>
#include <set>
namespace PBQP {
- /// PBQP Graph class.
- /// Instances of this class describe PBQP problems.
- class Graph {
+ class GraphBase {
public:
-
typedef unsigned NodeId;
typedef unsigned EdgeId;
- private:
+ /// \brief Returns a value representing an invalid (non-existant) node.
+ static NodeId invalidNodeId() {
+ return std::numeric_limits<NodeId>::max();
+ }
- typedef std::set<NodeId> AdjEdgeList;
+ /// \brief Returns a value representing an invalid (non-existant) edge.
+ static EdgeId invalidEdgeId() {
+ return std::numeric_limits<EdgeId>::max();
+ }
+ };
+ /// PBQP Graph class.
+ /// Instances of this class describe PBQP problems.
+ ///
+ template <typename SolverT>
+ class Graph : public GraphBase {
+ private:
+ typedef typename SolverT::CostAllocator CostAllocator;
public:
-
- typedef AdjEdgeList::iterator AdjEdgeItr;
+ typedef typename SolverT::RawVector RawVector;
+ typedef typename SolverT::RawMatrix RawMatrix;
+ typedef typename SolverT::Vector Vector;
+ typedef typename SolverT::Matrix Matrix;
+ typedef typename CostAllocator::VectorPtr VectorPtr;
+ typedef typename CostAllocator::MatrixPtr MatrixPtr;
+ typedef typename SolverT::NodeMetadata NodeMetadata;
+ typedef typename SolverT::EdgeMetadata EdgeMetadata;
private:
class NodeEntry {
- private:
- Vector costs;
- AdjEdgeList adjEdges;
- void *data;
- NodeEntry() : costs(0, 0) {}
public:
- NodeEntry(const Vector &costs) : costs(costs), data(0) {}
- Vector& getCosts() { return costs; }
- const Vector& getCosts() const { return costs; }
- unsigned getDegree() const { return adjEdges.size(); }
- AdjEdgeItr edgesBegin() { return adjEdges.begin(); }
- AdjEdgeItr edgesEnd() { return adjEdges.end(); }
- AdjEdgeItr addEdge(EdgeId e) {
- return adjEdges.insert(adjEdges.end(), e);
+ typedef std::vector<EdgeId> AdjEdgeList;
+ typedef AdjEdgeList::size_type AdjEdgeIdx;
+ typedef AdjEdgeList::const_iterator AdjEdgeItr;
+
+ static AdjEdgeIdx getInvalidAdjEdgeIdx() {
+ return std::numeric_limits<AdjEdgeIdx>::max();
}
- void removeEdge(AdjEdgeItr ae) {
- adjEdges.erase(ae);
+
+ NodeEntry(VectorPtr Costs) : Costs(Costs) {}
+
+ AdjEdgeIdx addAdjEdgeId(EdgeId EId) {
+ AdjEdgeIdx Idx = AdjEdgeIds.size();
+ AdjEdgeIds.push_back(EId);
+ return Idx;
+ }
+
+ void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) {
+ // Swap-and-pop for fast removal.
+ // 1) Update the adj index of the edge currently at back().
+ // 2) Move last Edge down to Idx.
+ // 3) pop_back()
+ // If Idx == size() - 1 then the setAdjEdgeIdx and swap are
+ // redundant, but both operations are cheap.
+ G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx);
+ AdjEdgeIds[Idx] = AdjEdgeIds.back();
+ AdjEdgeIds.pop_back();
}
- void setData(void *data) { this->data = data; }
- void* getData() { return data; }
+
+ const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; }
+
+ VectorPtr Costs;
+ NodeMetadata Metadata;
+ private:
+ AdjEdgeList AdjEdgeIds;
};
class EdgeEntry {
- private:
- NodeId node1, node2;
- Matrix costs;
- AdjEdgeItr node1AEItr, node2AEItr;
- void *data;
- EdgeEntry() : costs(0, 0, 0), data(0) {}
public:
- EdgeEntry(NodeId node1, NodeId node2, const Matrix &costs)
- : node1(node1), node2(node2), costs(costs) {}
- NodeId getNode1() const { return node1; }
- NodeId getNode2() const { return node2; }
- Matrix& getCosts() { return costs; }
- const Matrix& getCosts() const { return costs; }
- void setNode1AEItr(AdjEdgeItr ae) { node1AEItr = ae; }
- AdjEdgeItr getNode1AEItr() { return node1AEItr; }
- void setNode2AEItr(AdjEdgeItr ae) { node2AEItr = ae; }
- AdjEdgeItr getNode2AEItr() { return node2AEItr; }
- void setData(void *data) { this->data = data; }
- void *getData() { return data; }
+ EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
+ : Costs(Costs) {
+ NIds[0] = N1Id;
+ NIds[1] = N2Id;
+ ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx();
+ ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx();
+ }
+
+ void invalidate() {
+ NIds[0] = NIds[1] = Graph::invalidNodeId();
+ ThisEdgeAdjIdxs[0] = ThisEdgeAdjIdxs[1] =
+ NodeEntry::getInvalidAdjEdgeIdx();
+ Costs = nullptr;
+ }
+
+ void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) {
+ assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() &&
+ "Edge already connected to NIds[NIdx].");
+ NodeEntry &N = G.getNode(NIds[NIdx]);
+ ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId);
+ }
+
+ void connectTo(Graph &G, EdgeId ThisEdgeId, NodeId NId) {
+ if (NId == NIds[0])
+ connectToN(G, ThisEdgeId, 0);
+ else {
+ assert(NId == NIds[1] && "Edge does not connect NId.");
+ connectToN(G, ThisEdgeId, 1);
+ }
+ }
+
+ void connect(Graph &G, EdgeId ThisEdgeId) {
+ connectToN(G, ThisEdgeId, 0);
+ connectToN(G, ThisEdgeId, 1);
+ }
+
+ void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) {
+ if (NId == NIds[0])
+ ThisEdgeAdjIdxs[0] = NewIdx;
+ else {
+ assert(NId == NIds[1] && "Edge not connected to NId");
+ ThisEdgeAdjIdxs[1] = NewIdx;
+ }
+ }
+
+ void disconnectFromN(Graph &G, unsigned NIdx) {
+ assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() &&
+ "Edge not connected to NIds[NIdx].");
+ NodeEntry &N = G.getNode(NIds[NIdx]);
+ N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]);
+ ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx();
+ }
+
+ void disconnectFrom(Graph &G, NodeId NId) {
+ if (NId == NIds[0])
+ disconnectFromN(G, 0);
+ else {
+ assert(NId == NIds[1] && "Edge does not connect NId");
+ disconnectFromN(G, 1);
+ }
+ }
+
+ NodeId getN1Id() const { return NIds[0]; }
+ NodeId getN2Id() const { return NIds[1]; }
+ MatrixPtr Costs;
+ EdgeMetadata Metadata;
+ private:
+ NodeId NIds[2];
+ typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2];
};
// ----- MEMBERS -----
+ CostAllocator CostAlloc;
+ SolverT *Solver;
+
typedef std::vector<NodeEntry> NodeVector;
typedef std::vector<NodeId> FreeNodeVector;
- NodeVector nodes;
- FreeNodeVector freeNodes;
+ NodeVector Nodes;
+ FreeNodeVector FreeNodeIds;
typedef std::vector<EdgeEntry> EdgeVector;
typedef std::vector<EdgeId> FreeEdgeVector;
- EdgeVector edges;
- FreeEdgeVector freeEdges;
+ EdgeVector Edges;
+ FreeEdgeVector FreeEdgeIds;
// ----- INTERNAL METHODS -----
- NodeEntry& getNode(NodeId nId) { return nodes[nId]; }
- const NodeEntry& getNode(NodeId nId) const { return nodes[nId]; }
+ NodeEntry& getNode(NodeId NId) { return Nodes[NId]; }
+ const NodeEntry& getNode(NodeId NId) const { return Nodes[NId]; }
- EdgeEntry& getEdge(EdgeId eId) { return edges[eId]; }
- const EdgeEntry& getEdge(EdgeId eId) const { return edges[eId]; }
+ EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
+ const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
- NodeId addConstructedNode(const NodeEntry &n) {
- NodeId nodeId = 0;
- if (!freeNodes.empty()) {
- nodeId = freeNodes.back();
- freeNodes.pop_back();
- nodes[nodeId] = n;
+ NodeId addConstructedNode(const NodeEntry &N) {
+ NodeId NId = 0;
+ if (!FreeNodeIds.empty()) {
+ NId = FreeNodeIds.back();
+ FreeNodeIds.pop_back();
+ Nodes[NId] = std::move(N);
} else {
- nodeId = nodes.size();
- nodes.push_back(n);
+ NId = Nodes.size();
+ Nodes.push_back(std::move(N));
}
- return nodeId;
+ return NId;
}
- EdgeId addConstructedEdge(const EdgeEntry &e) {
- assert(findEdge(e.getNode1(), e.getNode2()) == invalidEdgeId() &&
+ EdgeId addConstructedEdge(const EdgeEntry &E) {
+ assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
"Attempt to add duplicate edge.");
- EdgeId edgeId = 0;
- if (!freeEdges.empty()) {
- edgeId = freeEdges.back();
- freeEdges.pop_back();
- edges[edgeId] = e;
+ EdgeId EId = 0;
+ if (!FreeEdgeIds.empty()) {
+ EId = FreeEdgeIds.back();
+ FreeEdgeIds.pop_back();
+ Edges[EId] = std::move(E);
} else {
- edgeId = edges.size();
- edges.push_back(e);
+ EId = Edges.size();
+ Edges.push_back(std::move(E));
}
- EdgeEntry &ne = getEdge(edgeId);
- NodeEntry &n1 = getNode(ne.getNode1());
- NodeEntry &n2 = getNode(ne.getNode2());
-
- // Sanity check on matrix dimensions:
- assert((n1.getCosts().getLength() == ne.getCosts().getRows()) &&
- (n2.getCosts().getLength() == ne.getCosts().getCols()) &&
- "Edge cost dimensions do not match node costs dimensions.");
+ EdgeEntry &NE = getEdge(EId);
- ne.setNode1AEItr(n1.addEdge(edgeId));
- ne.setNode2AEItr(n2.addEdge(edgeId));
- return edgeId;
+ // Add the edge to the adjacency sets of its nodes.
+ NE.connect(*this, EId);
+ return EId;
}
- Graph(const Graph &other) {}
- void operator=(const Graph &other) {}
+ Graph(const Graph &Other) {}
+ void operator=(const Graph &Other) {}
public:
+ typedef typename NodeEntry::AdjEdgeItr AdjEdgeItr;
+
class NodeItr {
public:
- NodeItr(NodeId nodeId, const Graph &g)
- : nodeId(nodeId), endNodeId(g.nodes.size()), freeNodes(g.freeNodes) {
- this->nodeId = findNextInUse(nodeId); // Move to the first in-use nodeId
+ NodeItr(NodeId CurNId, const Graph &G)
+ : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
+ this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
}
- bool operator==(const NodeItr& n) const { return nodeId == n.nodeId; }
- bool operator!=(const NodeItr& n) const { return !(*this == n); }
- NodeItr& operator++() { nodeId = findNextInUse(++nodeId); return *this; }
- NodeId operator*() const { return nodeId; }
+ bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
+ bool operator!=(const NodeItr &O) const { return !(*this == O); }
+ NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
+ NodeId operator*() const { return CurNId; }
private:
- NodeId findNextInUse(NodeId n) const {
- while (n < endNodeId &&
- std::find(freeNodes.begin(), freeNodes.end(), n) !=
- freeNodes.end()) {
- ++n;
+ NodeId findNextInUse(NodeId NId) const {
+ while (NId < EndNId &&
+ std::find(FreeNodeIds.begin(), FreeNodeIds.end(), NId) !=
+ FreeNodeIds.end()) {
+ ++NId;
}
- return n;
+ return NId;
}
- NodeId nodeId, endNodeId;
- const FreeNodeVector& freeNodes;
+ NodeId CurNId, EndNId;
+ const FreeNodeVector &FreeNodeIds;
};
class EdgeItr {
public:
- EdgeItr(EdgeId edgeId, const Graph &g)
- : edgeId(edgeId), endEdgeId(g.edges.size()), freeEdges(g.freeEdges) {
- this->edgeId = findNextInUse(edgeId); // Move to the first in-use edgeId
+ EdgeItr(EdgeId CurEId, const Graph &G)
+ : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
+ this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
}
- bool operator==(const EdgeItr& n) const { return edgeId == n.edgeId; }
- bool operator!=(const EdgeItr& n) const { return !(*this == n); }
- EdgeItr& operator++() { edgeId = findNextInUse(++edgeId); return *this; }
- EdgeId operator*() const { return edgeId; }
+ bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
+ bool operator!=(const EdgeItr &O) const { return !(*this == O); }
+ EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
+ EdgeId operator*() const { return CurEId; }
private:
- EdgeId findNextInUse(EdgeId n) const {
- while (n < endEdgeId &&
- std::find(freeEdges.begin(), freeEdges.end(), n) !=
- freeEdges.end()) {
- ++n;
+ EdgeId findNextInUse(EdgeId EId) const {
+ while (EId < EndEId &&
+ std::find(FreeEdgeIds.begin(), FreeEdgeIds.end(), EId) !=
+ FreeEdgeIds.end()) {
+ ++EId;
}
- return n;
+ return EId;
+ }
+
+ EdgeId CurEId, EndEId;
+ const FreeEdgeVector &FreeEdgeIds;
+ };
+
+ class NodeIdSet {
+ public:
+ NodeIdSet(const Graph &G) : G(G) { }
+ NodeItr begin() const { return NodeItr(0, G); }
+ NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
+ bool empty() const { return G.Nodes.empty(); }
+ typename NodeVector::size_type size() const {
+ return G.Nodes.size() - G.FreeNodeIds.size();
}
+ private:
+ const Graph& G;
+ };
- EdgeId edgeId, endEdgeId;
- const FreeEdgeVector& freeEdges;
+ class EdgeIdSet {
+ public:
+ EdgeIdSet(const Graph &G) : G(G) { }
+ EdgeItr begin() const { return EdgeItr(0, G); }
+ EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
+ bool empty() const { return G.Edges.empty(); }
+ typename NodeVector::size_type size() const {
+ return G.Edges.size() - G.FreeEdgeIds.size();
+ }
+ private:
+ const Graph& G;
+ };
+
+ class AdjEdgeIdSet {
+ public:
+ AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) { }
+ typename NodeEntry::AdjEdgeItr begin() const {
+ return NE.getAdjEdgeIds().begin();
+ }
+ typename NodeEntry::AdjEdgeItr end() const {
+ return NE.getAdjEdgeIds().end();
+ }
+ bool empty() const { return NE.getAdjEdgeIds().empty(); }
+ typename NodeEntry::AdjEdgeList::size_type size() const {
+ return NE.getAdjEdgeIds().size();
+ }
+ private:
+ const NodeEntry &NE;
};
/// \brief Construct an empty PBQP graph.
- Graph() {}
+ Graph() : Solver(nullptr) { }
+
+ /// \brief Lock this graph to the given solver instance in preparation
+ /// for running the solver. This method will call solver.handleAddNode for
+ /// each node in the graph, and handleAddEdge for each edge, to give the
+ /// solver an opportunity to set up any requried metadata.
+ void setSolver(SolverT &S) {
+ assert(Solver == nullptr && "Solver already set. Call unsetSolver().");
+ Solver = &S;
+ for (auto NId : nodeIds())
+ Solver->handleAddNode(NId);
+ for (auto EId : edgeIds())
+ Solver->handleAddEdge(EId);
+ }
+
+ /// \brief Release from solver instance.
+ void unsetSolver() {
+ assert(Solver != nullptr && "Solver not set.");
+ Solver = nullptr;
+ }
/// \brief Add a node with the given costs.
- /// @param costs Cost vector for the new node.
+ /// @param Costs Cost vector for the new node.
/// @return Node iterator for the added node.
- NodeId addNode(const Vector &costs) {
- return addConstructedNode(NodeEntry(costs));
+ template <typename OtherVectorT>
+ NodeId addNode(OtherVectorT Costs) {
+ // Get cost vector from the problem domain
+ VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
+ NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
+ if (Solver)
+ Solver->handleAddNode(NId);
+ return NId;
}
/// \brief Add an edge between the given nodes with the given costs.
- /// @param n1Id First node.
- /// @param n2Id Second node.
+ /// @param N1Id First node.
+ /// @param N2Id Second node.
/// @return Edge iterator for the added edge.
- EdgeId addEdge(NodeId n1Id, NodeId n2Id, const Matrix &costs) {
- assert(getNodeCosts(n1Id).getLength() == costs.getRows() &&
- getNodeCosts(n2Id).getLength() == costs.getCols() &&
+ template <typename OtherVectorT>
+ EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
+ assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
+ getNodeCosts(N2Id).getLength() == Costs.getCols() &&
"Matrix dimensions mismatch.");
- return addConstructedEdge(EdgeEntry(n1Id, n2Id, costs));
+ // Get cost matrix from the problem domain.
+ MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
+ EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
+ if (Solver)
+ Solver->handleAddEdge(EId);
+ return EId;
}
+ /// \brief Returns true if the graph is empty.
+ bool empty() const { return NodeIdSet(*this).empty(); }
+
+ NodeIdSet nodeIds() const { return NodeIdSet(*this); }
+ EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
+
+ AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
+
/// \brief Get the number of nodes in the graph.
/// @return Number of nodes in the graph.
- unsigned getNumNodes() const { return nodes.size() - freeNodes.size(); }
+ unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
/// \brief Get the number of edges in the graph.
/// @return Number of edges in the graph.
- unsigned getNumEdges() const { return edges.size() - freeEdges.size(); }
-
- /// \brief Get a node's cost vector.
- /// @param nId Node id.
- /// @return Node cost vector.
- Vector& getNodeCosts(NodeId nId) { return getNode(nId).getCosts(); }
+ unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
+
+ /// \brief Set a node's cost vector.
+ /// @param NId Node to update.
+ /// @param Costs New costs to set.
+ template <typename OtherVectorT>
+ void setNodeCosts(NodeId NId, OtherVectorT Costs) {
+ VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
+ if (Solver)
+ Solver->handleSetNodeCosts(NId, *AllocatedCosts);
+ getNode(NId).Costs = AllocatedCosts;
+ }
/// \brief Get a node's cost vector (const version).
- /// @param nId Node id.
+ /// @param NId Node id.
/// @return Node cost vector.
- const Vector& getNodeCosts(NodeId nId) const {
- return getNode(nId).getCosts();
+ const Vector& getNodeCosts(NodeId NId) const {
+ return *getNode(NId).Costs;
}
- /// \brief Set a node's data pointer.
- /// @param nId Node id.
- /// @param data Pointer to node data.
- ///
- /// Typically used by a PBQP solver to attach data to aid in solution.
- void setNodeData(NodeId nId, void *data) { getNode(nId).setData(data); }
-
- /// \brief Get the node's data pointer.
- /// @param nId Node id.
- /// @return Pointer to node data.
- void* getNodeData(NodeId nId) { return getNode(nId).getData(); }
-
- /// \brief Get an edge's cost matrix.
- /// @param eId Edge id.
- /// @return Edge cost matrix.
- Matrix& getEdgeCosts(EdgeId eId) { return getEdge(eId).getCosts(); }
-
- /// \brief Get an edge's cost matrix (const version).
- /// @param eId Edge id.
- /// @return Edge cost matrix.
- const Matrix& getEdgeCosts(EdgeId eId) const {
- return getEdge(eId).getCosts();
+ NodeMetadata& getNodeMetadata(NodeId NId) {
+ return getNode(NId).Metadata;
}
- /// \brief Set an edge's data pointer.
- /// @param eId Edge id.
- /// @param data Pointer to edge data.
- ///
- /// Typically used by a PBQP solver to attach data to aid in solution.
- void setEdgeData(EdgeId eId, void *data) { getEdge(eId).setData(data); }
-
- /// \brief Get an edge's data pointer.
- /// @param eId Edge id.
- /// @return Pointer to edge data.
- void* getEdgeData(EdgeId eId) { return getEdge(eId).getData(); }
-
- /// \brief Get a node's degree.
- /// @param nId Node id.
- /// @return The degree of the node.
- unsigned getNodeDegree(NodeId nId) const {
- return getNode(nId).getDegree();
+ const NodeMetadata& getNodeMetadata(NodeId NId) const {
+ return getNode(NId).Metadata;
}
- /// \brief Begin iterator for node set.
- NodeItr nodesBegin() const { return NodeItr(0, *this); }
-
- /// \brief End iterator for node set.
- NodeItr nodesEnd() const { return NodeItr(nodes.size(), *this); }
+ typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
+ return getNode(NId).getAdjEdgeIds().size();
+ }
- /// \brief Begin iterator for edge set.
- EdgeItr edgesBegin() const { return EdgeItr(0, *this); }
+ /// \brief Set an edge's cost matrix.
+ /// @param EId Edge id.
+ /// @param Costs New cost matrix.
+ template <typename OtherMatrixT>
+ void setEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
+ MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
+ if (Solver)
+ Solver->handleSetEdgeCosts(EId, *AllocatedCosts);
+ getEdge(EId).Costs = AllocatedCosts;
+ }
- /// \brief End iterator for edge set.
- EdgeItr edgesEnd() const { return EdgeItr(edges.size(), *this); }
+ /// \brief Get an edge's cost matrix (const version).
+ /// @param EId Edge id.
+ /// @return Edge cost matrix.
+ const Matrix& getEdgeCosts(EdgeId EId) const { return *getEdge(EId).Costs; }
- /// \brief Get begin iterator for adjacent edge set.
- /// @param nId Node id.
- /// @return Begin iterator for the set of edges connected to the given node.
- AdjEdgeItr adjEdgesBegin(NodeId nId) {
- return getNode(nId).edgesBegin();
+ EdgeMetadata& getEdgeMetadata(EdgeId NId) {
+ return getEdge(NId).Metadata;
}
- /// \brief Get end iterator for adjacent edge set.
- /// @param nId Node id.
- /// @return End iterator for the set of edges connected to the given node.
- AdjEdgeItr adjEdgesEnd(NodeId nId) {
- return getNode(nId).edgesEnd();
+ const EdgeMetadata& getEdgeMetadata(EdgeId NId) const {
+ return getEdge(NId).Metadata;
}
/// \brief Get the first node connected to this edge.
- /// @param eId Edge id.
+ /// @param EId Edge id.
/// @return The first node connected to the given edge.
- NodeId getEdgeNode1(EdgeId eId) {
- return getEdge(eId).getNode1();
+ NodeId getEdgeNode1Id(EdgeId EId) {
+ return getEdge(EId).getN1Id();
}
/// \brief Get the second node connected to this edge.
- /// @param eId Edge id.
+ /// @param EId Edge id.
/// @return The second node connected to the given edge.
- NodeId getEdgeNode2(EdgeId eId) {
- return getEdge(eId).getNode2();
+ NodeId getEdgeNode2Id(EdgeId EId) {
+ return getEdge(EId).getN2Id();
}
/// \brief Get the "other" node connected to this edge.
- /// @param eId Edge id.
- /// @param nId Node id for the "given" node.
+ /// @param EId Edge id.
+ /// @param NId Node id for the "given" node.
/// @return The iterator for the "other" node connected to this edge.
- NodeId getEdgeOtherNode(EdgeId eId, NodeId nId) {
- EdgeEntry &e = getEdge(eId);
- if (e.getNode1() == nId) {
- return e.getNode2();
+ NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
+ EdgeEntry &E = getEdge(EId);
+ if (E.getN1Id() == NId) {
+ return E.getN2Id();
} // else
- return e.getNode1();
- }
-
- EdgeId invalidEdgeId() const {
- return std::numeric_limits<EdgeId>::max();
+ return E.getN1Id();
}
/// \brief Get the edge connecting two nodes.
- /// @param n1Id First node id.
- /// @param n2Id Second node id.
- /// @return An id for edge (n1Id, n2Id) if such an edge exists,
+ /// @param N1Id First node id.
+ /// @param N2Id Second node id.
+ /// @return An id for edge (N1Id, N2Id) if such an edge exists,
/// otherwise returns an invalid edge id.
- EdgeId findEdge(NodeId n1Id, NodeId n2Id) {
- for (AdjEdgeItr aeItr = adjEdgesBegin(n1Id), aeEnd = adjEdgesEnd(n1Id);
- aeItr != aeEnd; ++aeItr) {
- if ((getEdgeNode1(*aeItr) == n2Id) ||
- (getEdgeNode2(*aeItr) == n2Id)) {
- return *aeItr;
+ EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
+ for (auto AEId : adjEdgeIds(N1Id)) {
+ if ((getEdgeNode1Id(AEId) == N2Id) ||
+ (getEdgeNode2Id(AEId) == N2Id)) {
+ return AEId;
}
}
return invalidEdgeId();
}
/// \brief Remove a node from the graph.
- /// @param nId Node id.
- void removeNode(NodeId nId) {
- NodeEntry &n = getNode(nId);
- for (AdjEdgeItr itr = n.edgesBegin(), end = n.edgesEnd(); itr != end; ++itr) {
- EdgeId eId = *itr;
- removeEdge(eId);
+ /// @param NId Node id.
+ void removeNode(NodeId NId) {
+ if (Solver)
+ Solver->handleRemoveNode(NId);
+ NodeEntry &N = getNode(NId);
+ // TODO: Can this be for-each'd?
+ for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
+ AEEnd = N.adjEdgesEnd();
+ AEItr != AEEnd;) {
+ EdgeId EId = *AEItr;
+ ++AEItr;
+ removeEdge(EId);
}
- freeNodes.push_back(nId);
+ FreeNodeIds.push_back(NId);
+ }
+
+ /// \brief Disconnect an edge from the given node.
+ ///
+ /// Removes the given edge from the adjacency list of the given node.
+ /// This operation leaves the edge in an 'asymmetric' state: It will no
+ /// longer appear in an iteration over the given node's (NId's) edges, but
+ /// will appear in an iteration over the 'other', unnamed node's edges.
+ ///
+ /// This does not correspond to any normal graph operation, but exists to
+ /// support efficient PBQP graph-reduction based solvers. It is used to
+ /// 'effectively' remove the unnamed node from the graph while the solver
+ /// is performing the reduction. The solver will later call reconnectNode
+ /// to restore the edge in the named node's adjacency list.
+ ///
+ /// Since the degree of a node is the number of connected edges,
+ /// disconnecting an edge from a node 'u' will cause the degree of 'u' to
+ /// drop by 1.
+ ///
+ /// A disconnected edge WILL still appear in an iteration over the graph
+ /// edges.
+ ///
+ /// A disconnected edge should not be removed from the graph, it should be
+ /// reconnected first.
+ ///
+ /// A disconnected edge can be reconnected by calling the reconnectEdge
+ /// method.
+ void disconnectEdge(EdgeId EId, NodeId NId) {
+ if (Solver)
+ Solver->handleDisconnectEdge(EId, NId);
+
+ EdgeEntry &E = getEdge(EId);
+ E.disconnectFrom(*this, NId);
+ }
+
+ /// \brief Convenience method to disconnect all neighbours from the given
+ /// node.
+ void disconnectAllNeighborsFromNode(NodeId NId) {
+ for (auto AEId : adjEdgeIds(NId))
+ disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
+ }
+
+ /// \brief Re-attach an edge to its nodes.
+ ///
+ /// Adds an edge that had been previously disconnected back into the
+ /// adjacency set of the nodes that the edge connects.
+ void reconnectEdge(EdgeId EId, NodeId NId) {
+ EdgeEntry &E = getEdge(EId);
+ E.connectTo(*this, EId, NId);
+ if (Solver)
+ Solver->handleReconnectEdge(EId, NId);
}
/// \brief Remove an edge from the graph.
- /// @param eId Edge id.
- void removeEdge(EdgeId eId) {
- EdgeEntry &e = getEdge(eId);
- NodeEntry &n1 = getNode(e.getNode1());
- NodeEntry &n2 = getNode(e.getNode2());
- n1.removeEdge(e.getNode1AEItr());
- n2.removeEdge(e.getNode2AEItr());
- freeEdges.push_back(eId);
+ /// @param EId Edge id.
+ void removeEdge(EdgeId EId) {
+ if (Solver)
+ Solver->handleRemoveEdge(EId);
+ EdgeEntry &E = getEdge(EId);
+ E.disconnect();
+ FreeEdgeIds.push_back(EId);
+ Edges[EId].invalidate();
}
/// \brief Remove all nodes and edges from the graph.
void clear() {
- nodes.clear();
- freeNodes.clear();
- edges.clear();
- freeEdges.clear();
+ Nodes.clear();
+ FreeNodeIds.clear();
+ Edges.clear();
+ FreeEdgeIds.clear();
}
/// \brief Dump a graph to an output stream.
template <typename OStream>
- void dump(OStream &os) {
- os << getNumNodes() << " " << getNumEdges() << "\n";
-
- for (NodeItr nodeItr = nodesBegin(), nodeEnd = nodesEnd();
- nodeItr != nodeEnd; ++nodeItr) {
- const Vector& v = getNodeCosts(*nodeItr);
- os << "\n" << v.getLength() << "\n";
- assert(v.getLength() != 0 && "Empty vector in graph.");
- os << v[0];
- for (unsigned i = 1; i < v.getLength(); ++i) {
- os << " " << v[i];
+ void dump(OStream &OS) {
+ OS << nodeIds().size() << " " << edgeIds().size() << "\n";
+
+ for (auto NId : nodeIds()) {
+ const Vector& V = getNodeCosts(NId);
+ OS << "\n" << V.getLength() << "\n";
+ assert(V.getLength() != 0 && "Empty vector in graph.");
+ OS << V[0];
+ for (unsigned i = 1; i < V.getLength(); ++i) {
+ OS << " " << V[i];
}
- os << "\n";
+ OS << "\n";
}
- for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd();
- edgeItr != edgeEnd; ++edgeItr) {
- NodeId n1 = getEdgeNode1(*edgeItr);
- NodeId n2 = getEdgeNode2(*edgeItr);
- assert(n1 != n2 && "PBQP graphs shound not have self-edges.");
- const Matrix& m = getEdgeCosts(*edgeItr);
- os << "\n" << n1 << " " << n2 << "\n"
- << m.getRows() << " " << m.getCols() << "\n";
- assert(m.getRows() != 0 && "No rows in matrix.");
- assert(m.getCols() != 0 && "No cols in matrix.");
- for (unsigned i = 0; i < m.getRows(); ++i) {
- os << m[i][0];
- for (unsigned j = 1; j < m.getCols(); ++j) {
- os << " " << m[i][j];
+ for (auto EId : edgeIds()) {
+ NodeId N1Id = getEdgeNode1Id(EId);
+ NodeId N2Id = getEdgeNode2Id(EId);
+ assert(N1Id != N2Id && "PBQP graphs shound not have self-edges.");
+ const Matrix& M = getEdgeCosts(EId);
+ OS << "\n" << N1Id << " " << N2Id << "\n"
+ << M.getRows() << " " << M.getCols() << "\n";
+ assert(M.getRows() != 0 && "No rows in matrix.");
+ assert(M.getCols() != 0 && "No cols in matrix.");
+ for (unsigned i = 0; i < M.getRows(); ++i) {
+ OS << M[i][0];
+ for (unsigned j = 1; j < M.getCols(); ++j) {
+ OS << " " << M[i][j];
}
- os << "\n";
+ OS << "\n";
}
}
}
/// \brief Print a representation of this graph in DOT format.
- /// @param os Output stream to print on.
+ /// @param OS Output stream to print on.
template <typename OStream>
- void printDot(OStream &os) {
-
- os << "graph {\n";
-
- for (NodeItr nodeItr = nodesBegin(), nodeEnd = nodesEnd();
- nodeItr != nodeEnd; ++nodeItr) {
-
- os << " node" << nodeItr << " [ label=\""
- << nodeItr << ": " << getNodeCosts(*nodeItr) << "\" ]\n";
+ void printDot(OStream &OS) {
+ OS << "graph {\n";
+ for (auto NId : nodeIds()) {
+ OS << " node" << NId << " [ label=\""
+ << NId << ": " << getNodeCosts(NId) << "\" ]\n";
}
-
- os << " edge [ len=" << getNumNodes() << " ]\n";
-
- for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd();
- edgeItr != edgeEnd; ++edgeItr) {
-
- os << " node" << getEdgeNode1(*edgeItr)
- << " -- node" << getEdgeNode2(*edgeItr)
+ OS << " edge [ len=" << nodeIds().size() << " ]\n";
+ for (auto EId : edgeIds()) {
+ OS << " node" << getEdgeNode1Id(EId)
+ << " -- node" << getEdgeNode2Id(EId)
<< " [ label=\"";
-
- const Matrix &edgeCosts = getEdgeCosts(*edgeItr);
-
- for (unsigned i = 0; i < edgeCosts.getRows(); ++i) {
- os << edgeCosts.getRowAsVector(i) << "\\n";
+ const Matrix &EdgeCosts = getEdgeCosts(EId);
+ for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
+ OS << EdgeCosts.getRowAsVector(i) << "\\n";
}
- os << "\" ]\n";
+ OS << "\" ]\n";
}
- os << "}\n";
+ OS << "}\n";
}
-
};
-// void Graph::copyFrom(const Graph &other) {
-// std::map<Graph::ConstNodeItr, Graph::NodeItr,
-// NodeItrComparator> nodeMap;
-
-// for (Graph::ConstNodeItr nItr = other.nodesBegin(),
-// nEnd = other.nodesEnd();
-// nItr != nEnd; ++nItr) {
-// nodeMap[nItr] = addNode(other.getNodeCosts(nItr));
-// }
-// }
-
}
#endif // LLVM_CODEGEN_PBQP_GRAPH_HPP
diff --git a/include/llvm/CodeGen/PBQP/HeuristicBase.h b/include/llvm/CodeGen/PBQP/HeuristicBase.h
deleted file mode 100644
index 8bcbb9e..0000000
--- a/include/llvm/CodeGen/PBQP/HeuristicBase.h
+++ /dev/null
@@ -1,247 +0,0 @@
-//===-- HeuristcBase.h --- Heuristic base class for PBQP --------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CODEGEN_PBQP_HEURISTICBASE_H
-#define LLVM_CODEGEN_PBQP_HEURISTICBASE_H
-
-#include "HeuristicSolver.h"
-
-namespace PBQP {
-
- /// \brief Abstract base class for heuristic implementations.
- ///
- /// This class provides a handy base for heuristic implementations with common
- /// solver behaviour implemented for a number of methods.
- ///
- /// To implement your own heuristic using this class as a base you'll have to
- /// implement, as a minimum, the following methods:
- /// <ul>
- /// <li> void addToHeuristicList(Graph::NodeItr) : Add a node to the
- /// heuristic reduction list.
- /// <li> void heuristicReduce() : Perform a single heuristic reduction.
- /// <li> void preUpdateEdgeCosts(Graph::EdgeItr) : Handle the (imminent)
- /// change to the cost matrix on the given edge (by R2).
- /// <li> void postUpdateEdgeCostts(Graph::EdgeItr) : Handle the new
- /// costs on the given edge.
- /// <li> void handleAddEdge(Graph::EdgeItr) : Handle the addition of a new
- /// edge into the PBQP graph (by R2).
- /// <li> void handleRemoveEdge(Graph::EdgeItr, Graph::NodeItr) : Handle the
- /// disconnection of the given edge from the given node.
- /// <li> A constructor for your derived class : to pass back a reference to
- /// the solver which is using this heuristic.
- /// </ul>
- ///
- /// These methods are implemented in this class for documentation purposes,
- /// but will assert if called.
- ///
- /// Note that this class uses the curiously recursive template idiom to
- /// forward calls to the derived class. These methods need not be made
- /// virtual, and indeed probably shouldn't for performance reasons.
- ///
- /// You'll also need to provide NodeData and EdgeData structs in your class.
- /// These can be used to attach data relevant to your heuristic to each
- /// node/edge in the PBQP graph.
-
- template <typename HImpl>
- class HeuristicBase {
- private:
-
- typedef std::list<Graph::NodeId> OptimalList;
-
- HeuristicSolverImpl<HImpl> &s;
- Graph &g;
- OptimalList optimalList;
-
- // Return a reference to the derived heuristic.
- HImpl& impl() { return static_cast<HImpl&>(*this); }
-
- // Add the given node to the optimal reductions list. Keep an iterator to
- // its location for fast removal.
- void addToOptimalReductionList(Graph::NodeId nId) {
- optimalList.insert(optimalList.end(), nId);
- }
-
- public:
-
- /// \brief Construct an instance with a reference to the given solver.
- /// @param solver The solver which is using this heuristic instance.
- HeuristicBase(HeuristicSolverImpl<HImpl> &solver)
- : s(solver), g(s.getGraph()) { }
-
- /// \brief Get the solver which is using this heuristic instance.
- /// @return The solver which is using this heuristic instance.
- ///
- /// You can use this method to get access to the solver in your derived
- /// heuristic implementation.
- HeuristicSolverImpl<HImpl>& getSolver() { return s; }
-
- /// \brief Get the graph representing the problem to be solved.
- /// @return The graph representing the problem to be solved.
- Graph& getGraph() { return g; }
-
- /// \brief Tell the solver to simplify the graph before the reduction phase.
- /// @return Whether or not the solver should run a simplification phase
- /// prior to the main setup and reduction.
- ///
- /// HeuristicBase returns true from this method as it's a sensible default,
- /// however you can over-ride it in your derived class if you want different
- /// behaviour.
- bool solverRunSimplify() const { return true; }
-
- /// \brief Decide whether a node should be optimally or heuristically
- /// reduced.
- /// @return Whether or not the given node should be listed for optimal
- /// reduction (via R0, R1 or R2).
- ///
- /// HeuristicBase returns true for any node with degree less than 3. This is
- /// sane and sensible for many situations, but not all. You can over-ride
- /// this method in your derived class if you want a different selection
- /// criteria. Note however that your criteria for selecting optimal nodes
- /// should be <i>at least</i> as strong as this. I.e. Nodes of degree 3 or
- /// higher should not be selected under any circumstances.
- bool shouldOptimallyReduce(Graph::NodeId nId) {
- if (g.getNodeDegree(nId) < 3)
- return true;
- // else
- return false;
- }
-
- /// \brief Add the given node to the list of nodes to be optimally reduced.
- /// @param nId Node id to be added.
- ///
- /// You probably don't want to over-ride this, except perhaps to record
- /// statistics before calling this implementation. HeuristicBase relies on
- /// its behaviour.
- void addToOptimalReduceList(Graph::NodeId nId) {
- optimalList.push_back(nId);
- }
-
- /// \brief Initialise the heuristic.
- ///
- /// HeuristicBase iterates over all nodes in the problem and adds them to
- /// the appropriate list using addToOptimalReduceList or
- /// addToHeuristicReduceList based on the result of shouldOptimallyReduce.
- ///
- /// This behaviour should be fine for most situations.
- void setup() {
- for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
- nItr != nEnd; ++nItr) {
- if (impl().shouldOptimallyReduce(*nItr)) {
- addToOptimalReduceList(*nItr);
- } else {
- impl().addToHeuristicReduceList(*nItr);
- }
- }
- }
-
- /// \brief Optimally reduce one of the nodes in the optimal reduce list.
- /// @return True if a reduction takes place, false if the optimal reduce
- /// list is empty.
- ///
- /// Selects a node from the optimal reduce list and removes it, applying
- /// R0, R1 or R2 as appropriate based on the selected node's degree.
- bool optimalReduce() {
- if (optimalList.empty())
- return false;
-
- Graph::NodeId nId = optimalList.front();
- optimalList.pop_front();
-
- switch (s.getSolverDegree(nId)) {
- case 0: s.applyR0(nId); break;
- case 1: s.applyR1(nId); break;
- case 2: s.applyR2(nId); break;
- default: llvm_unreachable(
- "Optimal reductions of degree > 2 nodes is invalid.");
- }
-
- return true;
- }
-
- /// \brief Perform the PBQP reduction process.
- ///
- /// Reduces the problem to the empty graph by repeated application of the
- /// reduction rules R0, R1, R2 and RN.
- /// R0, R1 or R2 are always applied if possible before RN is used.
- void reduce() {
- bool finished = false;
-
- while (!finished) {
- if (!optimalReduce()) {
- if (impl().heuristicReduce()) {
- getSolver().recordRN();
- } else {
- finished = true;
- }
- }
- }
- }
-
- /// \brief Add a node to the heuristic reduce list.
- /// @param nId Node id to add to the heuristic reduce list.
- void addToHeuristicList(Graph::NodeId nId) {
- llvm_unreachable("Must be implemented in derived class.");
- }
-
- /// \brief Heuristically reduce one of the nodes in the heuristic
- /// reduce list.
- /// @return True if a reduction takes place, false if the heuristic reduce
- /// list is empty.
- bool heuristicReduce() {
- llvm_unreachable("Must be implemented in derived class.");
- return false;
- }
-
- /// \brief Prepare a change in the costs on the given edge.
- /// @param eId Edge id.
- void preUpdateEdgeCosts(Graph::EdgeId eId) {
- llvm_unreachable("Must be implemented in derived class.");
- }
-
- /// \brief Handle the change in the costs on the given edge.
- /// @param eId Edge id.
- void postUpdateEdgeCostts(Graph::EdgeId eId) {
- llvm_unreachable("Must be implemented in derived class.");
- }
-
- /// \brief Handle the addition of a new edge into the PBQP graph.
- /// @param eId Edge id for the added edge.
- void handleAddEdge(Graph::EdgeId eId) {
- llvm_unreachable("Must be implemented in derived class.");
- }
-
- /// \brief Handle disconnection of an edge from a node.
- /// @param eId Edge id for edge being disconnected.
- /// @param nId Node id for the node being disconnected from.
- ///
- /// Edges are frequently removed due to the removal of a node. This
- /// method allows for the effect to be computed only for the remaining
- /// node in the graph.
- void handleRemoveEdge(Graph::EdgeId eId, Graph::NodeId nId) {
- llvm_unreachable("Must be implemented in derived class.");
- }
-
- /// \brief Clean up any structures used by HeuristicBase.
- ///
- /// At present this just performs a sanity check: that the optimal reduce
- /// list is empty now that reduction has completed.
- ///
- /// If your derived class has more complex structures which need tearing
- /// down you should over-ride this method but include a call back to this
- /// implementation.
- void cleanup() {
- assert(optimalList.empty() && "Nodes left over in optimal reduce list?");
- }
-
- };
-
-}
-
-
-#endif // LLVM_CODEGEN_PBQP_HEURISTICBASE_H
diff --git a/include/llvm/CodeGen/PBQP/HeuristicSolver.h b/include/llvm/CodeGen/PBQP/HeuristicSolver.h
deleted file mode 100644
index e26ca02..0000000
--- a/include/llvm/CodeGen/PBQP/HeuristicSolver.h
+++ /dev/null
@@ -1,618 +0,0 @@
-//===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Heuristic PBQP solver. This solver is able to perform optimal reductions for
-// nodes of degree 0, 1 or 2. For nodes of degree >2 a plugable heuristic is
-// used to select a node for reduction.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
-#define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
-
-#include "Graph.h"
-#include "Solution.h"
-#include <limits>
-#include <vector>
-
-namespace PBQP {
-
- /// \brief Heuristic PBQP solver implementation.
- ///
- /// This class should usually be created (and destroyed) indirectly via a call
- /// to HeuristicSolver<HImpl>::solve(Graph&).
- /// See the comments for HeuristicSolver.
- ///
- /// HeuristicSolverImpl provides the R0, R1 and R2 reduction rules,
- /// backpropagation phase, and maintains the internal copy of the graph on
- /// which the reduction is carried out (the original being kept to facilitate
- /// backpropagation).
- template <typename HImpl>
- class HeuristicSolverImpl {
- private:
-
- typedef typename HImpl::NodeData HeuristicNodeData;
- typedef typename HImpl::EdgeData HeuristicEdgeData;
-
- typedef std::list<Graph::EdgeId> SolverEdges;
-
- public:
-
- /// \brief Iterator type for edges in the solver graph.
- typedef SolverEdges::iterator SolverEdgeItr;
-
- private:
-
- class NodeData {
- public:
- NodeData() : solverDegree(0) {}
-
- HeuristicNodeData& getHeuristicData() { return hData; }
-
- SolverEdgeItr addSolverEdge(Graph::EdgeId eId) {
- ++solverDegree;
- return solverEdges.insert(solverEdges.end(), eId);
- }
-
- void removeSolverEdge(SolverEdgeItr seItr) {
- --solverDegree;
- solverEdges.erase(seItr);
- }
-
- SolverEdgeItr solverEdgesBegin() { return solverEdges.begin(); }
- SolverEdgeItr solverEdgesEnd() { return solverEdges.end(); }
- unsigned getSolverDegree() const { return solverDegree; }
- void clearSolverEdges() {
- solverDegree = 0;
- solverEdges.clear();
- }
-
- private:
- HeuristicNodeData hData;
- unsigned solverDegree;
- SolverEdges solverEdges;
- };
-
- class EdgeData {
- public:
- HeuristicEdgeData& getHeuristicData() { return hData; }
-
- void setN1SolverEdgeItr(SolverEdgeItr n1SolverEdgeItr) {
- this->n1SolverEdgeItr = n1SolverEdgeItr;
- }
-
- SolverEdgeItr getN1SolverEdgeItr() { return n1SolverEdgeItr; }
-
- void setN2SolverEdgeItr(SolverEdgeItr n2SolverEdgeItr){
- this->n2SolverEdgeItr = n2SolverEdgeItr;
- }
-
- SolverEdgeItr getN2SolverEdgeItr() { return n2SolverEdgeItr; }
-
- private:
-
- HeuristicEdgeData hData;
- SolverEdgeItr n1SolverEdgeItr, n2SolverEdgeItr;
- };
-
- Graph &g;
- HImpl h;
- Solution s;
- std::vector<Graph::NodeId> stack;
-
- typedef std::list<NodeData> NodeDataList;
- NodeDataList nodeDataList;
-
- typedef std::list<EdgeData> EdgeDataList;
- EdgeDataList edgeDataList;
-
- public:
-
- /// \brief Construct a heuristic solver implementation to solve the given
- /// graph.
- /// @param g The graph representing the problem instance to be solved.
- HeuristicSolverImpl(Graph &g) : g(g), h(*this) {}
-
- /// \brief Get the graph being solved by this solver.
- /// @return The graph representing the problem instance being solved by this
- /// solver.
- Graph& getGraph() { return g; }
-
- /// \brief Get the heuristic data attached to the given node.
- /// @param nId Node id.
- /// @return The heuristic data attached to the given node.
- HeuristicNodeData& getHeuristicNodeData(Graph::NodeId nId) {
- return getSolverNodeData(nId).getHeuristicData();
- }
-
- /// \brief Get the heuristic data attached to the given edge.
- /// @param eId Edge id.
- /// @return The heuristic data attached to the given node.
- HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeId eId) {
- return getSolverEdgeData(eId).getHeuristicData();
- }
-
- /// \brief Begin iterator for the set of edges adjacent to the given node in
- /// the solver graph.
- /// @param nId Node id.
- /// @return Begin iterator for the set of edges adjacent to the given node
- /// in the solver graph.
- SolverEdgeItr solverEdgesBegin(Graph::NodeId nId) {
- return getSolverNodeData(nId).solverEdgesBegin();
- }
-
- /// \brief End iterator for the set of edges adjacent to the given node in
- /// the solver graph.
- /// @param nId Node id.
- /// @return End iterator for the set of edges adjacent to the given node in
- /// the solver graph.
- SolverEdgeItr solverEdgesEnd(Graph::NodeId nId) {
- return getSolverNodeData(nId).solverEdgesEnd();
- }
-
- /// \brief Remove a node from the solver graph.
- /// @param eId Edge id for edge to be removed.
- ///
- /// Does <i>not</i> notify the heuristic of the removal. That should be
- /// done manually if necessary.
- void removeSolverEdge(Graph::EdgeId eId) {
- EdgeData &eData = getSolverEdgeData(eId);
- NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eId)),
- &n2Data = getSolverNodeData(g.getEdgeNode2(eId));
-
- n1Data.removeSolverEdge(eData.getN1SolverEdgeItr());
- n2Data.removeSolverEdge(eData.getN2SolverEdgeItr());
- }
-
- /// \brief Compute a solution to the PBQP problem instance with which this
- /// heuristic solver was constructed.
- /// @return A solution to the PBQP problem.
- ///
- /// Performs the full PBQP heuristic solver algorithm, including setup,
- /// calls to the heuristic (which will call back to the reduction rules in
- /// this class), and cleanup.
- Solution computeSolution() {
- setup();
- h.setup();
- h.reduce();
- backpropagate();
- h.cleanup();
- cleanup();
- return s;
- }
-
- /// \brief Add to the end of the stack.
- /// @param nId Node id to add to the reduction stack.
- void pushToStack(Graph::NodeId nId) {
- getSolverNodeData(nId).clearSolverEdges();
- stack.push_back(nId);
- }
-
- /// \brief Returns the solver degree of the given node.
- /// @param nId Node id for which degree is requested.
- /// @return Node degree in the <i>solver</i> graph (not the original graph).
- unsigned getSolverDegree(Graph::NodeId nId) {
- return getSolverNodeData(nId).getSolverDegree();
- }
-
- /// \brief Set the solution of the given node.
- /// @param nId Node id to set solution for.
- /// @param selection Selection for node.
- void setSolution(const Graph::NodeId &nId, unsigned selection) {
- s.setSelection(nId, selection);
-
- for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nId),
- aeEnd = g.adjEdgesEnd(nId);
- aeItr != aeEnd; ++aeItr) {
- Graph::EdgeId eId(*aeItr);
- Graph::NodeId anId(g.getEdgeOtherNode(eId, nId));
- getSolverNodeData(anId).addSolverEdge(eId);
- }
- }
-
- /// \brief Apply rule R0.
- /// @param nId Node id for node to apply R0 to.
- ///
- /// Node will be automatically pushed to the solver stack.
- void applyR0(Graph::NodeId nId) {
- assert(getSolverNodeData(nId).getSolverDegree() == 0 &&
- "R0 applied to node with degree != 0.");
-
- // Nothing to do. Just push the node onto the reduction stack.
- pushToStack(nId);
-
- s.recordR0();
- }
-
- /// \brief Apply rule R1.
- /// @param xnId Node id for node to apply R1 to.
- ///
- /// Node will be automatically pushed to the solver stack.
- void applyR1(Graph::NodeId xnId) {
- NodeData &nd = getSolverNodeData(xnId);
- assert(nd.getSolverDegree() == 1 &&
- "R1 applied to node with degree != 1.");
-
- Graph::EdgeId eId = *nd.solverEdgesBegin();
-
- const Matrix &eCosts = g.getEdgeCosts(eId);
- const Vector &xCosts = g.getNodeCosts(xnId);
-
- // Duplicate a little to avoid transposing matrices.
- if (xnId == g.getEdgeNode1(eId)) {
- Graph::NodeId ynId = g.getEdgeNode2(eId);
- Vector &yCosts = g.getNodeCosts(ynId);
- for (unsigned j = 0; j < yCosts.getLength(); ++j) {
- PBQPNum min = eCosts[0][j] + xCosts[0];
- for (unsigned i = 1; i < xCosts.getLength(); ++i) {
- PBQPNum c = eCosts[i][j] + xCosts[i];
- if (c < min)
- min = c;
- }
- yCosts[j] += min;
- }
- h.handleRemoveEdge(eId, ynId);
- } else {
- Graph::NodeId ynId = g.getEdgeNode1(eId);
- Vector &yCosts = g.getNodeCosts(ynId);
- for (unsigned i = 0; i < yCosts.getLength(); ++i) {
- PBQPNum min = eCosts[i][0] + xCosts[0];
- for (unsigned j = 1; j < xCosts.getLength(); ++j) {
- PBQPNum c = eCosts[i][j] + xCosts[j];
- if (c < min)
- min = c;
- }
- yCosts[i] += min;
- }
- h.handleRemoveEdge(eId, ynId);
- }
- removeSolverEdge(eId);
- assert(nd.getSolverDegree() == 0 &&
- "Degree 1 with edge removed should be 0.");
- pushToStack(xnId);
- s.recordR1();
- }
-
- /// \brief Apply rule R2.
- /// @param xnId Node id for node to apply R2 to.
- ///
- /// Node will be automatically pushed to the solver stack.
- void applyR2(Graph::NodeId xnId) {
- assert(getSolverNodeData(xnId).getSolverDegree() == 2 &&
- "R2 applied to node with degree != 2.");
-
- NodeData &nd = getSolverNodeData(xnId);
- const Vector &xCosts = g.getNodeCosts(xnId);
-
- SolverEdgeItr aeItr = nd.solverEdgesBegin();
- Graph::EdgeId yxeId = *aeItr,
- zxeId = *(++aeItr);
-
- Graph::NodeId ynId = g.getEdgeOtherNode(yxeId, xnId),
- znId = g.getEdgeOtherNode(zxeId, xnId);
-
- bool flipEdge1 = (g.getEdgeNode1(yxeId) == xnId),
- flipEdge2 = (g.getEdgeNode1(zxeId) == xnId);
-
- const Matrix *yxeCosts = flipEdge1 ?
- new Matrix(g.getEdgeCosts(yxeId).transpose()) :
- &g.getEdgeCosts(yxeId);
-
- const Matrix *zxeCosts = flipEdge2 ?
- new Matrix(g.getEdgeCosts(zxeId).transpose()) :
- &g.getEdgeCosts(zxeId);
-
- unsigned xLen = xCosts.getLength(),
- yLen = yxeCosts->getRows(),
- zLen = zxeCosts->getRows();
-
- Matrix delta(yLen, zLen);
-
- for (unsigned i = 0; i < yLen; ++i) {
- for (unsigned j = 0; j < zLen; ++j) {
- PBQPNum min = (*yxeCosts)[i][0] + (*zxeCosts)[j][0] + xCosts[0];
- for (unsigned k = 1; k < xLen; ++k) {
- PBQPNum c = (*yxeCosts)[i][k] + (*zxeCosts)[j][k] + xCosts[k];
- if (c < min) {
- min = c;
- }
- }
- delta[i][j] = min;
- }
- }
-
- if (flipEdge1)
- delete yxeCosts;
-
- if (flipEdge2)
- delete zxeCosts;
-
- Graph::EdgeId yzeId = g.findEdge(ynId, znId);
- bool addedEdge = false;
-
- if (yzeId == g.invalidEdgeId()) {
- yzeId = g.addEdge(ynId, znId, delta);
- addedEdge = true;
- } else {
- Matrix &yzeCosts = g.getEdgeCosts(yzeId);
- h.preUpdateEdgeCosts(yzeId);
- if (ynId == g.getEdgeNode1(yzeId)) {
- yzeCosts += delta;
- } else {
- yzeCosts += delta.transpose();
- }
- }
-
- bool nullCostEdge = tryNormaliseEdgeMatrix(yzeId);
-
- if (!addedEdge) {
- // If we modified the edge costs let the heuristic know.
- h.postUpdateEdgeCosts(yzeId);
- }
-
- if (nullCostEdge) {
- // If this edge ended up null remove it.
- if (!addedEdge) {
- // We didn't just add it, so we need to notify the heuristic
- // and remove it from the solver.
- h.handleRemoveEdge(yzeId, ynId);
- h.handleRemoveEdge(yzeId, znId);
- removeSolverEdge(yzeId);
- }
- g.removeEdge(yzeId);
- } else if (addedEdge) {
- // If the edge was added, and non-null, finish setting it up, add it to
- // the solver & notify heuristic.
- edgeDataList.push_back(EdgeData());
- g.setEdgeData(yzeId, &edgeDataList.back());
- addSolverEdge(yzeId);
- h.handleAddEdge(yzeId);
- }
-
- h.handleRemoveEdge(yxeId, ynId);
- removeSolverEdge(yxeId);
- h.handleRemoveEdge(zxeId, znId);
- removeSolverEdge(zxeId);
-
- pushToStack(xnId);
- s.recordR2();
- }
-
- /// \brief Record an application of the RN rule.
- ///
- /// For use by the HeuristicBase.
- void recordRN() { s.recordRN(); }
-
- private:
-
- NodeData& getSolverNodeData(Graph::NodeId nId) {
- return *static_cast<NodeData*>(g.getNodeData(nId));
- }
-
- EdgeData& getSolverEdgeData(Graph::EdgeId eId) {
- return *static_cast<EdgeData*>(g.getEdgeData(eId));
- }
-
- void addSolverEdge(Graph::EdgeId eId) {
- EdgeData &eData = getSolverEdgeData(eId);
- NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eId)),
- &n2Data = getSolverNodeData(g.getEdgeNode2(eId));
-
- eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eId));
- eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eId));
- }
-
- void setup() {
- if (h.solverRunSimplify()) {
- simplify();
- }
-
- // Create node data objects.
- for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
- nItr != nEnd; ++nItr) {
- nodeDataList.push_back(NodeData());
- g.setNodeData(*nItr, &nodeDataList.back());
- }
-
- // Create edge data objects.
- for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
- eItr != eEnd; ++eItr) {
- edgeDataList.push_back(EdgeData());
- g.setEdgeData(*eItr, &edgeDataList.back());
- addSolverEdge(*eItr);
- }
- }
-
- void simplify() {
- disconnectTrivialNodes();
- eliminateIndependentEdges();
- }
-
- // Eliminate trivial nodes.
- void disconnectTrivialNodes() {
- unsigned numDisconnected = 0;
-
- for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
- nItr != nEnd; ++nItr) {
-
- Graph::NodeId nId = *nItr;
-
- if (g.getNodeCosts(nId).getLength() == 1) {
-
- std::vector<Graph::EdgeId> edgesToRemove;
-
- for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nId),
- aeEnd = g.adjEdgesEnd(nId);
- aeItr != aeEnd; ++aeItr) {
-
- Graph::EdgeId eId = *aeItr;
-
- if (g.getEdgeNode1(eId) == nId) {
- Graph::NodeId otherNodeId = g.getEdgeNode2(eId);
- g.getNodeCosts(otherNodeId) +=
- g.getEdgeCosts(eId).getRowAsVector(0);
- }
- else {
- Graph::NodeId otherNodeId = g.getEdgeNode1(eId);
- g.getNodeCosts(otherNodeId) +=
- g.getEdgeCosts(eId).getColAsVector(0);
- }
-
- edgesToRemove.push_back(eId);
- }
-
- if (!edgesToRemove.empty())
- ++numDisconnected;
-
- while (!edgesToRemove.empty()) {
- g.removeEdge(edgesToRemove.back());
- edgesToRemove.pop_back();
- }
- }
- }
- }
-
- void eliminateIndependentEdges() {
- std::vector<Graph::EdgeId> edgesToProcess;
- unsigned numEliminated = 0;
-
- for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
- eItr != eEnd; ++eItr) {
- edgesToProcess.push_back(*eItr);
- }
-
- while (!edgesToProcess.empty()) {
- if (tryToEliminateEdge(edgesToProcess.back()))
- ++numEliminated;
- edgesToProcess.pop_back();
- }
- }
-
- bool tryToEliminateEdge(Graph::EdgeId eId) {
- if (tryNormaliseEdgeMatrix(eId)) {
- g.removeEdge(eId);
- return true;
- }
- return false;
- }
-
- bool tryNormaliseEdgeMatrix(Graph::EdgeId &eId) {
-
- const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity();
-
- Matrix &edgeCosts = g.getEdgeCosts(eId);
- Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eId)),
- &vCosts = g.getNodeCosts(g.getEdgeNode2(eId));
-
- for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
- PBQPNum rowMin = infinity;
-
- for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
- if (vCosts[c] != infinity && edgeCosts[r][c] < rowMin)
- rowMin = edgeCosts[r][c];
- }
-
- uCosts[r] += rowMin;
-
- if (rowMin != infinity) {
- edgeCosts.subFromRow(r, rowMin);
- }
- else {
- edgeCosts.setRow(r, 0);
- }
- }
-
- for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
- PBQPNum colMin = infinity;
-
- for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
- if (uCosts[r] != infinity && edgeCosts[r][c] < colMin)
- colMin = edgeCosts[r][c];
- }
-
- vCosts[c] += colMin;
-
- if (colMin != infinity) {
- edgeCosts.subFromCol(c, colMin);
- }
- else {
- edgeCosts.setCol(c, 0);
- }
- }
-
- return edgeCosts.isZero();
- }
-
- void backpropagate() {
- while (!stack.empty()) {
- computeSolution(stack.back());
- stack.pop_back();
- }
- }
-
- void computeSolution(Graph::NodeId nId) {
-
- NodeData &nodeData = getSolverNodeData(nId);
-
- Vector v(g.getNodeCosts(nId));
-
- // Solve based on existing solved edges.
- for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(),
- solvedEdgeEnd = nodeData.solverEdgesEnd();
- solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) {
-
- Graph::EdgeId eId(*solvedEdgeItr);
- Matrix &edgeCosts = g.getEdgeCosts(eId);
-
- if (nId == g.getEdgeNode1(eId)) {
- Graph::NodeId adjNode(g.getEdgeNode2(eId));
- unsigned adjSolution = s.getSelection(adjNode);
- v += edgeCosts.getColAsVector(adjSolution);
- }
- else {
- Graph::NodeId adjNode(g.getEdgeNode1(eId));
- unsigned adjSolution = s.getSelection(adjNode);
- v += edgeCosts.getRowAsVector(adjSolution);
- }
-
- }
-
- setSolution(nId, v.minIndex());
- }
-
- void cleanup() {
- h.cleanup();
- nodeDataList.clear();
- edgeDataList.clear();
- }
- };
-
- /// \brief PBQP heuristic solver class.
- ///
- /// Given a PBQP Graph g representing a PBQP problem, you can find a solution
- /// by calling
- /// <tt>Solution s = HeuristicSolver<H>::solve(g);</tt>
- ///
- /// The choice of heuristic for the H parameter will affect both the solver
- /// speed and solution quality. The heuristic should be chosen based on the
- /// nature of the problem being solved.
- /// Currently the only solver included with LLVM is the Briggs heuristic for
- /// register allocation.
- template <typename HImpl>
- class HeuristicSolver {
- public:
- static Solution solve(Graph &g) {
- HeuristicSolverImpl<HImpl> hs(g);
- return hs.computeSolution();
- }
- };
-
-}
-
-#endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
diff --git a/include/llvm/CodeGen/PBQP/Heuristics/Briggs.h b/include/llvm/CodeGen/PBQP/Heuristics/Briggs.h
deleted file mode 100644
index c355c2c..0000000
--- a/include/llvm/CodeGen/PBQP/Heuristics/Briggs.h
+++ /dev/null
@@ -1,468 +0,0 @@
-//===-- Briggs.h --- Briggs Heuristic for PBQP ------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This class implements the Briggs test for "allocability" of nodes in a
-// PBQP graph representing a register allocation problem. Nodes which can be
-// proven allocable (by a safe and relatively accurate test) are removed from
-// the PBQP graph first. If no provably allocable node is present in the graph
-// then the node with the minimal spill-cost to degree ratio is removed.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
-#define LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
-
-#include "../HeuristicBase.h"
-#include "../HeuristicSolver.h"
-#include <limits>
-
-namespace PBQP {
- namespace Heuristics {
-
- /// \brief PBQP Heuristic which applies an allocability test based on
- /// Briggs.
- ///
- /// This heuristic assumes that the elements of cost vectors in the PBQP
- /// problem represent storage options, with the first being the spill
- /// option and subsequent elements representing legal registers for the
- /// corresponding node. Edge cost matrices are likewise assumed to represent
- /// register constraints.
- /// If one or more nodes can be proven allocable by this heuristic (by
- /// inspection of their constraint matrices) then the allocable node of
- /// highest degree is selected for the next reduction and pushed to the
- /// solver stack. If no nodes can be proven allocable then the node with
- /// the lowest estimated spill cost is selected and push to the solver stack
- /// instead.
- ///
- /// This implementation is built on top of HeuristicBase.
- class Briggs : public HeuristicBase<Briggs> {
- private:
-
- class LinkDegreeComparator {
- public:
- LinkDegreeComparator(HeuristicSolverImpl<Briggs> &s) : s(&s) {}
- bool operator()(Graph::NodeId n1Id, Graph::NodeId n2Id) const {
- if (s->getSolverDegree(n1Id) > s->getSolverDegree(n2Id))
- return true;
- return false;
- }
- private:
- HeuristicSolverImpl<Briggs> *s;
- };
-
- class SpillCostComparator {
- public:
- SpillCostComparator(HeuristicSolverImpl<Briggs> &s)
- : s(&s), g(&s.getGraph()) {}
- bool operator()(Graph::NodeId n1Id, Graph::NodeId n2Id) const {
- const PBQP::Vector &cv1 = g->getNodeCosts(n1Id);
- const PBQP::Vector &cv2 = g->getNodeCosts(n2Id);
-
- PBQPNum cost1 = cv1[0] / s->getSolverDegree(n1Id);
- PBQPNum cost2 = cv2[0] / s->getSolverDegree(n2Id);
-
- if (cost1 < cost2)
- return true;
- return false;
- }
-
- private:
- HeuristicSolverImpl<Briggs> *s;
- Graph *g;
- };
-
- typedef std::list<Graph::NodeId> RNAllocableList;
- typedef RNAllocableList::iterator RNAllocableListItr;
-
- typedef std::list<Graph::NodeId> RNUnallocableList;
- typedef RNUnallocableList::iterator RNUnallocableListItr;
-
- public:
-
- struct NodeData {
- typedef std::vector<unsigned> UnsafeDegreesArray;
- bool isHeuristic, isAllocable, isInitialized;
- unsigned numDenied, numSafe;
- UnsafeDegreesArray unsafeDegrees;
- RNAllocableListItr rnaItr;
- RNUnallocableListItr rnuItr;
-
- NodeData()
- : isHeuristic(false), isAllocable(false), isInitialized(false),
- numDenied(0), numSafe(0) { }
- };
-
- struct EdgeData {
- typedef std::vector<unsigned> UnsafeArray;
- unsigned worst, reverseWorst;
- UnsafeArray unsafe, reverseUnsafe;
- bool isUpToDate;
-
- EdgeData() : worst(0), reverseWorst(0), isUpToDate(false) {}
- };
-
- /// \brief Construct an instance of the Briggs heuristic.
- /// @param solver A reference to the solver which is using this heuristic.
- Briggs(HeuristicSolverImpl<Briggs> &solver) :
- HeuristicBase<Briggs>(solver) {}
-
- /// \brief Determine whether a node should be reduced using optimal
- /// reduction.
- /// @param nId Node id to be considered.
- /// @return True if the given node should be optimally reduced, false
- /// otherwise.
- ///
- /// Selects nodes of degree 0, 1 or 2 for optimal reduction, with one
- /// exception. Nodes whose spill cost (element 0 of their cost vector) is
- /// infinite are checked for allocability first. Allocable nodes may be
- /// optimally reduced, but nodes whose allocability cannot be proven are
- /// selected for heuristic reduction instead.
- bool shouldOptimallyReduce(Graph::NodeId nId) {
- if (getSolver().getSolverDegree(nId) < 3) {
- return true;
- }
- // else
- return false;
- }
-
- /// \brief Add a node to the heuristic reduce list.
- /// @param nId Node id to add to the heuristic reduce list.
- void addToHeuristicReduceList(Graph::NodeId nId) {
- NodeData &nd = getHeuristicNodeData(nId);
- initializeNode(nId);
- nd.isHeuristic = true;
- if (nd.isAllocable) {
- nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nId);
- } else {
- nd.rnuItr = rnUnallocableList.insert(rnUnallocableList.end(), nId);
- }
- }
-
- /// \brief Heuristically reduce one of the nodes in the heuristic
- /// reduce list.
- /// @return True if a reduction takes place, false if the heuristic reduce
- /// list is empty.
- ///
- /// If the list of allocable nodes is non-empty a node is selected
- /// from it and pushed to the stack. Otherwise if the non-allocable list
- /// is non-empty a node is selected from it and pushed to the stack.
- /// If both lists are empty the method simply returns false with no action
- /// taken.
- bool heuristicReduce() {
- if (!rnAllocableList.empty()) {
- RNAllocableListItr rnaItr =
- min_element(rnAllocableList.begin(), rnAllocableList.end(),
- LinkDegreeComparator(getSolver()));
- Graph::NodeId nId = *rnaItr;
- rnAllocableList.erase(rnaItr);
- handleRemoveNode(nId);
- getSolver().pushToStack(nId);
- return true;
- } else if (!rnUnallocableList.empty()) {
- RNUnallocableListItr rnuItr =
- min_element(rnUnallocableList.begin(), rnUnallocableList.end(),
- SpillCostComparator(getSolver()));
- Graph::NodeId nId = *rnuItr;
- rnUnallocableList.erase(rnuItr);
- handleRemoveNode(nId);
- getSolver().pushToStack(nId);
- return true;
- }
- // else
- return false;
- }
-
- /// \brief Prepare a change in the costs on the given edge.
- /// @param eId Edge id.
- void preUpdateEdgeCosts(Graph::EdgeId eId) {
- Graph &g = getGraph();
- Graph::NodeId n1Id = g.getEdgeNode1(eId),
- n2Id = g.getEdgeNode2(eId);
- NodeData &n1 = getHeuristicNodeData(n1Id),
- &n2 = getHeuristicNodeData(n2Id);
-
- if (n1.isHeuristic)
- subtractEdgeContributions(eId, getGraph().getEdgeNode1(eId));
- if (n2.isHeuristic)
- subtractEdgeContributions(eId, getGraph().getEdgeNode2(eId));
-
- EdgeData &ed = getHeuristicEdgeData(eId);
- ed.isUpToDate = false;
- }
-
- /// \brief Handle the change in the costs on the given edge.
- /// @param eId Edge id.
- void postUpdateEdgeCosts(Graph::EdgeId eId) {
- // This is effectively the same as adding a new edge now, since
- // we've factored out the costs of the old one.
- handleAddEdge(eId);
- }
-
- /// \brief Handle the addition of a new edge into the PBQP graph.
- /// @param eId Edge id for the added edge.
- ///
- /// Updates allocability of any nodes connected by this edge which are
- /// being managed by the heuristic. If allocability changes they are
- /// moved to the appropriate list.
- void handleAddEdge(Graph::EdgeId eId) {
- Graph &g = getGraph();
- Graph::NodeId n1Id = g.getEdgeNode1(eId),
- n2Id = g.getEdgeNode2(eId);
- NodeData &n1 = getHeuristicNodeData(n1Id),
- &n2 = getHeuristicNodeData(n2Id);
-
- // If neither node is managed by the heuristic there's nothing to be
- // done.
- if (!n1.isHeuristic && !n2.isHeuristic)
- return;
-
- // Ok - we need to update at least one node.
- computeEdgeContributions(eId);
-
- // Update node 1 if it's managed by the heuristic.
- if (n1.isHeuristic) {
- bool n1WasAllocable = n1.isAllocable;
- addEdgeContributions(eId, n1Id);
- updateAllocability(n1Id);
- if (n1WasAllocable && !n1.isAllocable) {
- rnAllocableList.erase(n1.rnaItr);
- n1.rnuItr =
- rnUnallocableList.insert(rnUnallocableList.end(), n1Id);
- }
- }
-
- // Likewise for node 2.
- if (n2.isHeuristic) {
- bool n2WasAllocable = n2.isAllocable;
- addEdgeContributions(eId, n2Id);
- updateAllocability(n2Id);
- if (n2WasAllocable && !n2.isAllocable) {
- rnAllocableList.erase(n2.rnaItr);
- n2.rnuItr =
- rnUnallocableList.insert(rnUnallocableList.end(), n2Id);
- }
- }
- }
-
- /// \brief Handle disconnection of an edge from a node.
- /// @param eId Edge id for edge being disconnected.
- /// @param nId Node id for the node being disconnected from.
- ///
- /// Updates allocability of the given node and, if appropriate, moves the
- /// node to a new list.
- void handleRemoveEdge(Graph::EdgeId eId, Graph::NodeId nId) {
- NodeData &nd =getHeuristicNodeData(nId);
-
- // If the node is not managed by the heuristic there's nothing to be
- // done.
- if (!nd.isHeuristic)
- return;
-
- EdgeData &ed = getHeuristicEdgeData(eId);
- (void)ed;
- assert(ed.isUpToDate && "Edge data is not up to date.");
-
- // Update node.
- bool ndWasAllocable = nd.isAllocable;
- subtractEdgeContributions(eId, nId);
- updateAllocability(nId);
-
- // If the node has gone optimal...
- if (shouldOptimallyReduce(nId)) {
- nd.isHeuristic = false;
- addToOptimalReduceList(nId);
- if (ndWasAllocable) {
- rnAllocableList.erase(nd.rnaItr);
- } else {
- rnUnallocableList.erase(nd.rnuItr);
- }
- } else {
- // Node didn't go optimal, but we might have to move it
- // from "unallocable" to "allocable".
- if (!ndWasAllocable && nd.isAllocable) {
- rnUnallocableList.erase(nd.rnuItr);
- nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nId);
- }
- }
- }
-
- private:
-
- NodeData& getHeuristicNodeData(Graph::NodeId nId) {
- return getSolver().getHeuristicNodeData(nId);
- }
-
- EdgeData& getHeuristicEdgeData(Graph::EdgeId eId) {
- return getSolver().getHeuristicEdgeData(eId);
- }
-
- // Work out what this edge will contribute to the allocability of the
- // nodes connected to it.
- void computeEdgeContributions(Graph::EdgeId eId) {
- EdgeData &ed = getHeuristicEdgeData(eId);
-
- if (ed.isUpToDate)
- return; // Edge data is already up to date.
-
- Matrix &eCosts = getGraph().getEdgeCosts(eId);
-
- unsigned numRegs = eCosts.getRows() - 1,
- numReverseRegs = eCosts.getCols() - 1;
-
- std::vector<unsigned> rowInfCounts(numRegs, 0),
- colInfCounts(numReverseRegs, 0);
-
- ed.worst = 0;
- ed.reverseWorst = 0;
- ed.unsafe.clear();
- ed.unsafe.resize(numRegs, 0);
- ed.reverseUnsafe.clear();
- ed.reverseUnsafe.resize(numReverseRegs, 0);
-
- for (unsigned i = 0; i < numRegs; ++i) {
- for (unsigned j = 0; j < numReverseRegs; ++j) {
- if (eCosts[i + 1][j + 1] ==
- std::numeric_limits<PBQPNum>::infinity()) {
- ed.unsafe[i] = 1;
- ed.reverseUnsafe[j] = 1;
- ++rowInfCounts[i];
- ++colInfCounts[j];
-
- if (colInfCounts[j] > ed.worst) {
- ed.worst = colInfCounts[j];
- }
-
- if (rowInfCounts[i] > ed.reverseWorst) {
- ed.reverseWorst = rowInfCounts[i];
- }
- }
- }
- }
-
- ed.isUpToDate = true;
- }
-
- // Add the contributions of the given edge to the given node's
- // numDenied and safe members. No action is taken other than to update
- // these member values. Once updated these numbers can be used by clients
- // to update the node's allocability.
- void addEdgeContributions(Graph::EdgeId eId, Graph::NodeId nId) {
- EdgeData &ed = getHeuristicEdgeData(eId);
-
- assert(ed.isUpToDate && "Using out-of-date edge numbers.");
-
- NodeData &nd = getHeuristicNodeData(nId);
- unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
-
- bool nIsNode1 = nId == getGraph().getEdgeNode1(eId);
- EdgeData::UnsafeArray &unsafe =
- nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
- nd.numDenied += nIsNode1 ? ed.worst : ed.reverseWorst;
-
- for (unsigned r = 0; r < numRegs; ++r) {
- if (unsafe[r]) {
- if (nd.unsafeDegrees[r]==0) {
- --nd.numSafe;
- }
- ++nd.unsafeDegrees[r];
- }
- }
- }
-
- // Subtract the contributions of the given edge to the given node's
- // numDenied and safe members. No action is taken other than to update
- // these member values. Once updated these numbers can be used by clients
- // to update the node's allocability.
- void subtractEdgeContributions(Graph::EdgeId eId, Graph::NodeId nId) {
- EdgeData &ed = getHeuristicEdgeData(eId);
-
- assert(ed.isUpToDate && "Using out-of-date edge numbers.");
-
- NodeData &nd = getHeuristicNodeData(nId);
- unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
-
- bool nIsNode1 = nId == getGraph().getEdgeNode1(eId);
- EdgeData::UnsafeArray &unsafe =
- nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
- nd.numDenied -= nIsNode1 ? ed.worst : ed.reverseWorst;
-
- for (unsigned r = 0; r < numRegs; ++r) {
- if (unsafe[r]) {
- if (nd.unsafeDegrees[r] == 1) {
- ++nd.numSafe;
- }
- --nd.unsafeDegrees[r];
- }
- }
- }
-
- void updateAllocability(Graph::NodeId nId) {
- NodeData &nd = getHeuristicNodeData(nId);
- unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
- nd.isAllocable = nd.numDenied < numRegs || nd.numSafe > 0;
- }
-
- void initializeNode(Graph::NodeId nId) {
- NodeData &nd = getHeuristicNodeData(nId);
-
- if (nd.isInitialized)
- return; // Node data is already up to date.
-
- unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
-
- nd.numDenied = 0;
- const Vector& nCosts = getGraph().getNodeCosts(nId);
- for (unsigned i = 1; i < nCosts.getLength(); ++i) {
- if (nCosts[i] == std::numeric_limits<PBQPNum>::infinity())
- ++nd.numDenied;
- }
-
- nd.numSafe = numRegs;
- nd.unsafeDegrees.resize(numRegs, 0);
-
- typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
-
- for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(nId),
- aeEnd = getSolver().solverEdgesEnd(nId);
- aeItr != aeEnd; ++aeItr) {
-
- Graph::EdgeId eId = *aeItr;
- computeEdgeContributions(eId);
- addEdgeContributions(eId, nId);
- }
-
- updateAllocability(nId);
- nd.isInitialized = true;
- }
-
- void handleRemoveNode(Graph::NodeId xnId) {
- typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
- std::vector<Graph::EdgeId> edgesToRemove;
- for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(xnId),
- aeEnd = getSolver().solverEdgesEnd(xnId);
- aeItr != aeEnd; ++aeItr) {
- Graph::NodeId ynId = getGraph().getEdgeOtherNode(*aeItr, xnId);
- handleRemoveEdge(*aeItr, ynId);
- edgesToRemove.push_back(*aeItr);
- }
- while (!edgesToRemove.empty()) {
- getSolver().removeSolverEdge(edgesToRemove.back());
- edgesToRemove.pop_back();
- }
- }
-
- RNAllocableList rnAllocableList;
- RNUnallocableList rnUnallocableList;
- };
-
- }
-}
-
-
-#endif // LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
diff --git a/include/llvm/CodeGen/PBQP/Math.h b/include/llvm/CodeGen/PBQP/Math.h
index 08f8b98..69a9d83 100644
--- a/include/llvm/CodeGen/PBQP/Math.h
+++ b/include/llvm/CodeGen/PBQP/Math.h
@@ -20,268 +20,418 @@ typedef float PBQPNum;
/// \brief PBQP Vector class.
class Vector {
- public:
-
- /// \brief Construct a PBQP vector of the given size.
- explicit Vector(unsigned length) :
- length(length), data(new PBQPNum[length]) {
- }
-
- /// \brief Construct a PBQP vector with initializer.
- Vector(unsigned length, PBQPNum initVal) :
- length(length), data(new PBQPNum[length]) {
- std::fill(data, data + length, initVal);
- }
-
- /// \brief Copy construct a PBQP vector.
- Vector(const Vector &v) :
- length(v.length), data(new PBQPNum[length]) {
- std::copy(v.data, v.data + length, data);
- }
-
- /// \brief Destroy this vector, return its memory.
- ~Vector() { delete[] data; }
-
- /// \brief Assignment operator.
- Vector& operator=(const Vector &v) {
- delete[] data;
- length = v.length;
- data = new PBQPNum[length];
- std::copy(v.data, v.data + length, data);
- return *this;
- }
-
- /// \brief Return the length of the vector
- unsigned getLength() const {
- return length;
- }
-
- /// \brief Element access.
- PBQPNum& operator[](unsigned index) {
- assert(index < length && "Vector element access out of bounds.");
- return data[index];
- }
-
- /// \brief Const element access.
- const PBQPNum& operator[](unsigned index) const {
- assert(index < length && "Vector element access out of bounds.");
- return data[index];
- }
-
- /// \brief Add another vector to this one.
- Vector& operator+=(const Vector &v) {
- assert(length == v.length && "Vector length mismatch.");
- std::transform(data, data + length, v.data, data, std::plus<PBQPNum>());
- return *this;
- }
-
- /// \brief Subtract another vector from this one.
- Vector& operator-=(const Vector &v) {
- assert(length == v.length && "Vector length mismatch.");
- std::transform(data, data + length, v.data, data, std::minus<PBQPNum>());
- return *this;
- }
-
- /// \brief Returns the index of the minimum value in this vector
- unsigned minIndex() const {
- return std::min_element(data, data + length) - data;
- }
-
- private:
- unsigned length;
- PBQPNum *data;
+ friend class VectorComparator;
+public:
+
+ /// \brief Construct a PBQP vector of the given size.
+ explicit Vector(unsigned Length)
+ : Length(Length), Data(new PBQPNum[Length]) {
+ // llvm::dbgs() << "Constructing PBQP::Vector "
+ // << this << " (length " << Length << ")\n";
+ }
+
+ /// \brief Construct a PBQP vector with initializer.
+ Vector(unsigned Length, PBQPNum InitVal)
+ : Length(Length), Data(new PBQPNum[Length]) {
+ // llvm::dbgs() << "Constructing PBQP::Vector "
+ // << this << " (length " << Length << ", fill "
+ // << InitVal << ")\n";
+ std::fill(Data, Data + Length, InitVal);
+ }
+
+ /// \brief Copy construct a PBQP vector.
+ Vector(const Vector &V)
+ : Length(V.Length), Data(new PBQPNum[Length]) {
+ // llvm::dbgs() << "Copy-constructing PBQP::Vector " << this
+ // << " from PBQP::Vector " << &V << "\n";
+ std::copy(V.Data, V.Data + Length, Data);
+ }
+
+ /// \brief Move construct a PBQP vector.
+ Vector(Vector &&V)
+ : Length(V.Length), Data(V.Data) {
+ V.Length = 0;
+ V.Data = nullptr;
+ }
+
+ /// \brief Destroy this vector, return its memory.
+ ~Vector() {
+ // llvm::dbgs() << "Deleting PBQP::Vector " << this << "\n";
+ delete[] Data;
+ }
+
+ /// \brief Copy-assignment operator.
+ Vector& operator=(const Vector &V) {
+ // llvm::dbgs() << "Assigning to PBQP::Vector " << this
+ // << " from PBQP::Vector " << &V << "\n";
+ delete[] Data;
+ Length = V.Length;
+ Data = new PBQPNum[Length];
+ std::copy(V.Data, V.Data + Length, Data);
+ return *this;
+ }
+
+ /// \brief Move-assignment operator.
+ Vector& operator=(Vector &&V) {
+ delete[] Data;
+ Length = V.Length;
+ Data = V.Data;
+ V.Length = 0;
+ V.Data = nullptr;
+ return *this;
+ }
+
+ /// \brief Comparison operator.
+ bool operator==(const Vector &V) const {
+ assert(Length != 0 && Data != nullptr && "Invalid vector");
+ if (Length != V.Length)
+ return false;
+ return std::equal(Data, Data + Length, V.Data);
+ }
+
+ /// \brief Return the length of the vector
+ unsigned getLength() const {
+ assert(Length != 0 && Data != nullptr && "Invalid vector");
+ return Length;
+ }
+
+ /// \brief Element access.
+ PBQPNum& operator[](unsigned Index) {
+ assert(Length != 0 && Data != nullptr && "Invalid vector");
+ assert(Index < Length && "Vector element access out of bounds.");
+ return Data[Index];
+ }
+
+ /// \brief Const element access.
+ const PBQPNum& operator[](unsigned Index) const {
+ assert(Length != 0 && Data != nullptr && "Invalid vector");
+ assert(Index < Length && "Vector element access out of bounds.");
+ return Data[Index];
+ }
+
+ /// \brief Add another vector to this one.
+ Vector& operator+=(const Vector &V) {
+ assert(Length != 0 && Data != nullptr && "Invalid vector");
+ assert(Length == V.Length && "Vector length mismatch.");
+ std::transform(Data, Data + Length, V.Data, Data, std::plus<PBQPNum>());
+ return *this;
+ }
+
+ /// \brief Subtract another vector from this one.
+ Vector& operator-=(const Vector &V) {
+ assert(Length != 0 && Data != nullptr && "Invalid vector");
+ assert(Length == V.Length && "Vector length mismatch.");
+ std::transform(Data, Data + Length, V.Data, Data, std::minus<PBQPNum>());
+ return *this;
+ }
+
+ /// \brief Returns the index of the minimum value in this vector
+ unsigned minIndex() const {
+ assert(Length != 0 && Data != nullptr && "Invalid vector");
+ return std::min_element(Data, Data + Length) - Data;
+ }
+
+private:
+ unsigned Length;
+ PBQPNum *Data;
+};
+
+class VectorComparator {
+public:
+ bool operator()(const Vector &A, const Vector &B) {
+ if (A.Length < B.Length)
+ return true;
+ if (B.Length < A.Length)
+ return false;
+ char *AData = reinterpret_cast<char*>(A.Data);
+ char *BData = reinterpret_cast<char*>(B.Data);
+ return std::lexicographical_compare(AData,
+ AData + A.Length * sizeof(PBQPNum),
+ BData,
+ BData + A.Length * sizeof(PBQPNum));
+ }
};
/// \brief Output a textual representation of the given vector on the given
/// output stream.
template <typename OStream>
-OStream& operator<<(OStream &os, const Vector &v) {
- assert((v.getLength() != 0) && "Zero-length vector badness.");
+OStream& operator<<(OStream &OS, const Vector &V) {
+ assert((V.getLength() != 0) && "Zero-length vector badness.");
- os << "[ " << v[0];
- for (unsigned i = 1; i < v.getLength(); ++i) {
- os << ", " << v[i];
- }
- os << " ]";
+ OS << "[ " << V[0];
+ for (unsigned i = 1; i < V.getLength(); ++i)
+ OS << ", " << V[i];
+ OS << " ]";
- return os;
-}
+ return OS;
+}
/// \brief PBQP Matrix class
class Matrix {
- public:
-
- /// \brief Construct a PBQP Matrix with the given dimensions.
- Matrix(unsigned rows, unsigned cols) :
- rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
- }
-
- /// \brief Construct a PBQP Matrix with the given dimensions and initial
- /// value.
- Matrix(unsigned rows, unsigned cols, PBQPNum initVal) :
- rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
- std::fill(data, data + (rows * cols), initVal);
- }
-
- /// \brief Copy construct a PBQP matrix.
- Matrix(const Matrix &m) :
- rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) {
- std::copy(m.data, m.data + (rows * cols), data);
- }
-
- /// \brief Destroy this matrix, return its memory.
- ~Matrix() { delete[] data; }
-
- /// \brief Assignment operator.
- Matrix& operator=(const Matrix &m) {
- delete[] data;
- rows = m.rows; cols = m.cols;
- data = new PBQPNum[rows * cols];
- std::copy(m.data, m.data + (rows * cols), data);
- return *this;
- }
-
- /// \brief Return the number of rows in this matrix.
- unsigned getRows() const { return rows; }
-
- /// \brief Return the number of cols in this matrix.
- unsigned getCols() const { return cols; }
-
- /// \brief Matrix element access.
- PBQPNum* operator[](unsigned r) {
- assert(r < rows && "Row out of bounds.");
- return data + (r * cols);
- }
-
- /// \brief Matrix element access.
- const PBQPNum* operator[](unsigned r) const {
- assert(r < rows && "Row out of bounds.");
- return data + (r * cols);
- }
-
- /// \brief Returns the given row as a vector.
- Vector getRowAsVector(unsigned r) const {
- Vector v(cols);
- for (unsigned c = 0; c < cols; ++c)
- v[c] = (*this)[r][c];
- return v;
- }
-
- /// \brief Returns the given column as a vector.
- Vector getColAsVector(unsigned c) const {
- Vector v(rows);
- for (unsigned r = 0; r < rows; ++r)
- v[r] = (*this)[r][c];
- return v;
- }
-
- /// \brief Reset the matrix to the given value.
- Matrix& reset(PBQPNum val = 0) {
- std::fill(data, data + (rows * cols), val);
- return *this;
- }
-
- /// \brief Set a single row of this matrix to the given value.
- Matrix& setRow(unsigned r, PBQPNum val) {
- assert(r < rows && "Row out of bounds.");
- std::fill(data + (r * cols), data + ((r + 1) * cols), val);
- return *this;
- }
-
- /// \brief Set a single column of this matrix to the given value.
- Matrix& setCol(unsigned c, PBQPNum val) {
- assert(c < cols && "Column out of bounds.");
- for (unsigned r = 0; r < rows; ++r)
- (*this)[r][c] = val;
- return *this;
- }
-
- /// \brief Matrix transpose.
- Matrix transpose() const {
- Matrix m(cols, rows);
- for (unsigned r = 0; r < rows; ++r)
- for (unsigned c = 0; c < cols; ++c)
- m[c][r] = (*this)[r][c];
- return m;
- }
-
- /// \brief Returns the diagonal of the matrix as a vector.
- ///
- /// Matrix must be square.
- Vector diagonalize() const {
- assert(rows == cols && "Attempt to diagonalize non-square matrix.");
-
- Vector v(rows);
- for (unsigned r = 0; r < rows; ++r)
- v[r] = (*this)[r][r];
- return v;
- }
-
- /// \brief Add the given matrix to this one.
- Matrix& operator+=(const Matrix &m) {
- assert(rows == m.rows && cols == m.cols &&
- "Matrix dimensions mismatch.");
- std::transform(data, data + (rows * cols), m.data, data,
- std::plus<PBQPNum>());
- return *this;
- }
-
- /// \brief Returns the minimum of the given row
- PBQPNum getRowMin(unsigned r) const {
- assert(r < rows && "Row out of bounds");
- return *std::min_element(data + (r * cols), data + ((r + 1) * cols));
- }
-
- /// \brief Returns the minimum of the given column
- PBQPNum getColMin(unsigned c) const {
- PBQPNum minElem = (*this)[0][c];
- for (unsigned r = 1; r < rows; ++r)
- if ((*this)[r][c] < minElem) minElem = (*this)[r][c];
- return minElem;
- }
-
- /// \brief Subtracts the given scalar from the elements of the given row.
- Matrix& subFromRow(unsigned r, PBQPNum val) {
- assert(r < rows && "Row out of bounds");
- std::transform(data + (r * cols), data + ((r + 1) * cols),
- data + (r * cols),
- std::bind2nd(std::minus<PBQPNum>(), val));
- return *this;
- }
-
- /// \brief Subtracts the given scalar from the elements of the given column.
- Matrix& subFromCol(unsigned c, PBQPNum val) {
- for (unsigned r = 0; r < rows; ++r)
- (*this)[r][c] -= val;
- return *this;
- }
-
- /// \brief Returns true if this is a zero matrix.
- bool isZero() const {
- return find_if(data, data + (rows * cols),
- std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
- data + (rows * cols);
- }
-
- private:
- unsigned rows, cols;
- PBQPNum *data;
+private:
+ friend class MatrixComparator;
+public:
+
+ /// \brief Construct a PBQP Matrix with the given dimensions.
+ Matrix(unsigned Rows, unsigned Cols) :
+ Rows(Rows), Cols(Cols), Data(new PBQPNum[Rows * Cols]) {
+ }
+
+ /// \brief Construct a PBQP Matrix with the given dimensions and initial
+ /// value.
+ Matrix(unsigned Rows, unsigned Cols, PBQPNum InitVal)
+ : Rows(Rows), Cols(Cols), Data(new PBQPNum[Rows * Cols]) {
+ std::fill(Data, Data + (Rows * Cols), InitVal);
+ }
+
+ /// \brief Copy construct a PBQP matrix.
+ Matrix(const Matrix &M)
+ : Rows(M.Rows), Cols(M.Cols), Data(new PBQPNum[Rows * Cols]) {
+ std::copy(M.Data, M.Data + (Rows * Cols), Data);
+ }
+
+ /// \brief Move construct a PBQP matrix.
+ Matrix(Matrix &&M)
+ : Rows(M.Rows), Cols(M.Cols), Data(M.Data) {
+ M.Rows = M.Cols = 0;
+ M.Data = nullptr;
+ }
+
+ /// \brief Destroy this matrix, return its memory.
+ ~Matrix() { delete[] Data; }
+
+ /// \brief Copy-assignment operator.
+ Matrix& operator=(const Matrix &M) {
+ delete[] Data;
+ Rows = M.Rows; Cols = M.Cols;
+ Data = new PBQPNum[Rows * Cols];
+ std::copy(M.Data, M.Data + (Rows * Cols), Data);
+ return *this;
+ }
+
+ /// \brief Move-assignment operator.
+ Matrix& operator=(Matrix &&M) {
+ delete[] Data;
+ Rows = M.Rows;
+ Cols = M.Cols;
+ Data = M.Data;
+ M.Rows = M.Cols = 0;
+ M.Data = nullptr;
+ return *this;
+ }
+
+ /// \brief Comparison operator.
+ bool operator==(const Matrix &M) const {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ if (Rows != M.Rows || Cols != M.Cols)
+ return false;
+ return std::equal(Data, Data + (Rows * Cols), M.Data);
+ }
+
+ /// \brief Return the number of rows in this matrix.
+ unsigned getRows() const {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ return Rows;
+ }
+
+ /// \brief Return the number of cols in this matrix.
+ unsigned getCols() const {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ return Cols;
+ }
+
+ /// \brief Matrix element access.
+ PBQPNum* operator[](unsigned R) {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ assert(R < Rows && "Row out of bounds.");
+ return Data + (R * Cols);
+ }
+
+ /// \brief Matrix element access.
+ const PBQPNum* operator[](unsigned R) const {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ assert(R < Rows && "Row out of bounds.");
+ return Data + (R * Cols);
+ }
+
+ /// \brief Returns the given row as a vector.
+ Vector getRowAsVector(unsigned R) const {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ Vector V(Cols);
+ for (unsigned C = 0; C < Cols; ++C)
+ V[C] = (*this)[R][C];
+ return V;
+ }
+
+ /// \brief Returns the given column as a vector.
+ Vector getColAsVector(unsigned C) const {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ Vector V(Rows);
+ for (unsigned R = 0; R < Rows; ++R)
+ V[R] = (*this)[R][C];
+ return V;
+ }
+
+ /// \brief Reset the matrix to the given value.
+ Matrix& reset(PBQPNum Val = 0) {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ std::fill(Data, Data + (Rows * Cols), Val);
+ return *this;
+ }
+
+ /// \brief Set a single row of this matrix to the given value.
+ Matrix& setRow(unsigned R, PBQPNum Val) {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ assert(R < Rows && "Row out of bounds.");
+ std::fill(Data + (R * Cols), Data + ((R + 1) * Cols), Val);
+ return *this;
+ }
+
+ /// \brief Set a single column of this matrix to the given value.
+ Matrix& setCol(unsigned C, PBQPNum Val) {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ assert(C < Cols && "Column out of bounds.");
+ for (unsigned R = 0; R < Rows; ++R)
+ (*this)[R][C] = Val;
+ return *this;
+ }
+
+ /// \brief Matrix transpose.
+ Matrix transpose() const {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ Matrix M(Cols, Rows);
+ for (unsigned r = 0; r < Rows; ++r)
+ for (unsigned c = 0; c < Cols; ++c)
+ M[c][r] = (*this)[r][c];
+ return M;
+ }
+
+ /// \brief Returns the diagonal of the matrix as a vector.
+ ///
+ /// Matrix must be square.
+ Vector diagonalize() const {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ assert(Rows == Cols && "Attempt to diagonalize non-square matrix.");
+ Vector V(Rows);
+ for (unsigned r = 0; r < Rows; ++r)
+ V[r] = (*this)[r][r];
+ return V;
+ }
+
+ /// \brief Add the given matrix to this one.
+ Matrix& operator+=(const Matrix &M) {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ assert(Rows == M.Rows && Cols == M.Cols &&
+ "Matrix dimensions mismatch.");
+ std::transform(Data, Data + (Rows * Cols), M.Data, Data,
+ std::plus<PBQPNum>());
+ return *this;
+ }
+
+ Matrix operator+(const Matrix &M) {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ Matrix Tmp(*this);
+ Tmp += M;
+ return Tmp;
+ }
+
+ /// \brief Returns the minimum of the given row
+ PBQPNum getRowMin(unsigned R) const {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ assert(R < Rows && "Row out of bounds");
+ return *std::min_element(Data + (R * Cols), Data + ((R + 1) * Cols));
+ }
+
+ /// \brief Returns the minimum of the given column
+ PBQPNum getColMin(unsigned C) const {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ PBQPNum MinElem = (*this)[0][C];
+ for (unsigned R = 1; R < Rows; ++R)
+ if ((*this)[R][C] < MinElem)
+ MinElem = (*this)[R][C];
+ return MinElem;
+ }
+
+ /// \brief Subtracts the given scalar from the elements of the given row.
+ Matrix& subFromRow(unsigned R, PBQPNum Val) {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ assert(R < Rows && "Row out of bounds");
+ std::transform(Data + (R * Cols), Data + ((R + 1) * Cols),
+ Data + (R * Cols),
+ std::bind2nd(std::minus<PBQPNum>(), Val));
+ return *this;
+ }
+
+ /// \brief Subtracts the given scalar from the elements of the given column.
+ Matrix& subFromCol(unsigned C, PBQPNum Val) {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ for (unsigned R = 0; R < Rows; ++R)
+ (*this)[R][C] -= Val;
+ return *this;
+ }
+
+ /// \brief Returns true if this is a zero matrix.
+ bool isZero() const {
+ assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
+ return find_if(Data, Data + (Rows * Cols),
+ std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
+ Data + (Rows * Cols);
+ }
+
+private:
+ unsigned Rows, Cols;
+ PBQPNum *Data;
+};
+
+class MatrixComparator {
+public:
+ bool operator()(const Matrix &A, const Matrix &B) {
+ if (A.Rows < B.Rows)
+ return true;
+ if (B.Rows < A.Rows)
+ return false;
+ if (A.Cols < B.Cols)
+ return true;
+ if (B.Cols < A.Cols)
+ return false;
+ char *AData = reinterpret_cast<char*>(A.Data);
+ char *BData = reinterpret_cast<char*>(B.Data);
+ return std::lexicographical_compare(
+ AData, AData + (A.Rows * A.Cols * sizeof(PBQPNum)),
+ BData, BData + (A.Rows * A.Cols * sizeof(PBQPNum)));
+ }
};
/// \brief Output a textual representation of the given matrix on the given
/// output stream.
template <typename OStream>
-OStream& operator<<(OStream &os, const Matrix &m) {
-
- assert((m.getRows() != 0) && "Zero-row matrix badness.");
+OStream& operator<<(OStream &OS, const Matrix &M) {
+ assert((M.getRows() != 0) && "Zero-row matrix badness.");
+ for (unsigned i = 0; i < M.getRows(); ++i)
+ OS << M.getRowAsVector(i);
+ return OS;
+}
- for (unsigned i = 0; i < m.getRows(); ++i) {
- os << m.getRowAsVector(i);
- }
+template <typename Metadata>
+class MDVector : public Vector {
+public:
+ MDVector(const Vector &v) : Vector(v), md(*this) { }
+ MDVector(Vector &&v) : Vector(std::move(v)), md(*this) { }
+ const Metadata& getMetadata() const { return md; }
+private:
+ Metadata md;
+};
- return os;
-}
+template <typename Metadata>
+class MDMatrix : public Matrix {
+public:
+ MDMatrix(const Matrix &m) : Matrix(m), md(*this) { }
+ MDMatrix(Matrix &&m) : Matrix(std::move(m)), md(*this) { }
+ const Metadata& getMetadata() const { return md; }
+private:
+ Metadata md;
+};
}
diff --git a/include/llvm/CodeGen/PBQP/ReductionRules.h b/include/llvm/CodeGen/PBQP/ReductionRules.h
new file mode 100644
index 0000000..a55a060
--- /dev/null
+++ b/include/llvm/CodeGen/PBQP/ReductionRules.h
@@ -0,0 +1,191 @@
+//===----------- ReductionRules.h - Reduction Rules -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Reduction Rules.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_REDUCTIONRULES_H
+#define LLVM_REDUCTIONRULES_H
+
+#include "Graph.h"
+#include "Math.h"
+#include "Solution.h"
+
+namespace PBQP {
+
+ /// \brief Reduce a node of degree one.
+ ///
+ /// Propagate costs from the given node, which must be of degree one, to its
+ /// neighbor. Notify the problem domain.
+ template <typename GraphT>
+ void applyR1(GraphT &G, typename GraphT::NodeId NId) {
+ typedef typename GraphT::NodeId NodeId;
+ typedef typename GraphT::EdgeId EdgeId;
+ typedef typename GraphT::Vector Vector;
+ typedef typename GraphT::Matrix Matrix;
+ typedef typename GraphT::RawVector RawVector;
+
+ assert(G.getNodeDegree(NId) == 1 &&
+ "R1 applied to node with degree != 1.");
+
+ EdgeId EId = *G.adjEdgeIds(NId).begin();
+ NodeId MId = G.getEdgeOtherNodeId(EId, NId);
+
+ const Matrix &ECosts = G.getEdgeCosts(EId);
+ const Vector &XCosts = G.getNodeCosts(NId);
+ RawVector YCosts = G.getNodeCosts(MId);
+
+ // Duplicate a little to avoid transposing matrices.
+ if (NId == G.getEdgeNode1Id(EId)) {
+ for (unsigned j = 0; j < YCosts.getLength(); ++j) {
+ PBQPNum Min = ECosts[0][j] + XCosts[0];
+ for (unsigned i = 1; i < XCosts.getLength(); ++i) {
+ PBQPNum C = ECosts[i][j] + XCosts[i];
+ if (C < Min)
+ Min = C;
+ }
+ YCosts[j] += Min;
+ }
+ } else {
+ for (unsigned i = 0; i < YCosts.getLength(); ++i) {
+ PBQPNum Min = ECosts[i][0] + XCosts[0];
+ for (unsigned j = 1; j < XCosts.getLength(); ++j) {
+ PBQPNum C = ECosts[i][j] + XCosts[j];
+ if (C < Min)
+ Min = C;
+ }
+ YCosts[i] += Min;
+ }
+ }
+ G.setNodeCosts(MId, YCosts);
+ G.disconnectEdge(EId, MId);
+ }
+
+ template <typename GraphT>
+ void applyR2(GraphT &G, typename GraphT::NodeId NId) {
+ typedef typename GraphT::NodeId NodeId;
+ typedef typename GraphT::EdgeId EdgeId;
+ typedef typename GraphT::Vector Vector;
+ typedef typename GraphT::Matrix Matrix;
+ typedef typename GraphT::RawMatrix RawMatrix;
+
+ assert(G.getNodeDegree(NId) == 2 &&
+ "R2 applied to node with degree != 2.");
+
+ const Vector &XCosts = G.getNodeCosts(NId);
+
+ typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
+ EdgeId YXEId = *AEItr,
+ ZXEId = *(++AEItr);
+
+ NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
+ ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
+
+ bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
+ FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
+
+ const Matrix *YXECosts = FlipEdge1 ?
+ new Matrix(G.getEdgeCosts(YXEId).transpose()) :
+ &G.getEdgeCosts(YXEId);
+
+ const Matrix *ZXECosts = FlipEdge2 ?
+ new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
+ &G.getEdgeCosts(ZXEId);
+
+ unsigned XLen = XCosts.getLength(),
+ YLen = YXECosts->getRows(),
+ ZLen = ZXECosts->getRows();
+
+ RawMatrix Delta(YLen, ZLen);
+
+ for (unsigned i = 0; i < YLen; ++i) {
+ for (unsigned j = 0; j < ZLen; ++j) {
+ PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
+ for (unsigned k = 1; k < XLen; ++k) {
+ PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
+ if (C < Min) {
+ Min = C;
+ }
+ }
+ Delta[i][j] = Min;
+ }
+ }
+
+ if (FlipEdge1)
+ delete YXECosts;
+
+ if (FlipEdge2)
+ delete ZXECosts;
+
+ EdgeId YZEId = G.findEdge(YNId, ZNId);
+
+ if (YZEId == G.invalidEdgeId()) {
+ YZEId = G.addEdge(YNId, ZNId, Delta);
+ } else {
+ const Matrix &YZECosts = G.getEdgeCosts(YZEId);
+ if (YNId == G.getEdgeNode1Id(YZEId)) {
+ G.setEdgeCosts(YZEId, Delta + YZECosts);
+ } else {
+ G.setEdgeCosts(YZEId, Delta.transpose() + YZECosts);
+ }
+ }
+
+ G.disconnectEdge(YXEId, YNId);
+ G.disconnectEdge(ZXEId, ZNId);
+
+ // TODO: Try to normalize newly added/modified edge.
+ }
+
+
+ // \brief Find a solution to a fully reduced graph by backpropagation.
+ //
+ // Given a graph and a reduction order, pop each node from the reduction
+ // order and greedily compute a minimum solution based on the node costs, and
+ // the dependent costs due to previously solved nodes.
+ //
+ // Note - This does not return the graph to its original (pre-reduction)
+ // state: the existing solvers destructively alter the node and edge
+ // costs. Given that, the backpropagate function doesn't attempt to
+ // replace the edges either, but leaves the graph in its reduced
+ // state.
+ template <typename GraphT, typename StackT>
+ Solution backpropagate(GraphT& G, StackT stack) {
+ typedef GraphBase::NodeId NodeId;
+ typedef typename GraphT::Matrix Matrix;
+ typedef typename GraphT::RawVector RawVector;
+
+ Solution s;
+
+ while (!stack.empty()) {
+ NodeId NId = stack.back();
+ stack.pop_back();
+
+ RawVector v = G.getNodeCosts(NId);
+
+ for (auto EId : G.adjEdgeIds(NId)) {
+ const Matrix& edgeCosts = G.getEdgeCosts(EId);
+ if (NId == G.getEdgeNode1Id(EId)) {
+ NodeId mId = G.getEdgeNode2Id(EId);
+ v += edgeCosts.getColAsVector(s.getSelection(mId));
+ } else {
+ NodeId mId = G.getEdgeNode1Id(EId);
+ v += edgeCosts.getRowAsVector(s.getSelection(mId));
+ }
+ }
+
+ s.setSelection(NId, v.minIndex());
+ }
+
+ return s;
+ }
+
+}
+
+#endif // LLVM_REDUCTIONRULES_H
diff --git a/include/llvm/CodeGen/PBQP/RegAllocSolver.h b/include/llvm/CodeGen/PBQP/RegAllocSolver.h
new file mode 100644
index 0000000..79ff6b4
--- /dev/null
+++ b/include/llvm/CodeGen/PBQP/RegAllocSolver.h
@@ -0,0 +1,359 @@
+//===-- RegAllocSolver.h - Heuristic PBQP Solver for reg alloc --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Heuristic PBQP solver for register allocation problems. This solver uses a
+// graph reduction approach. Nodes of degree 0, 1 and 2 are eliminated with
+// optimality-preserving rules (see ReductionRules.h). When no low-degree (<3)
+// nodes are present, a heuristic derived from Brigg's graph coloring approach
+// is used.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
+#define LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
+
+#include "CostAllocator.h"
+#include "Graph.h"
+#include "ReductionRules.h"
+#include "Solution.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <limits>
+#include <vector>
+
+namespace PBQP {
+
+ namespace RegAlloc {
+
+ /// \brief Metadata to speed allocatability test.
+ ///
+ /// Keeps track of the number of infinities in each row and column.
+ class MatrixMetadata {
+ private:
+ MatrixMetadata(const MatrixMetadata&);
+ void operator=(const MatrixMetadata&);
+ public:
+ MatrixMetadata(const PBQP::Matrix& M)
+ : WorstRow(0), WorstCol(0),
+ UnsafeRows(new bool[M.getRows() - 1]()),
+ UnsafeCols(new bool[M.getCols() - 1]()) {
+
+ unsigned* ColCounts = new unsigned[M.getCols() - 1]();
+
+ for (unsigned i = 1; i < M.getRows(); ++i) {
+ unsigned RowCount = 0;
+ for (unsigned j = 1; j < M.getCols(); ++j) {
+ if (M[i][j] == std::numeric_limits<PBQP::PBQPNum>::infinity()) {
+ ++RowCount;
+ ++ColCounts[j - 1];
+ UnsafeRows[i - 1] = true;
+ UnsafeCols[j - 1] = true;
+ }
+ }
+ WorstRow = std::max(WorstRow, RowCount);
+ }
+ unsigned WorstColCountForCurRow =
+ *std::max_element(ColCounts, ColCounts + M.getCols() - 1);
+ WorstCol = std::max(WorstCol, WorstColCountForCurRow);
+ delete[] ColCounts;
+ }
+
+ ~MatrixMetadata() {
+ delete[] UnsafeRows;
+ delete[] UnsafeCols;
+ }
+
+ unsigned getWorstRow() const { return WorstRow; }
+ unsigned getWorstCol() const { return WorstCol; }
+ const bool* getUnsafeRows() const { return UnsafeRows; }
+ const bool* getUnsafeCols() const { return UnsafeCols; }
+
+ private:
+ unsigned WorstRow, WorstCol;
+ bool* UnsafeRows;
+ bool* UnsafeCols;
+ };
+
+ class NodeMetadata {
+ public:
+ typedef enum { Unprocessed,
+ OptimallyReducible,
+ ConservativelyAllocatable,
+ NotProvablyAllocatable } ReductionState;
+
+ NodeMetadata() : RS(Unprocessed), DeniedOpts(0), OptUnsafeEdges(0) {}
+ ~NodeMetadata() { delete[] OptUnsafeEdges; }
+
+ void setup(const Vector& Costs) {
+ NumOpts = Costs.getLength() - 1;
+ OptUnsafeEdges = new unsigned[NumOpts]();
+ }
+
+ ReductionState getReductionState() const { return RS; }
+ void setReductionState(ReductionState RS) { this->RS = RS; }
+
+ void handleAddEdge(const MatrixMetadata& MD, bool Transpose) {
+ DeniedOpts += Transpose ? MD.getWorstCol() : MD.getWorstRow();
+ const bool* UnsafeOpts =
+ Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
+ for (unsigned i = 0; i < NumOpts; ++i)
+ OptUnsafeEdges[i] += UnsafeOpts[i];
+ }
+
+ void handleRemoveEdge(const MatrixMetadata& MD, bool Transpose) {
+ DeniedOpts -= Transpose ? MD.getWorstCol() : MD.getWorstRow();
+ const bool* UnsafeOpts =
+ Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
+ for (unsigned i = 0; i < NumOpts; ++i)
+ OptUnsafeEdges[i] -= UnsafeOpts[i];
+ }
+
+ bool isConservativelyAllocatable() const {
+ return (DeniedOpts < NumOpts) ||
+ (std::find(OptUnsafeEdges, OptUnsafeEdges + NumOpts, 0) !=
+ OptUnsafeEdges + NumOpts);
+ }
+
+ private:
+ ReductionState RS;
+ unsigned NumOpts;
+ unsigned DeniedOpts;
+ unsigned* OptUnsafeEdges;
+ };
+
+ class RegAllocSolverImpl {
+ private:
+ typedef PBQP::MDMatrix<MatrixMetadata> RAMatrix;
+ public:
+ typedef PBQP::Vector RawVector;
+ typedef PBQP::Matrix RawMatrix;
+ typedef PBQP::Vector Vector;
+ typedef RAMatrix Matrix;
+ typedef PBQP::PoolCostAllocator<
+ Vector, PBQP::VectorComparator,
+ Matrix, PBQP::MatrixComparator> CostAllocator;
+
+ typedef PBQP::GraphBase::NodeId NodeId;
+ typedef PBQP::GraphBase::EdgeId EdgeId;
+
+ typedef RegAlloc::NodeMetadata NodeMetadata;
+
+ struct EdgeMetadata { };
+
+ typedef PBQP::Graph<RegAllocSolverImpl> Graph;
+
+ RegAllocSolverImpl(Graph &G) : G(G) {}
+
+ Solution solve() {
+ G.setSolver(*this);
+ Solution S;
+ setup();
+ S = backpropagate(G, reduce());
+ G.unsetSolver();
+ return S;
+ }
+
+ void handleAddNode(NodeId NId) {
+ G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
+ }
+ void handleRemoveNode(NodeId NId) {}
+ void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
+
+ void handleAddEdge(EdgeId EId) {
+ handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
+ handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
+ }
+
+ void handleRemoveEdge(EdgeId EId) {
+ handleDisconnectEdge(EId, G.getEdgeNode1Id(EId));
+ handleDisconnectEdge(EId, G.getEdgeNode2Id(EId));
+ }
+
+ void handleDisconnectEdge(EdgeId EId, NodeId NId) {
+ NodeMetadata& NMd = G.getNodeMetadata(NId);
+ const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
+ NMd.handleRemoveEdge(MMd, NId == G.getEdgeNode2Id(EId));
+ if (G.getNodeDegree(NId) == 3) {
+ // This node is becoming optimally reducible.
+ moveToOptimallyReducibleNodes(NId);
+ } else if (NMd.getReductionState() ==
+ NodeMetadata::NotProvablyAllocatable &&
+ NMd.isConservativelyAllocatable()) {
+ // This node just became conservatively allocatable.
+ moveToConservativelyAllocatableNodes(NId);
+ }
+ }
+
+ void handleReconnectEdge(EdgeId EId, NodeId NId) {
+ NodeMetadata& NMd = G.getNodeMetadata(NId);
+ const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
+ NMd.handleAddEdge(MMd, NId == G.getEdgeNode2Id(EId));
+ }
+
+ void handleSetEdgeCosts(EdgeId EId, const Matrix& NewCosts) {
+ handleRemoveEdge(EId);
+
+ NodeId N1Id = G.getEdgeNode1Id(EId);
+ NodeId N2Id = G.getEdgeNode2Id(EId);
+ NodeMetadata& N1Md = G.getNodeMetadata(N1Id);
+ NodeMetadata& N2Md = G.getNodeMetadata(N2Id);
+ const MatrixMetadata& MMd = NewCosts.getMetadata();
+ N1Md.handleAddEdge(MMd, N1Id != G.getEdgeNode1Id(EId));
+ N2Md.handleAddEdge(MMd, N2Id != G.getEdgeNode1Id(EId));
+ }
+
+ private:
+
+ void removeFromCurrentSet(NodeId NId) {
+ switch (G.getNodeMetadata(NId).getReductionState()) {
+ case NodeMetadata::Unprocessed: break;
+ case NodeMetadata::OptimallyReducible:
+ assert(OptimallyReducibleNodes.find(NId) !=
+ OptimallyReducibleNodes.end() &&
+ "Node not in optimally reducible set.");
+ OptimallyReducibleNodes.erase(NId);
+ break;
+ case NodeMetadata::ConservativelyAllocatable:
+ assert(ConservativelyAllocatableNodes.find(NId) !=
+ ConservativelyAllocatableNodes.end() &&
+ "Node not in conservatively allocatable set.");
+ ConservativelyAllocatableNodes.erase(NId);
+ break;
+ case NodeMetadata::NotProvablyAllocatable:
+ assert(NotProvablyAllocatableNodes.find(NId) !=
+ NotProvablyAllocatableNodes.end() &&
+ "Node not in not-provably-allocatable set.");
+ NotProvablyAllocatableNodes.erase(NId);
+ break;
+ }
+ }
+
+ void moveToOptimallyReducibleNodes(NodeId NId) {
+ removeFromCurrentSet(NId);
+ OptimallyReducibleNodes.insert(NId);
+ G.getNodeMetadata(NId).setReductionState(
+ NodeMetadata::OptimallyReducible);
+ }
+
+ void moveToConservativelyAllocatableNodes(NodeId NId) {
+ removeFromCurrentSet(NId);
+ ConservativelyAllocatableNodes.insert(NId);
+ G.getNodeMetadata(NId).setReductionState(
+ NodeMetadata::ConservativelyAllocatable);
+ }
+
+ void moveToNotProvablyAllocatableNodes(NodeId NId) {
+ removeFromCurrentSet(NId);
+ NotProvablyAllocatableNodes.insert(NId);
+ G.getNodeMetadata(NId).setReductionState(
+ NodeMetadata::NotProvablyAllocatable);
+ }
+
+ void setup() {
+ // Set up worklists.
+ for (auto NId : G.nodeIds()) {
+ if (G.getNodeDegree(NId) < 3)
+ moveToOptimallyReducibleNodes(NId);
+ else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
+ moveToConservativelyAllocatableNodes(NId);
+ else
+ moveToNotProvablyAllocatableNodes(NId);
+ }
+ }
+
+ // Compute a reduction order for the graph by iteratively applying PBQP
+ // reduction rules. Locally optimal rules are applied whenever possible (R0,
+ // R1, R2). If no locally-optimal rules apply then any conservatively
+ // allocatable node is reduced. Finally, if no conservatively allocatable
+ // node exists then the node with the lowest spill-cost:degree ratio is
+ // selected.
+ std::vector<GraphBase::NodeId> reduce() {
+ assert(!G.empty() && "Cannot reduce empty graph.");
+
+ typedef GraphBase::NodeId NodeId;
+ std::vector<NodeId> NodeStack;
+
+ // Consume worklists.
+ while (true) {
+ if (!OptimallyReducibleNodes.empty()) {
+ NodeSet::iterator NItr = OptimallyReducibleNodes.begin();
+ NodeId NId = *NItr;
+ OptimallyReducibleNodes.erase(NItr);
+ NodeStack.push_back(NId);
+ switch (G.getNodeDegree(NId)) {
+ case 0:
+ break;
+ case 1:
+ applyR1(G, NId);
+ break;
+ case 2:
+ applyR2(G, NId);
+ break;
+ default: llvm_unreachable("Not an optimally reducible node.");
+ }
+ } else if (!ConservativelyAllocatableNodes.empty()) {
+ // Conservatively allocatable nodes will never spill. For now just
+ // take the first node in the set and push it on the stack. When we
+ // start optimizing more heavily for register preferencing, it may
+ // would be better to push nodes with lower 'expected' or worst-case
+ // register costs first (since early nodes are the most
+ // constrained).
+ NodeSet::iterator NItr = ConservativelyAllocatableNodes.begin();
+ NodeId NId = *NItr;
+ ConservativelyAllocatableNodes.erase(NItr);
+ NodeStack.push_back(NId);
+ G.disconnectAllNeighborsFromNode(NId);
+
+ } else if (!NotProvablyAllocatableNodes.empty()) {
+ NodeSet::iterator NItr =
+ std::min_element(NotProvablyAllocatableNodes.begin(),
+ NotProvablyAllocatableNodes.end(),
+ SpillCostComparator(G));
+ NodeId NId = *NItr;
+ NotProvablyAllocatableNodes.erase(NItr);
+ NodeStack.push_back(NId);
+ G.disconnectAllNeighborsFromNode(NId);
+ } else
+ break;
+ }
+
+ return NodeStack;
+ }
+
+ class SpillCostComparator {
+ public:
+ SpillCostComparator(const Graph& G) : G(G) {}
+ bool operator()(NodeId N1Id, NodeId N2Id) {
+ PBQPNum N1SC = G.getNodeCosts(N1Id)[0] / G.getNodeDegree(N1Id);
+ PBQPNum N2SC = G.getNodeCosts(N2Id)[0] / G.getNodeDegree(N2Id);
+ return N1SC < N2SC;
+ }
+ private:
+ const Graph& G;
+ };
+
+ Graph& G;
+ typedef std::set<NodeId> NodeSet;
+ NodeSet OptimallyReducibleNodes;
+ NodeSet ConservativelyAllocatableNodes;
+ NodeSet NotProvablyAllocatableNodes;
+ };
+
+ typedef Graph<RegAllocSolverImpl> Graph;
+
+ Solution solve(Graph& G) {
+ if (G.empty())
+ return Solution();
+ RegAllocSolverImpl RegAllocSolver(G);
+ return RegAllocSolver.solve();
+ }
+
+ }
+}
+
+#endif // LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
diff --git a/include/llvm/CodeGen/PBQP/Solution.h b/include/llvm/CodeGen/PBQP/Solution.h
index 091805d..3556e60 100644
--- a/include/llvm/CodeGen/PBQP/Solution.h
+++ b/include/llvm/CodeGen/PBQP/Solution.h
@@ -26,7 +26,7 @@ namespace PBQP {
class Solution {
private:
- typedef std::map<Graph::NodeId, unsigned> SelectionsMap;
+ typedef std::map<GraphBase::NodeId, unsigned> SelectionsMap;
SelectionsMap selections;
unsigned r0Reductions, r1Reductions, r2Reductions, rNReductions;
@@ -72,14 +72,14 @@ namespace PBQP {
/// \brief Set the selection for a given node.
/// @param nodeId Node id.
/// @param selection Selection for nodeId.
- void setSelection(Graph::NodeId nodeId, unsigned selection) {
+ void setSelection(GraphBase::NodeId nodeId, unsigned selection) {
selections[nodeId] = selection;
}
/// \brief Get a node's selection.
/// @param nodeId Node id.
/// @return The selection for nodeId;
- unsigned getSelection(Graph::NodeId nodeId) const {
+ unsigned getSelection(GraphBase::NodeId nodeId) const {
SelectionsMap::const_iterator sItr = selections.find(nodeId);
assert(sItr != selections.end() && "No selection for node.");
return sItr->second;